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Localization-delocalization transition in one-dimensional electron systems with long-range
correlated disorder
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We investigate localization properties of electron eigenstates in one-dimensional(1D) systems with long-
range correlated diagonal disorder. Numerical studies on the localization lengthj of eigenstates demonstrate
the existence of the localization-delocalization transition in 1D systems and elucidate nontrivial behavior ofj

as a function of the disorder strength. The critical exponentn for localization length is extracted for various
values of parameters characterizing the disorder, revealing that everyn disobeys the Harris criterionn.2/d.
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I. INTRODUCTION

Spatial correlation of disorder often causes an unexpected
phenomenon in quantum disordered systems. Most intriguing
is the breakdown of Anderson localization in one-
dimensional(1D) systems induced by correlated disorder.
Breakdown of the localization in 1D systems has been pre-
dicted for a random dimer model,1 wherein the on-site po-
tential h«ij has a binary distribution with ashort-rangespa-
tial correlation. Subsequently, a discrete number of extended
eigenstates was found numerically in the random dimer
model.2,3 It was examined experimentally using transmission
measurements on semiconductor superlattices.4 These find-
ings have motivated the studies of the nature of 1D systems
with long-rangecorrelated disorder.5–12Particularly notewor-
thy is the system in which the sequenceh«ij has a power-law
spectral density of the formSskd~k−p; the function S(k) is
the Fourier transform of the spatial correlation function
k«i« jl. For exponentsp greater than 2.0, there is a finite range
of energy values with extended eigenstates.6 This fact indi-
cates the presence of the localization-delocalization transi-
tion in 1D disordered systems against the conclusion of the
well-known scaling theory.13,14 The emergence of extended
eigenstates was also observed in harmonic chains with ran-
dom couplings15 and in those with randoms masses.16 Note
that diagonal disorder treated in Ref. 16 is characterized by
the power-law spectral density denoted above.

The randomness of the long-range correlated potentials
h«ij is characterized by two quantities. The first is the expo-
nent of the power-law spectral densityp, determining the
roughness of potential landscapes, as shown in Fig. 1. The
second quantity is the distribution widthW defined by the
relation «i P f−W/2 ,W/2g, which characterizes the ampli-
tude of the potential.17 Effects ofp on the localization prop-
erties of eigenstates have been examined,6 but those ofW
remain unclarified. If the disorder is spatiallyuncorrelated
sp=0d, an increase inW trivially induces strongly localized
wave functions because all eigenstates are localized
exponentially.14,20 On the other hand, when the disorder is
sufficiently long-range correlated to yield extended eigen-
statessp.2.0d, the system shows a critical pointWc sepa-
rating localized and delocalized phases. However, there is no
attempt to quantitatively determine the value ofWc. Calcu-

lations for Wc for various values ofp allow us to establish
the phase diagram in theW-p space, thereby engendering
better understanding of localization properties of the system.
We are also interested in the value of the critical exponentn
for the localization length of eigenstates. Those values can be
obtained accurately using finite-size scaling analysis.

The present work is intended to reveal critical properties
of electron eigenstates in 1D systems with long-range corre-
lated disorder. Numerical studies on the localization lengths
j have demonstrated the nontrivial behavior ofj as a func-
tion of W and p. A series of critical widthsWc and that of
critical exponentsn are determined by finite-size scaling
analysis. Remarkably, the results ofn disobey the Harris cri-
terion, n.2/d (Refs. 21,22), which is believed to be satis-
fied in general disordered systems. Our findings present pros-
pects for the study of Anderson transition in 1D systems with
correlated disorder.

This paper is organized as follows. Section II describes
the long-range correlated on-site potentials to be considered.
It presents a numerical algorithm for calculating the localiza-
tion length of eigenstates. Section III analyzes the localiza-
tion length as a function ofW andp. The transition pointWc

FIG. 1. Landscapes of spatially correlated on-site potentials. The
exponentp of the power-law spectral densitySskd~k−p is varied as
displayed in the figure. The roughness of the energy landscape is
gradually reduced with increasingp.
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and the critical exponentn are extracted by finite-size scaling
analysis. Conclusions and discussion are presented in Sec.
IV.

II. MODEL AND METHOD

A. Long-range correlated potentials

We consider noninteracting electrons in 1D disordered
systems within a tight-binding approximation. The
Schrödinger equation of the system is expressed as

«ifi + tsfi+1 + fi−1d = Efi , s1d

wherefi is the amplitude of the wave function at theith site
of the lattice. The hopping energyt is taken as a unit of
energy hereafter. A sequence of long-range correlated poten-
tial h«ij is produced by the Fourier filtering method.23–25This
method is based on a transformation of the Fourier compo-
nents of a random number sequence. The outline of the
method is as follows:(i) A sequencehuij of uncorrelated
random numbers with a Gaussian distribution is prepared.
(ii ) Its Fourier componentshuqj are computed using the fast-
Fourier transformation method.(iii ) A sequenceh«qj is gen-
erated for a givenp using the relation«q=q−p/2uq. (iv) Fi-
nally, the objectiveh«ij is obtained as the inverse Fourier
transform of h«qj. The resulting potentials«i are spatially
correlated and produce the power-law spectral densitySskd
~k−p. In the following, the mean valuek«il is set to be zero
and the periodic boundary condition is imposed.

Figure 1 displays the landscapes of long-range correlated
potentials«i that are generated by the procedure above. The
system sizeL=213 and the distribution widthW=3.0 are
fixed. An increase inp markedly reduces the roughness in
potential landscapes. We have confirmed that the sequences
h«ij appearing in Fig. 1 produce the power-law spectral den-
sity, Sskd~k−p, for all values ofp.

B. Localization lengths

Localization lengths of eigenstates in a potential fieldh«ij
are computed easily using the conventional transfer-matrix
method.26 The Schrödinger equation(1) is expressed by the
following matrix equation:

Sfi+1

fi
D = M iS fi

fi−1
D, M i ; SE − «i − 1

1 0
D . s2d

The localization lengthj at a given energyE is defined by
the relation26

j−1 = lim
L→`

1

L
ln

uPi=1
N M izs0du
uzs0du

s3d

with a generic initial condition

zs0d = Sf1

f0
D . s4d

Equation(3) gives the single value ofj only for the infinite
system sizeL→`. However, whenL is finite, the calculated
result of Eq.(3)—denoted asjL—depends on the choice of

the potential fieldh«ij. To obtain a typical value ofjL for a
givenL, we take a geometrical mean ofjL on more than 104

samples. EnergyE is fixed at the band centerE=0 through-
out this paper.

A critical point W=Wc (and p=pc) can be deduced from
the dependence of the normalized localization lengthL
;jL /L on the system sizeL. The typical values ofjL in-
crease withL for delocalized states, where the growth ofjL
is faster than that inL. This causes the quantityL to be an
increasing function ofL. On the other hand,L vanishes for
sufficiently largeL for localized states becausejL approaches
a constant value. Therefore, at the localization-delocalization
transition,L must be invariant for the change in the system
sizeL. Values ofWc are obtained accurately using the finite-
size scaling method, as explained in Sec. III.

III. NUMERICAL RESULTS

A. The W-dependence for the functionL„W…

Figure 2 plots the normalized localization lengthL as a
function of the distribution widthW. The exponentp of the
power-law spectral densitySskd is increased fromp=1.0 to
p=4.5, incrementally. The system sizeL=216 is fixed for all
p. Whenp equals unity or less,LsWd is a monotonous func-
tion of W. For largerp, on the other hand, curves ofL show
a kink atW=4.0, which sharpens asp increases.

We find two striking features in Fig. 2. The first is a pe-
culiar p-dependence ofLsWd. Thep-dependence ofLsWd in
the region whereW,4.0 differs completely from that in the
region whereW.4.0. ForW,4.0, the values ofL rise with
increasingp indicating that the growth ofp for W,4.0
causes an increase in the localization lengthjL of eigenstates.
In contrast, the values ofL for W.4.0 systematically de-
crease with increasingp (except for the datap=1.0). Hence,
growth of p for W.4.0 produces strongly localized eigen-
states. This difference in the effect of increasingp on jL is
nontrivial because the increase inp simply smoothes poten-

FIG. 2. The normalized localization lengthL;jL /L as a func-
tion of the distribution widthW. Several values ofp are taken as
denoted in the figure. The system sizeL is fixed to be 216 for all
values ofp.
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tial landscapes, as shown in Fig. 1. Therefore our results
suggest that the effect of potential roughness on the localiza-
tion lengthjL depends strongly on the value ofW.

The second notable feature is a shoulder structure of
LsWd—a sharp bent ofLsWd—at aroundW=4.0, engender-
ing a plateaulike shape within the region 0.5,W,4.0. The
shoulder ofLsWd appears for exponentsp.2.0, i.e., forp
large enough to yield extended eigenstates.6 That fact implies
that localization properties of eigenstates forW,4.0 (and
p.2.0) differ substantially from those forW.4.0. The
value W=4.0 is a critical disorder strength separating a lo-
calized and delocalized phase, as explained later. Section
III B presents a demonstration that eigenstates are delocal-
ized within the plateau region, under conditionsW,4.0 and
p.2.0.

Values of the critical widthWc can be estimated from the
dependence ofLsWd on system sizeL. Figure 3 shows the
L-dependence forLsWd, where the system size is increased
from L=213 (circles) up to 217 (diamonds). Open and solid
symbols correspond to the exponentp=1.0 andp=2.5, re-
spectively. Forp=1.0, the magnitude ofLsWd declines with
increasingL such that the eigenstates are localized for any
W. On the other hand, forp=2.5, theL-dependence forLsWd
is rather complicated. The inset of Fig. 3 displays detailed
behavior ofL in the vicinity of W=4.0, where the system
size is varied fromL=213 to 217 as denoted in the figure
caption. All curves intersect on a single point atW=4.0,
suggesting the presence of the Anderson transition atW
=Wc=4.0 for p=2.5.

We have confirmed that, whenpù2.0, LsWd shows the
sameL-dependence as presented in the inset of Fig. 3. In-
triguingly, all data ofLsWd for p.2.0 provide an identical
value of Wc=4.0. Therefore, we conclude that the critical
distribution widthWc=4.0 is independent ofp wheneverp
ù2.0.

B. Finite-size scaling analysis

Finite-size scaling analysis allows the determination of
critical properties of the transition forL→` from data for
finite L.26 This method stems from the hypothesis that the
normalized localization lengthL close to the transition obeys
the scaling law expressed by

ln L = fS L

j`
D , s5d

wherej` is the localization length of eigenstates in an infi-
nite system. The argumentL /j` becomes much smaller than
unity becausej` diverges with obeying the formj`~ uW
−Wcu−n near the transition pointW=Wc. This allows expan-
sion of the scaling function as

ln L = a0 + a1uW− WcuL1/n + ¯ + anuW− WcunLn/n, s6d

terminating the expansion at the ordern. Fitting the numeri-
cal data of lnL for various values ofW andL to Eq.(6), we
obtain Wc and n with great accuracy. Note that the optimal
value of constantsa0, a1,¯, an for W.Wc are different
from those forW,Wc becausej` is a function of the abso-
lute value ofW−Wc.

Figure 4 shows scaling plots of lnL for p=2.5 (solid) and
p=3.0 (open). Here we definex;uW−WcuL1/n and setn=4.
Each upper and lower branch in the figure corresponds to the
extended phasesW,Wcd and the localized phasesW.Wcd,
respectively. All data of lnL for various values ofW andL
fit well onto two branches. Resulting values of the critical
exponentn and the critical distribution widthWc are listed in
Table I, where the error is a 95% confidence interval. We see
that all values ofWc are almost identical to 4.0, as expected.
On the other hand, values ofn exhibit a discrepancy for
different branches and differentps.27 This discrepancy ofn
contradicts the principle of one-parameter scaling requiring
thatn should be independent of a choice of parameters in the
Hamiltonian of the system. It is surmised that the discrep-
ancy ofn occurs because of a finite-sized effect that causes a
systematic error in scaling plots. A novel technique of scal-

FIG. 3. TheL-dependence forLsWd with settingp=1.0 (open
symbols) andp=2.5(solid symbols). Inset: Enlargement ofLsWd in
the vicinity of W=4.0. The system sizeL is varied toL=213 (solid
circles), 214 (open circles), 215 (solid triangles), 216 (open triangles),
and 217 (diamonds).

FIG. 4. Scaling plots of lnL= fsxd for p=2.5 (solid circles) and
for p=3.0 (open circles). Upper and lower branches correspond to
extended and localized phases, respectively.
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ing correction (two-parameter scaling)28–30 would help to
solve the problem, as we shall present in a future study.31

C. The p-dependence for the functionL„p…

Next, we examineL behavior as a function ofp. Figure 5
shows a plot of the functionLspd with settingW=1.0 and
3.0, where the system size is varied fromL=213 to 217. For
all W andL, Lspd increases withp; it then becomes constant
for p.2.5. Thisp-dependence forL is consistent with the
results displayed in Fig. 2, in which the growth ofp for
W,4.0 causes an increase inL. Detailed calculations of
Lspd in the vicinity of p=2.0 reveal that all curves ofLspd
that belong to differentLs intersect at the point atp=2.0 as
long as W,4.0. This indicates that localization-
delocalization transition occurs at an identical pointp=pc
=2.0 wheneverW,4.0. The critical pointpc=2.0 estimated
above is consistent with the conclusion reported in Ref. 6.

A series of critical pointsWc and pc we have found are
summarized in the phase diagram illustrated in Fig. 6. Solid
circles express the critical pointW=Wc deduced from the
finite-size scaling procedure, whereas solid squares express
p=pc defined by the position at whichLspd is independent of
L (see Fig. 5). An extended phase appears in the region sur-
rounded by the two straight lines ofW=4 and p=2. It is
noteworthy that values ofWc andpc equal anintegral num-

ber: 4 and 2, respectively. The same integral value ofWc
=4 has been observed in other 1D systems with correlated
disorder,1–3,34–36as discussed below.

IV. CONCLUDING REMARKS

Two open problems remain with respect to the critical
properties of the transition in 1D systems with long-range
correlated disorder. First, all results of the critical exponentn
listed in Table I disobey the Harris criterionn.2/d (Refs.
21,22). The inequality is widely believed to be satisfied in
general disordered systems with any spatial dimensiond,
thereby determining the lower bound forn. According to the
inequality, n in 1D systems must be larger than 2, which
disagrees with our results. We note here that the Harris cri-
terion was originally derived for a spatiallyuncorrelated
disorder.21 Therefore, the relationn.2/d may be violated in
systems with long-rangecorrelateddisorder. In fact, forclas-
sical percolation model, the inequality must be modified in
the presence of long-range correlation in the site or bond
occupations.32,33 To elucidate the lower bound ofn for 1D
systems considered, we should generalize the argument in
Ref. 22 for the correlated disorder producing the power-law
spectral densitySskd~k−p.

Second, the critical disorder widthWc is exactly equal to
an integral numberWc=4. Furthermore, the value ofWc is
independent of the potential roughness characterized byp. In

TABLE I. Calculated results of the critical exponentn and the critical distribution widthWc. The error is a 95 % confidence interval.

Branch n Wc

p=2.5 Extended 1.79±0.08 4.002±0.002

Localized 1.87±0.04 4.001±0.001

p=3.0 Extended 1.58±0.08 4.001±0.002

Localized 1.51±0.02 4.001±0.001

FIG. 5. TheL-dependence forLspd with settingW=1.0 (solid
symbols) andW=3.0 (open symbols), respectively. The system size
L is varied as 213 (circle), 215 (triangle), and 217 (square).

FIG. 6. A phase diagram of the system in theW-p space. The
critical line separating the localized and delocalized phase consists
of two straight lines:W=Wc=4.0 andp=pc=2.0.
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fact, the same value ofWc=4 has been found in other corre-
lated potential models. One example is the random dimer
model,1–3 where the site energies«a and «b are assigned in
pairs. The disorder widthW of the system is defined by the
relation «a−«bP f−W/2 ,W/2g. If W is less than the critical
value Wc=4, the localization length diverges obeying the
form j`sEd~E−2, yielding the delocalized eigenstate atE
=0. Another example is the Harper model,34,35 in which site
energies are described by a periodic function«i
=sW/2dcoss2pivd with an irrational numberv. This model
undergoes the localization-delocalization transition atW=4.
That is, all eigenstates become critical atW=4.36 We conjec-
ture that the coincidence of the value ofWc in the three
different models is evidence of an unexplored universality of
Wc in 1D systems with spatially correlated disorders.37

In conclusion, we have investigated critical properties of
1D electron systems subject to long-range correlated disor-
der. The normalized localization lengthL of eigenstates

shows a nontrivial behavior as a function ofW andp, which
indicates a peculiarity of 1D systems exhibiting the Ander-
son transition. Detailed calculations forLsW,pd reveal that
the transition pointWc=4 is invariant to the change of the
potential roughness. Moreover, the critical exponentn in the
considered system is proven to violate the Harris criterion
n.2/d. We hope that our findings enlighten the study of
quantum phase transition in manifold disordered systems.
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