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Finite-Element Analysis of Magnetostatic 
Wave Propagation in a YIG Film 

of Finite Dimensions 
MASANORI KOSHIBA, SENIOR l>tEMBER, IEEE, AND YI LONG 

Abstrucl -A unified numerical approach based on the finite-element 
method is described for the magnetostaric wafe propagation in a VIC f ilm 
of finite dimensions. Both mDgnefOSIDtic volume 1nl,·e Dnd magnelostatic: 
surface ",-a,·e modes are tTt'Dteci. The validity of tlit' method is confinnecl b)' 
calculating the magnetosiDlic "'1I,·e modes in a VIG-lo:Ided rectangular 
waveguide and in a VIC film of fin Ite width. "The numerical Il'SUlts of a 
VIC film with nonuniform bias Ileld along the film ",idth are also pre­
sented, and the effects of bias field distributions on the delay characteris­
tics and potential profiles are examined. 

I. I NTRODUCTION 

MAGNETOSTATIC WAVE (MSW) propagation in 
a YIG film of finite dimensions has been reported 

in previous papers [1]- [11]. O'Keeffe el al. [2] and Bajpai 
et al. [4] have investigated the effects of finite sample 
widths on MSW propagation. Recently, inlerest in three­
dimensional inhomogeneous MSW waveguides is increas­
ing because high-precision dispersion control is making 
MSW device application possible [1], [3], [5]-[11]. Morgen­
thaler et oJ. [1], [3], [6), [8], [9J have discussed the control of 
MSW propagation by means of a spatially nonuniform 
bias field. It is also found that control of important 
features of MSW modes is afforded through the use of bias 
field gradients and that magnetostatic forward volume 
waves can be forced to have strong field-displacement 
characteristics that are either nearly reciprocal or very 
strongly nonreciprocal. Such control may provide the basis 
for new forms of microwave signal processors [6] - [9]. In 
order to analyze these inhomogeneous MSW waveguides, 
the variational method [12), [13] and the finite-element 
method [14] have been introduced. These methods are 
valid for the solution of inhomogeneous waveguide struc­
tures. In the former approach, however, great care is 
necessary in choosing the trial functions. The laller ap­
proach, on the other hand, is applied only to planar 
structures of infinite wid th . 

In this paper, a unified approach based on the fin ite-ele­
ment melhod is described for the MSW propagation in a 
YIG film of fini te dimensions. Both magnetostatic forward 
volume wave (MSFVW) and magnetostatic surface wave 
(MSSW) modes are treated. In this finite-element ap-
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Fi&- I. MSW wa,·eguide. 

proach, the cross section of the waveguide is divided into 
triangular elements [15], [16J and it is easy to consider the 
inhomogeneities in the bias field and/ or the magnetiza_ 
tion. The validity of the method is confirmed by calculat­
ing the MSW modes in a YIG-Ioaded rectangular wave­
guide [10) and in a YIG film of fin ite width [4). Numerical 
resuhs on the delay characteristics and potential profiles of 
a YIG film with nonuniform bias fi eld distributions are 
examined. 

II. B ASIC EQUAT IONS 

Fig. 1 shows a MSW waveguide, where the boundaries 
f1 and f 2 are assumed to be perfect electric conductors 
(PEe's) or perfect magnetic conductors (PMC's), and rl 

and f4 are assumed to be PEC's. 
The constitutive relations are 

B - .ol. , ]H 
B = p.oH 

for ferrite 

for dielectric 

(I.) 
(Ib) 

where B is the magnetic nux density, H is the magnetic 
field, P.o is the permeability in free space, and [J£r] is the 
relative permeability tensor [14J. 

For the MSW propagating along the y direction, the 
governing equations can be written by 

aBx aBz 
ax + a; - Js{lBy - 0 (2) 

a. 
H -- - (3.) • ax 
Ny-JsM (3b) 

a. 
H, - - a; (3e) 
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Fig. 2. Second-order triangular element. 

where fJ is the phase constant in the y direction, s - ± 1 is 
a directional parameter [14), and ~ is the magnetostatic 
potcntial. 

III. M ATHEMATICAL F ORMULATIONS 

Dividing the region enclosed by the boundaries f 1 to f4 
into a number of second-order triangular elements [15), 
(16} as shown in Fig. 2, the magnetic potential 4> within 
each element is defined in terms of the magnetic potential 
~k at the nodal point k (k = 1,2,···, 6) : 

where 

~ ~ (N ) T(¢) . exp ( -j,P, ) (4) 

() [ " " "IT ~ .~ ~, ., ~, ~, ~, .... 
( N) - [ N, N, N, N, N, N,IT. 

(Sa) 

(5b) 

Here shape functions NI to N6 are given by 

N, ~ L ,(2L , - 1) (6a) 

N, ~ L , (2 L , -1) (6b) 

N, ~ L , (2L, - I) (60) 

N,~4L,L, (6d) 

N~ = 4LIL3 (6e) 

N, ~ 4L,L, (6f) 

with the area coordinates L1• L2• and L3 [151, [16}. The 
relation between the area coordinates and the Cartesian 
coordinates is expressed in the foUowing form: 

x XI x 2 X3 L\ 
L, 
L, 

(7) 

where (xi' Zj ) are the Cartesian coordinates of the vertex j 
(j = 1, 2, 3) of the triangle. Also, tbe diagonal component p, 
and the off-d iagonal component " of the relative perme­
ability tensor within each element are approximated by 

.~ (N}T( . ) . (8a) 

K ~ {N )T (K }. (8b) 

where 

{.} . - [., ., ., ., ., p" f (9a) 

(K }._ [ K, K, K, K, K, K,f (9b) 

and P, k and K k ( k = 1, 2, · . · ,6) are, respectively, the JL and 
K values at the nodal point k . Using a Galerkin procedure 
on (2), we obtain 

f (
aB, aB_ ) 

(N ) -a-+ - - - j,PB, dO - (O) 
, x az (10) 

where the integration is carried out over the element 
subdomain n" and {OJ is a null vector. 

Integrating by parts, we obtain for (10) 

f[ ( N, ) B, + (N,} B, + j ' P( N ) By] dO 
• 

- f(N} B" dr~ (0 ) 
• 

(11) 

where 

(12) 

Here (N,) - a( N )/ax ; ( N, ) ~ a(N) / az; 'he second 
integration on the left-hand side in (11) is carried out over 
the contour r, of the region 11,; and nx and n: are the x 
and z components of an outward normal unit vector to r,. 
respecti vel y. 

Noting that BIf is continuous across f, (boundary condi­
tions at the interface between two different media) and 
B" = 0 on f) and r., from (1), (3), and (4) the following 
globaJ matrix equation is derived: , 

[A ]{ ~ ) -- [ (- 1) '[/.1 {N },B,.,I /. , dz (13) 
I - I " , 

where 

[ Aj - [ flp ', ,( N )( N ) T - P' K. 
• • 

'(( N, }(N )T +(N}( N, )T) 

+ (N,)( N, ) T + • • ( N, )( N, } T] dxdz 

for bias field applied parallel 10 the x axis (14a) 

[A j - [ flp( N}( N} T + j K. 
• • 

and 

((N, }(N,} T _ (N,}( N, }T) 

+ • • ( N,)(N,} T + ( N, }( N,j') ] dxdz 

for bias £ieid applied parallel to the y axis (1 4b) 

[A j - [fl p' •• ( N}( N} T + Ps<. 
• • 

' ((N,}(N }T + (N }( N, )T) 

+ ( NJ (NJ T + • • ( N,)( N,) T] dxdz 

for bias field applied paraJlei to the Z axis. (14c) 

Here Il , and "r are expressed by (8a) and (8b), respec­
tively; {$ } is the nodaJ magnetic potential; L, and L r • 
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extend over all elements and the elements related to rj 

(i - 1,2), respectively; B". ; is the magnetic nux density on 
r j; and {N}; is the shape function vector on rj , namely, 
(N L = ( N(x ;, z) }. 

Combining the boundary conditions on the planes r l 

and r2, (13) becomes 

where 

[A] -

[A] 
[A]oo 

[[ A] oo 
[A] " 

[ [A]oo 
[A] " 

(.) 
(. ), 

[(.),] (. ), 

[(.),] ( . ), 

[AI{~} = (0) (15) 

for B" 1- B" 2=0 , , 

fm(. ),~ (. },~(O ) 

[A] " ] 
[A] " 

forB", - Oand (.J,- (O) 

[A] ,, ] 
[A ]" for B" ,-O and (.;), - (0) 

(16) 

for B",I = Bx •2 = 0 
for (.},-(.}, - (O} 

for B", - 0 and (. J, - (O) (17) 

for B", = 0 and (.), - (O ) 

(. ), 
(.)- (. ), 

( . ), 
(18) 

[A ]00 
[A] - [A] " 

[ A],o 

[A]" 
[A]" 
[A ],. 

[A]" 
[A]" 
[A]" 

(19) 

Here [A )00' [A 101" . " [A122 are the submatrices of [A 1, and 
{ <P }; is the nodal magnetic potential on rj ( i co 1,2). Using 
(15), onc can determine the dispersion characteristics of 
MSW waveguides. 

IV. CoMPlITED REsULTS 

First, we consider a YIG-Ioaded rectangular waveguide 
[10) as shown in Fig. 3, where the planes x = 0, x'" a, 
z = 0, and z = b are assumed to be PEC's, the bias field is 
along the x axis, and there exist MSSW modes. In this 
case, the potential profile is symmetric with respect to the 
plane x = a /2, Taking advantage of this symmetry, we 
subdivided one half of the cross section into second-order 
triangular elements, where the plane x - a / 2 is assumed 
to be a PMC. Table I exhibits the computed results, where 
a = 20 mm, b = 10 mm, 1=1 mm, the saturation magneti­
zation 4'7rM. = 1750 G, the bias field Ho - 1800 Oe, fJuae! 

is the exact solution (10J, and fJ FEM is the finite-element 
solution. It is apparent from Table I thai the finite-element 
solutions are in good agreement with the exact solutions. 
The convergence behavior of the phase constant f3 is 
shown in Fig. 4. With an increasing numbcr of elements, 
the phase constant f3 converges monotonically. Also, we 

• 
Dielectric do 

YIC 
b 

' 0 
• Dielec tric do 

y x 

Fig. 3. A YIG·ioaded rectangular waveguide (the planes x .. O. x .. a, 
z .. 0, and z - b are assumed to be PEC's) or a YIG film of finite 
width (the planes x " 0 and x - a arc assumed to be PMC's and ~ 
planes z - 0 and l " b arc assumed to be PEC's). 

~ 

c 
0 
c 
c • 
~ 
0 • 0 
c • ~ 

10-' ,----------, 

10-2 

20-5 .0 l1li 

F"7.1 GHz 

Z0-5.0 "II 
F-7.4 GH-;z: 

Zoa9.5 l1li 

F-9.5 GHz 

500 '000 

Number of elements NE 
Fig. 4. Convergcnce behavior of phase constant /l 

rind from Table I and Fig. 4 that the accuracy of the 
finite-element solutions fa lls off as the film position Zo is 
lowered or the frequency F increases. 

Next, we consider a YIG film of finite width [4] as 
shown in Fig. 3, where the planes x - 0 and x = a arc 
assumed to be PMC's, the planes z",. 0 and z = bare 
assumed to be PEC's [2], [4], the bias field is along the z 
axis, and there exist MSFVW modes. Table II exhibits the 
computed results, where a = 3 mm, dl = 50 p.m, d 2 = 178 
p.m, t = 9.1 p.m, 4'lTMs = 1750 G, and the effective slatic 
field Hi = 3000 Oe (H1 - Ho -4'lTMs for MSFVW modes). 
The finite-element solutions agree well with the exact 
solutions [4]. Also, larger errors are observed as the fre· 
quency mcreases. 

Lastly, we consider the MSW waveguide with a bias 
field of parabolic distribution where the planes x = 0 and 
x - a in Fig. 3 are assumed to be PMC's, the planes z - 0 
and z = b are assumed to be PEC's, and the bias field is 
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TABLE 1 
COMPARISON B£IWEES ExACT SoLUTIONS AND FEM 

Sot.UTIONS FOR MSSW MODES .. f Phase constsnt 0/ •• ) 

( .. ) (6Hz) 11 ..... D ,c" 

7 . , O. (/4190H 0.041 9052 

7.3 0.1 193626 0.1193620 

••• 7.' 0.1633299 0.1633295 

7. 5 0.2235310 0 .2235304 
7. , (/.3563842 0.3563856 

7., O.UOU45 0.U04&39 

7. 2 0. 2253411 0.2253469 
5. ' 

7.3 0_4832040 0.4832315 

7.4 0.90U406 0.9019049 

/1 -20 mm, b-10 mm. 1- 1 mm, 4'ITM, - 1750 G, 
Ho-18000e. 

TABLE II 
COMPARISON BETWEEN ExACT SoLUTIONS AN D 

FEM SOt.UTIONS FOR MSFVW MODES 

f Phase constant 0/ •• ) 

(GHz ) 

8.11 

8.9 1 

9. 0 1 

9. 11 

9. 21 
9. 31 

9. 41 

9. 51 

B • •• •• 

3.200592 

16.25161 

28.5 9313 

41.05768 

53.96416 

67. 73419 

112 .69318 

99.12166 

' 3.200420 

16.25179 

28.59392 

41.06009 

53.91119 
61.14865 

SZ.11910 

99.11226 

d[-SO /lm, d2 - 178 /lm. 1-9.1 /lm, 
0-3 mm, 4"11"M. - 1750 G , and Hi -

3000 O. 

~.x.-------~~~------· 

XI. 1 

Fig. 5. Bias field distribution along the width of a YIG film. 

along the z axis. The two parabolic distributions consid­
ered here are shown in Fig. 5. The bias field distribution is 
given by 

H,- H,-(H,- H,)X[(a-2x)/aj' (20) 
where HI and H2 are the minimum and the maximum 
value or the errective field for a hollowed parabolic distri­
bution (case A), respectively. and HI and H2 are the 
maximum and the minimum value for a projecting 
parabolic distribution (case B), respectively. 

I , 
• < 

~ 

~ • -~ 
I 
~ 

" C.~e A. 
IHollowed parabolic dl,trlbullonl 

Ho' .... 3110 Oe 

H.I ..... J050~ 
HO':lIXJO oej Iv , , 

./ / 

.......... ' - 3,0 1111 
V \/ \ / 

/ ... ---- dl- 50 ~II 
dz-178 ~. V 
t-9.1 r 
H-c-3 10 Oe 

22 

20 

18 
8,5 8.7 8.' 

Frequency F (10Hz) (., 
4rN~"1750 G .. , ' .3 

",------------------------, 

22 

20 

18 

1101"..3000 Oe 

1-1.1..-3050 De 

H.17"0 Oe 

, , 
/-t;;::'1,=---/ ........ ':;0 .. 

\ _---- dl-SO,. 
\ / 
\./ dz-178 ~. 

Cue B taS.1 ~. 
(P~Jecting par.hol ic distr ibutIon) H...-3110 Oe 

Lo-~_-C~ ___ -::-___ ~,.'"'",O·,"75~.~' 
8.5 8.7 8,9 9.1 9.3 

FrllqJency F !GHzl 

(b' 

Fig. 6. Time delay cbaracteristics for parabolic bias field distribution 
along the film width_ (a) Hollowed parabolic dislribution. (b) Project· 
ing parabolic distribution. 

The time delay characteristics are illustrated in Fig. 6(a) 
and (b) for cases A and B, respectively. where the dotted 
line represents the delay curve for the homogeneous case 
[4]. These figures show that the nondispersive bandwidth is 
extended in the case of the parabolic distribution of the 
bias field. Comparing case A with case B, it is also found 
that the projecting parabolic bias field offers a wider 
nondispersive bandwidth. 

The effect of parabolic bias field on the potential prorile 
is investigated, Fig. 7(a), (b), and (c) shows the potential 
profiles ror the uniform, hollowed parabolic, and project­
ing parabolic bias fields, respectively. The phase constant 
fJ is independent of the direction of propagation. In the 
case of parabolic bias fields, the potential has a stronger 
localiz.ation. Comparing case A with case B, it is found 
that the projecting parabolic bias field creates stronger 
poten tial- displacemen t nonreci proci t y. 

A similar potential- displacement nonreciprocity was re­
ported in (9]. 

V. CONCLUSIONS 

A finite-element method is developed for the analysis of 
the MSW propagation in a YIG film or finite dimensions. 
Both MSVW and MSSW modes are treated in a unified 
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Fig. 1. Potential pro riles. (a) Homogeneous distribution. (b) Hollowed 
parabolic d istribution. (c) Projecting parabolic distribution. 

manner. In order to examine the validi ty of the present 
method, MSW modes in a YIG-Ioaded rectangular wave­
guide and in a YIG film of finite width are calculated. We 
also present the application of this approach by analyzing 
the MSFVW propagation in a YIG film with the bias field 
of parabolic distribution along the film width. It is found 
that the parabolic bias field offers an improvement in the 
nondispersive bandwidth. 
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