<table>
<thead>
<tr>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstation phase speed and amplitude measurements of surface waves with nonlinear waveform fitting: application to USArray</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamada, K.; Yoshizawa, K.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Citation</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Issue Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Doc URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://hdl.handle.net/2115/60080</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>article</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>File Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1463.full.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
Interstation phase speed and amplitude measurements of surface waves with nonlinear waveform fitting: application to USArray

K. Hamada¹ and K. Yoshizawa²

¹Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan. E-mail: kouta@mail.sci.hokudai.ac.jp
²Department of Earth and Planetary Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

Accepted 2015 May 20. Received 2015 May 12; in original form 2014 May 13

SUMMARY

A new method of fully nonlinear waveform fitting to measure interstation phase speeds and amplitude ratios is developed and applied to USArray. The Neighbourhood Algorithm is used as a global optimizer, which efficiently searches for model parameters that fit two observed waveforms on a common great-circle path by modulating the phase and amplitude terms of the fundamental-mode surface waves. We introduce the reliability parameter that represents how well the waveforms at two stations can be fitted in a time–frequency domain, which is used as a data selection criterion. The method is applied to observed waveforms of USArray for seismic events in the period from 2007 to 2010 with moment magnitude greater than 6.0. We collect a large number of phase speed data (about 75 000 for Rayleigh and 20 000 for Love) and amplitude ratio data (about 15 000 for Rayleigh waves) in a period range from 30 to 130 s. The majority of the interstation distances of measured dispersion data is less than 1000 km, which is much shorter than the typical average path-length of the conventional single-station measurements for source-receiver pairs. The phase speed models for Rayleigh and Love waves show good correlations on large scales with the recent tomographic maps derived from different approaches for phase speed mapping; for example, significant slow anomalies in volcanic regions in the western United States and fast anomalies in the cratonic region. Local-scale phase speed anomalies corresponding to the major tectonic features in the western United States, such as Snake River Plains, Basin and Range, Colorado Plateau and Rio Grande Rift have also been identified clearly in the phase speed models. The short-path information derived from our interstation measurements helps to increase the achievable horizontal resolution. We have also performed joint inversions for phase speed maps using the measured phase and amplitude ratio data of vertical component Rayleigh waves. These maps exhibit better recovery of phase speed perturbations, particularly where the strong lateral velocity gradient exists in which the effects of elastic focussing can be significant; that is, the Yellowstone hotspot, Snake River Plains, and Rio Grande Rift. The enhanced resolution of the phase speed models derived from the interstation phase and amplitude measurements will be of use for the better seismological constraint on the lithospheric structure, in combination with dense broad-band seismic arrays.

Key words: Inverse theory; Surface waves and free oscillations; Seismic tomography; North America.

1 INTRODUCTION

The structure and dynamics of the upper mantle are closely related to the occurrence of earthquakes and volcanic activities near the surface of the Earth. Seismic surface waves provide us with a powerful means to map the lateral heterogeneity and anisotropy in the crust and upper mantle, and a number of tomographic studies using surface waves have been conducted in the past three decades on a variety of scales. Many of global surface wave studies have been based on the measurements of phase velocities between the source and receiver for the fundamental mode (e.g. Montagner & Tanimoto 1991; Trampert & Woodhouse 1995; Laske & Masters 1996; Ekström et al. 1997; Boschi et al. 2006). The majority of recent regional-scale tomography employs multimode waveform fitting techniques incorporating higher-mode information which helps in enhancing the depth resolution (e.g. van der Lee & Nolet 1997; Debayle & Kennett 2000; Lebedev & Nolet 2003; Isse et al. 2006b; Yoshizawa 2014), which have also been applied to the reconstruction of some recent global-scale models (e.g. Lebedev & van der Hilst 2008; Visser et al. 2008; Debayle & Ricard 2012). Such
single-station techniques for surface-wave dispersion analysis generally require long propagation paths over 1000 km to assure the separation of surface-wave signals from the preceding body wave arrivals.

One of the widely used classical techniques in the regional-scale surface-wave mapping is the two-station method (e.g. Dziewonski & Hales 1972), in which the phase differences between seismograms at two stations on a common great-circle path are used to extract the average phase speed between two stations. By taking the phase difference between the two seismograms in the frequency domain, source terms can be cancelled out, so that no information on source mechanisms is needed in this style of technique. This method allows us to measure the phase speeds for short paths less than 1000 km between two stations, and can be useful for extending the resolution of velocity models in comparison with the single-station method.

There are many examples of the regional- or local-scale surface wave maps employing the interstation measurements of surface wave phase speeds; e.g. by employing permanent regional networks (e.g. Yoshizawa et al. 2010; Bakirli et al. 2012) and temporary deployments of broadband arrays (e.g. Isse et al. 2006a; Deschamps et al. 2008; Darbyshire & Lebedev 2009). Several studies have attempted to correct the deviation from the great circle by measuring the actual orientation of the wave front and calculating the velocities using the real interstation distance covered by the wave path (Baumont et al. 2002; Kaviani et al. 2007). Array style analysis for teleseismic tomography has also been investigated by modelling the arrival angles of incoming seismic waves and the phase velocity variations across the array simultaneously (e.g. Li et al. 2003).

A limitation of the two-station analysis is that two stations need to be located on or near the common great-circle path, which tends to restrict the available numbers of interstation dispersion measurements. This can be overcome by the use of dense broad-band seismic networks, which are becoming available in many regions over the world. USArray, deployed across the United States as a part of the Earthscope project, is one of the most prominent seismic networks for the application of interstation surface wave mapping.

The shear wave structure of North America, which encompasses complex tectonic features (Fig. 1), has been studied by using a variety of methods of surface wave analysis. The single-station method has been primarily used to constrain the large-scale S-wave structure (e.g. van der Lee & Nolet 1997; Godet et al. 2003; Marone et al. 2007; Nettles & Dziewonski 2008), employing permanent global networks and local stations in the United States. The deployment of the Transportable Array (TA; USArray) in the last decade provides us with high-quality broad-band seismic waveform data, which have facilitated a variety of tomographic studies in this region; for example, ambient noise tomography (e.g. Shapiro et al. 2005; Ekström et al. 2009), body-wave tomography (e.g. Burdick et al. 2010), higher-mode phase speed mapping of surface waves (Yoshizawa & Ekström 2010) and joint tomography of body and surface waves (Obrebski et al. 2011).

New multiple-station techniques for constraining seismic structure have also been developed for making the most of the USArray data; for example, eikonal tomography (Lin et al. 2009), Helmholtz tomography (Lin & Ritzwoller 2011) and two-station phase estimations based on single-station measurements with the arrival-angle corrections using a miniarray method (Foster et al. 2014b). The velocity models of these studies are consistent and the USArray data have dramatically enhanced horizontal resolution of tomographic models in the United States.

The majority of the two-station studies have used the phase information to constrain the velocity structure of the earth, and the use of the interstation amplitude information between two stations has been limited (e.g. Yang et al. 2004, for an attenuation study). The observed amplitude anomalies tend to be affected by a variety of effects, including focusing or defocusing effects caused by lateral heterogeneity of velocity structure, anelastic attenuation and scattering. The amplitude anomalies caused by focusing or defocusing effects depend on the second derivative of phase speed perpendicular to the ray path (e.g. Woodhouse & Wong 1986), and thus they are more sensitive to short-wavelength structure compared to the phase information. Thus, the amplitude information can be of help in...
improving lateral resolutions of phase speed models (e.g. Laske & Masters 1996; Yang & Forsyth 2006). While global-scale phase speed models using amplitude data for source-receiver paths have been investigated in detail by Dalton & Ekström (2006), local-scale phase speed models incorporating interstation amplitude ratios from a dense seismic array have yet to be investigated.

In this study, we develop a new approach for the surface wave phase speed and amplitude measurements between two stations on a common great-circle path, based on a fully nonlinear interstation waveform fitting technique working with the Neighbourhood Algorithm (NA; Sambridge 1999) as a global optimizer. In the recent study of two-station method using USArray by Foster et al. (2014b), the interstation phase information has been derived from the single-station phase measurements for each station, based on the work by Ekström et al. (1997). We, instead, employ the direct comparisons of waveforms at two stations to extract the interstation phase speeds and amplitude ratios simultaneously. The basic idea of this method of nonlinear waveform fitting is modelled in the earlier work by Yoshizawa & Kennett (2002) and Yoshizawa & Ekström (2010), in which a single station seismogram is inverted using NA to extract path-specific multimode phase speeds for source-receiver pairs. The new method of two-station waveform matching is applied to the large number of station pairs of USArray in an automated manner by employing quantitative evaluation criteria for the quality control of the estimated interstation phase speed and amplitude.

The main emphasis of this study is placed on the development and application of the new technique of the interstation phase and amplitude measurements of the fundamental-mode surface waves working with a dense broad-band seismic array. The resultant phase speed models for both Love and Rayleigh waves will be discussed in comparison with recent tomographic studies in North America. We will also discuss phase speed models derived from the joint inversions of the phase and amplitude data for the vertical Rayleigh waves, which exhibits the importance of amplitude information to better constrain the smaller-scale heterogeneity across the array.

2 METHOD OF PHASE SPEED AND AMPLITUDE MEASUREMENTS

In this study, we develop a new method of fully nonlinear waveform fitting to extract interstation phase speeds. The Neighbourhood Algorithm (NA) of Sambridge (1999) is used as a global optimizer to find the best dispersion curve that matches two observed waveforms. We employ a reliability parameter that represents how well the waveforms at two stations can be fitted in a time–frequency domain, which is then used as a data selection criterion in the subsequent step of phase speed mapping. In this section, we summarize the formulations for the fully nonlinear waveform fitting to estimate interstation phase speeds and amplitude ratios.

2.1 Formulation for interstation waveform fitting

We define the seismogram of the nearer station in the frequency domain as \(u_{\text{near}}(\omega) \), and that of the farther station as \(u_{\text{far}}(\omega) \), which can be represented as

\[
u_{\text{far}}(\omega) = A_{\text{far}}(\omega) \exp[i \phi_{\text{far}}(\omega)],
\]

where \(\phi_{\text{far}} \) and \(A_{\text{far}} \) are the phase terms, and amplitude terms corrected respectively with geometrical spreading factors \(\sqrt{\sin \Delta_{\text{far}}^2} \) and \(\sqrt{\sin \Delta_{\text{near}}^2} \), and \(\Delta_{\text{far}} \) and \(\Delta_{\text{near}} \) are the epicentral distances for each station. Now, we try to find the best estimate of a transfer function \(T(\omega) \) between \(u_{\text{far}} \) and \(u_{\text{near}} \), which eventually gives us with the interstation phase and amplitude ratio as a function of frequency. Using the transfer function defined as \(T(\omega) = D(\omega) \exp[\delta \phi(\omega)] \), where \(D \) is the amplitude ratio and \(\delta \phi \) the phase differences between the two stations, we can express the perturbed seismogram \(u_{\text{pert}} \) as follows,

\[
u_{\text{pert}}(\omega) = T(\omega) u_{\text{near}}(\omega) = A_{\text{near}}(\omega)D(\omega) \exp[\{ \phi_{\text{near}}(\omega) + \delta \phi(\omega) \}].
\]

The amplitude ratio \(D \) and phase difference \(\delta \phi \) can be explicitly given as follows,

\[
D = \frac{A_{\text{far}}}{A_{\text{near}}} = D_0 + \delta D,
\]

\[
\delta \phi = -\frac{\cos \Delta}{c_0 + \delta c}.
\]

where \(D_0 = \exp(-\cos \Delta Q_0^{-1}/2U_0) \), \(U_0, c_0 \) and \(Q_0^{-1} \) are the reference values for amplitude ratio, group speed, phase speed and inverse quality factor for a reference model. In this study, a modified version of PREM (Preliminary Reference Earth Model; Dziewonski & Anderson 1981), in which the 220 km discontinuity is smoothed out, is used as the reference model.

To estimate the optimum dispersion curves by fitting two seismograms \(u_{\text{far}} \) and \(u_{\text{pert}} \), the fractional perturbations of path-specific phase speed \(\delta c \) and amplitude ratio \(\delta D \) are expanded in a set of B-spline functions \(f_i(\omega) \),

\[
\delta c = \sum_{i=1}^{N} b_i f_i(\omega),
\]

\[
\delta D = \sum_{i=1}^{N} d_i f_i(\omega),
\]

where \(N \) is the number of parameters and B-spline functions. The coefficients \(b_i \) and \(d_i \) for the \(i \)-th B-spline are the model parameters to be determined through the nonlinear waveform fitting. An example of a set of B-splines as a function of period is shown in Fig. 2. In this study, after several trials, we decided to use nine B-spline functions (i.e. \(N = 9 \)) to represent the smoothly varying perturbation of dispersion curves in the period range from 30 to 200 s. We adopt the NA by Sambridge (1999) as a global optimizer that effectively searches for sets of model parameters with smaller misfit. We set the

Figure 2. An example of a set of B-spline functions in a period range between 30 and 200 s.
Figure 3. Examples of waveform fitting for the fundamental-mode Rayleigh waves, showing six time windows with different frequency ranges, for a station pair L20A (u_{near}) and P13A (u_{far}) from a seismic event in Samoa at 10 km depth on 2007 December 13. (a) Before and after the waveform fitting by perturbing the phase speed term only (no amplitude fitting), and the resultant phase speed dispersion curves (on the right), derived from the phase-term fitting through the NA. All the 3050 models exploited by the NA are ranked in order of the smaller misfit, and are plotted with colours varying from dark brown (larger misfit) to yellow (smaller misfit). The green dots represent the best-fit dispersion measurements with error bars calculate from the ensemble of all dispersion curves. (b) Before and after the waveform fitting by perturbing the amplitude term, and measured amplitude ratios.

The waveform fitting process of this study takes two steps. First, we perturb only the phase term of u_{near} to fit the seismogram at a farther station. This will enable us to determine interstation dispersion curves of phase speeds. The measurement reliability (see Section 2.3) for the phase speeds is evaluated using the fitted waveforms whose amplitudes are normalized. In the second step, we compute perturbed waveforms by modulating the amplitude term to further fit u_{near} to u_{far}, and evaluate the reliability for the estimated amplitude ratios using the total waveform fit. The reliability parameter employed in this study will be fully described in Section 2.3. The procedure of our nonlinear waveform fitting is summarized visually in Fig. 3.
as well as the waveform matching with multiple bandpass filters including two long-period filters over 100 s can be of help to reduce the occurrence of phase skip during the waveform fitting. Also in our global optimization method, the parameter search range for phase speed perturbation is limited within $\pm 0.6 \text{ km s}^{-1}$ from the reference dispersion curve for PREM, which is much less than the expected velocity perturbations caused by $\pm 2\pi$ phase shift in the long period. Thus, our measurements are unlikely to be severely affected by the phase cycle skip, except for the period range shorter than 50 s with interstation distances longer than 2000 km, though the number of such data is very limited.

An example of Rayleigh waves before and after nonlinear fitting process is displayed in Fig. 3. We can see that the observed waveforms at the far station can be matched fairly well in a wide frequency range. In Fig. 3, we also show an example of a set of 3050 dispersion curves for phase speed and amplitude ratio as a function of period, which is derived from the nonlinear waveform fitting with NA. Yellow lines in the background indicate the models with smaller misfit, and the best-fit dispersion curve is shown with the green dots with error bars estimated from the ensemble of all dispersion curves. Note that such rough estimates of measurement errors depend on the convergence rate in the global optimization process, and it does not necessarily reflect meaningful errors in the dispersion measurements. Thus, in the next section, we consider the reliability parameter that quantifies how well the perturbed waveform is fitted with the reference waveform.

2.2 Global optimization with Neighbourhood Algorithm

The NA (Sambridge 1999) is a global search method for finding models with acceptable fit in a multidimensional parameter space. This algorithm makes use of the natural neighbours, known as Voronoi cells, to implement the parameter search, and requires only two tuning parameters. The basic procedure of NA is summarized as follows:

1. Generate an initial set of n_1 models uniformly in the parameter space.
2. Calculate the misfit function for the most recently generated set of n_1 models and determine the n_1 models with the lowest misfit of all models generated so far.
3. Generate n_r new models by performing a uniform random walk in the Voronoi cell for each of the n_r chosen models.
4. Repeat (2) and (3).

In this study, we generate 50 initial models first, and then the model parameter search using the NA is iterated for 300 times with $n_1 = 10$ and $n_r = 5$, so that 3050 models are generated in total for each pair of seismograms.

To evaluate the misfit between the two waveforms $u^{\text{obs}}(t)$ and $u^{\text{syn}}(t) = T(t) * u^{\text{syn}}(t)$ in the time domain (where the asterisk represents convolution), we use a misfit function which is defined as,

$$\Phi = \sum_{i=1}^{n_1} \int_0^{T_w} \left[F_i u^{\text{obs}}(t) - F_i u^{\text{syn}}(t) \right]^2 dt,$$

where F_i represents ith bandpass filter ($i = 1, \ldots, n_1$), and n_1 is the number of bandpass filters with different frequency ranges. We employ six bandpass filters to achieve the best waveform fit in a wide frequency range. Prior to the band-pass filtering, time windows are automatically determined by taking account of the path-average group speeds for each path and frequency, which are estimated from global group speed maps by Larson & Ekström (2001), so that the fundamental-mode Love and Rayleigh waves are properly included in the chosen window. The time window setting and frequency ranges for bandpass filters used in this study are summarized in Table 1.

One of the critical issues in the interstation phase measurements is 2π ambiguity in the phase term (where n is an arbitrary integer), which may result in the phase cycle skip. Our smoothed parameterization of dispersion curves using the B-spline functions as well as the waveform matching with multiple bandpass filters including two long-period filters over 100 s can be of help to reduce the occurrence of phase skip during the waveform fitting. Also in our global optimization method, the parameter search range for phase speed perturbation is limited within $\pm 0.6 \text{ km s}^{-1}$ from the reference dispersion curve for PREM, which is much less than the expected velocity perturbations caused by $\pm 2\pi$ phase shift in the long period. Thus, our measurements are unlikely to be severely affected by the phase cycle skip, except for the period range shorter than 50 s with interstation distances longer than 2000 km, though the number of such data is very limited.

An example of Rayleigh waves before and after nonlinear fitting process is displayed in Fig. 3. We can see that the observed waveforms at the far station can be matched fairly well in a wide frequency range. In Fig. 3, we also show an example of a set of 3050 dispersion curves for phase speed and amplitude ratio as a function of period, which is derived from the nonlinear waveform fitting with NA. Yellow lines in the background indicate the models with smaller misfit, and the best-fit dispersion curve is shown with the green dots with error bars estimated from the ensemble of all dispersion curves. Note that such rough estimates of measurement errors depend on the convergence rate in the global optimization process, and it does not necessarily reflect meaningful errors in the dispersion measurements. Thus, in the next section, we consider the reliability parameter that quantifies how well the perturbed waveform is fitted with the reference waveform.

2.3 Reliability of dispersion measurements

As an efficient way to estimate the quality of measurements, we use the reliability parameter for the quantitative evaluation of the results of waveform fitting. The idea of the reliability for waveform fitting is modelled on the early works for multimode dispersion measurements for a source–receiver paths by van Heijst & Woodhouse (1997) and its modified versions by Yoshizawa & Kennett (2002) and Yoshizawa & Ekström (2010). Here, we briefly summarize the idea of how to quantify the goodness of the waveform fit and to estimate the frequency-dependent reliability of dispersion measurements.

First, we consider a residual seismogram $u^{\text{res}}(t) = u^{\text{obs}}(t) - u^{\text{syn}}(t)$. Then, we calculate the corresponding spectrograms $S^{\text{res}}(\omega, t)$ and $S^{\text{syn}}(\omega, t)$ in the frequency–time domain. We define a waveform fit parameter $f(\omega, t)$, which quantifies how well the synthetic waveform u^{syn} is fitted with u^{obs}, as follows:

$$f(\omega, t) = \exp \left[-\frac{S^{\text{res}}(\omega, t)}{S^{\text{syn}}(\omega, t)} \right].$$

The reliability parameter $r(\omega)$ as a function of ω is then calculated by integrating $f(\omega, t)$ by time and normalizing the result by its time window T_w,

$$r(\omega) = \frac{1}{T_w} \int_0^{T_w} f(\omega, t) \, dt.$$
of off-great-circle propagation and the interferences of non-plane waves and/or higher modes, which may deteriorate the quality of waveform fitting under the assumption of our analysis; that is, a single plane-wave propagation along the great-circle path. We use the reliability parameter as an automatic data selection criterion and a weighting factor in the subsequent process of phase speed mapping in Section 4.

3 APPLICATION TO TRANSPORTABLE ARRAY

3.1 Events and stations

The interstation waveform fitting technique described in the previous section is applied to three-component waveforms observed at the TA stations of USArray and the Southern California Seismic Network (CI) stations. We have used seismic events occurred in the period between 2007 January and 2010 December with moment magnitudes 6.0 or greater. Fig. 5 shows the distributions of the events and stations used in this study. The USArray stations migrate gradually from west to east, and, by the end of 2010, it covers the western-half of the United States.

3.2 Waveform processing

The main target of our waveform analysis is to extract the interstation phase speeds and amplitude ratios of the fundamental-mode Rayleigh and Love waves in the period range between 30 and 200 s. Prior to the waveform fitting, the instrument response of each seismogram is deconvolved, and then all seismograms are convolved with the response function of STS-1 seismometer. Surface waves in the horizontal components (particularly, Love waves in this study) are likely to be affected by the misorientation of seismometers (e.g. Laske & Masters 1996; Yoshizawa et al. 1999). We therefore use the polarization anomalies estimated and provided by Ekström (http://www.ldeo.columbia.edu/~ekstrom/Projects/USARRAY/QC_2010/index.html) to correct the plausible misorientation of horizontal components at each station, when we rotate the horizontal components to the great-circle directions.

We also evaluate the radiation patterns of each event using the Global CMT solutions (Ekström et al. 2005) to minimize the large uncertainties in the phase speed measurements in the nodal direction of surface wave radiation. In this study, we have eliminated stations located in the near nodal direction in which the radiated amplitude is less than 50 per cent of the maximum surface-wave radiation.

The interstation waveform fitting method requires that two stations are located nearly on a common great-circle path. We select station pairs that satisfy the following conditions (Fig. 6); the difference in azimuths from a source to the two stations, α, is less than 0.5°, and the difference in back-azimuths, β, is less than 2.5°. We then perform the waveform fitting described in Section 2.2 and extract the dispersion curves of phase speeds and amplitude ratios between the two stations. The frequency-dependent reliability parameters in Section 2.3 are used as a guide to determine the frequency range with satisfactory accuracy for each dispersion curve.

With several empirical experiments, we use the threshold (or minimum) values of the reliability parameter r_c for the automatic selection of high-quality phase speed measurements as a function of period T, which is given as, $r_c(T) = r_0 \times \bar{r}(T)/\bar{r}(T_0)$, where T_0 is the reference period and \bar{r} is the average reliability value for each period. In this study, we used a reference period of $T_0 = 80$ s, and $\bar{r}(T_0) = 0.6$ for Rayleigh waves and 0.7 for Love waves. The threshold values of the reliability parameter for the amplitude ratios are fixed to 0.9 at all the period.
Interstation phase and amplitude measurements

3.3 Data sets for phase speed and amplitude ratio

The numbers of measurements of phase speeds, which have successfully passed all of the required selection criteria, are summarized in Tables 2 and 3. We have gathered more than 50,000 station pairs for the Rayleigh waves and over 15,000 for Love waves in the majority of our target period range. The numbers of amplitude data for the vertical component Rayleigh waves have been collected for about 15,000 station pairs. The phase and amplitude measurements for Love waves tend to be noisier than those for Rayleigh waves, mainly due to lower signal-to-noise ratios in the horizontal components and higher-mode interference with the fundamental mode. Also, the number of amplitude measurements for Love waves are rather limited. Thus, in this study, we avoid to use the amplitude measurements for Love waves in the phase speed mapping explained in Section 4.

4 Mapping phase speed models

We use the method of tomographic inversion of surface waves developed by Yoshizawa & Kennett (2004) to invert the interstation dispersion data for phase speed maps as a function of period. In this section, we briefly summarize the method of phase speed mapping using the observed phase and amplitude data, and display the phase speed maps in the western United States.

Table 2. The numbers of measurements, station pairs, standard deviations σ_c and σ_d for the measured phase speed and amplitude ratios, and the threshold of reliability parameters r_c and r_d for phase speed and amplitude ratios, as a function of period for Rayleigh waves.

<table>
<thead>
<tr>
<th>Period (s)</th>
<th>Measurements Phase</th>
<th>Measurements Amplitude</th>
<th>Rayleigh wave Station pairs Phase</th>
<th>Rayleigh wave Station pairs Amplitude</th>
<th>Standard deviation σ_c</th>
<th>Standard deviation σ_d</th>
<th>Threshold: r_c</th>
<th>Threshold: r_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>71 957</td>
<td>10 979</td>
<td>46 276</td>
<td>8632</td>
<td>0.120</td>
<td>0.305</td>
<td>0.555</td>
<td>0.900</td>
</tr>
<tr>
<td>40</td>
<td>75 452</td>
<td>12 806</td>
<td>50 386</td>
<td>11 410</td>
<td>0.123</td>
<td>0.353</td>
<td>0.567</td>
<td>0.900</td>
</tr>
<tr>
<td>50</td>
<td>75 510</td>
<td>7912</td>
<td>51 159</td>
<td>7101</td>
<td>0.127</td>
<td>0.255</td>
<td>0.555</td>
<td>0.900</td>
</tr>
<tr>
<td>60</td>
<td>76 731</td>
<td>11 174</td>
<td>52 090</td>
<td>9756</td>
<td>0.125</td>
<td>0.197</td>
<td>0.572</td>
<td>0.900</td>
</tr>
<tr>
<td>70</td>
<td>77 769</td>
<td>14 497</td>
<td>52 938</td>
<td>11 657</td>
<td>0.133</td>
<td>0.190</td>
<td>0.588</td>
<td>0.900</td>
</tr>
<tr>
<td>80</td>
<td>80 089</td>
<td>17 482</td>
<td>53 321</td>
<td>13 731</td>
<td>0.132</td>
<td>0.174</td>
<td>0.600</td>
<td>0.900</td>
</tr>
<tr>
<td>90</td>
<td>77 771</td>
<td>19 933</td>
<td>53 400</td>
<td>15 297</td>
<td>0.147</td>
<td>0.162</td>
<td>0.613</td>
<td>0.900</td>
</tr>
<tr>
<td>100</td>
<td>71 319</td>
<td>24 031</td>
<td>49 743</td>
<td>19 813</td>
<td>0.175</td>
<td>0.163</td>
<td>0.630</td>
<td>0.900</td>
</tr>
</tbody>
</table>

Table 3. Same as Table 2, but for the phase data of Love waves.

<table>
<thead>
<tr>
<th>Period (s)</th>
<th>Measurements Love wave</th>
<th>Love wave Station pairs</th>
<th>Love wave Phase</th>
<th>Love wave Amplitude</th>
<th>Standard deviation σ_c</th>
<th>Standard deviation σ_d</th>
<th>Threshold: r_c</th>
<th>Threshold: r_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>21 988</td>
<td>16 742</td>
<td>0.146</td>
<td>0.741</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>20 969</td>
<td>16 813</td>
<td>0.142</td>
<td>0.800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>22 029</td>
<td>17 597</td>
<td>0.169</td>
<td>0.756</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>23 890</td>
<td>19 129</td>
<td>0.184</td>
<td>0.732</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>24 623</td>
<td>19 744</td>
<td>0.206</td>
<td>0.710</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>25 073</td>
<td>20 310</td>
<td>0.220</td>
<td>0.694</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>21 988</td>
<td>19 276</td>
<td>0.241</td>
<td>0.694</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>22 029</td>
<td>18 933</td>
<td>0.220</td>
<td>0.700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>23 890</td>
<td>19 744</td>
<td>0.206</td>
<td>0.710</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>24 623</td>
<td>19 129</td>
<td>0.184</td>
<td>0.732</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1 Formulation of inversion for phase speed maps

4.1.1 Phase speed inversions using phase data

The observed path-average phase speeds between two stations can be expressed as follows,

$$\frac{\delta c_{\text{obs}}}{c_0} = \frac{1}{d_\Delta} \int_{s_c} \frac{\delta c(s)}{c_0} ds,$$

(11)

where $\frac{\delta c_{\text{obs}}}{c_0} = \frac{\delta c_{\text{obs}}}{c_0} - c_0$, c_{obs} is the measured phase speed along the interstation path, c_0 the reference phase speed (i.e. in this study, we used average phase speed for all measurements) and the integration is taken along the great circle. Using eq. (11), frequency-dependent phase speed maps are constructed based on tomographic inversions with the assumption of surface wave propagation along the great-circle path.

The linearized equation (11) can be written in a generalized form,

$$\mathbf{d} = \mathbf{Gm},$$

(12)

where \mathbf{d} is the data vector that consists of the observed phase speed perturbation $d_i = (\delta c_{\text{obs}}/c_0)(i = 1, 2, \ldots, M)$ and M is the total number of measurements. \mathbf{G} is the kernel matrix and \mathbf{m} is the model- parameter vector $m_j(j = 1, 2, \ldots, N)$, where N is the total number of model parameters to be determined through reversions.

A local phase speed perturbation can be expanded in spherical B-spline functions $B_j(\theta, \phi),$

$$\frac{\delta c(\theta, \phi)}{c_0} = \sum_{j=1}^{N} m_j B_j(\theta, \phi),$$

(13)

where θ and ϕ are latitude and longitude, respectively, and the model parameter m_j is the coefficient for the jth basis function B_j. In this study, we use the constant grid interval of $1.0^\circ \times 1.0^\circ$ when we invert for the phase speed maps. Using the spherical B-spline functions, the components of the kernel matrix G for the ith measurement and the jth model parameter can be written as

$$G_{ij} = \frac{1}{dA} \int_{0}^{dA} B_j ds.$$

(14)

The linearized equation (12) can be solved with a damped least-squares scheme, minimizing the following objective function,

$$\Phi(\mathbf{m}) = |d - \mathbf{Gm}|^2 + \lambda \sum |\mathbf{m}|^2,$$

(15)

where the components of d and \mathbf{G} are respectively $d_i = (w_i/\sigma_i) \delta c_{i0}$, w_i the weighting factor for the ith measurement which controls the trade-off between the data misfit $|d - \mathbf{Gm}|^2$ and the model norm $|\mathbf{m}|^2$. We use the LSQR algorithm (Paige & Saunders 1982) to solve the linear inverse problem iteratively.

4.1.2 Phase speed inversions using interstation amplitude ratios

Observed amplitudes of surface waves include a variety of effects. The amplitude A at a single station, after the corrections for the geometrical spreading and the instrument response, can be represented as $A(\omega) = A_S(\omega) A_F(\omega) A_Q(\omega)$, where A_S represents the source term including radiation pattern and source excitation, A_F the receiver term including site amplification effects, A_Q the elastic focusing/defocusing term and A_Q the anelastic attenuation term.

Now, we consider the amplitudes for both the farther and nearer stations to the source as follows, omitting the frequency dependence,

$$A_{\text{far}} = A_S^{\text{far}} A_F^{\text{far}} A_Q^{\text{far}},$$

(16)

$$A_{\text{near}} = A_S^{\text{near}} A_F^{\text{near}} A_Q^{\text{near}}.$$

(17)

Considering that the source terms can be cancelled out in our two-station measurements along the great-circle paths (i.e. $A_S^{\text{near}} = A_S^{\text{far}}$), dividing eq. (16) by eq. (17) leads to the following relation,

$$\frac{A_{\text{far}}}{A_{\text{near}}} = \frac{A_F^{\text{far}}}{A_F^{\text{near}}} \frac{A_Q^{\text{far}}}{A_Q^{\text{near}}}.$$

(18)
Taking the logarithm of both terms of eq. (18) yields,

\[\ln \frac{A_{\text{far}}}{A_{\text{near}}} = \ln A_{R}^{\text{far}} - \ln A_{R}^{\text{near}} + \ln A_{F}^{\text{far}} + \ln A_{Q}^{\text{far}}. \]

(19)

The third term on the right-hand side represents the amplitude anomaly between the two stations caused by the effects of elastic focusing/defocusing due to the lateral heterogeneity of velocity structure. Following the linear perturbation theory by Woodhouse...
Figure 8. Examples of observed dispersion curves for Rayleigh-wave phase speeds and amplitude ratios. (a) Interstation paths between D13A and G05A, and between FUR and MPP stations. (b, c) Observed dispersion curves for the two interstation paths. Different colours of plots represent the measurements for different seismic sources (12 events for D13A-G05A, and 13 events for FUR-MPP), and dashed lines indicate the reference values calculated for PREM with a smoothed 220 km discontinuity.

\[\ln A_F(\omega) = \frac{1}{2} \sin \Delta \int_0^\Delta \sin(\Delta - \phi) \left[\sin \phi \partial_\phi^2 - \cos \phi \partial_\phi \right] \frac{\delta c}{c_0}(\omega) d\phi, \]

where \(\Delta \) is the epicentral distance, \(\phi \) the along-path coordinate, \(\theta \) the path-perpendicular coordinate, and \(\partial_\phi \) and \(\partial_\theta \) the derivatives with respect to each coordinate. The corresponding amplitude anomaly for the case of interstation amplitude ratios can be derived from the differences for the two stations as follows,

\[\ln \left(\frac{A_{F,\text{far}}}{A_{F,\text{near}}} \right) = \frac{1}{2} \sin(\Delta_a + d\Delta) \int_0^{d\Delta} \sin(d\Delta - \phi') \left[\sin(\Delta_a + \phi') \partial_\phi^2 - \cos(\Delta_a + \phi') \partial_\phi \right] \frac{\delta c}{c_0}(\omega) d\phi', \]
where Δ_a is the epicentral distance of the nearer station, $d\Delta$ is the interstation distance and $\phi = \phi - \Delta_a$. We approximate that $\Delta_a \sim \Delta_a + d\Delta$ on the assumption that $\Delta_a \gg d\Delta$.

The final term in eq. (19) represents the anelastic attenuation between the two stations. The majority of our interstation amplitude ratios are measured for short distances around 500 km, which encompasses only a couple of phase cycles of intermediate/long-period surface waves. The effects of lateral variations of anelastic attenuation on the amplitude anomaly for such short paths are comparable or much less than the measurement errors of amplitude ratios. Thus, in this study, we simply evaluate this attenuation factor using the reference Q_0 values of PREM as follows,

\[
\ln \frac{A_Q^\text{out}}{A_Q^\text{in}} = -\frac{\omega d\Delta}{2U_0 Q_0}.
\]

Eq. (19) can then be written as,

\[
A'(\omega) = \ln A_R^\text{in}(\omega) - \ln A_R^\text{out}(\omega) + A_F(\omega),
\]

where $A' = \ln(A^\text{in}/A^\text{out}) - \ln(A_R^\text{in}/A_R^\text{out})$, which represents the observed amplitude ratio corrected with a reference attenuation (Note that the geometrical spreading and instrument responses are corrected beforehand). A' is used as input amplitude data for the joint inversion with phase data. $A_F = \ln(A_F^\text{in}/A_F^\text{out})$ represents the amplitude anomaly caused by elastic focusing/defocusing due to the lateral variations of phase speeds as shown in eq. (21).

Using eqs (11) and (23), the measured interstation phase speed and amplitude ratios are inverted simultaneously for the receiver amplification term in A_E (or the station correction term) for each station as well as phase speed distribution $\delta c/c_0$, which is expanded in the spherical B-spline functions as given in eq. (13).

We use the weighting scheme for equalizing different data sets of phase and amplitude, in the similar way to Julia et al. (2000),

\[
E = \frac{p}{\sigma_p^2 N_c} \sum_{i=1}^{N_c} w_i^2 \left(s_i - \sum_{j=1}^{M} G_{ij} m_j \right)^2
+ \frac{1 - p}{\sigma_a^2 N_d} \sum_{i=1}^{N_d} w_i^2 \left(a_i - \sum_{j=1}^{M} F_{ij} m_j \right)^2,
\]

where s_i and a_i are the observed phase speed perturbations and logarithm of amplitude ratios, N_c and N_d are the numbers of data for phase and amplitude data set, and p is the factor determining the relative weight given to the phase and amplitude data and varies from 0 to 1. F_{ij} represents eq. (21) with spherical spline functions. σ_p and σ_a are respectively the standard deviations of phase and amplitude ratios for each period (summarized in Tables 2 and 3), and w_i is the weight factor (or the reliability parameter in this study) for each measurement.

4.2 Phase speed maps of North America

Fig. 9 shows the average phase speeds of our data set, which tend to be slower than the reference phase speed estimated from PREM in the period range less than 60 s for Rayleigh waves and 110 s for Love waves. This reflects the effects of conspicuous slow anomalies of the crust and uppermost mantle in the western United States.

To evaluate the horizontal resolution of tomographic models, we perform checkerboard resolution tests with a variety of cell sizes. Some examples for Rayleigh-wave phase speed maps at 80 s using only phase data are displayed in Fig. 10, with cell sizes varying from 2 to 4’. The original checkerboard patterns include the maximum perturbations of ± 4.8 per cent from the reference phase speed. In all cases, most areas of the western regions of North America are resolved well. On the other hand, the achievable resolution in the

Figure 9. Average phase speeds (red dots) and standard errors for (a) Rayleigh waves and (b) Love waves calculated from our final data set used for phase speed mapping. Dashed lines indicate the dispersion curves for PREM.
Figure 10. Examples of checkerboard resolution tests for Rayleigh-wave phase speed maps at 80 s with cell sizes of (a) 4.0°, (b) 3.0° and (c) 2.0°. Left panels are input checkerboard patterns, and right retrieved models. The black solid line represents the well-resolved areas with our data set.

The phase speed maps for the fundamental-mode Rayleigh and Love waves using phase data only are shown in Figs 11 and 12 in the period range between 30 and 130 s. These maps are plotted as perturbations from the average phase speed at each period shown in Fig. 9. The variance reductions achieved by inversions for phase speed maps with phase data, with respect to the average phase speeds of our measurements (Fig. 9), are about 18–60 per cent for Rayleigh
Figure 11. Rayleigh-wave phase speed maps derived from the phase data at periods from 30 to 130 s. Red triangles indicate the distribution of volcanoes taken from Siebert & Simkin (2002). The black solid line represents the well-resolved areas with our data set.

waves and 10–25 per cent for Love waves in the period range between 30 and 130 s. The variance reductions of our model tend to be lower than those of other phase speed models with the single-station analysis (e.g. Yoshizawa & Ekström 2010) or the two-station analysis based on single-station measurements (Foster et al. 2014b) in the same region. This implies the interference of non-plane waves and higher modes as well as off-great-circle propagation may have non-negligible influence on our interstation measurements based on
a direct waveform matching, resulting in large scatters in the dispersion measurements for the similar paths (e.g. Fig. 8). Nevertheless, the resultant models are consistent with the earlier North American models on a large scale.

Fig. 13 shows the results of checkerboard resolution tests for the phase speed maps derived from joint inversions of phase and amplitude data for the vertical-component Rayleigh waves. The results indicate that the patterns of checkerboards are apt to be smeared...
Interstation phase and amplitude measurements

Figure 13. Checkerboard resolution tests with the joint inversion of phase and amplitude data for Rayleigh waves at 80 s, for a varying weight factor p on phase data.

to some extent as we weight more on the amplitude data because the number of paths for amplitude tends to be limited compared to phase data (see Table 2). However, the retrieved strength of velocity perturbation in the checkerboard models tend to be better as the weight on amplitude becomes larger (or, as p becomes smaller).

The average strengths of retrieved phase speed perturbations with respect to the input model, calculated in the area encompassed by the black line in Fig. 13, are 64 per cent for phase data only ($p = 1.0$), 68 per cent ($p = 0.5$), 70 per cent ($p = 0.3$), and 84 per cent for amplitude data only ($p = 0.0$). This represents the better resolving power of amplitude data for the second derivatives of velocity perturbation, resulting in the better recovery of the strength of velocity perturbation than phase data, although the achievable horizontal resolution may be lowered to some extent due to the limited numbers of amplitude measurements.

We display the phase speed maps obtained from the joint inversions of phase and amplitude data in Fig. 14(a) and the spatial variation of the station correction term in Fig. 14(c). The variance reduction for both amplitude and phase terms as a function of the data weight factor p is summarized in Fig. 14(b). In this study, we choose the map for $p = 0.3$ (giving more weight to the amplitude data) as the best compromised model derived from our phase and amplitude data.

In Fig. 15, we compare our phase speed maps with one of the latest results by Foster et al. (2014b), which is based on the interstation surface-wave phase speed data. Foster et al. (2014b) have re-extracted phase speed information between two stations by employing single-station measurements of surface-wave phase speed for USArray stations by Ekström (2011). Although we have used a different and independent approach to the interstation phase speed measurements from Foster et al., large-scale heterogeneity patterns of our phase speed models, for both Rayleigh and Love waves, are highly consistent with those derived by Foster et al. (2014b). The correlations between the two models are 0.88–0.93 for Rayleigh waves and 0.67–0.77 for Love waves in the period range between 30 and 100 s. This implies and supports the validity and utility of our new measurement technique.

5 DISCUSSION

The western half of North America has been well investigated by seismic tomography at regional scale with a variety of
techniques and data sets (e.g. Shapiro et al. 2005; Lin & Ritzwoller 2011; Obrebski et al. 2011). This area encompasses a variety of complex tectonic features, including regions with east-west extension, active volcanoes, the organic belt including Rocky Mountains and the stable cratonic region (Fig. 1). The Rocky Mountains divides the major tectonic features of the United States; the tectonically active western region including the subduction of the Juan de Fuca plate as well as the Yellowstone hotspot, and the eastern region with stable cratons (e.g. van der Lee & Nolet 1997).
Interstation phase and amplitude measurements

Figure 15. Comparisons between the phase speed models derived from (left) this study and (right) an earlier work by Foster et al. (2014b) for (a) Rayleigh waves at 60 s (joint inversion of phase and amplitude data) and (b) Love waves at 40 s (phase data only).

In the Rayleigh-wave phase speed maps (Fig. 11), a large-scale slow anomaly occupies the western United States, while fast anomalies are observed in the Great Plains in the central United States. We can find strong slow anomalies localized in the Snake River Plain, the eastern and western part of Basin and Range, and the Rio Grande Rift in the Rayleigh-wave phase speed maps at the periods between 30 and 70 s. A plume source beneath Yellowstone and the Snake River Plain has been found down to the depth of 200 km in recent v_p and V_S structures (Waite et al. 2006), which is also consistent with our observation. In the Basin and Range province, seismic activities dominated by normal faulting are concentrated along its eastern and western boundaries (Pancha et al. 2006), which suggests that large extensional strains have deformed this region. The Rio Grande Rift has also undergone lithospheric extension during the middle to late Cenozoic deformation (e.g. Baldridge et al. 1991). The slow anomalies in this region can be interpreted as high heat flow in the crust and uppermost mantle (e.g. Goes & Lee 2002).

In the period range between 30 and 70 s of Rayleigh-wave models, Colorado Plateau can be identified as a slightly faster region than the surrounding areas at around 37°N and 110°W. This feature tends to be clearer in the phase speed models from the joint inversion of phase and amplitude data (Fig. 14), in which the local velocity gradient can be better constrained. A recent tomographic study of body waves in this region (Sine et al. 2008) have shown that Paleozoic mantle lithosphere reaches down to the depth of 100 km or deeper beneath the Colorado Plateau, which is well reflected in our Rayleigh-wave models that show relatively faster anomalies in this area than its surroundings.

A fast phase speed anomaly is seen in the southwestern coast including Great Valley and Sierra Nevada, particularly at 30 s for Rayleigh waves and 30–50 s for Love waves, whereas slow anomalies dominate this area in the longer period range. Godfrey et al. (1997) have studied the complex structure and tectonic history of this region and indicated that the Great Valley basement is oceanic crust underlain by oceanic mantle, which is vertically stacked above continental crust and mantle.

The general features of Love-wave models also indicate the slow anomalies in the Snake River Plains, the Cascade range, the eastern margin of Basin and Range, and the Rio Grande Rift. The quality of our measurements for Love waves tends to be lower than that for Rayleigh waves, probably due to larger noises and errors in the horizontal components. Although we have assumed that a plane wave propagates along great-circle path in the process of waveform fitting, this assumption may be too simplistic to treat the horizontal components, which tends to be more sensitive to the deviations of arrival angles from the great circle. To improve the quality of phase...
speed models of Love waves, a more rigorous way to correct the arrival angles of incoming plane waves with an array analysis may be of help (e.g. Foster et al. 2014b).

The results of the joint inversion of phase and amplitude data, with the varying weight factor p, are displayed in Figs 13 and 14(a). The phase speed map derived from phase data only (i.e. $p = 1.0$) reflects large-scale tectonic features including the strong contrast between fast anomaly in the east and slower anomaly in the west. As we apply more weight on the amplitude data (i.e. decreasing p), local-scale features, which are characterized by larger velocity gradients, tend to be identified clearly; for example, significant slow anomalies in Yellow Stone, Snake River Plains and Rio Grande Rift. These results are in good agreement with the other independent observations, such as the arrival-angle deviations of surface waves (Foster et al. 2014a) which have a significant influence on the observed amplitude anomalies. The spatial distribution of station correction term in Fig. 14(c) represents local amplification term of observed amplitude, which shows a clear correlation with the velocity structure and is also very similar to the local amplification of surface waves by Lin et al. (2012).

Our results indicate that interstation amplitude data measured using a dense array can be useful to reconstruct shorter-wavelength elastic structures, owing to its sensitivities to the second derivatives of phase speeds across the path. In this analysis, we fixed the anelastic attenuation terms due to the intrinsic difficulty in separating the spatial variations of anelastic attenuation from observed amplitudes for short paths around 500 km in the frequency range used in this study. To construct attenuation models, single-station amplitude measurements for longer paths may be preferable (e.g. Dalton & Ekström 2006). We expect that the phase speed models derived from the joint inversion of phase and amplitude data in this study, which exhibit a better recovery in velocity perturbation, can be of help in correcting the effects of focusing/defocusing included in the observed amplitude and eventually constraining an attenuation model on regional scale in combination with single-station measurements.

6 CONCLUSIONS

We have developed a new method for measuring interstation phase speed and amplitude ratio based on the fully nonlinear waveform fitting technique, which allows us to collect a large number of phase and amplitude measurements for short interstation paths (less than 1000 km) using a dense broad-band seismic array in the United States. The reliability parameter introduced for quantifying the waveform fit allows us to select the reliable dispersion measurements in an automated manner. This method has been applied to the transportable array of USArray, and we have collected the large numbers of phase speed dispersion data for the fundamental Rayleigh and Love waves in the period range between 30 and 130 s, which are then inverted for phase speed maps. The major features of the phase speed maps are consistent with earlier tomographic studies, indicating the validity of our new measurement technique for phase speeds of surface waves.

With the new interstation measurement method in combination with the high-density broad-band seismic array, we could gather a large number of short paths with typical interstation distances of about 300–800 km, which are much shorter than the average path length of the conventional single-station analysis which is normally over 2000 km. The bundle of shorter paths of this study allows us to improve the achievable horizontal resolution of phase speed models to be about 150–200 km, which is nearly a half of those achieved by the typical surface wave models with single station analysis.

Not only the interstation phase speed data but also the interstation amplitude ratio data are used to constrain the phase speed model in this study. The results of joint inversion of phase and amplitude data clearly suggest that the measured amplitude through the nonlinear waveform fitting can be used to constrain the velocity structure, with a better recovery of the velocity perturbations of smaller-scale local heterogeneities in tomographic models, as has been suggested in earlier work (e.g. Laske & Masters 1996).

Our joint inversions of phase and amplitude data are based on a simple assumption of the plane wave propagation of surface waves along the great-circle paths, though the effects of non-plane wave propagation can be significant for a shorter period range than 50 s (e.g. Friederich et al. 1994), which may result in the biases in the measured phase speeds (Wielandt 1993). Alternative approaches such as the multistation analysis for arrival-angle estimation (e.g. Foster et al. 2014b) and/or two-plane wave analysis (e.g. Forsyth & Li 2005) may be of help to remedy such effects caused by non-plane waves in laterally heterogeneous media.

Our new method of interstation waveform fitting technique based on the transfer function is simple, but can be useful for extracting a large number of the structural information for short paths that are almost comparable to the scale of wavelength of surface waves, which cannot readily be extracted from the widely used single-station measurements. Such short path information of both phase speed and amplitude ratios can be of great help in high-resolution mapping of the upper-mantle structure, in conjunction with the growing numbers of high-density broad-band arrays in many regions in the world.

ACKNOWLEDGEMENTS

We thank the IRIS Data Management Center for the provision of seismic waveform data, particularly the networks TA and CI used in this study. We also thank Malcolm Sambridge for the provision of the Neighbourhood Algorithm code. Many constructive and critical comments by anonymous reviewers and the editor Gabi Laske were helpful for improving the manuscript. This study was partly supported by Grant-in-Aid for Scientific Research (Nos. 22654053, 24740298 and 26400443) to KY from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

REFERENCES

