Finite-Element Formulation in Terms of the Electric-Field Vector for Electromagnetic Waveguide Problems

MASANORI KOSHIBA, SENIOR MEMBER, IEEE, KAZUYA HAYATA, AND MICHIW SUZUKI, SENIOR MEMBER, IEEE

Abstract — A vector finite-element method for the analysis of anisotropic waveguides with off-diagonal elements in the permeability tensor is formulated in terms of all three components of the electric field. In this approach, spurious, nonphysical solutions do not appear anywhere above the "air-line." The application of this finite-element method to waveguides with an abrupt discontinuity in the permittivity is discussed. In particular, we discuss how to use the boundary conditions of the electric field at the interface between two media with different permittivities. To show the validity and usefulness of this formulation, examples are computed for dielectric-loaded waveguides and ferrite-loaded waveguides.

I. INTRODUCTION

The vector finite-element method is widely used either in an axial-component \((E_x, H_z) \) formulation [1]–[4] or in a three-component (either the electric field \(E \) or the magnetic field \(H \)) formulation [5], [6], which enables one to compute accurately the mode spectrum of an electromagnetic waveguide with arbitrary cross section. The most serious difficulty in using the vector finite-element analysis is the appearance of spurious, nonphysical solutions [1]–[6]. Hano [7] has presented a three-component finite-element formulation with rectangular elements. In his formulation, spurious solutions, except for zero eigenvalues, do not appear, but a diagonal permeability tensor and a diagonal permeability tensor are assumed. Recently, an improved finite-element method with triangular elements has been formulated for the analysis of anisotropic dielectric waveguides in terms of all three components of \(H \) [8]–[11]. In dielectric waveguides, the permeability is always assumed to be that of free space. Therefore, each component of \(H \) is continuous in the whole region and it is more advantageous to solve for \(H \) than for \(E \) [12]. In this improved \(H \)-field formulation, no spurious solutions appear anywhere above the "air-line" corresponding to \(\beta/k_0 = 1 \) in a \(\beta/k_0 \) versus \(k_0 \) diagram [11], where \(k_0 \) is the wavenumber of free space and \(\beta \) is the phase constant in the \(z \)-direction. The appearance of spurious solutions is limited to the region \(\beta/k_0 < 1 \) and these solutions are equivalent to the TM modes of "hollow" waveguides [11]. The \(H \)-field formulation is valid for general anisotropic waveguides with a nondiagonal permittivity tensor. However, it is difficult to apply this \(H \)-field formulation to waveguides containing anisotropic media such as ferrites, because the tensor permeability may vary from material to material. In such cases, it is advantageous to solve for \(E \) rather than for \(H \).

In this paper, an improved finite-element method with triangular elements is formulated for the analysis of anisotropic waveguides with a nondiagonal permeability tensor using all three components of \(E \). In ferrite-loaded waveguides, the permittivity is assumed to be constant in each material, but may vary from material to material. At an abrupt discontinuity in the permittivity, there is an abrupt change in \(E \). In this work, the application of the \(E \)-field formulation to waveguides with abrupt discontinuities in the permittivity is discussed in detail. In particular, we discuss how to use the boundary conditions of \(E \) at the interface between two media with different permittivities. In this improved \(E \)-field formulation, no spurious solutions appear anywhere above the "air-line." The appearance of spurious solutions is limited to the region \(\beta/k_0 < 1 \) and these solutions are equivalent to the TM modes of "hollow" waveguides. To show the validity and usefulness of this formulation, examples are computed for dielectric-loaded waveguides and ferrite-loaded waveguides.

II. FUNCTIONAL FORMULATION

We consider an anisotropic waveguide with a tensor permeability and a scalar permittivity. With a time dependence of the form \(\exp(j\omega t) \) being implied, Maxwell's equations are

\[
\nabla \times E = -j \omega \mu_0 \mu_r H \tag{1}
\]

\[
\nabla \times H = j \omega e_0 \epsilon_r E \tag{2}
\]

where \(\omega \) is the angular frequency, \(\mu_0 \) and \(e_0 \) are the permeability and permittivity of free space, respectively, \(\mu_r \) is the relative permeability, and \(\epsilon_r \) is the relative permittivity which is assumed to be constant in each material.

From (1) into (2), the following wave equation is derived:

\[
\nabla \times \left[\left(\mu_r \right)^{-1} \nabla \times E \right] - k_0^2 \epsilon_r E = 0 \tag{3}
\]

Manuscript received February 1, 1985; revised May 22, 1985.

The authors are with the Department of Electronic Engineering, Hokkaido University, Sapporo, 060, Japan.

0018-9480/85/0000-0900$01.00 ©1985 IEEE
where

$$k_0^2 = \omega^2 \varepsilon_0 \mu_0.$$ \hspace{1cm} (4)

The functional \([12], [13]\) for (3) is known to be

$$\mathcal{F} = \int_\Omega \left(\nabla \times \mathbf{E} \right)^* \cdot \left(\left[\mu_r \right]^{-1} \nabla \times \mathbf{E} \right) \, d\Omega$$

$$- k_0^2 \int_\Omega \epsilon_r \mathbf{E}^* \cdot \mathbf{E} \, d\Omega$$ \hspace{1cm} (5)

where \(\Omega\) represents the cross section of the waveguide and the asterisk denotes complex conjugation. In the finite-element analysis using (5), spurious solutions appear scattered all over the propagation diagram \([5]-[12], [14], [15]\). These spurious solutions belong to two distinct categories \([11]\). The first one \((S_1)\) can be characterized as follows:

$$\nabla \times \mathbf{E} = 0 \quad \nabla \cdot \mathbf{E} \neq 0 \quad \text{for } k_0^2 = 0.$$ \hspace{1cm} (6)

The second group \((S_2)\) can be characterized as follows:

$$\nabla \times \mathbf{E} \neq 0 \quad \nabla \cdot \mathbf{E} \neq 0 \quad \text{for } k_0^2 > 0.$$ \hspace{1cm} (7)

In order to eliminate the spurious solutions \(S_1\) and \(S_2\), we propose the following functional according to the H-field formulation \([8]-[11]\):

$$\delta \mathcal{F} = \int_\Omega \delta \mathbf{E}^* \cdot \left[\nabla \times \left(\left[\mu_r \right]^{-1} \nabla \times \mathbf{E} \right) - \nabla (\nabla \cdot \mathbf{E}) - k_0^2 \mathbf{E} \right] \, d\Omega$$

$$- \int_\Gamma \delta \mathbf{E}^* \cdot \left[n \times \left(\left[\mu_r \right]^{-1} \nabla \times \mathbf{E} \right) - n (\nabla \cdot \mathbf{E}) \right] \, d\Gamma$$ \hspace{1cm} (9)

For the functional (8), the first variation \(\delta \mathcal{F}\) is given by

$$\delta \mathcal{F} = \int_\Omega \delta \mathbf{E}^*$$

$$\left(\nabla \times \left(\left[\mu_r \right]^{-1} \nabla \times \mathbf{E} \right) - \nabla (\nabla \cdot \mathbf{E}) - k_0^2 \mathbf{E} \right) \, d\Omega$$

$$- \delta \mathbf{E}^* \cdot \left[n \times \left(\left[\mu_r \right]^{-1} \nabla \times \mathbf{E} \right) - n (\nabla \cdot \mathbf{E}) \right] \, d\Gamma$$

$$+ \int_\Gamma \delta \mathbf{E}^* \cdot \left(\mathbf{E}^* \right)_0 \, d\Gamma$$ \hspace{1cm} (8)

where \(\Gamma\) represents the contour of the region \(\Omega\), \(n\) is the outward unit normal vector to \(\Gamma\), and the term \(n \times \left(\left[\mu_r \right]^{-1} \nabla \times \mathbf{E} \right)\) corresponds to the tangential components of the magnetic field \(\mathbf{H}\) on \(\Gamma\). The stationary requirement \(\delta \mathcal{F} = 0\) yields

$$\nabla \times \left[\left[\mu_r \right]^{-1} \nabla \times \mathbf{E} \right] - \nabla (\nabla \cdot \mathbf{E}) - k_0^2 \mathbf{E} = 0.$$ \hspace{1cm} (10a)

as the Euler equation and

$$n (\nabla \cdot \mathbf{E}) = 0$$ \hspace{1cm} (10b)

$$n \times \left[\left[\mu_r \right]^{-1} \nabla \times \mathbf{E} \right] = 0$$ \hspace{1cm} (10c)

as natural boundary conditions, since \(\delta \mathbf{E}^*\) in (9) is arbitrary. The spurious solutions \(S_1\) and \(S_2\) are not included in (8), but (8) may have other solutions than (3). This new group \((S_3)\), characterized by

$$\nabla \times \mathbf{E} = 0 \quad \nabla \cdot \mathbf{E} \neq 0 \quad \text{for } k_0^2 > 0.$$ \hspace{1cm} (11)

obey the following equations:

$$\varepsilon_r \mathbf{E} = \nabla \psi$$ \hspace{1cm} (12a)

$$\left(\nabla^2 + k_0^2 \right) \psi = 0 \quad \text{in region } \Omega$$ \hspace{1cm} (12b)

$$\psi = 0 \quad \text{on perfect electric conductor}$$ \hspace{1cm} (12c)

$$\partial \psi / \partial n = 0 \quad \text{on perfect magnetic conductor}$$ \hspace{1cm} (12d)

where \(\psi\) is the scalar field. The electric field \(\mathbf{E}\) of (12) satisfies the stationary requirement \(\delta \mathcal{F} = 0\), but the divergence of \(\varepsilon_r \mathbf{E}\) is not zero. Therefore, in the finite-element analysis using (8), spurious solutions \(S_3\), which are not included in (5), do appear. The solutions \(S_3\) are equivalent to the TM modes of "hollow" waveguides (replace \(\psi\) in (12b)–(12d) with \(E_z\) and the appearance is limited to the region \(\beta / k_0 < 1\). They do not appear anywhere above the "air-line."
If the functional for e_1 is used in its original form (14), we should modify the functional for e_2 in order to satisfy the boundary conditions of the electric field E on Γ'. For e_2, the functional (14) can be rewritten as

$$ (16a) \quad \tilde{F}_2 = \{ E \}^2 [A]_2 \{ E \}^2 $$

$$ (16b) \quad \{ E \}^2 = \begin{bmatrix} \{ E_x \}_2 \\ \{ E_y \}_2 \\ \{ E_z \}_2 \end{bmatrix} $$

$$ (16c) \quad [A]_2 = \begin{bmatrix} \{ A_{xx} \}_2 & \{ A_{xy} \}_2 & \{ A_{xz} \}_2 & \{ A_{x'y} \}_2 & \{ A_{x'z} \}_2 \\ \{ A_{yx} \}_2 & \{ A_{yy} \}_2 & \{ A_{yz} \}_2 & \{ A_{y'y} \}_2 & \{ A_{y'z} \}_2 \\ \{ A_{zx} \}_2 & \{ A_{zy} \}_2 & \{ A_{zz} \}_2 & \{ A_{z'z} \}_2 & \{ A_{z'z} \}_2 \\ \{ A_{x'z} \}_2 & \{ A_{y'z} \}_2 & \{ A_{x'z} \}_2 & \{ A_{x'y} \}_2 & \{ A_{x'z} \}_2 \\ \{ A_{x'z} \}_2 & \{ A_{y'z} \}_2 & \{ A_{x'z} \}_2 & \{ A_{x'y} \}_2 & \{ A_{x'z} \}_2 \\ \{ A_{y'z} \}_2 & \{ A_{x'z} \}_2 & \{ A_{y'z} \}_2 & \{ A_{x'y} \}_2 & \{ A_{x'z} \}_2 \\ \{ A_{z'z} \}_2 & \{ A_{x'z} \}_2 & \{ A_{z'z} \}_2 & \{ A_{x'y} \}_2 & \{ A_{x'z} \}_2 \\ \{ A_{z'z} \}_2 & \{ A_{x'z} \}_2 & \{ A_{z'z} \}_2 & \{ A_{x'y} \}_2 & \{ A_{x'z} \}_2 \\ \{ A_{z'z} \}_2 & \{ A_{x'z} \}_2 & \{ A_{z'z} \}_2 & \{ A_{x'y} \}_2 & \{ A_{x'z} \}_2 \end{bmatrix} $$

where the components of the $\{ E \}^2$ vector are the values of the electric field E_i at the nodal points within the element e_2 except Γ', the components of the $\{ E \}^2$ vector are the values of E at the nodal points on Γ' included in the element e_2, and the $[A]_2$, $[A]_2$, $[A]_2$, and $[A]_2$ are the submatrices of the matrix (15) for e_2.

The tangential components of E and the normal component of ϵE should be continuous at the interface Γ'. These boundary conditions can be written as

$$ (17a) \quad \{ E_x \}_2 = q_{xx} \{ E_x \}_1 + q_{xy} \{ E_y \}_1
$$

$$ (17b) \quad \{ E_y \}_2 = q_{xy} \{ E_x \}_1 + q_{yy} \{ E_y \}_1
$$

$$ (17c) \quad \{ E_z \}_2 = \{ E_z \}_1 $$

where the components of the $\{ E \}^2$ vector are the values of E_i at the nodal points on Γ' included in the element e_1, and q_{xx}, q_{xy}, and q_{yy} are given by

$$ (18a) \quad q_{xx} = \sin^2 \theta + (\epsilon_1 / \epsilon_2) \cos^2 \theta $$

$$ (18b) \quad q_{xy} = [(\epsilon_1 / \epsilon_2) - 1] \sin \theta \cos \theta $$

$$ (18c) \quad q_{yy} = \cos^2 \theta + (\epsilon_1 / \epsilon_2) \sin^2 \theta $$

Using (17), (16) can be transformed as follows:

$$ (19a) \quad \tilde{F}_2 = \{ E \}^2 [\tilde{A}]_2 \{ \tilde{E} \} $$

$$ (19b) \quad \{ \tilde{E} \} = \begin{bmatrix} \{ E_x \}_2 \\ \{ E_y \}_2 \\ \{ E_z \}_2 \end{bmatrix} $$

$$ (19c) \quad [\tilde{A}]_2 = \begin{bmatrix} \{ A_{xx} \}_2 & \{ A_{xy} \}_2 & \{ A_{xz} \}_2 & \{ A_{x'y} \}_2 & \{ A_{x'z} \}_2 \\ \{ A_{yx} \}_2 & \{ A_{yy} \}_2 & \{ A_{yz} \}_2 & \{ A_{y'y} \}_2 & \{ A_{y'z} \}_2 \\ \{ A_{zx} \}_2 & \{ A_{zy} \}_2 & \{ A_{zz} \}_2 & \{ A_{z'z} \}_2 & \{ A_{z'z} \}_2 \\ \{ A_{x'z} \}_2 & \{ A_{y'z} \}_2 & \{ A_{x'z} \}_2 & \{ A_{x'y} \}_2 & \{ A_{x'z} \}_2 \\ \{ A_{x'z} \}_2 & \{ A_{y'z} \}_2 & \{ A_{x'z} \}_2 & \{ A_{x'y} \}_2 & \{ A_{x'z} \}_2 \\ \{ A_{y'z} \}_2 & \{ A_{x'z} \}_2 & \{ A_{y'z} \}_2 & \{ A_{x'y} \}_2 & \{ A_{x'z} \}_2 \\ \{ A_{z'z} \}_2 & \{ A_{x'z} \}_2 & \{ A_{z'z} \}_2 & \{ A_{x'y} \}_2 & \{ A_{x'z} \}_2 \\ \{ A_{z'z} \}_2 & \{ A_{x'z} \}_2 & \{ A_{z'z} \}_2 & \{ A_{x'y} \}_2 & \{ A_{x'z} \}_2 \\ \{ A_{z'z} \}_2 & \{ A_{x'z} \}_2 & \{ A_{z'z} \}_2 & \{ A_{x'y} \}_2 & \{ A_{x'z} \}_2 \end{bmatrix} $$

where

$$ (20a) \quad \{ A_{x'x} \}_2 = q_{xx} \{ A_{x'x} \}_2 + q_{xy} \{ A_{x'y} \}_2 + \frac{q_{xx}^2}{2} \{ A_{x'y} \}_2 $$

$$ (20b) \quad \{ A_{x'y} \}_2 = q_{xx} q_{xy} \{ A_{x'x} \}_2 + q_{xx} q_{yy} \{ A_{y'y} \}_2 + \frac{q_{xy}^2}{2} \{ A_{y'y} \}_2 $$

$$ (20c) \quad \{ A_{y'y} \}_2 = q_{xx} q_{xy} \{ A_{x'x} \}_2 + q_{xx} q_{yy} \{ A_{y'y} \}_2 $$

$$ (20d) \quad \{ A_{x'x} \}_2 = q_{xx} \{ A_{x'x} \}_2 + q_{xy} \{ A_{x'y} \}_2 + \frac{q_{xx}^2}{2} \{ A_{x'y} \}_2 $$

$$ (20e) \quad \{ A_{x'y} \}_2 = q_{xx} q_{xy} \{ A_{x'x} \}_2 + q_{xx} q_{yy} \{ A_{y'y} \}_2, \quad j = x, y, z, z' $$

$$ (20f) \quad \{ A_{y'y} \}_2 = q_{xx} q_{xy} \{ A_{x'x} \}_2 + q_{xx} q_{yy} \{ A_{y'y} \}_2, \quad j = x, y, z, z' $$

$$ (20g) \quad \{ A_{x'x} \}_2 = q_{xx} \{ A_{x'x} \}_2 + q_{xy} \{ A_{x'y} \}_2 $$

$$ (20h) \quad \{ A_{x'y} \}_2 = q_{xx} q_{xy} \{ A_{x'x} \}_2 + q_{xx} q_{yy} \{ A_{y'y} \}_2, \quad j = x, y, z, z' $$
IV. NUMERICAL RESULTS

A. Dielectric-Loaded Waveguides

First, let us consider a rectangular waveguide half-filled with a dielectric of permittivity ε_1 (relative permittivity $\varepsilon_{r1} = \varepsilon_1 / \varepsilon_0$).

We subdivide one half of the cross section into second-order triangular elements as shown in the insert in Fig. 2, where $\varepsilon_{r1} = 1.5$, the plane of symmetry is assumed to be a perfect magnetic conductor, 36 elements (N_P) are used, and the number of the nodal points (N_P) is 91. Computed results (solid lines) for the LSM and LSE modes agree well with the exact results [16]. Spurious solutions S_1 and S_2, which are included in (5), do not appear. Spurious solutions S_3 (dashed lines) corresponding to the solutions of (12) appear only in the region $\beta / k_0 < 1$. The solutions S_3 with cutoff frequencies $k_0 a = \sqrt{2} \pi$ and $\sqrt{5} \pi$ are equivalent to the TM$_{11}$ and TM$_{12}$ modes of a “hollow” waveguide of square cross section, respectively.

One can control the solutions S_3 by changing the functional (8) as follows [10], [15]:

$$\tilde{F}_p = \int_{\Omega} (\nabla \times E)^+ \cdot (\mu_r)^{-1} \nabla \times E \, d\Omega$$

$$- k_0^2 \int_{\Omega} \varepsilon_1 E^+ \cdot E d\Omega$$

$$+ p^2 \int_{\Omega} \varepsilon_1^{-1} (\nabla \cdot E)^+ (\nabla \cdot E) \, d\Omega$$

(21)

where p is a positive number. If p is set equal to 1, \tilde{F}_p becomes F. For (21), (12) is reduced to

$$(p^2 \nabla^2 + k_0^2) \psi = 0 \quad \text{in region } \Omega$$

$$\psi = 0 \quad \text{on perfect electric conductor}$$

$$\frac{\partial \psi}{\partial n} = 0 \quad \text{on perfect magnetic conductor}.$$

The appearance of the solutions of (22) is limited to the region $\beta / k_0 < 1 / p$ and the cutoff frequencies of these solutions vary in proportion to the value of p.

Fig. 3 shows the p-dependence for the solutions S_3 in the same waveguide as shown in Fig. 2. Solid and dashed lines in Fig. 3 correspond to the TM$_{11}$ and TM$_{12}$ modes in Fig. 2, respectively. When $p = 2$, the solutions S_3 appear in the region $\beta / k_0 < 0.5$ and the cutoff frequencies of the solutions corresponding to the TM$_{11}$ and TM$_{12}$ modes in Fig. 2 become $k_0 a = 2\sqrt{2} \pi$ and $2\sqrt{5} \pi$, respectively. When $p = 0.5$, the solutions S_3 appear in the region $\beta / k_0 < 2$ and the cutoff frequencies of the solutions corresponding to the TM$_{11}$ and TM$_{12}$ modes in Fig. 2 become $k_0 a = 0.5\sqrt{2} \pi$ and $0.5\sqrt{5} \pi$, respectively. The p-dependence is very small for the physical solutions. For larger values of p, however, the degree of accuracy for the physical solutions becomes poorer. For smaller values of p, on the other hand, more spurious solutions appear, because the cutoff frequencies of these spurious solutions become lower. Hereafter, we use $p = 1$, namely the functional (8).

Fig. 4 shows the dispersion characteristics for the fundamental mode of half-filled dielectric waveguides, where the plane of symmetry is assumed to be a perfect magnetic conductor. For both $\varepsilon_{r1} = 1.5$ and 10.0, our results agree well with the results of the H-field finite-element formulation [11].

In Figs. 2 and 4, the normal direction of the interface with an abrupt change in the permittivity coincides with the direction of a coordinate axis.

Next, let us consider a rectangular waveguide with a diamond-shaped dielectric insert [17], as shown in Fig. 5. In this waveguide, there are abrupt changes in the permittivity at the interface whose normal direction does not coincide with the direction of a coordinate axis. Fig. 5 shows the dispersion characteristics for the fundamental mode.
mode, where two planes of symmetry are assumed to be perfect magnetic conductors and one quarter of the cross section is divided into second-order triangular elements. In Fig. 5, the results of the H-field formulation with $N_E = 50$ and $N_P = 121$ and the results of the modal approximation techniques [17] are also presented. For $\varepsilon_1 = 1.5$, the results of the E-field formulation with $N_E = 50$ and $N_P = 121$ agree well with those of the H-field formulation. For a larger value of relative permittivity, $\varepsilon_1 = 10.0$, the results of the E-field formulation with $N_E = 50$ and $N_P = 121$ deviate from those of the H-field formulation at higher frequencies. However, the E-field finite-element solutions can be improved by increasing the number of the elements. The results of the E-field formulation with $N_E = 128$ and $N_P = 289$ are closer to those of the H-field formulation.

The computed results in Figs. 2, 4, and 5 prove the validity of (19) and (20).

B. Ferrite-Loaded Waveguides

We consider a ferrite-loaded waveguide as shown in Fig. 6. The ferrite material is characterized by the relative permeability tensor

$$\begin{bmatrix} \mu_r \end{bmatrix} = \begin{bmatrix} 3.0 & 0 & j0.8 \\ 0 & 1.0 & 0 \\ -j0.8 & 0 & 3.0 \end{bmatrix}$$

and a relative permittivity of 2.0 [5]. Here, $[\mu_r]$ is independent of frequency, although this assumption is not valid for ferrites in general [5]. Table I shows the dispersion characteristics for the fundamental mode, where $a = 2b$, $N_E = 64$, and $N_P = 153$. For both $a_1 = a$ (completely filled) and $a_1 = a/4$, agreement between our results and the exact results [5], [18] is good. In the case of $a_1 = a/4$, the value of k_0b for $\beta b = -1$ is different from that for $\beta b = 1$. This fact implies that when k_0 is given, the modes propagating in this structure (partially filled) in the opposite directions have different phase constants, namely these modes are nonreciprocal [18]. The modes propagating in the completely filled guide in the opposite directions, on the other hand, have the same phase constants, and therefore, these modes are reciprocal [18].

V. CONCLUSION

The finite-element method was formulated for the analysis of anisotropic waveguides with a nondiagonal permeability tensor in terms of all three components of the electric field E. In this approach, spurious solutions do not appear anywhere above the “air-line.” The application of this E-field formulation to waveguides with an abrupt discontinuity in the permittivity was discussed in detail.

REFERENCES

Dr. Koshiba is a member of the Institute of Electronics and Communication Engineers of Japan, the Japan Society for the Promotion of Science, the Institute of Electronics, Information and Communication Engineers of Japan, and the Japan Society for the Promotion of Science.

Dr. Hayata is a member of the Institute of Electronics, Information and Communication Engineers of Japan, the Institute of Electrical Engineers of Japan, and the Japan Society for the Promotion of Science.

Dr. Suzuki is a member of the Institute of Electronics and Communication Engineers of Japan, the Institute of Electrical Engineers of Japan, and the Japan Society for the Promotion of Science.