<table>
<thead>
<tr>
<th>Title</th>
<th>Short-term changes in the mesozooplankton community and copepod gut pigment in the Chukchi Sea in autumn: reflections of a strong wind event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Matsuno, K.; Yamaguchi, A.; Nishino, S.; Inoue, J.; Kikuchi, T.</td>
</tr>
<tr>
<td>Citation</td>
<td>Biogeosciences, 12(13): 4005-4015</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2015-07-03</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/60636</td>
</tr>
<tr>
<td>Rights</td>
<td>http://creativecommons.org/licenses/by/3.0/</td>
</tr>
<tr>
<td>Type</td>
<td>article</td>
</tr>
<tr>
<td>File Information</td>
<td>Yamaguchi-bg-12-4005-2015.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
Short-term changes in the mesozooplankton community and copepod gut pigment in the Chukchi Sea in autumn: reflections of a strong wind event

K. Matsuno1, A. Yamaguchi2, S. Nishino3, J. Inoue1, and T. Kikuchi3

1Arctic Environment Research Center, National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan
2Laboratory of Marine Biology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
3Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan

Correspondence to: K. Matsuno (matsuno.kohei@nipr.ac.jp, k.matsuno@fish.hokudai.ac.jp)

Abstract. To evaluate the effect of atmospheric turbulence on a marine ecosystem, high-frequency samplings (two to four times per day) of a mesozooplankton community and the gut pigment of dominant copepods were performed at a fixed station in the Chukchi Sea from 10 to 25 September 2013. During the study period, a strong wind event (SWE) was observed on 18 September. After the SWE, the biomass of chlorophyll a (Chl a) increased, especially for micro-size (>10 µm) fractions. The zooplankton abundance ranged from 23,610 to 56,809 ind. m−2 and exhibited no clear changes as a result of the SWE. In terms of abundance, calanoid copepods constituted the dominant taxa (mean: 57%), followed by barnacle larvae (31%). Within the calanoid copepods, small-sized Pseudocalanus spp. (65%) and large-sized Calanus glacialis (30%) dominated. In the population structure of C. glacialis, copepodid stage 5 (C5) dominated, and the mean copepodid stage did not vary with the SWE. The dominance of accumulated lipids in C5 and C6 females with immature gonads indicated that they were preparing for seasonal diapause. The gut pigment of C. glacialis C5 was higher at night and was correlated with ambient Chl a, and a significant increase was observed after the SWE (2.6 vs. 4.5 ng pigment ind.−1). The grazing impact by C. glacialis C5 was estimated to be 4.14 mg C m−2 day−1, which corresponded to 0.5–4.6% of the biomass of the micro-size phytoplankton. Compared with the metabolic food requirement, C. glacialis feeding on phytoplankton accounted for 12.6% of their total food requirement. These facts suggest that C. glacialis could not maintain their population by feeding solely on phytoplankton and that other food sources (i.e., microzooplankton) must be important in autumn. As observed by the increase in gut pigment, the temporal phytoplankton bloom, which is enhanced by the atmospheric turbulence (SWE) in autumn, may have a positive effect on copepod nutrition.

1 Introduction

In marine ecosystems of the western Arctic Ocean, mesozooplankton is an important food resource for pelagic fishes and whales (Lowry et al., 2004; Ashjian et al., 2010). In terms of biomass, mesozooplankton in the western Arctic Ocean are dominated by Arctic copepods. Within Arctic copepods, Calanus glacialis is a key species that dominates the zooplankton biomass and commonly occurs in the continental shelf throughout the Arctic Ocean (Conover and Huntley, 1991; Lane et al., 2008). The life cycle of C. glacialis is characterized by their growth to C3–C4 at the epipelagic layer during the first summer; thereafter, they descend to a deeper layer and enter diapause, developing to C5 at the epipelagic layer in the second summer before descending down to a deeper layer and molting to the adult stage (C6), utilizing stored lipids for energy (Longhurst et al., 1984; Ashjian et
Concerning seasonal changes, a comparison was made of the zooplankton community between summer and autumn (Llinás et al., 2009) and year-round changes based on a 2-week sampling interval at a drifting ice station in the Arctic Basin (Ashjian et al., 2003). However, short-term changes in the zooplankton community based on high-frequency samplings (two to four times per day) have not yet been reported.

Recently, a drastic reduction in the area of sea ice has been observed in the Arctic Ocean during summer; the sea ice reduction was greatest in the western Arctic Ocean (Stroeve et al., 2007; Comiso et al., 2008; Markus et al., 2009). Furthermore, increases in the frequency and magnitude of cyclones and a northward shift of their tracks during the summer have been reported in recent years (Serreze et al., 2000; Cabe et al., 2001; Zhang et al., 2004; Sepp and Jaggus, 2011). While the importance of such changes is clear, little information is available regarding their effect on the atmospheric turbulence in marine ecosystems in the western Arctic Ocean. From 10 to 25 September 2013, high-frequency samplings/observations were made at a fixed station in the Chukchi Sea and the occurrence of strong wind events (SWEs), a vertical flux of nutrients and changes in the primary production and microplankton communities were reported (Nishino et al., 2015; Yokoi et al., 2015). However, no information is available regarding how the mesozooplankton community responds to such atmospheric turbulence and oceanic environmental changes.

In the present study, we evaluated the short-term changes in the mesozooplankton community in the Chukchi Sea during autumn based on the high-frequency samplings performed simultaneously by Nishino et al. (2015) and Yokoi et al. (2015). We estimated the grazing impact of dominant copepods based on their gut pigments and evaluated the effect of the SWE (Nishino et al., 2015) and short-term changes in microplankton assemblages (Yokoi et al., 2015) on the mesozooplankton community in the Chukchi Sea in autumn.

2 Materials and methods

2.1 Field sampling

Zooplankton samples were obtained at a fixed station in the Chukchi Sea (72°45′N, 168°15′W; depth 56 m) from 10 to 25 September 2013 (Fig. 1) (Nishino et al., 2015). Zooplankton samples were collected by vertical hauls with a NORPAC net (mouth diameter 45 cm, mesh size 335 µm; Motooda, 1957) and ring net (mouth diameter 80 cm, mesh size 335 µm) from a 49 m depth to the sea surface two to four times per day (total of 47 times), including both day and night. The large mesh size of the NORPAC net (335 µm) may have resulted in underestimation of the smaller zooplankton species and early stages of larger zooplankton species. Zooplankton samples collected with the NORPAC nets were preserved with 5% buffered formalin immediately after being brought onboard. The ring net samples were used for copepod gut pigment measurements. For the evaluation of the diel vertical migration (DVM) of the copepods, day and night vertical stratified hauls were taken with closing PCP nets (mouth diameter 45 cm, mesh size 62 µm; Kawamura, 1989) from two layers (0–20 and 20–49 m) on 14 and 22 September. The samples from the PCP net were preserved with 5% buffered formalin. During the sampling period, there was a horizontal advection of the water mass oscillation caused by tidal waves (Kawaguchi et al., 2015). To minimize the effect of the tidal oscillation, day and night sampling times were set at 12 h intervals (day: 10:55–11:34; night: 22:27–22:40). The four-time CTD casts at each sampling date confirmed that the hydrography was similar for the day–night sampling period (the CTD data are presented in the Supplement).

At the fixed station, the temperature, salinity and chlorophyll a (Chl a) fluorescence were measured using the CTD (Sea-Bird Electronics Inc., SBE911Plus) casts at a frequency of two to four times per day. To evaluate the size-fractionated Chl a, water samples from the sea surface and the maximum fluorescence layer (16.8–27.7 m depth) were collected using a bucket and rosette multi-sampler mounted on the CTD, respectively. The water samples were filtered through 20, 10 and 2 µm pore-size membranes and GF/F filters, and Chl a was extracted with N,N-dimethylformamide and measured with a fluorometer (Turner Designs Inc., 10-AU-005).
2.2 Gut pigment

For fresh samples collected using ring nets, 10% v/v soda (saturated CO\textsubscript{2} in water) was added to avoid copepod grazing, gut evacuation and the decomposition of gut pigments. Fresh specimens of *C. glacialis* copepodid stage 5 (C5) were sorted under a stereomicroscope. The sorting of all of the specimens was performed under low temperatures and dim light conditions within 1 h. Batches of 15 specimens were immersed in 6 mL of *N,N*-dimethylformamide and stored in dark, cold conditions overnight to extract the chlorophyll and phaeopigments. After the extraction of the pigment, the chlorophyll and phaeopigments were measured using a fluorometer (Turner Designs Inc., 10-AU-005). The chlorophyll and phaeopigments were summed and expressed as gut pigments (ng pigment ind.−1) (cf. Mackas and Bohrer, 1976).

The amount gut pigment of *C. glacialis* C5 was higher at night than during the day. Assuming that grazing primarily occurred at night, the grazing rate (GR\textsubscript{ind.}, mg pigment ind.−1 day−1) of *C. glacialis* C5 was calculated using the following equation:

\[
GR_{\text{ind.}} = GP \times k \times T / 10^6,
\]

where \(GP\) is the individual gut pigment at night (ng pigment ind.−1), \(k\) is the gut evacuation rate (0.017 min−1; Tande and Båmstedt, 1985), and \(T\) is the length of the night (mean 13 h = 780 min during the study period). The grazing impact of *C. glacialis* C5 on micro-size (> 10 µm) Cha (GI, % on Cha a biomass day−1) was calculated using the following equation:

\[
GI = GR_{\text{ind.}} \times N / \text{Int. Cha a} \times 100,
\]

where \(N\) is the abundance of *C. glacialis* C5 (ind. m−2) and Int. Cha a is the biomass of large-sized (> 10µm) Cha a (mg m−2).

2.3 Zooplankton community

In the laboratory, identification and enumeration by taxa were performed on zooplankton samples collected using NORPAC nets under a stereomicroscope. For the dominant taxa (calanoid copepods), identification was performed at the species and copepodid stage levels. For species identification of calanoid copepods, we referred mostly to Brodsky (1967) and Frost (1974) for *Calanus* spp., Miller (1988) for *Neocalanus* spp. and Frost (1989) for *Pseudocalanus* spp. For *Pseudocalanus* spp., species identification was performed only for late copepodid stage C5 females/males (C5F/MM and C6F/F, and their early copepodid stages (C1–C4) were treated as *Pseudocalanus* spp.

For the evaluation of the DVM of large dominant copepods, we enumerated *C. glacialis* from PCP net samples. For *C. glacialis*, the lipid accumulation of C5 was classified into three categories: I (the oil droplet length, ODL, was 0–4 % of the prosome length, PL), II (ODL was 4–40 % of PL) and III (ODL was > 40 % of PL). The gonad maturation of *C. glacialis* C6F was also classified into three categories: I (immature), II (small oocytes in the ovary or oviduct) and III (large eggs or distended, opaque, filled-in oviducts). For this gonad maturation index, we cited that of *C. hyperboreus* (Hirche and Niehoff, 1996).

A species diversity index (\(H'\)) in each sample was calculated using the following equation:

\[
H' = -\sum n / Ni \times \ln(n / Ni),
\]

where \(n\) is the abundance (ind. m−2) of the \(i\)th species and \(Ni\) is the abundance (ind. m−2) of the total calanoid copepods in the sample (Shannon and Weaver, 1949). Pielou evenness (\(J'\)) (\(J'\)) was also calculated using the equation:

\[
J' = H' / \ln(s),
\]

where \(s\) is the total number of observed species in the community (Pielou, 1966).

From the NORPAC net samples, the mean copepodid stage (MCS) of *C. glacialis* was calculated using the following equation:

\[
MCS = \sum_{i=1}^{6} i \times Ai / \sum_{i=1}^{6} Ai,
\]

where \(i\) is the number of the copepodid stage (1–6 indicate C1–C6) and \(Ai\) (ind. m−2) is the abundance of the \(i\)th copepodid stage (cf. Marin, 1987).

During the study period, a SWE was observed on approximately 19 to 22 September (Kawaguchi et al., 2015; Nishino et al., 2015). According to Kawaguchi et al. (2015), there were meteorologically and oceanographically distinct periods between 10 and 18 September and 19 and 26 September, represented as terms I and II, respectively. Term II was characterized by longer, stronger northeasterly winds, which continued for several days between 19 and 22 September, the average intensity of which was greater than 13 m s−1. To evaluate the effect of the SWE, the abundances of each zooplankton taxon and species were compared “before the SWE (10–18 September)” and “after the SWE (19–25 September)” using the \(U\) test. This statistical analysis was performed using StatView.

3 Results

3.1 Hydrography and chlorophyll a

During the sampling period, the temperature ranged from −1.5 to 3.3 °C and a thermocline was observed at a depth of approximately 25 m (Fig. 2a). Cold water below 0 °C continuously persisted below the thermocline, whereas the temperature above the thermocline decreased from 3.3 to 1.5 °C.
during the study period (Fig. 2a). The salinity ranged from 31.1 to 32.8, and a halocline was observed at approximately 25 m, which ran parallel to the thermocline (Fig. 2b). The salinity below the halocline was constant (ca. >32), whereas the salinity in the upper layer increased from 31.1 to 31.6 throughout the study period. Chl \(a \) ranged from 0.08 to 3.25 mg m\(^{-3}\) and increased after the SWE (Fig. 2c). The \(T-S \) diagram showed that the hydrographic conditions in the upper layer changed temporally; thus, the temperature decreased, whereas the salinity increased during the study period (Fig. 2d).

3.2 Zooplankton community

The zooplankton abundance ranged from 23,610 to 56,809 ind. m\(^{-2}\), and the calanoid copepods and barnacle larvae composed 57 and 31% of the community, respectively (Table 1). For the calanoid copepods, 15 species belonging to 9 genera were identified. Among them, *Pseudocalanus* spp. and *C. glacialis* dominated and composed 65 and 30% of the total copepods, respectively. The Shannon species diversity and Pielou evenness for the copepods community were 1.87 ± 0.12 and 0.81 ± 0.06, respectively. According to a comparison of time periods before and after the SWE, the total zooplankton abundance, the Shannon species diversity and the Pielou evenness did not change, whereas

<table>
<thead>
<tr>
<th>Species/taxa</th>
<th>Before SWE (10–18 Sep, (n = 22))</th>
<th>After SWE (19–25 Sep, (n = 25))</th>
<th>(U) test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calanoid copepods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acartia longiremis</td>
<td>604 ± 281</td>
<td>542 ± 279</td>
<td>NS</td>
</tr>
<tr>
<td>Calanus glacialis</td>
<td>6714 ± 2679</td>
<td>5658 ± 3061</td>
<td>NS</td>
</tr>
<tr>
<td>Calanus hyperboreus</td>
<td>0</td>
<td>5 ± 17</td>
<td>NS</td>
</tr>
<tr>
<td>Centropages abdominalis</td>
<td>9 ± 23</td>
<td>29 ± 38</td>
<td>*</td>
</tr>
<tr>
<td>Eucalanus bungii</td>
<td>6 ± 20</td>
<td>6 ± 19</td>
<td>NS</td>
</tr>
<tr>
<td>Eurytemora herdmani</td>
<td>0</td>
<td>2 ± 12</td>
<td>NS</td>
</tr>
<tr>
<td>Metridia pacifica</td>
<td>251 ± 150</td>
<td>154 ± 139</td>
<td>*</td>
</tr>
<tr>
<td>Microcalanus pygmaeus</td>
<td>6 ± 19</td>
<td>3 ± 14</td>
<td>NS</td>
</tr>
<tr>
<td>Neocalanus cristatus</td>
<td>6 ± 19</td>
<td>5 ± 19</td>
<td>NS</td>
</tr>
<tr>
<td>Neocalanus flemingeri</td>
<td>46 ± 44</td>
<td>65 ± 79</td>
<td>NS</td>
</tr>
<tr>
<td>Neocalanus plumchrus</td>
<td>12 ± 26</td>
<td>15 ± 32</td>
<td>NS</td>
</tr>
<tr>
<td>Pseudocalanus acuspes</td>
<td>3393 ± 1239</td>
<td>3254 ± 1651</td>
<td>NS</td>
</tr>
<tr>
<td>Pseudocalanus mimus</td>
<td>1194 ± 728</td>
<td>1296 ± 837</td>
<td>NS</td>
</tr>
<tr>
<td>Pseudocalanus minutus</td>
<td>2178 ± 768</td>
<td>2387 ± 864</td>
<td>NS</td>
</tr>
<tr>
<td>Pseudocalanus newmani</td>
<td>2805 ± 949</td>
<td>2774 ± 1448</td>
<td>NS</td>
</tr>
<tr>
<td>Pseudocalanus spp. (C1–C4)</td>
<td>2758 ± 1114</td>
<td>2980 ± 1196</td>
<td>NS</td>
</tr>
<tr>
<td>Cyclopid copepods</td>
<td>511 ± 263</td>
<td>1153 ± 974</td>
<td>**</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>9 ± 24</td>
<td>5 ± 19</td>
<td>NS</td>
</tr>
<tr>
<td>Appendicularia</td>
<td>707 ± 413</td>
<td>442 ± 337</td>
<td>*</td>
</tr>
<tr>
<td>Barnacle larva</td>
<td>12118 ± 2399</td>
<td>8945 ± 2341</td>
<td>NS</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>1281 ± 531</td>
<td>1039 ± 504</td>
<td>NS</td>
</tr>
<tr>
<td>Echinodermata larva</td>
<td>31 ± 45</td>
<td>61 ± 79</td>
<td>NS</td>
</tr>
<tr>
<td>Eubrachyura zoea</td>
<td>41 ± 60</td>
<td>26 ± 52</td>
<td>NS</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>18 ± 31</td>
<td>3 ± 14</td>
<td>*</td>
</tr>
<tr>
<td>Gymnosomata</td>
<td>172 ± 133</td>
<td>84 ± 88</td>
<td>**</td>
</tr>
<tr>
<td>Hydrozoa</td>
<td>209 ± 127</td>
<td>205 ± 119</td>
<td>NS</td>
</tr>
<tr>
<td>Isopoda</td>
<td>3 ± 14</td>
<td>3 ± 14</td>
<td>NS</td>
</tr>
<tr>
<td>Polychaeta</td>
<td>1124 ± 311</td>
<td>1005 ± 435</td>
<td>NS</td>
</tr>
<tr>
<td>Thecosomata</td>
<td>16 ± 43</td>
<td>8 ± 30</td>
<td>NS</td>
</tr>
<tr>
<td>Total zooplankton</td>
<td>36 223 ± 5984</td>
<td>32 154 ± 7716</td>
<td>NS</td>
</tr>
<tr>
<td>Shannon species diversity</td>
<td>1.85 ± 0.11</td>
<td>1.90 ± 0.11</td>
<td>NS</td>
</tr>
<tr>
<td>Pielou evenness</td>
<td>0.80 ± 0.05</td>
<td>0.82 ± 0.06</td>
<td>NS</td>
</tr>
</tbody>
</table>
3.3 Calanus glacialis

Throughout the study period, the biomass of *C. glacialis* ranged from 1990 to 14,554 ind. m$^{-2}$, and no significant changes were detected after the SWE (Fig. 3a, Table 1). For the population structure, all of the copepodid stages (C1 to C6) were present, and C5 was the most dominant stage (36%) of the population (Fig. 3). The MCS did not vary with the SWE (Fig. 3a). Throughout the study period, the lipid accumulation of C5 was high (Fig. 3b) and the gonad maturation of C6Fs was dominated by immature specimens (Fig. 3c). These parameters exhibited no significant changes with regard to the SWE (U test, $p = 0.285 - 0.303$).

On both 14 and 22 September, the C1–C4 and C5 populations of *C. glacialis* were present mostly at lower layers (20–49 m) during the daytime, and they migrated to upper layers (0–20 m) at night (Fig. 4). It should be noted that approximately half of the C5 population remained in the lower layer both during the day and at night. The lipid accumula-
tion was higher for the C5 population residing in the lower layer. C6Fs were present at a lower layer throughout the day.

The gut pigment of *C. glacialis* C5 ranged from 0.6 to 12.3 ng pigment ind.\(^{-1}\) and showed a significant increase after the SWE (mean values: 2.6 vs. 4.5 ng pigment ind.\(^{-1}\), *U* test, *p* < 0.01) (Fig. 5a). In a comparison between day and night samplings, most dates, except 18 and 23 September, exhibited higher gut pigment levels at night by a factor of 2 to 5 times greater than those observed during the day. In both day and night samplings, the gut pigments were correlated with the biomass of Chl *a* (*p* < 0.05) (Fig. 5b).

The population grazing rate of *C. glacialis* C5 ranged from 0.04 to 0.28 mg pigment m\(^{-2}\) day\(^{-1}\), peaking on 20 September (Fig. 6a) and increasing significantly after the SWE (0.11 vs. 0.18 mg pigment m\(^{-2}\) day\(^{-1}\), *U* test, *p* < 0.05). During the study period, Chl *a* peaked on 18 September and the micro-size Chl *a* (> 10 μm) dominated (54% of the total Chl *a*), especially after the SWE (66%) (Fig. 6b). The grazing impact of *C. glacialis* C5 on the micro-size Chl *a* ranged from 0.5 to 4.6% Chl *a* biomass day\(^{-1}\) and was high before the SWE from 10 to 15 September (Fig. 6c).

4 Discussion
4.1 Zooplankton community

The zooplankton community in the Chukchi Sea is known to have large spatial and temporal changes (Springer et al., 1989; Llinàs et al., 2009; Matsuno et al., 2011). The total zooplankton abundance in this study was approximately half (mean: 34,059 ind. m\(^{-2}\)) the abundance reported by Matsuno et al. (2012) on the Chukchi shelf (mean: 75,683 ind. m\(^{-2}\)), with a low abundance of small copepods (*Pseudocalanus* spp. and cyclopoids) and a remarkable absence of the Arctic copepod *Metridia longa*. For the hydrography of this station, Nishino et al. (2015) noted that the upper, warm and less saline water was the Pacific Summer Water, which was transported to the Arctic Ocean during summer, and the cold saline water of the lower layer was the remnant brine of the Pacific Winter Water, which was transported to the Arctic Ocean during winter. Geographically, the present station is located at a primary stream of water from the Pacific Ocean.
(Weingartner et al., 2005). The high abundance of the Pacific copepods *M. pacifica* and *Neocalanus* spp. and the absence of the Arctic *M. longa* in this study was thought to be a reflection of the water mass covering the station. For these reasons (fewer small copepods and high abundance of Pacific copepods), the Shannon species diversity and Pielou evenness in this study (1.87 and 0.81, respectively) are higher than the reported values for the entire Chukchi Sea (1.79 and 0.62, respectively, calculated from Matsuno et al., 2012).

Seasonal characteristics during summer included the dominance of the mesoplankton (barnacle and bivalve larvae), which composed 39% of the total zooplankton abundance (Hopcroft et al., 2010). The dominance of barnacle larvae also occurred in this study (Table 1). Benthic barnacle adults release their larvae when they meet phytoplankton blooms (Crisp, 1962; Clare and Walker, 1986), and their larvae spend 2 to 3 weeks in the water column and then settle (Herz, 1933). The abundance of barnacle larvae in this study (mean 10,430 ind. m\(^{-2}\)) was 13–55% lower than that in summer (19,114–79,899 ind. m\(^{-2}\); Matsuno et al., 2011). It should also be noted that the abundance of barnacle larvae decreased significantly during the study period (Table 1). These facts suggest that most of the barnacle larvae may have ended in the planktonic phase and settled to the sea bottom during the study period (autumn).

Concerning the effect of the SWE, a few taxa and species showed significant changes in abundance (Table 1). Among the dominant species, cyclopoid copepods increased after the SWE (Table 1). The generation length of cyclopoid copepods was reported to be 2 to 3 months in the Arctic Ocean (Dvoretsky and Dvoretsky, 2009). At ambient temperatures (−1.5 to 3.3 °C), the egg hatching of this taxon is estimated to be 11–41 days (Nielsen et al., 2002). These facts suggest that the increase in cyclopoid copepods would not be caused by their reproduction within the study period (16 days). An alternative cause, the horizontal advection of the water mass during the study period, which was reported by Nishino et al. (2015), should be considered. These results suggest that the effect of the SWE on zooplankton abundance was relatively small because of the longer generation length of the mesozooplankton in this region.

4.2 Population structure of *C. glacialis*

Concerning the population structure, Ashjian et al. (2003) reported that *C. glacialis* around the Northwind Abyssal Plain was dominated by C5 and C6Fs in September. In the present study, the population structure of *C. glacialis* was dominated by C5 (Fig. 3a) and their MCS (mean ± SD: 3.77 ± 0.20) was similar to the reported value for autumn in this region (3.58; Matsuno et al., 2012). Most of the C6Fs had immature gonads, and no ovigerous C6Fs were observed (Fig. 3c). These results corresponded with the year-round observation around the Northwind Abyssal Plain (Ashjian et al., 2003). *Calanus glacialis* C6Fs are known to occur at the epipelagic layer in April, immediately before sea-ice melting (Kosobokova, 1999), and reproduces with grazing ice algae and the ice-edge bloom (Campbell et al., 2009). Thus, because this study period (September) greatly varied with regards to their reproduction period (April), most C6Fs were considered to have immature gonads when residing in the lower layer (diapause).

The nocturnal ascent DVM, which is related to nighttime grazing on phytoplankton, was reported for *C. glacialis* in the Arctic Ocean during spring and autumn (Runge and Ingram, 1988; Conover and Huntley, 1991). In this study, the DVM was observed for C5 (*U* test, *p* < 0.01) (Fig. 4). At high-latitude seas, the magnitude of the *Calanus* spp. DVM is known to vary with the season and copepodid stage, and their DVM intensity is greater during spring and autumn, when the diel changes in light penetration are large (Falkenhaug et al., 1997). No DVM of *Calanus* spp. was reported for the lipids accumulated in C5 (Falk-Petersen et al., 2008). In the present study, approximately half of the C5 population, which was characterized as having a large lipid accumulation, remained
in the lower layer throughout the day (Fig. 4). The deep C5 population may have already completed lipid accumulation and ceased DVM in the study period (September), whereas the remaining C5 population with an active DVM may have grazed on phytoplankton in the upper layer during the night and stored lipids in preparation for diapause. These results suggest that the *C. glacialis* population in this study was at the seasonal phase just before entering diapause, and this interpretation corresponded well with their life cycle in this region (Ashjian et al., 2003).

4.3 Grazing of *C. glacialis*

Calanus glacialis in the Arctic Ocean is known to exhibit higher gut pigment levels at night than during the day (Conover and Huntley, 1991). Higher gut pigment levels at night were also observed in this study (*U* test, *p* < 0.001) (Fig. 5a). The gut pigments of *C. glacialis* were correlated with the biomass of Chl a (Fig. 5b) and increased during the high-Chl a period after the SWE (Fig. 5a). These facts suggest that *C. glacialis* feeding responded to the small phytoplankton bloom, which was enhanced by the nutrient supply and vertical mixing caused by the SWE (Nishino et al., 2015; Yokoi et al., 2015).

Concerning the gut pigment measurement, the underestimation by the decomposition of the phytoplankton pigment through the gut passage has been reported (Conover et al., 1986; Head, 1992). This underestimation is reported to be approximately 0.1–10 % of grazing (Conover et al., 1986) and varies with light conditions, grazing behavior and phytoplankton species (Head, 1992). To estimate the grazing impact, data on the gut evacuation rate (*k*, min$^{-1}$) are needed (Mauchline, 1998). The gut evacuation rate is known to have a positive correlation with temperature (Dam and Petersen, 1988). From the equation (*k* = 0.00941 + 0.002575*T*; Mauchline, 1998) for *k* and the temperature (*T*: °C) and ambient temperature in this study (*T*: −1.5 to 3.3°C), *k* is estimated to be 0.0055–0.0179 min$^{-1}$. This range covers the value applied in the present study (*k* = 0.017; Tande and Bämstedt, 1985). The value was also in the range observed by our independent laboratory experiments in September 2010 (0.006–0.041; Matsumo et al., unpublished data). These facts suggest that the value applied in this study (*k* = 0.017) was reasonable for *C. glacialis* in this region.

Assuming that half of the C5 population performed nocturnal ascent and grazed on phytoplankton at night, using the C : Chl ratio (29.9; Sherr et al., 2003), the grazing impact (mg C m$^{-2}$ day$^{-1}$) of *C. glacialis* C5 was calculated (Table 2). The grazing impact of this study was estimated to be 4.14 mg C m$^{-2}$ day$^{-1}$. We also estimated the food requirement of *C. glacialis* C5 to support their metabolism under ambient temperatures (Ikeda and Motoda, 1978; Ikeda et al., 2001). The potential contribution of phytoplankton’s food-to-food requirements was 12.6 % for *C. glacialis* C5 (Table 2). This result indicates that *C. glacialis* C5 could not maintain its population solely on phytoplankton food and that other food sources are important. Regarding food for *C. glacialis*, Campbell et al. (2009) reported that this species prefers microzooplankton rather than phytoplankton in the Chukchi Sea, and Levinsen et al. (2000) noted that the micro-size (>10 µm) ciliates and dinoflagellates are important food sources during post-bloom. For the microplankton community during the study period, Yokoi et al. (2015) noted that not only diatoms (1.64–14.11 cells mL$^{-1}$) but also dinoflagellates (0.54–2.42 cells mL$^{-1}$) and ciliates (0.14–2.76 cells mL$^{-1}$) were abundant. From the fatty acid com-

Table 2. *Calanus glacialis*: comparison of food requirements (ingestion) and grazing rate on phytoplankton and the proportion of phytoplankton food in the Chukchi Sea from 10 to 25 September 2013. Food requirements were calculated from the metabolism, which was estimated by means of the body mass, temperature (Ikeda et al., 2001), respiratory quotient (Gnaiger, 1983) and individual carbon budget (Ikeda and Motoda, 1978). For details on the values used in this calculation, see the footnotes.

<table>
<thead>
<tr>
<th>Day/night (depth, temp. (T), period)</th>
<th>Flux (mg C m$^{-2}$ day$^{-1}$)</th>
<th>Proportion of phytoplankton food (%: B/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily – water column</td>
<td>13.10</td>
<td>12.6</td>
</tr>
<tr>
<td>Night – upper layer (0–20 m, 2.31 °C, 13 h)</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td>Day – lower layer (20–49 m, −0.74 °C, 11 h)</td>
<td>4.12</td>
<td></td>
</tr>
<tr>
<td>Night – lower layer (20–49 m, −0.74 °C, 13 h)</td>
<td>10.29</td>
<td></td>
</tr>
<tr>
<td>Night – lower layer (20–49 m, −0.74 °C, 13 h)</td>
<td>14.11</td>
<td></td>
</tr>
</tbody>
</table>

Dry mass (DM: mg ind.$^{-1}$) of *C. glacialis* C5 was 0.654 (Matsumo et al., unpublished data). Oxygen consumption (µL O$_2$ ind.$^{-1}$ h$^{-1}$) = exp(−0.399 + 0.801 × Ln(DM) + 0.069 × (*T*)) (Ikeda et al., 2001). Respiratory quotient ([CO$_2$/O$_2$]) was assumed to be 0.97 (Gnaiger, 1983). Metabolism was assumed to be 0.4 (40 %) of ingestion (Ikeda and Motoda, 1978). Mean abundance of *C. glacialis* C5 was 2176 ind. m$^{-2}$ during this study period. C : Chl ratio was 29.9 for September in this region (Sherr et al., 2003).
position, *C. glacialis* is reported to have a strong connection with the microbial food web (Stevens et al., 2004). However, the low abundance of dinoflagellates and ciliates during the study period makes it difficult to assume that they were an important food source for *C. glacialis* in this study. As an alternative explanation, because most *C. glacialis* C5 contained an abundance of lipids in their body (Fig. 3b), they may have entered diapause in the Chukchi Sea during autumn.

5 Conclusions

Throughout this study, short-term changes in the mesozooplankton community and the grazing impact of *C. glacialis* were evaluated in the Chukchi Sea during autumn. During the 16-day sampling/observation period, the zooplankton community showed no changes related to the SWE, and the dominant copepods prepared for diapause (i.e., stored lipids in the pre-adult stage or as adults with immature gonads). However, the feeding intensity of the dominant copepods increased with the reflection of the temporal phytoplankton bloom, which was enhanced by the SWE (Nishino et al., 2015). Thus, the temporal phytoplankton bloom caused by the atmospheric turbulence (SWE) during autumn may have had a positive indirect effect on the mesozooplankton (SWE → nutrient supply from the deep layer → small phytoplankton bloom → copepod feeding) within a short period. These facts suggest that *C. glacialis* may obtain a benefit from an extension of the primary production season with more turbulence and a later freeze date of the Chukchi Sea.

The Supplement related to this article is available online at doi:10.5194/bg-12-4005-2015-supplement.

Author contributions. S. Nishino, J. Inoue and T. Kikuchi designed and coordinated this research project. S. Nishino and J. Inoue were the chief scientists during the MR13-06 cruise of R/V *Mirai*. K. Matsuno collected the zooplankton samples, measured copepod gut pigments during the cruise and performed species identification and enumeration of the zooplankton samples in the laboratory. K. Matsuno and A. Yamaguchi wrote the manuscript, with contributions from all of the co-authors.

Acknowledgements. We are grateful to the captain, officers and crew of the R/V *Mirai* (JAMSTEC), operated by GODI, for their help in the sample collection. This study was supported by the Green Network of Excellence Program’s (GRENE Program) Arctic climate change research project “Rapid Change of the Arctic Climate System and its Global Influences”. This study was partially supported by a Grant-in-Aid for Scientific Research (A) (24248032) and a Grant-in-Aid for Scientific Research on Innovative Areas (24110005) from the JSPS.

Edited by: M. Sampei

www.biogeosciences.net/12/4005/2015/

Biogeosciences, 12, 4005–4015, 2015

References

