<table>
<thead>
<tr>
<th>Title</th>
<th>Improved spillover correction model to quantify myocardial blood flow by C-11-acetate PET: comparison with O-15-H2O PET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Mori, Yuki; Manabe, Osamu; Naya, Masanao; Tomiyama, Yuuki; Yoshinaga, Keiichiro; Magota, Keiichi; Oyama-Manabe, Noriko; Hirata, Kenji; Tsutsui, Hiroyuki; Tamaki, Nagara; Katoh, Chietsugu</td>
</tr>
<tr>
<td>Citation</td>
<td>Annals of nuclear medicine, 29(1): 15-20</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2015-01</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/60448</td>
</tr>
<tr>
<td>Rights</td>
<td>The final publication is available at link.springer.com</td>
</tr>
<tr>
<td>Type</td>
<td>article (author version)</td>
</tr>
<tr>
<td>File Information</td>
<td>acetate2014final.pdf</td>
</tr>
<tr>
<td>Hokkaido University Collection of Scholarly and Academic Papers</td>
<td>HUSCAP</td>
</tr>
</tbody>
</table>
Improved spillover correction model to quantify myocardial blood flow by 11C-acetate PET: comparison with 15O-H$_2$O PET

Yuki Mori1, Osamu Manabe2, Masanao Naya3, Yuuki Tomiyama2, Keiichiro Yoshinaga4, Keiichi Magota2, Noriko Oyama-Manabe5, Kenji Hirata2, Hiroyuki Tsutsui3, Nagara Tamaki2, Chietsugu Katoh1

1Faculty of Health Sciences, Hokkaido University Graduate School of Medicine, Sapporo, Japan

2Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan

3Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan

4Department of Molecular Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan

5Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo Japan
*Corresponding Author:

Osamu Manabe, MD, PhD

Email: osamumanabe817@med.hokudai.ac.jp

N15 W7, Kita-Ku, Sapporo, 0608638 Hokkaido, Japan

TEL: +81-11-706-5152 FAX: +81-11-706-7155

Running title: MBF measuring by 11C-acetate PET

Financial support: None

Word counts: 2984
Abstract

Objective 11C-acetate has been applied for evaluation of myocardial oxidative metabolism and can simultaneously estimate myocardial blood flow (MBF). We developed a new method using two-parameter spillover correction to estimate regional MBF (rMBF) with 11C-acetate PET in reference to MBF derived from 15O-H$_2$O PET. The usefulness of our new approach was evaluated compared to the conventional method using one-parameter spillover correction.

Methods Sixty-three subjects were examined with 11C-acetate and 15O-H$_2$O dynamic PET at rest. Inflow rate of 11C-acetate (K_1) was compared with MBF derived from 15O-H$_2$O PET. For the derivation, the relationship between K_1 and MBF from 15O-H$_2$O was linked by the Renkin-Crone model in 20 subjects as a pilot group. One-parameter and two-parameter corrections were applied to suppress the spillover between left ventricular (LV) wall and LV cavity. Validation was set using the other 43 subjects’ data. Finally, rMBFs were calculated using relational expression derived from the pilot-group data.

Results The relationship between K_1 and MBF derived from 15O-H$_2$O PET was approximated as $K_1 = (1 - 0.764 \times \exp(-1.001 / \text{MBF}))$ MBF from the pilot data using the two-parameter method. In the validation set, the correlation coefficient between
rMBF from 11C-acetate and 15O-H$_2$O demonstrated a significantly higher relationship with the two-parameter spillover correction method than the one-parameter spillover correction method ($r = 0.730$, 0.592, respectively, $p < 0.05$).

Conclusion In 11C-acetate PET study, the new two-parameter spillover correction method dedicated more accurate and robust myocardial blood flow than the conventional one-parameter method.

Keywords

11C-acetate, 15O-H$_2$O, PET, regional myocardial blood flow, spillover correction
Introduction

11C-acetate is a known PET tracer that is taken up by the heart, rapidly converted to acetylCoA, and readily metabolized to CO$_2$ through the TCA cycle with oxidative phosphorylation [1]. K_1 inflow rate of 11C-acetate is largely dependent on myocardial blood flow (MBF) [2]. One-parameter spillover correction is one of the commonly used techniques for estimating MBF [2, 3]. The method uses one coefficient value to eliminate the effect of spillover from the left ventricle (LV) cavity to the LV tissue. However, the regions of interest (ROIs) of the LV cavity and tissue potentially include a significant spillover from burring, and vice versa for the ROI of LV tissue and cavity. Therefore, multiple spillover corrections are needed. Here, we propose a two-parameter spillover correction model, with 2 independent coefficient values—one for the LV cavity within ROI, and one for the LV tissue of ROI. We assumed that the new two-parameter spillover correction would be more useful than conventional one-parameter spillover correction [4]. Thus, the first goal of this study was to develop a new two-parameter spillover correction method to estimate regional and global MBF with 11C-acetate PET in reference to MBF derived from 15O-H$_2$O PET [5]. The second goal was to compare MBF measured with our new two-parameter model with that from the conventional one-parameter spillover correction model.
MBF measuring by 11C-acetate PET

Materials and Methods

Subjects

Sixty-three subjects who underwent 11C-acetate PET and 15O-H$_2$O PET within a 2-week period from August 2006 to August 2012 were retrospectively included in this study.

The Ethics Committee of Hokkaido University Hospital approved the study protocol.

Study Protocol

The Renkin-Crone model was used to obtain the extraction fraction using the inflow rate of 11C-acetate (K1) and the MBF from 15O-H$_2$O PET from the first 20 subjects, who served as a pilot group. To validate the formula developed from the pilot group data, MBF assessed by 11C-acetate PET was computed using the remaining 43 subjects. MBF from 11C-acetate was estimated by both one-parameter and two-parameter spillover correction, and was subsequently compared with MBF derived from 15O-H$_2$O PET.

PET Imaging Acquisition

PET data acquisition was performed using a whole-body scanner (ECAT/EXACT HR+; Siemens/CTI, Asahi-Siemens Medical Technologies Ltd., Tokyo, Japan). All emissions and transmissions were acquired in the 2-dimensional mode, and attenuation-corrected
MBF measuring by 11C-acetate PET

radioactivity images were reconstructed using filtered back-projection with a Hann filter of 4-mm full-width at half-maximum. Transmission scan was obtained with an external 68Ge / 68Ga source. 11C-acetate tracer (740 MBq) was administered intravenously for 60 s under resting conditions, and dynamic PET acquisition was performed (10×10 s, 1×60 s, 5×100 s, 3×180 s, 2×300 s) [6]. 15O-H2O (1,500 MB) was infused into an antecubital vein as a slow (2-min) infusion. A 20-frame dynamic PET scan, consisting of 6×5 s, 6×15 s, and 8×30 s frames, was acquired for 6 min [7].

Analysis of 15O-H2O and 11C-acetate

MBF of 15O-H2O was measured using a previously described method with the dedicated software [7]. Briefly, ROIs were drawn over the whole LV myocardium and within the LV cavity. (Fig 1) The ROIs were projected onto the dynamic 15O-H2O images. Arterial and myocardial tissue activity curves were derived with spillover correction, and were fitted to a single-tissue-compartment tracer kinetic model to calculate MBF at rest.

K1 from 11C-acetate PET was measured using the same image-analysis method. A cylindrical ROI was positioned manually in the LV to obtain the time activity curve, LV(t), from the short axis images in the early phase. A whole myocardial ROI, R, was set semi-automatically to obtain the time activity curves from the myocardium, R(t),
using the last frame images of the dynamic 11C-acetate data. Time activity curve in the arterial blood, $C_a(t)$, and in the myocardial tissue, $C_t(t)$, were estimated with consideration of these spillovers, modeled as a partial-volume mixture of arterial blood and tissue activity concentrations [4]. For the analysis of 11C-acetate, an averaged metabolite correction of the input function was also contained using the result of Buck et al.: $C_a(t) = 0.91 \exp(t/T_{1/2}) \ast LV(t)$, $T_{1/2} = 5.3\text{min}$ [8-10]. We used two methods of spillover correction to estimate K_1 for the one-parameter and two-parameter methods. The K_1 was estimated as described in the Appendix. The parameter, "a" meant the contaminated ratio of the blood radioactivity into the myocardial ROI, and "(1-a)" yielded the mixed ratio of the myocardial radioactivity into the LV ROI in the conventional method. This was based on the ideal assumption that the total ratio of the distribution of blood and myocardium within the ROI is just 1.0. Our method enabled to calculate the parameter "va" which was free from the parameter "a". K_1 was then converted into MBF using the Renkin-Crone model [4, 11, 12]. Global LV and 3-coronary-regional MBFs (rMBFs) were calculated and validated [13].

Statistical Analysis
Data are expressed as mean ± SD. The correlation between MBF from 11C-acetate and 15O-H$_2$O were assessed using linear regression analyses and Bland-Altman plots. Pearson’s correlation coefficients were used to evaluate the concordance between the conventional one-parameter method and our two-parameter method. For both analyses, p-values < 0.05 were considered significant.

Results

Hemodynamic data at the scan

The hemodynamic data of 8 participants in the pilot group, and 4 participants in the validation group were lost. The hemodynamic data of the remaining subjects are presented in Table 2. There were no significant differences in any of the hemodynamic data, including heart rate (HR), systolic blood pressure (sBP), diastolic blood pressure (dBP), and rate pressure product (RPP).

Pilot Group

The Renkin-Crone’s formula yielded the relationship between K1 from 11C-acetate and MBF from 15O-H$_2$O PET in the whole myocardium from the pilot group. Eq. 1 and 2
MBF measuring by 11C-acetate PET

represent the Renkin-Crone’s formula from the one- and two-parameter spillover models, respectively (Fig 2).

\[K_{1\text{-parameter}} = (1 - 0.816 * \exp(0.998/\text{MBF})) \times \text{MBF} \]

\[K_{2\text{-parameter}} = (1 - 0.764 * \exp(1.001/\text{MBF})) \times \text{MBF} \]

Validation Group

Using Eqs. 1 and 2, MBFs were calculated from the 11C-acetate data of the validation group. Calculated global MBFs from the one- and two-parameter models were 0.67 ± 0.28 and 0.68 ± 0.23, respectively (p = 0.39). Calculated rMBFs from the one- and two-parameter models were 0.69 ± 0.35 and 0.74 ± 0.27 mL/g/min for regional, respectively (p = 0.008). In both the global and regional MBF values, significant relationships were seen between the MBFs from 11C-acetate and 15O-H2O. In the validation set, the two-parameter model dedicated a significantly better correlation coefficient than the one-parameter method (r = 0.730 vs. 0.592, p < 0.05) (Fig 3). Bland-Altman plots also presented more stable regional MBFs from the two-parameter spillover model than from the conventional one-parameter model (Fig 4).

Discussion
We developed a new, two-parameter spillover correction model to estimate global and regional MBF at the early phase of 11C-acetate PET (0-5 min). The model demonstrated a better relationship between the MBF derived from both the 11C-acetate and the 15O-H$_2$O PET than the previous one-parameter spillover model, suggesting that our model is a reliable equation for estimating MBF from 11C-acetate PET scans.

Our method demonstrated a good relationship between K_1 from 11C-acetate and MBF from 15O-H$_2$O PET using the Renkin-Crone model, as well as other PET tracers such as 82Rb [4]. This new two-parameter spillover correction method could suppress the spillover into the myocardium. Therefore, it might provide more precise MBF in the repeated measurement than the established method.

Some procedures were reported to measure the MBF using 11C-acetate PET, such as net myocardial uptake of tracer [14], two tissue compartment model [2], and single tissue compartment model with one-parameter spillover collection [8]. And Timmer et al. recommended the method using a single tissue compartment model with one-parameter spillover method with standardized correction for recirculating metabolites and with corrections for partial volume and spillover [10]. Our model demonstrated a better relationship, suggesting that our model is a reliable equation for estimating MBF from 11C-acetate PET scans. The one-parameter spillover correction
MBF measuring by 11C-acetate PET

model is one of the established techniques for estimating the MBF in a nonlinear least-squares method [2, 3]; in this model, the number of calculable variables is limited [15]. Our two-parameter model dedicated a significantly better coefficient value for linear correlation than the conventional one-parameter model. Therefore, the two-parameter spillover correction is more fitted to calculating MBF than the one-parameter method [7, 16]. In addition, our modified method is able to detect regional MBF reduction.

Klein et al. reported the usefulness of the 11C-acetate dynamic PET for evaluating MVO$_2$ in a clinical research study that assessed ischemic heart disease, dilated cardiomyopathy, aortic stenosis, and recipient heart after transplantation [17]. The present study demonstrated that 11C-acetate dynamic PET is reliably useful for estimating both MBF and MVO$_2$. Quantification of MBF offers a great advantage in the evaluation of the functional severity of vascular function in patients with coronary artery disease,[5, 13, 18-20] as well as information about morphological stenosis [21, 22]. In the present study, we used 15O-H$_2$O as the ideal tracer to estimate MBF because, with an almost 100% extraction of water, it is a freely diffusible tracer [7]. The extraction fraction of 11C-acetate was also thought to be high enough to calculate MBF [8, 14].
MBF measuring by 11C-acetate PET

The present study had methodological limitations. The sample size was relatively small. However, smaller sample sizes used in previous physiological studies were found to have sufficient power to validate new methods [11, 23]. This study assessed MBF only at rest and not in a stress condition. Further studies are needed to evaluate MBF during stress tests. As we were focused on the utility of the two-parameter method for the estimation of MBF from 11C-acetate PET, we didn’t discuss the correlation between MBF and MVO2. Finally, as this study was retrospective, some hemodynamic data, such as heart rate and blood pressure, were lost.

Some patients showed certain amount differences MBF between 11C-acetate PET and 15O-H2O. We have evaluated the background etiology of disease and the regional MBF in subjects who showed more than 40% difference between MBF from 11C-acetate PET and that from 15O-H2O PET. Fifteen regions showed the large variation among MBFs including 8 LCX regions, 4 LAD regions, and 3 RCA regions. Seven regions were from PH patients, 3 regions were from ICM patients, 3 regions were from volunteers, 1 region was from DCM patient, and 1 region was from valvular disorder patient. Not only a particular patient, but also healthy volunteers were included. Therefore, the patient characteristics might be little cause of the wide variation. The LCX region tended to show the large variation of MBF between 11C-acetate and 15O-H2O. Respiratory motion
MBF measuring by 11C-acetate PET

might lead to the error of the attenuation correction between the myocardium and lung, since the LCX region widely faced the lung field.

Conclusions

We developed a new method for estimating regional myocardial blood flow using dynamic PET with 11C-acetate, which yielded a good correlation with MBF from 15O-H$_2$O PET. Our new, two-parameter spillover correction method produced a more robust estimation of regional MBF than the conventional one-parameter method.

ACKNOWLEDGEMENTS

The authors thank Hidehiko Omote, RT; Shigeo Oomagari, MSc; and Eriko Suzuki for their support of this study. The study was supported in part by grants from the Ministry of Education, Science and Culture Japan (Category Young Investigator, No. 40443957 and the Ministry of Education, Science and Culture Japan (No. 10292012), and by a Japan Radiological Society Bayer Grant.
Appendix

1-parameter and 2-parameter spillover method

Relational expression among $R(t)$, $C_t(t)$, and $C_a(t)$ was represented as Eq. 3 for the conventional method and as Eq. 4 for the two-parameter method.

$$R(t) = \alpha \ast C_t(t) + (1-\alpha) \ast C_a(t)$$

(3)

where α denoted myocardial tissue ratio in the ROI R, and $(1-\alpha)$ is spillover from blood into the ROI R.

$$R(t) = \alpha \ast C_t(t) + v\alpha \ast C_a(t)$$

(4)

where $v\alpha$ is spillover from blood into the ROI R for the two-parameter method.

Activity concentration in the LV blood cavity was modeled as a partial-volume mixture of arterial blood and myocardial tissue as Eq. 5.

$$LV(t) = \beta \ast C_a(t) + (1-\beta) \ast m \ast C_t(t)$$

(5)

where β denoted a recovery coefficient in the LV ROI, $(1-\beta)$ is spillover from myocardium into blood pool, and m is the density of myocardial tissue (1.04 g/ml).

Radioactivity in the LV blood pool was calculated using Eq. 5 with $\beta = 85\%$ [4].

The change in tissue activity concentration was modeled using the one-tissue compartment model as Eq. 6.

$$dC_t(t) = K_1 \ast C_a(t) - k_2 \ast C_t(t)$$

(6)
where K_1 (mL/g/min) is the uptake rate from blood into the tissue and k_2 (/minute) is the washout rate from myocardial tissue into the blood $Ca(t)$ (Bq/mL). The parameters K_1, k_2, α, and ν_α were estimated by the non-linear least-squares method using Eqs. 3, 5, and 6 for the one-parameter method and Eqs. 4, 5, and 6 for the two-parameter method.

Estimated data and the curve $R(t)$ dedicated the spillover-corrected pure blood curve $Ca(t)$.

MBF measuring by 11C-acetate PET
MBF measuring by 11C-acetate PET

References

MBF measuring by 11C-acetate PET

Figure legends

FIGURE 1.

(A) A cylindrical ROI was positioned manually in the left ventricle (LV) to obtain the time activity curves, LV(t), from the early phase images of the dynamic 11C-acetate PET data. (B) A whole myocardial ROI was set semi-automatically to obtain the time activity curves from myocardium, R(t), using the last frame images of the dynamic 11C-acetate data.
FIGURE 2. Relationship between K1 from 11C-acetate and MBF from 15O-H$_2$O PET

The relationship between K1 from 11C-acetate and MBF from 15O-H$_2$O PET using one-parameter method (A) and two-parameter method (B). Relational expression between K1 and MBF was developed from the Renkin-Crone model.
MBF measuring by 11C-acetate PET

FIGURE 3. Relationship between regional MBFs from 11C-acetate and 15O-H$_2$O

Both one- and two-compartment models showed significant correction. The correlation using the two-compartment model (A) was significantly better than that using the one-compartment model (B).
FIGURE 4. Bland-Altman plots

Bland-Altman plots presented more stable regional MBFs from the two-parameter spillover model (A) than from the conventional one-parameter model (B).
Table 1. Characteristics of participants

<table>
<thead>
<tr>
<th></th>
<th>Pilot Group</th>
<th>Validation Group</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=20)</td>
<td>(n=43)</td>
<td></td>
</tr>
<tr>
<td>Years old</td>
<td>50.9 ± 15.0</td>
<td>47.7 ± 14.5</td>
<td>0.58</td>
</tr>
<tr>
<td>Male / Female</td>
<td>6 / 14</td>
<td>14 / 29</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Etiology

Healthy volunteers	2	7	0.51
Dilated cardiomyopathy	2	4	0.93
Pulmonary hypertension	16	32	0.63
Table 2. Hemodynamic data at the scan

<table>
<thead>
<tr>
<th></th>
<th>Pilot group (n =12)</th>
<th>Validation group (n =39)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11C-acetate</td>
<td>15O-H$_2$O</td>
</tr>
<tr>
<td>HR</td>
<td>66.8 ± 13.2</td>
<td>65.2 ± 11.4</td>
</tr>
<tr>
<td>sBP</td>
<td>104.6 ± 10.4</td>
<td>106.9 ± 4.6</td>
</tr>
<tr>
<td>dBP</td>
<td>56.7 ± 6.7</td>
<td>60.0 ± 8.4</td>
</tr>
<tr>
<td>RPP</td>
<td>7004.9 ± 1692.9</td>
<td>6966.3 ± 1239.9</td>
</tr>
</tbody>
</table>

HR, heart rate; sBP, systolic blood pressure; dBP, diastolic blood pressure; RPP, rate pressure product.