Physiological and genetic traits of the N$_2$O-emitting Proteobacteria isolated from latent hot spots for N$_2$O emission, and their response to environmental factors including plant polyphenols

The thesis of 109 pages consists of 6 sections in the body of text with 136 literatures cited, 41 figures, 5 tables, and 4 schemes. One original article is attached as a reference paper. This study first performed screening, isolation, and characterization of N$_2$O emitting bacteria from Sphagnum mosses in palsa bogs in Finland. Physiological traits of the active isolates were further investigated, and environmental factors including plant polyphenols and pH provided acceptable speculations for fundamental mechanisms behind the frequent emergence of active N$_2$O emitters from the boreal acidic soils.

1. Isolation of N$_2$O emitting-bacteria from Sphagnum fuscum

Using a culture-based N$_2$O emission assay, three active N$_2$O emitters were isolated from Sphagnum fuscum leaves and all identified as members of Burkholderia. These isolates showed N$_2$O emission in the medium supplemented with NO$_3^-$ but not with NH$_4^+$, and *Burkholderia* sp. SF-E2 showed the most efficient N$_2$O emission (0.20 μg vial$^{-1}$ day$^{-1}$) at 1.0 mM KNO$_3$. In *Burkholderia* sp. SF-E2, the optimum pH for N$_2$O production was 5.0, close to that of the phyllosphere of Sphagnum mosses, while the optimum temperature was uniquely over 30 °C. The stimulating effect of additional 1.5 mM sucrose on N$_2$O emission was ignorable, but *Burkholderia* sp. SF-E2 upon exposure to 100 mg L$^{-1}$ (E)-caffeic acid showed clear acceleration of its N$_2$O emission. All of three N$_2$O emitters were negative in both acetylene inhibition assay and PCR assay for nosZ-detection, suggesting that N$_2$O reductase or the gene itself is missing in the N$_2$O-emitting *Burkholderia*.
2. Comparison of N₂O-emitting bacteria in epiphytic and/or endophytic bacterial community of *Sphagnum fuscum* and *Sphagnum capillifolium*

As *Sphagnum* moss-dominant palsa bogs mainly composed of *Sphagnum capillifolium* and *S. fuscum*, and degrading palsa bog often becomes a hot spot for N₂O emission. Some gammaproteobacteria isolated from the *S. capillifolium* showed hyper active N₂O emitting capability in the culturing systems, and the most active N₂O emitter from the culturable community was identifiable as *Pseudomonas* sp. by 16S rRNA gene-targeted homology search. The N₂O emitting *Pseudomonas* sp. SC-H2 showed over 20 μg vial⁻¹ day⁻¹ of N₂O production in 10 mL culture medium containing 0.05% sucrose only at neutral pH (6.8-7.3) but not at acidic regions. As its unique characteristic, *nosZ* gene-harboring *Pseudomonas* sp. SC-H2 skipped reduction process for N₂O in the neutral to alkaline regions to produce high level of N₂O.

3. Influence of plant polyphenols on N₂O emitters for their N₂O emission

All three *Burkholderia* isolates from leaves of *S. fuscum* were responsive to gallic acid and (E)-caffeic acid, and the most activated *Burkholderia* sp. SF-E2 showed 67-fold higher N₂O emission upon exposure to 100 mg L⁻¹ (E)-caffeic acid. Relatively low concentration of (E)-caffeic acid (≤ 0.1 g L⁻¹) also accelerated N₂O emission by an *Enterobacteriaceae* bacterium SC-L1 and *Serratia* sp. SC-K1. Among them, *Serratia* sp. SC-K1 was 13-fold higher of N₂O production with 0.1 g L⁻¹ than that without (E)-caffeic acid. On *Pseudomonas* sp. SC-H2, N₂O emission significantly decreased when concentration of (E)-caffeic acid was supplemented more than 0.01 g L⁻¹.

4. Comparison of phylogenetic patterns of denitrification-associated genes and 16S rRNA genes among *Pseudomonas* N₂O-emitters isolated from Andisol

For *Pseudomonas* denitrifiers isolated from Andisol corn farmland in Hokkaido, phylogenetic trees of *nosZ*, *nirS*, and *narG* genes were compared with that of their 16S rRNA genes. The *nirS*, and *narG* genes had a close relationship with phylogeny of 16S rRNA genes. In contrast, there was no similarity between *nosZ* and 16S rRNA gene phylogenetic trees, suggesting that *nosZ* gene is more dynamic and often missing in the bacterial genome.

Thus, the thesis study revealed the presence of a clear linkage between N₂O emission from degraded palsa bogs and *Sphagnum* moss-associating eubacteria, particularly those from *Sphagnum fuscum* and *Sphagnum capillifolium*. Characterization of these key players in N₂O emission may offer a clue into future prospects for regulation of N₂O production in disturbed boreal peatlands.

Therefore, we acknowledge that the author is qualified to be granted the Degree of Doctor of Philosophy in Agriculture from Hokkaido University.