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Critical behavior of ac conductivity near the Anderson transition

Hiroyuki Shima* and Tsuneyoshi Nakayama
Department of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan

~Received 28 June 1999!

We investigate the dynamic scaling behavior of ac conductivitys(v) in three-dimensional~3D! unitary and
symplectic systems in addition to orthogonal one by means of large-scale simulations. It is demonstrated that
the ac conductivity near the Anderson transition behave ass(v)}vd(d.1/3) for all of the above systems.
Numerical calculations are performed by an efficient algorithm based on the forced oscillator method~FOM!,
which enables us to accurately treat large-scale quantum systems with less computational effort. The values of
the exponentsd are determined by the finite-time scaling method for the FOM.@S0163-1829~99!11943-X#

I. INTRODUCTION

The scaling arguments of localization1,2 have stimulated
many works on both static and dynamic behavior of disor-
dered electron systems, especially on the Anderson transi-
tion. The existence of this transition essentially depends only
on the dimensionality and the symmetries of the systems.
Three-dimensional~3D! systems generally show the Ander-
son transition as a function of the strength of disorder and the
Fermi energy, and their critical behavior are classified into
three universality classes according to the basic symmetry of
the Hamiltonian. The systems being invariant under spin ro-
tation in addition to time-reversal symmetry constitute the
orthogonal class, while the systems being invariant under
time reversal but having no spin-rotation symmetry belong to
the symplectic class. The rest forms the unitary class charac-
terized by the absence of time-reversal symmetry.3

Many numerical works have contributed to reveal both
the static and dynamic behavior of the transition through the
investigations of localization length,4,5 diffusion of wave
packets,6–9 and level statistics.10–12 Linear response func-
tions also provide insight into the dynamic properties of this
quantum phase transition. Calculations of linear response
functions for quantum systems normally require the evalua-
tions ofall eigenvalues and corresponding eigenvectors. The
direct diagonalization techniques to calculate these quantities
remain limited to systems of modest size because their com-
puting time and memory space grows quite rapidly as the
system sizeL become large. Especially, for 3D cases, the
conventional routine is not suitable for computing linear re-
sponse functions of large-scale quantum systems. For ex-
ample, the ac conductivitys(v) in 3D systems near the
transition was suggested to obey the power laws(v)}v1/3

by Wegner,13 while this behavior for orthogonal system was
not numerically verified until the work by Lambrianides and
Shore.14 They have evaluated the Kubo-Greenwood
formula15,16 by directly calculating eigenvectors of the sys-
tem with the diagnalization method, so the system sizesN
(5L3) treated were very limited (L56 – 14), indicating the
relevance of the finite-size effect.

Recently, we have developed a method to calculate linear
response functions for quantum systems described by large-
scale Hamiltonian matrices.17 This algorithm is based on the
forced oscillator method~FOM!,18,19 which enables us to ef-

ficiently compute the spectral density of states, eigenvalues,
and their eigenvectors of the systems described by very large
matrices.20 We have further developed a new scaling ap-
proach, utilizing the characteristics of the FOM, to determine
the dynamical exponent of the ac conductivitys(v)}vd

near the Anderson transition with high speed and
accuracy.17,21

In this paper, we calculate the dynamical exponents in 3D
unitary and symplectic systems. For these systems different
from orthogonal one, the Hamiltonian matrices become com-
plex and/or posses spinor components so that it is not easy to
calculate s(v) with conventional methods. Within our
knowledge, the present work is the first numerical realization
of the v1/3 behavior ofs(v) in unitary and symplectic sys-
tems.

The outline of this paper is as follows. In Sec. II, we
explain the model Hamiltonian and an efficient algorithm to
compute linear response functions. Section III presents the
finite-time scaling method for the dynamical exponent of
s(v)}vd, and shows the calculated results for the 3D
Anderson model near the transition. Section IV describes the
scaling theory for the ac conductivitys(v) that gives the
v1/3 dependence close to the transition. We also discuss
about thev dependence ofs(v) in the very lower frequency
region relevant to the anomalous diffusion exponenth. A
summary is given in this section.

II. METHOD

A. Model

We consider noninteracting electron systems on a simple
cubic lattice with disordered potentials. The Hamiltonian of
the system is given by

H5(
i ,s

Wi ,su is&^ isu1 (
i ,s; j ,s8

Vi ,s; j ,s8u is&^ j s8u, ~1!

wherei denotes the lattice site, ands the spin, respectively.
We set the lattice constant to be unity and only the nearest-
neighbor coupling is taken into account. The on-site poten-
tials $Wi% are assumed to be distributed independently, and
the distribution is taken to be uniform in the range
@2W/2,W/2#. In the orthogonal case,Vi ,s; j ,s85Vds,s8 is
real, while Vi ,s; j ,s8 is V exp(ifi,j)ds,s8 in the unitary case
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with the Peierls phase factorf i , j . In both cases, no spin flip
process is included. In the symplectic case, the hopping en-
ergy is described by

Vi ,s; i 2k,s85V@exp~2 iusk!#s,s8 , k[ x̂,ŷ,ẑ ~2!

wheresk are Pauli matrices.22 We set the hopping amplitude
V the energy unit.

B. ac conductivity and resonance function

Direct diagonalization for 3D systems requires huge com-
puting time, especially when the matrix elements of the
Hamiltonian have several degrees of freedom due to applied
magnetic fields or spin-orbit interaction. Without carrying
out the direct diagonalization, we employ an efficient method
based on the FOM to calculate the ac conductivitys(v).17

The characteristics of the method are its simplicity, speed,
memory efficiency, and wide applicability to general quan-
tum systems. This method is based on solving the Schro¨-
dinger equation numerically under a periodic external force,
so that it can be easily vectorized and parallelized for imple-
mentation in an array-processing modern supercomputer.

Let us consider the system described by Eq.~1!, whose
abbreviated form is given by

H5(
i j

Hi j u i &^ j u, ~3!

and an electron stateuC(t)& is expanded as

uC~ t !&5(
i

ai~ t !u i &, ~4!

where the indexi represents both the site and the spin for
simplicity.

For calculating the ac conductivitys(v), we impose a
perturbationH8 to the system expressed by

H852
J

2
~A0e2 ivt1c.c.!, ~5!

whereJ is the current operator andA0 is the amplitude of the
external vector potential, respectively. c.c. indicates a com-
plex conjugate.

Substituting Eqs.~3! and ~5! into the Schro¨dinger equa-
tion for uC(t)& and applying the time-dependent first-order
perturbation theory by puttingai(t)5ai

(0)(t)1ai
(1)(t), one

has the linear differential equation with periodic external
force,

i\
dai

(1)~ t !

dt
2(

j
Hi j aj

(1)~ t !

52
\

2
~Fie

2 ivt1F̃ ie
ivt!e2 ivl0t, ~6!

where the definitions are

Fi[(
j

A0

\
Ji j w j~vl0!, F̃ i[(

j

A0*

\
Ji j w j~vl0!, ~7!

andw j (vl0)[^ j uvl0&, whereuvl0& is the initial eigenvector
belonging to the eigenvalue\vl0 of the matrix $Hi j %. We
have used in Eq.~6! the definition given by aj

(0)(t)
5w j (vl0)e2 ivl0t.

We introduce the resonance function defined by the sum
of the squared amplitude;

E~v,vl0 ,t ![(
i

uai
(1)~ t !u2. ~8!

Substituting the solution of Eq.~6! under the initial condition
ai

(1)(0)50 into Eq.~8!, one has

E~v,vl0 ,t !5(
l

U(
i

Fiw i* ~vl!U2

3
sin2$~vl2vl02v!t/2%

~vl2vl02v!2
, ~9!

where the contribution from the second term on the right
hand-side of Eq.~6! is ignored, since we consider the case of
zero temperature~See Ref. 17!.

The eigenvectors contributing to the sum onl in Eq. ~9!
are those whose frequencies lie within about6(2p/t) of
vl01v, where t is the time interval. Taking a sufficient
large time intervalt, only eigenmodes in a narrow band of
frequencies on the scale ofvl01v contribute to the sum in
Eq. ~9!. Thus, we have

E~v,vl0 ,t !5
ptuA0u2

2\2 (
l

u^vluJuvl0&u2d~vl2vl02v!,

~10!

where the following relation is used

(
i

Fiw i* ~vl!5
A0

\
^vluJuvl0&. ~11!

The resonance function expressed by Eq.~10! can be re-
lated to the ac conductivitys(v) as follows. The explicit
form of s(v) is

s~v!5
2p

\vLd (
l0

(
l

u^vluJuvl0&u2@ f ~vl0!2 f ~vl!#

3d~vl2vl02v!, ~12!

where f (vl) is the Fermi distribution function that becomes
a step function at zero temperature. The spin freedom is
taken into account. Comparing Eqs.~10! and ~12!, one has
the key equation relating the resonance function and the ac
conductivity as,

s~v!5
4\

vtLd (
vl05vF2v

vF

E~vl0 ,v,t !, ~13!

where we have setuA0u51 without loss of generality and the
definition of the Fermi frequency isvF5EF /\.
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C. Time development

We use themodifiedEuler method to obtain the time de-
velopment of the first-order linear differential Eq.~6!. This
method makes calculations very efficient and accurate. How-
ever, we cannot apply this method in the same way as used
in Ref. 17 where the matrix elements$Hi j % and the external
forces$Fi% are real numbers due to the orthogonal symme-
try, while these are complex for unitary and symplectic sys-
tems. Here, we divide the functionai

(1)(t) in Eq. ~6! into the
real partxi(t) and imaginary oneyi(t), and map each of the
first-order differential equations to thesecond-order one as

d2xi~T!

dT2
1(

j
Di j

Ryj~T!1(
j

Di j
I xj~T!

5
1

2
$Fi

R sin~VT!2Fi
I cos~VT!%, ~14!

and

d2yi~T!

dT2
2(

j
Di j

Rxj~T!1(
j

Di j
I y j~T!

5
1

2
$Fi

R cos~VT!1Fi
I sin~VT!%. ~15!

We have definedV5Avl01v1v0, T52Vt, and Di j

5v0d i j 1Hi j /\, respectively.Di j
R and Di j

I represent a real
and imaginary part ofDi j . By adding the positive quantity
\v0>u\vlminu, the minimum eigenvalues ofDi j become al-
ways positive~See Ref. 20 for details!. The reason of the
mapping to the second-order differential equations from the
first-order one is that we use the modified Euler method in
order to obtain the time development of Eqs.~14! and~15! as
follows.

We definev i(T)5dxi(T)/dT and discretize a timeT with
a stept, we have

xi~n11!5xi~n!1v i~n11!t, ~16!

v i~n11!5v i~n!2(
j

Di j
I xj~n!2(

j
Di j

Ryj~n!

1
1

2
$Fi

R sin~Vnt!2Fi
I cos~Vnt!%, ~17!

where the integern represents the number of time step. The
time development of the imaginary partyi(t) can be ob-
tained as well. It should be noted that the second term on the
right-hand side of Eq.~16! depends on the numbern11 of
time steps, namely, defined by theretardedfinite-difference
form, which is different from the standard Euler method de-
fined by theadvancedone as used for Eq.~17!. This choice
in Eq. ~16! makes calculations, by taking the time stept
satisfying the conditionvl maxt,2, very efficient and accu-
rate, as discovered by Williams and Maris.18

We have described in this section the method of comput-
ing the ac conductivity for systems described by large-scale
Hamiltonian matrices. We emphasize that this algorithm en-
ables us to directly calculate conductivity without making

the temporal Fourier transform of the response function or
calculating all of the intermediate statesw i(vl) relevant to
the formula~12!.

In actual calculations, we have prepared the limited num-
bers of the initial eigenmodesw i(vl0) within the rangevF
2v<vl0<vF by original FOM, which enables us to calcu-
late quite accurately the selected eigenmode belonging to an
arbitrary eigenfrequency.19

III. FINITE-TIME SCALING APPROACH

A. Scaling form of the resonance function

In this section, we present the finite-time scaling approach
to determine the critical exponent of the ac conductivity
s(v)}vd and the calculated results ofd for unitary and
symplectic systems. This scaling approach is based on the
fact that the number of eigennmodes contributing to the sum
on l in Eq. ~9! depends on the resonance width of sinclike
function 4p/t, which is inversely proportional to the time
interval t for which the external force is applied.

The explicit form of the resonance function is given by
Eq. ~9! as

E~vl0 ,v,t !5
1

\2E d~\vl!r~vl!z^vluJuvl0& z2

3
sin2$~vl2vl02v!t/2%

~vl2vl02v!2
, ~18!

where the density of statesr(vl) is introduced by the defi-
nition (l5Ld*d(\vl)r(vl). We assume that the ac con-
ductivity obeys the power law close to the transition as
s(v)}vd. Under this condition, Eq.~18! should be, for a
sufficiently large time intervalt,

E~vl0 ,v,t !

t
}E dvl~vl2vl0!dd~vl2vl02v!}vd.

We have used the fact thatr(vl) is nearly constant in the
band center. For the short time intervalt, the resonance
width in Eq. ~18! become wider than the bandwidth and one
yields

E~vl0 ,v,t !

t
}t2d. ~19!

From these two extreme cases, the scaling form of the reso-
nance function, or equivalently, of the ac conductivity be-
comes,

s~v,t !}t2dG~vt !, ~20!

where the asymptotic form ofG(z) should be

G~z!5H zd, z@1

const, 0,z!1.
~21!

We have demonstrated the efficiency of the finite-time scal-
ing approach to determine the critical exponent of the ac
conductivitys(v)}vd at the Anderson transition for an or-
thogonal system with high accuracy.21

14 068 PRB 60HIROYUKI SHIMA AND TSUNEYOSHI NAKAYAMA



B. Results for unitary and symplectic systems

In order to discuss the dynamic properties in the vicinity
of the Anderson transition, we set the disorder strengthW
5WC517.9~Ref. 23! for the unitary case, assuming uniform
magnetic fields to be parallel to thez direction, and a mag-
netic flux penetrating through ax-y plane unit cell is set to
be 0.2 times the flux quantum. For the symplectic case, we
setu5p/6 in Eq. ~2!, andW is set to the critical valueWC
519.0.12 The Fermi energyEF is fixed to the band center.
Actual simulations have been performed for systems with
30330330 lattice sites for both cases. In each case, averag-
ing over 20 independent realization of random potentials has
been performed.

Figure 1 presents the calculated results ofs(v) for both
cases taking various time intervalt5p/2;200p. The corre-
sponding resonance widths become 4p/t50.02;8.0 in units
of V51. We see from Fig. 1 that the calculated results fol-
low the v1/3 behavior with increasing time intervalt over
two orders of magnitude on frequency. Figure 2 shows the
scaling functionG(z) defined in Eq.~20!. The most likely fit
is determined byx2 statistic, and the confident intervals for
fitting parameters were estimated from the bootstrap proce-
dure. The calculated results of the exponent isd50.34
60.02 for unitary case andd50.3460.01 for symplectic
case, respectively. These values agree well with the predic-
tion of the scaling theory for the ac conductivitys(v).13

IV. SUMMARY AND DISCUSSION

The scaling hypothesis for the ac conductivitys(v) for
the finite system sizeL is expressed as24

s~v!5
e2

\
L22df S L

j
,
Lv

j D . ~22!

This hypothesis is based on the fact that there are three
length scales characterizing the system, namely, the correla-
tion lengthj, the system sizeL, and a characteristic length
Lv . Lv means the distance an electron diffuses in the system
during one cycle of an applied field,

Lv5AD~v!

v
, ~23!

where D(v) is the frequency-dependent diffusion
coefficient.25 When the system is very close to the transition
point andLv!j, Lv becomes the only relevant length and
s(v) scales like

s~v!}Lv
22d5H v

D~v!J (d22)/2

, ~24!

where the thermodynamic limit (L→`) is taken. Noting that
s(v) and D(v) are related via the Einstein relations(v)
5e2r(EF)D(v), one obtains

s~v!}v (d22)/d. ~25!

This form has been predicted by Wegner.13 For d53, Eq.
~25! is reduced to the power laws(v)}v1/3, which agrees
with our results.

FIG. 1. Calculated results ofs(v) for the 3D~a! unitary and~b!
symplectic systems for various time intervalt. The system size is
taken asL530. FIG. 2. The scaling functionG(z) introduced in Eq.~20! for ~a!

unitary and~b! symplectic systems. The estimated values of dy-
namical exponents ared50.3460.02 for unitary case, andd
50.3460.01 for symplectic case.
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One can give other interpretation forLv as

Lv5$r~EF!\v%21/d5LS \v

D D 21/d

, ~26!

whereD is the mean level spacing of the system.Lv is thus
equivalent to the size of a fictitious system with the mean
level spacing\v. Strictly speaking, length scales defined by
Eqs.~23! and~26! are different only by a factorg* 1/d, where
g* is the dimensionless conductance at the transition.26 Pro-
vided that the lengthLv is only relevant, namely, shorter
thanL, the energy\v should be larger than the mean level
spacingD.

Let us consider the wave-number-dependent ac conduc-
tivity s(q,v) in order to discuss the behavior in the lower
frequency region. In the lower frequency region, where\v
is smaller thanD,s(v) is expected to show a different be-
havior related to the anomalous diffusion exponenth. The
general conductivitys(q,v) is given by

s~q,v!}
D~q,v!

11$q2D~q,v!/v%2
, ~27!

whereD(q,v) is the generalized diffusion coefficient.25 The
scaling form ofD(q,v) near the Anderson transition pre-
sented by Chalkeret al.27 is expressed as

D~q,v!}qd22f ~x! : x[~qLv!d, ~28!

where the system sizeL and the correlation lengthj are
assumed to be larger thanLv and 1/q. The asymptotic be-
havior of the functionf (x) is

f ~x!}H x(22d)/d; x!1

x2h/d; x@1.
~29!

The exponenth implies the strong fluctuation of the ampli-
tudes of wave functions near the transition.

For qLv!1 whereD(q,v) depends onlyv, the conduc-
tivity behaves in the same way as in Eq.~25!. While for
qLv@1 where the wave length;1/q is smaller thanLv , the
conductivity shows an anomalous behavior as

s~q,v!}qd22S v

qdD 22h/d

. ~30!

In finite size systems, the sizeL provides the lower cutoff
for the wave numberq. Thus, theq dependence ofs(q,v)
can be obtained from an analysis of theL dependence of the
ac conductivity. Ford53, one expects that the conductivity
showss(v,L)}1/L•(vL3)22h/3 for vL3,1, which means
that the frequencyv is smaller than the mean level spacing

D. In the present work, we have calculated the ac conductiv-
ity s(v) for the energy range 16D<\v<1600D sinceD is
about 6.431024 in the present system (L530). In addition,
it should be noted that the resonance widths 4p/t have been
set more twenty times larger thanD to remove finite size
effects. In order to gain insight into the value ofh, one
should set\v and 4p/t comparable toD because the dis-
creteness of energy level due to the finite size effect becomes
relevant. In such a condition the direct diagonalization is
suitable to calculates(v,L) for small systems, while it is
evident that the algorithm we used in this paper is powerful
for calculatings(v,L) for large-scale systems.

We mention about the numerical work by Brandeset al.26

on the anomalous diffusion exponenth in 3D orthogonal
system. They have calculated the function defined by

Z~E,E8!5E ddxuCE~x!u2uCE8~x!u2 ~31!

for eigenstates with energyE and E8 within the regionD
<\v[uE2E8u<300D, and demonstrated the power law
Z(v)}v2h/d. They have used the Lanczos method to di-
rectly diagonalize the systemL540 and the estimated value
h;1.5 is close to that of other works on the fractal dimen-
sion of the wave functionD2(5d2h).8,28,29 According to
their results, the crossover frequencyvC separating the two
regions expressed by Eqs.~25! and~30! is equal to 300D or
larger, namely,vC;0.2 for the system sizeL530. Thus,
s(v) is expected to behave like}v1.5 in the region v
<0.2 forL530, but we could not observe such a behavior in
our calculated results. There has been no work on the quan-
titative determination of the frequencyvC in 3D system so it
will be presented elsewhere in near future.

To summarize, we have calculateds(v) near the Ander-
son transition in 3D unitary and symplectic systems and the
dynamical exponents(v)}vd has been determined by the
finite-time scaling approach based on the FOM. The esti-
mated values clearly taked.1/3 for both systems as well as
the case for orthogonal one, which agree with the prediction
from the scaling argument.
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