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Correlations and spin flips in tunneling through a quantum dot
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Department of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan

and Institute for Solid State Physics, University of Tokyo, Roppongi, Tokyo 106-8666, Japan
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Variations of the Coulomb oscillations with the in-plane magnetic field~the spin splitting! are theoretically
studied to find many-body effects in tunneling through a quantum dot. The conductance and the transmission
coefficient are calculated at small tunneling rates in the absence of spin-orbit interactions and expressed in
terms ofuniversal functions of the spin splitting, which have no dependence on details of wave functions
except the magnitude of spin. Such universal functions are shown to be useful in observing the correlation
between tunnelings of electrons with opposite spins and the dephasing due to spin flips.
@S0163-1829~99!11815-0#

Quantum dots provide an almost unparalleled opportunity
to study many-body effects in tunnelings. A typical phenom-
ena is a set of sharp peaks of the conductance that appear
periodically as a function of the gate voltage~Coulomb
oscillations!.1,2 The Coulomb oscillations are due to the Cou-
lomb blockade: if one electron enters the dot at a gate volt-
age, the Coulomb repulsion blocks another to enter the dot
until the gate voltage is raised and overcomes the Coulomb
repulsion. This Coulomb blockade appears also in the con-
ductance peak height, since electron tunnelings are correlated
and the current is reduced. Such a correlation effect on the
peak height has been difficult to observe because the peak
height is subject to details of the potential profile in a quan-
tum dot and tunneling barriers, which is not known at desired
accuracy.

Glazman and Matveev3 studied theoretically the
magnetic-field dependence of the current through resonance
centers in a barrier of tunnel junctions. They calculated the
tunneling current using the kinetic equations for a resonance
center with a single orbit of small radius, in which the orbit
has little dependence on the magnetic field. In the absence of
the magnetic field, two spin levels are degenerate, but elec-
trons with opposite spins cannot tunnel into the dot simulta-
neously due to the Coulomb correlation, giving rise to a re-
duction in the current. When the spin splitting is large
enough, on the other hand, only one spin level is used for the
current, and the correlation effect disappears. Therefore the
correlation is reflected in the magnetic-field dependence of
the conductance and has been observed in the experiment.4

In this paper we extend the Glazman-Matveev theory to
transport through a quantum dot with many orbits and show
that the magnetic field is a useful tool to clarify the Coulomb
correlation as well as the dephasing due to spin flips at such
a quantum dot. The magnetoconductance is calculated for the
magnetic field parallel to the two-dimensional plane and is
shown to be universal in the sense that it has no dependence
on details of tunneling matrix elements and many-body wave
functions in the dot. Important assumptions used in its deri-
vation are~i! the in-plane magnetic field affects only the spin
degree of freedom in our two-dimensional electron systems
with negligible spin-orbit interactions and~ii ! the tunneling
is weak so that the level broadening is much smaller than the

thermal energy. In the conductance peak associated with the
transition between theN-electron ground state~spin S) and
theN11-electron ground state~spin S̃), the normalized con-
ductance is a universal function that depends only onS, S̃,
the spin splitting and the chemical potential divided by the
thermal energy.

In the presence of interactions in a quantum dot, there are
tunneling processes in which the spin of a tunneling electron
is flipped and at the same time the spin of the dot is changed.
Such a spin flip at the quantum dot is another fundamental
many-body effect and affects the phase coherence of the cur-
rent through the dot. The coherence in the electron wave
through a quantum dot has been studied theoretically5–12 and
experimentally13–15employing the Aharonov-Bohm effect in
a system with a dot. The recent experiment in a double-slit
geometry15 has successfully obtained the coherent transmis-
sion coefficient through the dot, but no experiments have
observed the dephasing due to spin-flip processes at the dot.
In this paper we show that the transmission coefficient is also
represented by a universal function of the spin splitting,
which exhibits the existence of spin-flip scatterings in a
simple manner.

Our HamiltonianH consists ofHd for the dot,HL for the
leads, andHt for tunnelings:

H5Hd1HL1Ht ,

Hd5(
ns

«nscns
† cns1H int ,

HL5(
lks

« lksclks
† clks ,

H t5 (
lkns

~Vlknclks
† cns1H.c.!, ~1!

wherecns
† (cns) are creation~annihilation! operators for an

electron with spins in orbit n in the dot andclks
† (clks) are

those for an electron in statek in lead l ( l 5e for the emitter
andl 5c for the collector!. H int is the interaction term whose
explicit form is not necessary in the following general dis-
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cussion. We only need to assume that the energy separation
between the ground-state multiplet and the first excited state
for N electrons in the dot and that forN11 electrons are
larger than the thermal energy, so that the current is exclu-
sively due to transitions between the ground states for the
two electron numbers. Each state in the ground-state multip-
let ~spin S) is labeled by thez component of the spinSz .

In the weak-tunneling regime we consider, the level
broadening due to tunneling is much smaller than the thermal
energy, so that electronic states and electron distribution in
leads are little modified by tunnelings and correlations be-
tween the leads and the dot, such as in the Kondo effect, can
be neglected. In this regime we can calculate the linear con-
ductance by applying our previous theory,16 which employs
the transition-rate formula for electron tunnelings between
the two leads by incorporating the finite level broadening of
intermediate many-body states. We employ this method here,
first because it is simpler than the general current formula
with the Keldysh-Green functions,17 and, second, because it
is applicable also to the off-resonance regime discussed later
~the latter is not the case in the formulation using the Master
equation, or the kinetic equation18,19!.

In calculating the transition rate, the initial state isu i &
5ueks,L;N,SSz& in which eks state is occupied anduL&
represents the occupation of the other levels in the two leads.
One of the intermediate states isum&5uL;N11,S̃S̃z& with
S̃z5Sz1s/2. The final state isu f &5uck8s8,L;N,SSz8& with
Sz81s8/25Sz1s/2. The transition rate is given by

Pi , f5
2p

\
z^ i uT̂u f & z2d~Ei2Ef ! ~2!

with

^ i uT̂u f &5^ i uHtum&^muGum&^muH tu f &. ~3!

The propagator is defined byG5(Ei2H1 ih)21 with h the
positive infinitesimal.^muGum& is replaced by its thermal
average with respect touL& and evaluated in the noncrossing
approximation,20,21 which is accurate, at least, in the weak-
tunneling regime.

The current is then expressed as

I 52e(
ksSz

(
k8s8Sz8

@Pi , f f eks~12 f ck8s8!gNSz

2Pf ,i f ck8s8~12 f eks!gNS
z8
#, ~4!

where f lks5 f l(« lks)5$11exp@(« lks2m l)/kBT#%21 is the
Fermi distribution function with the chemical potentialm l ,
and gNSz

is the probability of finding theN-electron state

with z component of spinSz , given bygNSz
5exp@2(ENSz

2Nm)/kBT#/Zd with Zd given by(Sz
gN,Sz

1( S̃z
gN11,S̃z

51.
In the absence of spin-orbit interactions, dependences on

s,Sz ,S̃z of matrix elements ofH t are expressed using the
Clebsch-Gordan coefficient since

^N,SSzucnsuN11,S̃S̃z&5 K SSz

1

2

s

2 US̃S̃zL hnNSS̃, ~5!

with hnNSS̃ independent ofs,Sz ,S̃z . We neglectk depen-
dence ofVlkn and the energy dependence of the density of
states~per spin! r l in leadl in its narrow range of interest~of
the order of the spin splitting and the thermal energy! and
introduce constants describing the level broadening of the
many-body states:

G lNSS̃52pr lU(
n

VlnhnNSS̃U2

. ~6!

Finally the conductanceG for the resonant-tunneling re-
gime (um1Ei2Emu,kBT or ;kBT) is expressed as

G5CGF0S S,S̃,
m2«0

kBT
,
g* mBB

kBT D ~7!

with a universal function

F05(
sSz

ZK SSz

1

2

s

2US̃Sz1
s

2 L Z2
3~gN,Sz

1gN11,Sz1s/2!~24kBT! f 8~«s! ~8!

and a prefactor

CG5
e2

\

1

4kBT

GeNSS̃GcNSS̃

GeNSS̃1GcNSS̃

. ~9!

The addition energy«s is given by«s5EN11,Sz1s/22EN,Sz

5«01g* mBBs/2 and«0 is that in the absence of the mag-
netic field. The prefactorCG depends on tunneling matrix
elements and the many-body ground states withN and N
11 electrons. Because of the rule for the addition of two
spins, we haveS̃5S61/2. We only discuss behaviors forS̃

5S11/2 below, since those forS̃5S21/2 are obtained from
(2S11)F0(S,S̃,y,b)5(2S̃11)F0(S̃,S,2y,2b) with y
5(m2«0)/kBT andb5g* mBB/kBT.

Figure 1~a! presents the normalized conductanceF0 as a
function of the chemical potential for several values of the
spin splitting forS50, S̃51/2. The largest magnetic field in
the figure (b5g* mBB/kBT55) corresponds toB;1 T at
the temperature ofT50.1 K at which the thermally-
broadened resonant tunneling is possible to observe.13 In-
creasing the spin splitting, the peak shifts to the lower chemi-
cal potential, and its height decreases~the width of the peak
is determined by the thermal energykBT). The result forS
50, S̃51/2 is shown to be identical to that of the Glazman-
Matveev theory for a single orbit, even for quantum dots
with many orbits.

The peak height ofF0 in the absence of the spin splitting,
given by F054/(112Ar 1r ) with r 5(2S11)/(2S̃11),
represents the current suppression due to the correlation in
tunnelings of electrons, since the conductanceF0 is normal-
ized so thatF051 at the peak in the limit of large spin
splitting. In the case ofS50, S̃51/2 @Fig. 1~a!#, the peak
height atB50 is F058/(312A2)51.37 and is smaller than
the value of 2 in the absence of the Coulomb interactions as
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shown in the upper inset of Fig. 1~a! ~the conductance is
again normalized by the peak height atB→`). Interestingly,
the peak height atB50 decreases further withS and ap-
proaches unity atS→` as shown in the lower inset of Fig.
1~a!. This is due to the larger transition rate for the spins
parallel to the spin of the dot, as expressed by the Clebsch-
Gordan coefficient in Eq.~8!. Note also that the line shape at
B50 is not symmetrical, and the peak positionmpeak is a
little lower than«0 : (mpeak2«0)/kBT5(1/2)lnr.

Next, we derive the amplitude of the Aharonov-Bohm
~AB! conductance oscillations in the double-slit
interferometer.15 In this device, a quantum dot is inserted in
one of two slits, and the transmission coefficient through the
quantum dot is deduced from the AB oscillations. The co-
herent component of the conductance through the interfer-
ometer is

Gcoh5
e2

h (
s

E d«S 2
] f

]« D ut01ts~«!eiwu2. ~10!

Here ts(«) is the transmission coefficient through the slit
with the dot for an electron with spins, t0 is that through the
other slit, andw52pF/F0 (F05hc/e) is the phase differ-
ence between the two paths due to the magnetic fluxF be-
tween them. Neglecting the energy dependence oft0 within
the width ofkBT andg* mBB, the amplitude of the AB os-
cillations is proportional touatu with

at5(
s

E d«S 2
] f

]« D ts~«!. ~11!

The transmission coefficientts(«) is given10 by

ts~«!52p~rerc!
1/2(

nn8
VenGnn8s~«!Vcn8

* , ~12!

and the retarded Green functionGnn8s(«) is calculated in the
noncrossing approximation in the weak-tunneling regime.
Thenat is expressed again by universal functions

at5Ct~F12 iF 0!, ~13!

where one of them is defined by

F15(
sSz

U K SSz

1

2

s

2US̃Sz1
s

2 L U2

3~gN,Sz
1gN11,Sz1s/2!

~24!

p
gS m2«s

kBT D ~14!

with

g~y!52 lim
d→0

E
2`

`

dx
x

x21d2

exp~x2y!

@exp~x2y!11#2
, ~15!

and the prefactor is

Ct5
p2Arerc

2kBT S (
n

VenhnNSS̃D S (
n

VcnhnNSS̃D *
. ~16!

Figure 1~b! presents the normalized AB amplitude
uF12 iF 0u. The amplitude is again normalized so that the
peak height becomes unity in the limit of large spin splitting.
The reduction of the peak height atB50 due to the interac-
tion is remarkable. Such reduction of the coherent current is
due to the correlation in tunnelings as well as the dephasing
by spin flips.

Such an effect of spin flips atB50 is clearly seen in the
off-resonance regime (um2«0u@kBT) in which the correla-
tion in tunnelings is not important. The conductance in this
regime behaves asG(m)5bG(m2«0)22 both in m.«0 and
in m,«0 with the common prefactorbG . On the other hand,
the AB amplitudeuatu, from Eq. ~13!, behaves as

uatu5bt~2S̃11!21um2«0u21, m.«0

~17!
5bt~2S11!21um2«0u21, m,«0 .

The reduction ofuatu by the spin degeneracy is due to spin
flips at the dot. Such dephasing is most prominent atS50
andS̃51/2 whereuatu in m.«0 is reduced by 1/2 compared
with that in m,«0, which is evident in Fig. 1~b!. At large
spin splittings, the spin flip is absent and both the conduc-

FIG. 1. ~a! Normalized conductanceF0 through a quantum dot
as a function of the chemical potentialm and the spin splittingb

5g* mBB/kBT for S50 and S̃51/2 (S and S̃ are the spins inN-
andN11-electron ground states, respectively!. Upper inset shows
the result in the absence of interactions, and the lower inset shows

the peak height atB50 as a function ofS (S̃5S11/2). ~b! Nor-
malized amplitude of the AB oscillationsuF12 iF 0u.
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tance and the AB amplitude are symmetrical with respect to
the peak positionm5«s with s/25S̃2S.

The generalization to materials with the valley degree of
freedomv is straightforward: change ask→vk ~let n label
all single-particle states in the dot!. The above formulas for
the conductance and the AB amplitude are still applicable if
we redefine the constants as

G lNSS̃5(
v

2pr lvU(
n

VlvnhnNSS̃U2

, ~18!

and

Ct5(
v

p2Arevrcv

2kBT S (
n

VevnhnNSS̃D S (
n

VcvnhnNSS̃D *
.

~19!

In conclusion, we have derived universal dependences on
the spin splitting of the conductance and the transmission
coefficient through a quantum dot with many levels. The

universality is due to the symmetry in the spin space in the
absence of spin-orbit interactions. Fitting experimental data
with the universal function will give the magnitude of the
spin in the initial state and the intermediate state and, more
importantly, a clear evidence of the correlation in tunnelings
and the dephasing due to spin flips. The in-plane magnetic
field, together with the widely-used temperature scan, will be
a useful tool in studying many-body effects, which appear in
the height and the line shape of resonant-tunneling peaks.
The spin blockade studied theoretically by several
authors22,16,23–25will be another testing ground for the use-
fulness of the in-plane magnetic field.
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