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Abstract Tidal dissipation is a major heat source for the icy satellites of the giant planets. Several icy
satellites likely possess a subsurface ocean underneath an ice shell. Previous studies of tidal dissipation on
icy satellites, however, have either assumed a static ocean or ignored the effect of the ice lid on subsurface
ocean dynamics. In this study, we examine inertial effects on tidal deformation of satellites with a dynamic
ocean overlain by an ice lid based on viscoelasto-gravitational theory. Although ocean dynamics is treated
in a simplified fashion, we find a resonant configuration when the phase velocity of ocean gravity waves is
similar to that of the tidal bulge. This condition is achieved when a subsurface ocean is thin (<1 km). The
enhanced deformation (increased h2 and k2 Love numbers) near the resonant configuration would lead to
enhanced tidal heating in the solid lid. A static ocean formulation gives an accurate result only if the ocean
thickness is much larger than the resonant thickness. The resonant configuration strongly depends on the
properties of the shell, demonstrating the importance of the presence of a shell on tidal dissipation.

1. Introduction

Tidal dissipation is one of the major heat sources for the evolution of planetary bodies, particularly the satel-
lites of the giant planets [e.g., Schubert et al., 1986, 2010]. Most of the satellites of Jupiter and Saturn are
covered by an icy shell because of the low surface temperature. Based on internal thermal and structural mod-
eling, large icy satellites, such as Europa and Titan, are expected to possess an internal ocean underneath an
icy shell [e.g., Hussmann et al., 2007]. This expectation is supported from observational data by the Galileo and
Cassini spacecraft and by the Hubble Space Telescope [e.g., Kivelson et al., 2000, 2002; Iess et al., 2012; Saur
et al., 2015]. Observations by the Cassini spacecraft further suggest that even small satellites of Saturn, such
as Enceladus and perhaps Mimas, have a subsurface ocean [e.g., Iess et al., 2014; Tajeddine et al., 2014]. More-
over, model calculations suggest that Pluto may also possess a subsurface ocean [e.g., Schubert et al., 2010;
Robuchon and Nimmo, 2011], and tidal dissipation due to the orbital motion of its largest satellite, Charon,
may have heated Pluto in the past [Barr and Collins, 2015]. Thus, a detailed investigation of the evolution of
planetary bodies in the outer solar system should consider tidal dissipation using an interior model consisting
of an outer solid layer, internal liquid layer(s), and a solid (or liquid) core.

Previous studies of tidal dissipation in icy satellites using spherically symmetric models can be classified into
two types: those considering tidal dissipation in the solid part and those considering tidal dissipation in the
ocean. The former studies consider deformation of a solid planetary body due to periodic tidal force [e.g.,
Moore and Schubert, 2000; Tobie et al., 2005; Roberts and Nimmo, 2008; Beuthe, 2015a]. In such studies, the
equation system based on elasto-gravitational theory (widely used to investigate free oscillation problems
at seismic frequencies [e.g., Love, 1911; Alterman et al., 1959; Takeuchi and Saito, 1972]) are used because this
equation system can be easily applied to a viscoelastic body. An application of Fourier transformation to the
equations for tidal deformation on a viscoelastic body leads to the same form of the equations for deformation
on an elastic body (i.e., the correspondence principle) [e.g., Zschau, 1978]. Although this formulation has been
applied to many satellites and planets, the effect of an internal liquid layer on tidal deformation has usually
been treated in a simplified fashion, as we discuss below.

The other type of studies, on the other hand, investigate tidal dissipation considering ocean dynamics using
the Laplace tidal equations [e.g., Tyler, 2008; Chen et al., 2014]. Such studies reveal that a thin ocean (i.e.,<1 km
for most cases) in icy satellites leads to a resonance, resulting in potentially large heat production [e.g., Tyler,
2011; Matsuyama, 2014]. This finding is important not only because the ocean thickness in icy satellites is
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poorly constrained but also because the ocean thickness may vary largely with time. One important assump-
tion in these models is that the surface topography follows an equipotential surface. This requires either that
the ocean is at the surface or that the ice shell overlying the ocean is soft. In reality, none of the icy satellites
has a surface ocean, and in some cases (such as Titan [e.g., Hemingway et al., 2013]) the ice shell may not be
sufficiently soft because the viscosity of ice is very high at low temperatures [e.g., Schulson and Duval, 2009].
Prior to the work presented here, the influence of an overlying solid lid (i.e., the top icy shell) on ocean tidal
dissipation has not been investigated.

In this study, we revisit the viscoelasto-gravitational theory and obtain a comprehensive equation system that
can account for a thin subsurface ocean in viscoelastic planets (and satellites) (section 2). We then apply our
theory to icy satellites and investigate the effect of an icy shell on the resonant configuration (sections 3 and 4).
Because we are most interested in identifying what factors control the resonant response, our satellite models
are deliberately simplified. However, the use of more realistic structural models will not affect our conclusions
in a qualitative sense.

2. Theory

We follow the well-established elasto-gravitational theory considering deformation of a spherically symmet-
ric, nonrotating, elastic, and isotropic body [e.g., Love, 1911]. In this theory, three equations are solved: the
equation of momentum conservation, the Poisson equation for the gravitational field, and the constitutive
equation. This theory can be applied not only for an elastic body but also for a viscoelastic body by adopt-
ing an appropriate constitutive equation. First, the equation of momentum conservation ignoring centrifugal
and Coriolis forces is given by

𝜌
d2u
dt2

= 𝛁 ⋅ 𝜎 + 𝜌F, (1)

where u is the displacement vector, 𝜎 is stress tensor, F is the sum of all the forces per unit mass acting on
the body, t is time, and 𝜌 is density, respectively. Second, the Poisson equation for the gravitational field is
given by

𝛁2Φ = −4𝜋G𝛁 ⋅ (𝜌u) , (2)

where Φ is gravitational potential and G is the gravitational constant, respectively. Third, the constitutive
equation for a Maxwell body is given by

d𝜎ij

dt
+ 𝜂

𝜇

(
𝜎ij −

𝜎kk

3
𝛿ij

)
= 𝜆

dekk

dt
𝛿ij + 2𝜇

deij

dt
, (3)

where e is strain tensor, 𝛿ij is the unit diagonal tensor, 𝜂 is viscosity, 𝜇 is shear modulus, and 𝜆 is the first Lamé’s
parameter, respectively.

To calculate periodic deformation, a Fourier transform is applied to the three equations above assuming that
the unknown variables (u, 𝜎, and Φ) oscillate with a frequency of 𝜔; d∕dt is replaced with i𝜔 where i is the
imaginary number. Then, a spherical harmonic expansion is applied to such Fourier transformed equations,
leading to a six-component differential equation system. In this study, we follow the formulation by Takeuchi
and Saito [1972]. The equation system for a compressible solid layer is given by

dy1

dr
= − 2𝜆̃

(𝜆̃ + 2𝜇̃)r
y1 +

1
𝜆̃ + 2𝜇̃

y2 +
n(n + 1)𝜆̃
(𝜆̃ + 2𝜇̃)r

y3, (4)

dy2

dr
=
{
−𝜔2𝜌 + 12𝜅𝜇̃

(𝜆̃ + 2𝜇̃)r2
−

4𝜌g
r

}
y1 −

4𝜇̃

(𝜆̃ + 2𝜇̃)r
y2

+ n(n + 1)
r

{
𝜌g − 6𝜅𝜇̃

(𝜆̃ + 2𝜇̃)r

}
y3 +

n(n + 1)
r

y4 +
(n + 1)𝜌

r
y5 − 𝜌y6,

(5)

dy3

dr
= −1

r
y1 +

1
r

y3 +
1
𝜇̃

y4, (6)
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dy4

dr
=
{

𝜌g
r

− 6𝜅𝜇̃

(𝜆̃ + 2𝜇̃)r2

}
y1 −

𝜆̃

(𝜆̃ + 2𝜇̃)r
y2

+
{
−𝜔2𝜌 + 4n(n + 1)(𝜆̃ + 𝜇̃)𝜇̃

(𝜆̃ + 2𝜇̃)r2
− 2𝜇̃

r2

}
y3 −

3
r

y4 −
𝜌

r
y5,

(7)

dy5

dr
= 4𝜋G𝜌y1 −

n + 1
r

y5 + y6, and (8)

dy6

dr
= 4𝜋(n + 1)G𝜌

r
y1 −

4𝜋n(n + 1)G𝜌
r

y3 +
n − 1

r
y6, (9)

where n is spherical harmonic degree, r is radial distance from the center, and 𝜅 = 𝜆+ 2𝜇∕3 is bulk modulus,
respectively. The unknown variable y1 is the coefficient for the vertical displacement, y2 is the vertical stress,
y3 is the tangential displacement, y4 is the tangential stress, y5 is the gravitational potential perturbation, and
y6 is the “potential stress” [Sabadini and Vermeersen, 2004], respectively. Note that y is a complex variable. The
complex elastic moduli are given by

𝜆̃ =
i𝜔𝜆 + 𝜇𝜅∕𝜂

i𝜔 + 𝜇∕𝜂
, 𝜇̃ = i𝜔𝜇

i𝜔 + 𝜇∕𝜂
. (10)

See Appendix A for the expression under the incompressible limit (i.e., 𝜆 → ∞). We note that there are dif-
ferences in definitions of y between Takeuchi and Saito [1972] and some other studies [e.g., Sabadini and
Vermeersen, 2004; Roberts and Nimmo, 2008]; y2 and y3 are interchanged, and the sign of y5 and y6 is opposite.
We also found a typo in the equation for dy6∕dr in Roberts and Nimmo [2008].

The differential equation system above assumes 𝜇 ≠ 0. The equation system for a compressible liquid layer
(𝜇 = 0) is a four-component system given by

dy1

dr
=
{
−2

r
+

n (n + 1) g
𝜔2r2

}
y1 +

{
1
𝜆
− n (n + 1)

𝜔2𝜌r2

}
y2 −

n (n + 1)
𝜔2r2

y5, (11)

dy2

dr
=
{
−𝜔2𝜌 −

4𝜌g
r

+
n (n + 1) 𝜌g2

𝜔2r2

}
y1 −

n (n + 1) g
𝜔2r2

y2 +
(n + 1)𝜌

r

(
1 −

ng
𝜔2r

)
y5 − 𝜌y6, (12)

dy5

dr
= 4𝜋G𝜌y1 −

n + 1
r

y5 + y6, and (13)

dy6

dr
= 4𝜋(n + 1)G𝜌

r

(
1 −

ng
𝜔2r

)
y1 +

4𝜋n(n + 1)G
𝜔2r2

y2 +
4𝜋n(n + 1)𝜌G

𝜔2r2
y5 +

n − 1
r

y6. (14)

Note that 𝜆̃ = 𝜆 when 𝜇 = 0 (see equation (10)). Inside a liquid layer, the tangential stress y4 is always zero,
but tangential displacement y3 can be determined from the equation below;

y3 = 1
𝜔2𝜌r

(
𝜌gy1 − y2 − 𝜌y5

)
. (15)

The differential equations above are integrated numerically upward assuming a small homogeneous core
(see Appendix B). The boundary conditions between solid-liquid interfaces can be found in Takeuchi and
Saito [1972].

The coefficients for the solutions are determined from the boundary condition at the surface, which is
given by

y2 = 0, y4 = 0, y6 = 2n + 1
rs

Φt, (16)
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Figure 1. Interior structure models adopted. An incompressible five-layer
and three-layer model is used for Ganymede and Enceladus, respectively.

where rs is the radius of a body and Φt

is tidal potential at the surface. We note
that this formulation can also be applied
to a model with a surface ocean. In this
case, the surface boundary condition is
given by

y2 = 0, y6 = 2n + 1
rs

Φt. (17)

The equation system for a liquid layer
(i.e., equations (11)–(14)) is significantly
different from those used in several pre-
vious studies based on (visco) elasto-
gravitational theory [e.g., Saito, 1974;
Jara-Orué and Vermeersen, 2011; Harada
et al., 2014]. Specifically, these studies
use a two-component equation system

for a liquid layer. This two-component equation system can be obtained under a quasi-static assumption;
𝜔2 = 0, which is equivalent to setting the left-hand side of equation (1) to zero [Saito, 1974]. Although this
formulation has been used by many tidal dissipation studies, it may lead to a large error when the ocean is thin
even if the frequency is low (see section 3). In the following, we call the formulation using this two-component
equation system a static formulation while a four-component system is referred to as a dynamic formula-
tion. Note that ocean dynamics is not completely included in this “dynamic formulation”; Coriolis forces, for
example, are not taken into account.

The dynamical formulation discussed above has smaller model requirements compared to other spectral
schemes. For example, this formulation can handle a liquid (i.e., 𝜇 = 0) layer; such a layer need not be approx-
imated as a solid layer with a low (but nonzero) rigidity [Roberts and Nimmo, 2008]. This is important because
if a “liquid” layer is treated as such, no resonance would be found. In addition, the core needs not to be liquid
(see Appendix B). This formulation can also be applied to cases with a high tidal frequency and to situations
with a density contrast between an ocean and a shell, which cannot be handled by a method based on a mem-
brane theory [Beuthe, 2015a]. A more recent study calculates tidal Love numbers using a formulation similar to
ours [Beuthe, 2015b], though the inertial term for solid layers and compressibility in liquid layers are neglected.
We note that the formulation discussed above is based on a classical spectral theory assuming a spherically
symmetric body and small-amplitude deformations. Consequently, to incorporate lateral variations of interior
properties, a fully numerical approach is necessary [e.g., Tobie et al., 2008; A et al., 2013].

3. Tidal Resonance

In this section, we show that a dynamic formulation leads to a resonance under a specific condition while
a static formulation does not lead to any resonances. Here we use a five-layer Ganymede model by Moore
and Schubert [2003]. Ganymede is assumed to consist of a viscoelastic icy shell, a liquid subsurface ocean,
a viscoelastic high-pressure icy layer, a viscoelastic rocky mantle, and a liquid metallic core (Figure 1, left).
All solid layers are assumed to be (Maxwellian) viscoelastic. Table 1 lists the parameters adopted. The ocean
thickness Hocean and the ice viscosity 𝜂ice are free parameters. The central depth of the ocean is fixed at a depth
of 145 km; the top shell thickness is thus given by 145 − Hocean∕2 km. We note that this model gives a surface
gravitational acceleration ∼1.24 m s−2, which is ∼13% smaller than the actual value [Anderson et al., 1996].
Also, the radius is slightly larger than the actual value [e.g., Schubert et al., 2004]. Nevertheless, we use these
values adopted in a previous study because a direct comparison with previously reported results can be used
to validate our code.

Figure 2 shows the absolute value of the degree 2 Love number, h2, as a function of ice viscosity, 𝜂ice. Here h2

is calculated from h2 = y1(rs)g(rs)∕Φt . Results obtained using a dynamic formulation and a static formulation
are shown in Figures 2a and 2b, respectively. Values of h2 for Hocean = 0 (i.e., no ocean), 20, and 200 km reported
by Moore and Schubert [2003] are in agreement with those obtained from our code both for Figures 2a and
2b. This result not only demonstrates the validity of our code but also indicates that a static formulation
leads to accurate results when there is no ocean or when the ocean is thick (i.e., ≥20 km). On the other hand,
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Table 1. Model Parameters for Ganymede

Symbol Quantity Value Unit

rs Radius of Ganymede 2638 km

rm Radius of the mantle 1745 km

rc Radius of the core 710 km

𝜌H2O Density of ice and ocean 1050 kg m−3

𝜌m Density of the mantle 3100 kg m−3

𝜌c Density of the core 5150 kg m−3

𝜇s Rigidity of the shell 10 GPa

𝜇m Rigidity of the mantle 100 GPa

𝜇c Rigidity of the core 0 GPa

𝜂m Viscosity of the mantle 1020 Pa s

𝜂c Viscosity of the core 0 Pa s

𝜔orb Orbital frequency 1.016 × 10−5 rad s−1

when the ocean is thin (i.e., 0 < Hocean ≤ 1 km), a large difference in h2 between Figure 2a and Figure 2b can
be seen, indicating that a static formulation can lead to large errors even when the frequency is low.

Figure 2. Absolute value of the degree 2 Love number h2 as a function
of ice viscosity for a Ganymede model. Results obtained using (a) a
dynamic formulation and (b) a static formulation, respectively, are
shown. Previously reported results for ocean thicknesses (Hocean) 0, 20,
and 200 km by Moore and Schubert [2003] are illustrated with circles,
showing a good agreement with our results. While results for Figures 2a
and 2b under Hocean > 1 km or Hocean = 0 km are the same, a clear
difference between results can be seen when 0 < Hocean ≤ 1 km. Note
that |h2|> 3 for Hocean = 0.1 km and 𝜂ice > 4 × 1013 Pa s when a
dynamical formulation is used.

Figure 3 shows the real part of h2 as a
function of ocean thickness, Hocean. This
figure clearly shows that a dynamic for-
mulation leads to a resonance when
Hocean ∼0.1 km. We found that this thick-
ness is close to the thickness that results
in a phase velocity of gravity waves vgrav

similar to the phase velocity of degree 2
tidal deformation vtidal. The phase veloc-
ity for a shallow surface water wave is
given by vgrav ≈

√
gHocean when curva-

ture is neglected. The phase velocity of
degree 2 tidal deformation, on the other
hand, is defined as vtidal = 𝜔orb∕k, where
𝜔orb is the orbital frequency and k is
wave number, respectively. The wave
number k for degree 2 deformation is
given by k = (n+1∕2)∕r, where n(= 2) is
spherical harmonic degree [Dahlen and
Tromp, 1998]. Consequently, a resonant
thickness Hres is given by

Hres ≈
r2𝜔2

orb

(n + 1∕2)2 g
≈ 81.8 m. (18)

Here we use the central radius of the
ocean (i.e., a depth of 145 km) of
2493 km and a gravitational accelera-
tion at the ocean center ≈ 1.25 m s−2.
A more exact result is given in equation
(124) of Beuthe [2015b]. While the res-
onance occurs when Hocean ∼ Hres, an
increase in the real part of h2 can be
seen even if the ocean thickness is sev-
eral kilometers (Figure 3). Thus, a static
formulation would give a sufficiently
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accurate result only if Hocean ≫ Hres; a
dynamical formulation should be used
unless Hocean ≫ Hres. We note that cal-
culations using a dynamical formulation
are stable even if Hocean ≫ Hres, indicat-
ing that a wider range of parameters
values can be adopted when the
dynamic formulation is used.

Figure 3. Real part of the degree 2 Love number h2 as a function of
ocean thickness for a Ganymede model. The vertical dashed lines
indicate the resonant thickness Hres ≈ 81.8 m estimated from
equation (18). (a) A dynamic formulation results in a tidal resonance
when Hocean ∼ Hres while (b) a static formulation leads to no resonance.
Under this model configuration, a static formulation leads to accurate
results only when Hocean > 1 km, much thicker than Hres.

The above result highlights the fact that
a static formulation implicitly requires
that the subsurface ocean is much
thicker than the resonant thickness.
This assumption, however, may not be
satisfied for small icy satellites of giant
planets. Figure 4 shows the resonant
thickness Hres for major icy satellites, cal-
culated from equation (18). Here we use
the surface values of r and g, and the
radius and mean density are taken from
Chen et al. [2014]. The resonant thick-
ness Hres for Mimas, Tethys, Miranda, and
Enceladus is ∼588, 457, 298, and 253 m,
respectively. Although the minimum
ocean thickness that gives sufficiently
accurate results under a static formula-
tion depends on properties of satellites
(i.e., orbital period, gravity, and physi-
cal properties), the above results imply
that such a critical thickness would be
at least 10 km for these satellites. This
result suggests that an application of
a dynamic formulation may lead to a
result different from previous studies

using a static formulation for thin ocean models [e.g., Roberts and Nimmo, 2008; Shoji et al., 2014], though a
detailed comparison with such studies is beyond the scope of this study.

Figure 4. Resonant thickness Hres as a function of orbital period for major
satellites of giant planets. Equation (18) is used. Values are taken from
Chen et al. [2014].

We note that a resonant behavior
caused by an internal liquid layer
is similar to the free core nutation
[e.g., Van Hoolst et al., 2003], though
the time evolution of rotational axis is
not considered in this study. Further
discussions will be given in section 5.

4. Effect of a Lid on Tidal
Resonance

The results presented above suggest
that the solid lid plays an important
role in the tidal response of the ocean
and the body as a whole. Below we
investigate the effect of varying lid
parameters on the resonant configura-
tion. In order to emphasize the effect
of the solid lid on resonance, we use a
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Table 2. Model Parameters for Enceladus

Symbol Quantity Value Unit

rs Radius of Enceladus 252.1 km

𝜌m Mean density 1610 kg m−3

𝜌H2O Density of the shell and ocean 1000 kg m−3

𝜇s Rigidity of the shell 4.00 GPa

𝜇m Rigidity of the mantle 6.78 GPa

𝜔orb Orbital frequency 5.31 × 10−5 rad s−1

simple three-layer Enceladus model, consisting of a solid shell, a liquid ocean, and a solid mantle (Figure 1,
right). For our nominal case, an incompressible limit (i.e., 𝜆 → ∞) is assumed. The icy shell and mantle are
assumed to be a Maxwell viscoelastic body and a Hookean elastic body, respectively. Free parameters are the
viscosity 𝜂ice of the top icy shell, the thickness Dshell of the top shell, and that Hocean of the subsurface ocean.
Table 2 summarizes parameter values, mainly adopted from Matsuyama [2014]. The density of the mantle is
determined from the mean density (i.e., 1610 kg m−3) and its radius, which is a function of Dshell and Hocean. In
what follows, we refer to situations in which the effect of the lid is ignored as a “surface ocean” case.

Figure 5 shows the absolute value of the gravitational Love number for degree 2, k2, as a function of ocean
thickness. Here k2 is calculated from k2 = y5(rs)∕Φt−1. This figure demonstrates the effect of a lid overlying an
ocean on the tidal resonance. First, no sharp increase in |k2| is found when 𝜂ice is extremely low (i.e., 1011 Pa s)
and Dshell is large. Under this condition, the icy shell behaves as a thick fluid layer. As a result, the “effective
ocean thickness” of the satellite is given by Dshell + Hocean, which is not small. Consequently, even if Hocean

Figure 5. Absolute value of the degree 2 gravitational Love number k2 as a function of ocean thickness for an
incompressible Enceladus model. Results for a shell viscosity 𝜂ice of (a) 1011 Pa s, (b) 1013 Pa s, (c) 1015 Pa s, and (d)
1017 Pa s are shown. The dotted curves are results for a surface ocean case (Dshell = 0 km). The vertical dashed lines
indicate the resonant thickness Hres ≈ 253 m estimated from equation (18). A resonance occurs if the shell thickness
Dshell is small and/or the shell viscosity 𝜂ice is high. Note that extremely high values of |k2| seen at resonant
configurations are physically unlikely and violate the small-amplitude deformation assumption.
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Figure 6. Absolute value of the degree 2 gravitational Love
number k2 as a function of ocean thickness for an
incompressible Enceladus model. Results for a shell viscosity 𝜂ice
of 1015 Pa s and a shell thickness Dshell of 1 km are shown. The
vertical dashed lines indicate the resonant thickness
Hres ≈ 253 m estimated from equation (18).

is small, a resonance does not occur (Figures 5a
and 5b). For the case of 𝜂ice = 1013 Pa s with a
large Dshell, no increase in |k2| is seen because of
large dissipation in the shell.

In contrast, if Dshell is small (i.e., <1 km) or 𝜂ice

is moderate or high (i.e., ≥ 1015 Pa s), there is
always one resonant configuration (Figures 5c
and 5d). For a given Dshell, an increase in 𝜂ice leads
to a sharper resonant peak. This is because an
increase in 𝜂ice corresponds to an increase in the
quality factor Q of the body. In addition, for a
given 𝜂ice, an increase in Dshell leads to a smaller
resonant ocean thickness. Because of nonzero
rigidity, an icy shell acts as a membrane resisting
deformation. This is similar in principle to sur-
face tension acting at a liquid surface. The phase
velocity vgrav of gravity waves taking surface ten-
sion into account is given by

vgrav ≈

√
gHocean

(
1 + T

𝜌g
k2

)
, (19)

where T is surface tension [e.g., Lamb, 1932]. Here we use a shallow water approximation: tanh(kH) ≈ kH
(kH≪1). This equation may be compared with equation (123) of Beuthe [2015b]. Equation (19) indicates that in
order to produce the same vgrav, an increase in T requires a decrease in Hocean. In a similar fashion, in our results
the effect of this “membrane” increases with increasing Dshell; a thicker lid requires a thinner ocean thickness
for a resonance to occur. Similarly, this membrane effect increases with increasing rigidity 𝜇s of a shell, leading
to a thinner resonant ocean thickness as shown in Figure 6. The amount of this shift in the resonant thickness
can be very large, even by a factor of >100.

We also investigated the effect of compressibility. Figure 7 shows results for different values of the first Lamé’s
parameter for the shell (𝜆s) and illustrates that an increase in 𝜆s leads to a smaller resonant thickness and a

Figure 7. Absolute value of the degree 2 gravitational Love
number k2 as a function of ocean thickness for a compressible
Enceladus model. Results for a shell viscosity 𝜂ice of 1015 Pa s, a
shell thickness Dshell of 1 km, and a shell rigidity 𝜇s of 4 GPa are
shown. The vertical dashed lines indicate the resonant thickness
Hres ≈ 253 m estimated from equation (18).

smaller value of the Love number (k2). This
trend is similar to that seen in Figure 6 where
we change rigidity (𝜇s), supporting a surface
tension interpretation for the effect of a lid on
tidal resonance.

5. Discussion

As discussed in section 4, as the role of the lid
becomes more important, the resonant ocean
thickness becomes smaller. This indicates that
our estimate of the resonant thickness using
equation (18)—which ignores lid effects—
should be considered as the upper limit. We
found only one resonant configuration (i.e., one
ocean thickness) for a given set of shell prop-
erties. In contrast, previous studies with more
complex ocean dynamics, but neglecting the
role of the lid, found several resonant configura-
tions [Tyler, 2011; Matsuyama, 2014]. The major
difference between such studies and our sur-
face ocean case is whether Coriolis forces are
taken into account or not. In order to examine
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Figure 8. Energy flux due to tidal dissipation in the ocean as a
function of ocean thickness for an incompressible Enceladus
model. Results are obtained using a code developed by
Matsuyama [2014], though Coriolis forces are removed. A
quality factor Q for the ocean of 100 is adopted. The vertical
dashed lines indicate the resonant thickness Hres ≈ 253 m
estimated from equation (18). The solid and dashed curves
show results including and excluding the effects of ocean
loading, self-attraction, and deformation of the solid regions,
respectively. The resonant thickness for the former and the
latter is ∼430 m and ∼270 m, respectively.

the effect of Coriolis forces, we calculate tidal dis-
sipation in a surface ocean using the same code
as Matsuyama [2014] but removing the effect
of Coriolis forces. Results for an incompress-
ible Enceladus model are shown in Figure 8.
As expected, only one resonant configuration
is found, for an ocean thickness ∼430 m. This
value is similar to the one found here for a sur-
face ocean case, ∼420 m (Figure 5). We note that
this resonant thickness differs from the largest
resonant thickness for the case with Coriolis
forces taken into account, ∼570 m [Matsuyama,
2014]. Consequently, Coriolis forces introduce
several minor resonant configurations and shift
the major resonant configuration. Figure 8 also
shows the result of removing the effects of Cori-
olis forces, ocean loading, self-attraction, and
deformation of the solid regions. In this case, the
resonant ocean thickness is ∼270 m, similar to
the value estimated from equation (18),≈253 m.
This is consistent with the fact that this equation
does not include such effects.

A recent study considers the tidal response on
icy satellites with dynamical subsurface oceans
[Beuthe, 2015b]. Assuming a rigid mantle and
an incompressible subsurface ocean, nonnegli-

gible inertial effects are found for Europa (unless a subsurface ocean is thicker than 20 km) but not for Titan. His
model also found a resonance around Hocean ∼0.1 km, which is consistent with our results; again, equation (18)
gives a good approximation for the resonant configuration as long as the effect of a solid lid is not
extremely large.

It should be noted that the extremely large values of Love numbers near resonance are physically unlikely.
As a subsurface ocean becomes thinner and approaches a resonant configuration, the amount of tidally pro-
duced heat would increase. Such an increase in the amount of heat would lead to a thickening of the ocean; it
is therefore unlikely that the ocean thickness reaches the resonant thickness. On the other hand, large defor-
mation of a shell overlying a thin ocean may result in the base of the shell locally coming into contact with
the solid layer beneath. Equally, spatial variations in the equilibrium shell thickness owing to variations in tidal
heating [e.g., Nimmo et al., 2007] may cause local grounding of the shell. Neither situation is considered in this
study since a global ocean is assumed. If the shell is in contact with the lower solid layer at some locations,
the tidal response will likely be quite different [e.g., Tobie et al., 2008; Běhounková et al., 2012].

In addition, even if a subsurface ocean is global, lateral variations in physical properties in the shell may have
an effect on tidal response; in such cases, components other than degree 2 would appear [e.g., A et al., 2014]. To
quantify the effect of such lateral variations, 3-D modeling is necessary. Furthermore, large-amplitude defor-
mation of the kind which arises near resonance violates the assumption of small-amplitude deformation on
which our analysis is based.

Nevertheless, these caveats do not imply that tidal resonance is not important. As noted above, a large
increase in tidal heating rate is expected near the resonant configuration. Such a strongly varying tidal heat-
ing rate is more likely to give rise to periodic behavior than smoothly varying cases. For example, a case in
which no heating at all occurs until the tidal stresses exceed a threshold produces strongly periodic behavior
[Stevenson, 2008]. Thus, tidal resonance may not only quantitatively but also qualitatively affect the evolution
of icy satellites possessing a subsurface ocean [Tyler, 2008; Matsuyama, 2014].

While Coriolis forces, ocean loading, self-attraction, and deformation of the solid regions do affect the major
resonant configuration, the difference in terms of resonant ocean thickness are small (i.e., by a factor <∼ 2)
[Matsuyama, 2014]. In contrast, as shown above, the effect of a lid can be much larger; the resonant thick-
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ness can differ by a factor of >100 if the lid is thick and stiff, demonstrating the importance of a lid on tidal
resonance. Nevertheless, our model may overestimate the effect of a lid since we assume that the shell has a
uniform viscosity structure for simplicity. The viscosity of an icy shell of actual satellites, however, would vary
largely with depth [e.g., Hussmann et al., 2007]; the viscosity of the near-surface layer would be very high while
that of the base of the shell would be much lower. Consequently, the thickness of a stiff lid may be much thin-
ner than that of the icy shell. In addition, we assume a zero viscosity ocean; tidal dissipation in the ocean is not
modeled in this study. In an actual body with a subsurface ocean, however, tidal dissipation occurs in both
the solid and liquid parts. Further studies considering a depth-dependent viscosity structure and combining
tidal dissipation both in the solid and liquid would be important to better understand the role of tidal heating
on planetary evolution.

6. Conclusion

In this study, we revisited the formulation for tidal deformation based on viscoelasto-gravitational theory and
examined inertial effects. We found that a dynamic ocean formulation leads to a resonance while a static ocean
formulation does not. This resonance would be important for a satellite with a thin (i.e., <1 km) subsurface
ocean since it would lead to significantly enhanced tidal heating in the solid lid. The static ocean formula-
tion, which has been used in previous tidal dissipation studies, would give an accurate Love number only if
the ocean thickness is larger than the resonant thickness by a factor of several 10 (or >1 km). The resonant
configuration strongly depends on properties of the shell; a higher shell viscosity leads to a sharper resonant
configuration, and a thicker or more rigid shell leads to a thinner resonant ocean thickness. For tidal dissi-
pation in the ocean, addition of the Coriolis force introduces additional minor resonant configurations and
slightly shifts the major resonant configuration. This shift is much smaller than that caused by the presence
of a thick or rigid shell. These results highlight the importance of the effects of a solid lid for tidal dissipation
in icy satellites with subsurface oceans.

Appendix A: Governing Equation System Under the Incompressible Limit

The equation system for a solid layer is given by

dy1

dr
= −2

r
y1 +

n(n + 1)
r

y3, (A1)

dy2

dr
=
(
−𝜔2𝜌 + 12𝜇̃

r2
−

4𝜌g
r

)
y1 +

n(n + 1)
r

(
𝜌g − 6𝜇̃

r

)
y3 +

n(n + 1)
r

y4 +
(n + 1)𝜌

r
y5 − 𝜌y6, and (A2)

dy4

dr
=
(
𝜌g
r

− 6𝜇̃
r2

)
y1 −

1
r

y2 +
{
−𝜔2𝜌 + 4n(n + 1)𝜇̃

r2
− 2𝜇̃

r2

}
y3 −

3
r

y4 −
𝜌

r
y5. (A3)

The others remain the same (see equations (4)–(9)).

The equation system for a liquid layer is given by

dy1

dr
=
{
−2

r
+

n (n + 1) g
𝜔2r2

}
y1 −

n (n + 1)
𝜔2𝜌r2

y2 −
n (n + 1)
𝜔2r2

y5. (A4)

The others remain the same (see equations (11)–(14)).

Appendix B: Initial Values

The differential equation systems are solved numerically assuming solutions of a homogeneous sphere for
initial values yi at a small value of r.
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B1. Solid Core
The solution for spheroidal deformation of a compressible homogeneous solid sphere is given by a super-
position of three solutions [e.g., Love, 1911; Takeuchi and Saito, 1972]. Because only the ratios between yi are
needed to be specified, we can use

y1 = − f
r

zn(x), (B1)

y2 = −𝜌f𝛼2k2 + 2𝜇̃
r2

{
2f + n(n + 1)

}
zn(x), (B2)

y3 = 1
r

zn(x), (B3)

y4 = 𝜇k2 − 2𝜇̃
r2

(f + 1)zn(x), (B4)

y5 = 3𝛾f − h
(

n𝛾 − 𝜔2
)
, (B5)

y6 = 2n + 1
r

y5 (B6)

for the first two sets of solutions and
y1 = n

r
, (B7)

y2 = 2𝜇̃n(n − 1)
r2

, (B8)

y3 = 1
r
, (B9)

y4 = 2𝜇̃(n − 1)
r2

, (B10)

y5 = n𝛾 − 𝜔2, (B11)

y6 = 2n + 1
r

y5 −
3n𝛾

r
(B12)

for the third solution where

k2
± = 1

2

⎧⎪⎨⎪⎩
𝜔2 + 4𝛾

𝛼2
+ 𝜔2

𝛽2
±

√(
𝜔2

𝛽2
− 𝜔2 + 4𝛾

𝛼2

)2

+ 4n(n + 1)𝛾2

𝛼2𝛽2

⎫⎪⎬⎪⎭ , (B13)

zn(x) =
xjn+1(x)

jn(x)
, x = kr, f (k) = 𝛽2k2 − 𝜔2

𝛾
, h = f − (n + 1), (B14)

𝛼2 = 𝜆̃ + 2𝜇̃
𝜌

, 𝛽2 = 𝜇̃

𝜌
, 𝛾 = 4𝜋

3
G𝜌, (B15)
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and jn is the spherical Bessel function of degree n. Negative k2 values are accepted [see Love, 1911, chapter
VII]. The factor zn(x) is calculated from the recursion formula,

zn−1(x) =
x2

(2n + 1) − zn(x)
, (B16)

and the calculation should be start from a sufficiently large n [Takeuchi and Saito, 1972]. The initial value of
zn(x) for a large n is given by zn(x) = x2∕(2n + 3).

When the medium is incompressible (i.e., 𝜆 → ∞; 𝛼2 → ∞), we find that f (k+) → 0 and f (k+)𝛼2k2
+ = n(n+1)𝛾 .

Consequently, the first set of initial values is given by

y1 = 0, (B17)

y2 = n(n + 1)
{
−𝜌𝛾 + 2𝜇̃

r2
zn(x)

}
, (B18)

y3 = 1
r

zn(x), (B19)

y4 = 𝜇̃

{
𝜔2

𝛽2
− 2

r2
zn(x)

}
, (B20)

y5 = (n + 1)
(

n𝛾 − 𝜔2
)
, and (B21)

y6 = 2n + 1
r

y5. (B22)

Similarly, we find that 𝛼2k2
− → 𝜔2 + 4𝛾 − n(n + 1)𝛾2∕𝜔2, f (k−) → −𝜔2∕𝛾, z(x) → 0. Consequently, the second

set of initial values is given by
y1 = 0, (B23)

y2 = 𝜌

{
𝜔2

𝛾

(
𝜔2 + 4𝛾

)
− n(n + 1)𝛾

}
, (B24)

y3 = 0, (B25)

y4 = 0, (B26)

y5 = (h − 3)𝜔2 − nh𝛾, and (B27)

y6 = 2n + 1
r

y5. (B28)

The third set of initial values remains the same.

B2. Liquid Core (𝝁 → 0)
In this case, two sets of initial values for yi (i = 1, 2, 5, 6) are required. We find that the form

y1 = − f
r

zn(x), (B29)

y2 = −𝜌
{

f
(
𝜔2 + 4𝛾

)
+ n(n + 1)𝛾

}
, (B30)

y5 = 3𝛾f − h
(

n𝛾 − 𝜔2
)
, and (B31)

y6 = 2n + 1
r

y5 (B32)
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for the first set of initial values and

y1 = n
r
, (B33)

y2 = 0, (B34)

y5 = n𝛾 − 𝜔2, and (B35)

y6 = 2n + 1
r

y5 −
3n𝛾

r
(B36)

for the second set of initial values, respectively. Here

k2 = 1
𝛼2

{
𝜔2 + 4𝛾 − n(n + 1)𝛾2

𝜔2

}
, f = −𝜔2

𝛾
, h = f − (n + 1), 𝛼2 = 𝜆∕𝜌. (B37)

When 𝛼2 → ∞, we find k2 → 0. Thus, for the first set of initial values, y1 = 0, and the others remain the same.
The second set of initial values also remains the same.

Appendix C: Profiles of y Functions

Here we provide an example of profiles of y functions. Results for the top 2 km of an incompressible Enceladus
model are shown in Figures C1 (real part) and C2 (imaginary part). Calculation conditions are 𝜂ice =1015 Pa s,
𝜇s = 4 GPa, Dshell = 1 km, and 10−2 ≤ Hocean ≤ 1 km. Absolute values of y increase as the ocean thickness

Figure C1. Profiles of the real part of y functions for an incompressible Enceladus model. Results for the top 2 km,
𝜂ice = 1015 Pa s, 𝜇s = 4 GPa, Dshell = 1 km, and 10−2 ≤ Hocean ≤ 1 km are shown. y functions are normalized by tidal
potential Φt . The horizontal dashed lines indicate the boundary between the top ice shell and a subsurface ocean. The
left arrows in legends indicate the resonant ocean thickness (≈140 m). Large absolute values particularly for y3 in the
ocean can be seen when Hocean is close to the resonant ocean thickness.
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Figure C2. Profiles of the imaginary part of y functions for an incompressible Enceladus model. Calculation conditions
are the same as adopted in Figure C1.

Hocean approaches the resonant ocean thickness (≈140 m). In particular, y3 in the ocean becomes very large
at the resonant configuration. This result suggests that tidal dissipation in the ocean as well as friction at the
solid-liquid boundary would lead to a large heat production when the ocean thickness is close to the resonant
configuration.
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