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We present the variational formulation of a quantitative phase-field model for isothermal low-speed
solidification in a binary dilute alloy with diffusion in the solid. In the present formulation, cross-coupling
terms between the phase field and composition field, including the so-called antitrapping current, naturally arise
in the time evolution equations. One of the essential ingredients in the present formulation is the utilization of
tensor diffusivity instead of scalar diffusivity. In an asymptotic analysis, it is shown that the correct mapping
between the present variational model and a free-boundary problem for alloy solidification with an arbitrary
value of solid diffusivity is successfully achieved in the thin-interface limit due to the cross-coupling terms and
tensor diffusivity. Furthermore, we investigate the numerical performance of the variational model and also its
nonvariational versions by carrying out two-dimensional simulations of free dendritic growth. The nonvariational
model with tensor diffusivity shows excellent convergence of results with respect to the interface thickness.

DOI: 10.1103/PhysRevE.93.012802

I. INTRODUCTION

The phase-field model is a powerful tool for simulating
microstructural evolution processes during a variety of phase
transformations in materials [1–4]. This is a diffuse interface
approach in which the microstructural evolution is character-
ized by the spatiotemporal variation of order parameter(s) and
one can thereby avoid explicitly tracking the position of the
interface. Since the phase-field model is phenomenological,
it needs to be validated by mapping onto a free-boundary
problem of interest, i.e., a sharp-interface model. In early
works, the mapping was achieved in the sharp-interface limit,
where the interface thickness W was made extremely small
[5,6]. However, a huge computational cost is required when a
small value is assigned to W. Hence, it is common practice to
employ a value of W several orders of magnitude larger than the
realistic interface thickness. In this regard, however, standard
phase-field models suffer from anomalous interface effects [7],
the magnitudes of which scale with W. Under the unphysically
magnified interface effects, the solutions of standard models
are strongly dependent on the choice of W and it is very difficult
to utilize them in a quantitative manner.

This serious problem was resolved by Karma and Rappel
[8,9] for solidification in a pure substance with equal thermal
diffusivity in the solid and liquid (symmetric model). They
put forward a model based on a new procedure called the
thin-interface limit, in which W is taken to be smaller than
any physical length appearing on the microstructural scale but
much larger than the realistic thickness. This model is called
the quantitative phase-field model, in that the calculated result
has quantitative meaning. Furthermore, the quantitative phase-
field model was developed for solidification in a binary dilute
alloy with negligible diffusivity in the solid, i.e., the one-sided
case [10,11]. In the one-sided case, correction of the solute
diffusion flux inside the interface is necessary to eliminate a
discontinuity in the chemical potential. This correction was
successfully realized by introducing an additional diffusion

flux called the antitrapping current into the diffusion equation
[10]. The quantitative model with the antitrapping current has
been extended to deal with more general cases [12–14] and
such models are increasingly utilized for investigations of
solidification microstructures [15–24].

Although the early quantitative models for alloy solidifica-
tion [10–14] were limited to the one-sided case, quantitative
phase-field models for alloy solidification with diffusion in the
solid (two-sided case with asymmetric diffusion) have recently
been developed by one of the present authors [25–28]. In the
standard models, abnormal interface effects arise, as described
above, and the elimination of each interface effect imposes
constraints on the function forms employed in the model. In
the one-sided case, all constraints are readily satisfied due
to the antitrapping current. Since the antitrapping current is
proportional to the velocity of the interface vn, it works for
the correction of interface effect proportional to vn which is
related to the discontinuity of the chemical potential. In the
two-sided case with asymmetric diffusion, however, it is very
difficult to satisfy all constraints because some of the interface
effects are not proportional to vn but to the diffusion flux.
Therefore, the antitrapping current is not helpful in satisfying
the constraints related to these interface effects [29]. In our
previous attempt for the quantitative modeling, we introduced
a parameter relating the diffusion flux to vn and regarded it
as a parameter controlling the numerical accuracy [25]. The
validity of this model was investigated in detail by carrying out
convergence tests of the simulation results with respect to W.
This model exhibits excellent numerical performance [25–28].
In particular, it has recently been shown that an accurate result
(i.e., a well-converged result) for steady-state dendritic growth
can be obtained with this model as long as W is smaller than
the curvature radius of the dendrite tip divided by a constant
of order unity [30].

Note that all the above quantitative phase-field models
correspond to nonvariational models. More specifically, the
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antitrapping current does not naturally appear in the conven-
tional variational formulation from a thermodynamic potential
and it has been added in a phenomenological manner. Although
the quantitative models provide an effective alternative to the
sharp-interface model, their theoretical basis has not been
well established as a method of nonequilibrium thermody-
namics. Also, one must rely on a rather heuristic approach
in constructing new quantitative models for phenomena of
interest. In this regard, progress has been made in recent
works [31,32], where the variational formulation of a model
with the antitrapping current was attempted for isothermal
single-phase solidification in binary alloys. The isothermal
single-phase solidification is described by the spatiotemporal
evolutions of the phase-field φ, which is a nonconserved
variable distinguishing between the solid and liquid, and
the composition field c. In the usual variational formulation,
the time evolution of φ (c) is made dependent only on the
functional derivative of the thermodynamic potential with
respect to φ (c) by introducing the related transport co-
efficient, Mφφ(Mcc). In Refs. [31,32], on the other hand,
the contributions of kinetic cross-coupling between c and
φ were introduced into the time evolution equations using
nondiagonal transport coefficients Mφc = Mcφ Then it was
postulated that the kinetic cross-coupling introduced into
the c equation is the origin of the antitrapping current. In
this approach, an additional cross-coupling term appears in
the φ equation to maintain the thermodynamic consistency
(Onsager’s symmetry). This procedure formally provides a
way of achieving the variational formulation of the model
with the antitrapping current.

In the early works [31,32], the importance of the additional
coupling term in the φ equation was not clearly comprehended
in the light of quantitative modeling. However, it has recently
been reported by Boussinot and Brener that all the abnormal
interface effects in the two-sided case can be eliminated with
the aid of both cross-coupling terms, i.e., the antitrapping
current term and the additional cross-coupling term in the φ

equation [33]. In this approach, it is not necessary to employ
a parameter relating the diffusion flux to vn as in Ref. [25].
Hence, they presented a way of constructing a quantitative
phase-field model for the two-sided case with asymmetric
diffusion in a variational manner. However, the following three
issues remain to be addressed. The first issue is that the ratio of
solid diffusivity to liquid diffusivity is limited to a small range
in order to satisfy the condition of positive definiteness of the
entropy production in the model of Ref. [33]. More specifically,
low values of the diffusivity ratio are thermodynamically
prohibited in this model. Such a limitation must always
be taken into account when the antitrapping current term
is formulated on the basis of kinetic cross-coupling with
nondiagonal transport coefficients. The next issue is that they
focused on the solidification in a pure substance. Hence,
the variational formulation remains to be tackled for alloy
solidification with two-sided diffusion. Although the model
for alloy solidification bears some similarity to that for a pure
substance, modeling of alloy solidification is more involved
because it requires special care regarding solute partition in
the interface and the dependence of the interfacial property
on the composition field [34]. The final issue is the numerical
accuracy of the model. Numerical testing of the variational

model for the two-sided case has so far only been carried
out for the one-dimensional solidification of a thin film [33]
and for the relaxation process of a weakly perturbed interface
toward its flat equilibrium [35]. However, abnormal interface
effects are generally salient in dendritic growth. It is very
important to investigate the numerical accuracy of the model
in detail, because the correct mapping between the phase-field
model and the sharp-interface equations does not immediately
guarantee high numerical accuracy of the model, as discussed
for the symmetric case [9].

In this paper, we tackle these issues. We show a new way
of achieving the variational formulation for a quantitative
phase-field model for binary alloy solidification with an
arbitrary value of solid diffusivity, proposing an approach that
distinctly differs from those in previous attempts [31–33].
It is demonstrated that the cross-coupling terms including
the antitrapping current naturally emerge in the time evo-
lution equations without introducing nondiagonal transport
coefficients. Therefore, our approach is exempt from the
restriction on the diffusivity ratio originating from the positive-
definiteness of the entropy production. One of the essential
ingredients in the present formulation is the utilization of
tensor diffusivity instead of scalar diffusivity. Furthermore, we
investigate the numerical performance of the models in detail
by means of convergence tests. The variational model and
its nonvariational versions are examined in two-dimensional
simulations of free dendritic growth.

The organization of this paper is as follows. The variational
formulation of the quantitative phase-field model is demon-
strated in Sec. II. Then the mapping between the present
model and the sharp-interface equations is demonstrated in
the asymptotic analysis in Sec. III. Section IV is devoted
to expositions of the variational and nonvariational models
for dendritic growth, and their numerical performance is
investigated in Sec. V. We provide conclusions in Sec. VI.

II. VARIATIONAL FORMULATION

A. Free-energy functional

In this study, we focus on isothermal solidification in a
binary alloy consisting of A and B atoms. The phase-field φ

takes the values of +1 in a solid and −1 in a liquid and it
continuously changes from +1 to −1 inside the solid-liquid
interface. The compositions of the B atom in the solid and
liquid are denoted by cs and cl , respectively. The chemical
free-energy density of the bulk is expressed as

f bulk
i (ci) = ciμB,i + (1 − ci)μA,i, (2.1)

where subscript i specifies the solid with i = s and the liquid
with i = l. μA,i and μB,i are the chemical potentials of A and
B atoms, respectively, in phase i. These are expressed as

μA,i = f bulk
i − ci

∂f bulk
i

∂ci

, (2.2a)

μB,i = f bulk
i + (1 − ci)

∂f bulk
i

∂ci

, (2.2b)

where

∂f bulk
i

∂ci

= μB,i − μA,i = �μi. (2.3)
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�μi is called the diffusion potential of phase i in this paper.
In the present formulation, the thermodynamic quantities in
the solid and liquid are separately defined and the interface is
treated as a mixture of two phases. This is called the two-phase
approach [34,36,37]. The local composition c is defined as a
mixture of cs and cl and is given by

c = 1 + g̃(φ)

2
cs + 1 − g̃(φ)

2
cl, (2.4)

where g̃(φ) is a function of φ satisfying g̃(±1) = ±1 and
g̃′(±1) = 0. The prime denotes the derivative with respect to
φ throughout this paper, unless otherwise stated. Using these
variables, the Ginzburg-Landau-type free-energy functional is
defined as

F =
∫ [

ε2

2
(∇φ)2 + ω · fdw(φ) + 1 + g̃(φ)

2
f bulk

s (cs)

+ 1 − g̃(φ)

2
f bulk

l (cl)

]
dv, (2.5)

where ε is the gradient energy coefficient, fdw(φ) is the double-
well potential exhibiting minima at φ = ±1, and ω is a constant
related to the potential height. This free-energy functional has
been commonly employed as a starting point of phase-field
modeling in previous studies [25,36].

Note that the free-energy functional given by Eq. (2.5)
depends on two composition fields, viz., cs and cl . In Ref. [36],
these fields are made mutually dependent by introducing the
condition that the diffusion potentials of the solid and liquid
are equal, i.e., �μs = �μl . This condition determines the
partition of the solute. Then the time evolution equations for
φ and c (or cl) are obtained from the functional derivatives of
F. In doing so, the steady-state profile of φ can be decoupled
from c, which yields the interface properties independent of
c. This approach was first proposed by Kim, Kim, and Suzuki
(KKS model) [36]. A different approach has recently been
developed on the basis of the grand potential functional instead
of the free-energy functional [34,38]. In these approaches,
importantly, the antitrapping current does not appear and
therefore it is added in a phenomenological manner to remove
the abnormal interface effects after the derivation of the
time evolution equations. These models are classified as
nonvariational models. In the present variational formulation,
on the other hand, the antitrapping current naturally arises in
the diffusion equation. Furthermore, an additional coupling
term emerges in the time evolution equation of φ. Due to these
terms, the present model can exactly recover the free-boundary
problem for the two-sided case with an arbitrary value of
solid diffusivity in the thin-interface limit. The key to the
present approach lies in the treatment of the condition of equal
diffusion potential. In the early works [34,36,37], the equality
of the diffusion potential (or the constant solute partition
relation) was imposed on the thermodynamic potential (free-
energy functional or grand potential functional). However, this
condition should essentially be realized as a result of the
kinetics as described later. Hence, in the present study, we
first treat cs and cl as independent variables in the free-energy
functional of Eq. (2.5) and derive the diffusion fluxes for both
cs and cl separately, followed by an expression for the time
evolution equation of c. Then the condition of equal diffusion

potential is introduced into the time evolution equations for φ

and c. This procedure, which should be more natural than the
conventional procedure for the derivation of time evolution
equations, turns out to be the variational formulation of the
quantitative phase-field model for the two-sided case. The
details are described below.

B. Time evolution equations

We consider the temporal change in the free-energy func-
tional F [Eq. (2.5)] by taking φ, cl , and cs as the independent
fields. The relation given by Eq. (2.4) is taken into account by
employing the Lagrange multiplier � [39–42]. To be more
specific, the time derivative of the following functional is
considered:

F̄ = F +
∫

�

[
1 + g̃(φ)

2
cs + 1 − g̃(φ)

2
cl − c

]
dv, (2.6)

which is given as

dF̄

dt
=

∫ [
δF

δφ
∂tφ + δF

δcs

∂t cs + δF

δcl

∂t cl + 1

2
�(cs − cl)g̃

′∂tφ

+�
1 + g̃

2
∂tcs + �

1 − g̃

2
∂tcl − �∂tc

]
dv. (2.7)

The time evolution equations for φ, cs , and cl are formulated
on the basis of Eq. (2.7) as detailed below.

According to the conservation law, the time change of c is
given by

∂tc

	
= −∇ · �J , (2.8)

where 	 is the molar volume which is a constant in this study
and �J is the diffusion flux for c. In order to describe the time
evolution of ci , we define the diffusion flux for ci which is
denoted by �Ji . According to Eq. (2.4), �J must be equal to �Ji

in phase i, while �J depends on both �Js and �Jl in the interface.
Hence, �J is defined as

�J = 1 + g̃

2
�Js + 1 − g̃

2
�Jl. (2.9)

The time evolution of ci should obey the conservation law in
phase i when the interface does not move. However, a certain
amount of composition should inflow or outflow into ci field
due to the solute redistribution inside the moving interface. In
other words, a source term is necessary for the time evolution
of ci . Therefore, the following form for the time evolution
equation of ci is considered in this study:

∂tci

	
= −∇ · �Ji + 1

2
g̃′∂φt

�ci

	
, (2.10)

where �ci should be a function of φ and ci . The second term
on the right-hand side of Eq. (2.10) corresponds to the source
term associated with the solute redistribution in the moving
interface. This term is necessary for an appropriate description
of the time evolution of ci [43], while this term is not important
in the final form of the present model.

Equations (2.8)–(2.10) are substituted into Eq. (2.7) and,
after the divergence theorem is applied, the diffusion fluxes
at the surface of the system are neglected without loss of
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generality. Then Eq. (2.7) is rewritten as

dF̄

dt
=

∫ {[
δF

δφ
+ g̃′

2

(
(c̃s − c̃l)�+ �cs

δF

δcs

+ �cl

δF

δcl

)]
∂tφ

+
[
∇ δF

δcs

+ 1

2
�g̃′∇φ

]
· 	 �Js +

[
∇ δF

δcl

− 1

2
�g̃′∇φ

]

·	 �Jl

}
dv. (2.11)

where

c̃s = cs + 1 + g̃

2
�cs (2.12)

and

c̃l = cl − 1 − g̃

2
�cl. (2.13)

Now ∂tφ and �Ji should be defined in such a way that
dF̄ /dt � 0 is satisfied. Note that the first term in the integrand
of Eq. (2.11) should contribute to the free-energy dissipation
only inside the interface. Hence, ∂tφ should be zero in the bulk
phases. This condition will be satisfied without special care in
the present modeling as is the usual case. Similarly, �Js should
contribute to the free-energy dissipation only in the bulk solid
and interface and not in the liquid because �Js in the liquid
is a fictitious flux. This can be achieved when �Js vanishes in
the liquid. As discussed later, however, when the condition of
equal diffusion potential is realized, the relation between cs and
cl is established in the interface and also in both bulk phases.
Then �Js changes in accordance with �Jl and should be finite
even in the liquid, while this fictitious flux does not affect the
solidification process. Similarly, �Jl should generally be finite
in the solid. This is the situation implicitly but commonly
involved in the two-phase approaches. Therefore, in order for
the second (third) term in the integrand of Eq. (2.11) not to
contribute to the free-energy dissipation in the liquid (solid),
the following form is considered:

dF̄

dt
=

∫ (
− (∂tφ)2

Mφ

− 1 + p(φ)

2

(	 �Js)
2

Ms

− 1 − p(φ)

2

(	 �Jl)
2

Ml

)
dv, (2.14)

where Mφ , Ms , and Ml correspond to the transport coefficients.
These are positive constants called the mobility for the corre-
sponding fields in this paper. p(φ) is a function of φ satisfying
p(±1) = ±1. From a comparison between Eqs. (2.11) and
(2.14), we find that

∂tφ = −Mφ

(
δF

δφ
+ g̃′

2

(
(c̃s − c̃l)� + �cs

δF

δcs

+�cl

δF

δcl

))
, (2.15a)

1 + p(φ)

2
�Js = −Ms

	

(
∇ δF

δcs

+ 1

2
�g̃′∇φ

)
, (2.15b)

1 − p(φ)

2
�Jl = −Ml

	

(
∇ δF

δcl

− 1

2
�g̃′∇φ

)
. (2.15c)

It should be pointed out that kinetic cross-coupling between
the diffusion fluxes and φ is not introduced in Eq. (2.15).
This is in contrast to the early work by Boussinot and Brener
[33]. In addition, although Ms and Ml are defined as scalar
quantities in Eq. (2.15), the present variational formulation can
be accomplished by making them tensors inside the interface.
As described later, dF̄ /dt � 0 can be satisfied by employing
the tensor mobility. Note that the tensor form provides higher
degrees of freedom in describing diffusion in the interface than
the scalar form does. In principle, the variational formulation
should be carried out by taking such high degrees of freedom
into account and, if necessary and possible, the form of the
mobility should be simplified later on the basis of the correct
mapping between the model and a free-boundary problem of
interest. However, to avoid complexity, the mobility for ci

is treated as a scalar quantity in this subsection. The tensor
mobility is introduced in Sec. II C.

The Lagrange multiplier � is determined on the basis of the
conservation law, i.e., Eq. (2.8). First, by substituting Eqs. (2.9)
and (2.10) into Eq. (2.8), one finds

1
2 g̃′(c̃s − c̃l)∂φt = − 1

2	g̃′∇φ · ( �Js − �Jl). (2.16)

The substitution of Eqs. (2.15b) and (2.15c) into Eq. (2.16)
yields

1

2
�g̃′ = (c̃s − c̃l)

1 − p(φ)2

2(Ms(1 − p(φ)) + Ml(1 + p(φ)))|∇φ|2 ∂tφ

−mr (φ)∇ δF

δcs

∇φ

|∇φ|2 + (1 − mr (φ))∇ δF

δcl

∇φ

|∇φ|2 ,

(2.17)

where

mr (φ) = Ms(1 − p(φ))

Ms(1 − p(φ)) + Ml(1 + p(φ))
. (2.18)

Then the time evolution equation for φ is given as
1

M̃φ(φ,cs,cl)
∂tφ

= ε2∇2φ − ωf ′
dw(φ) − g̃′

2
�Gdriv(φ,cs,cl)

+ (c̃s − c̃l)

[
mr (φ)(1 + g̃(φ))

2|∇φ| ∇(�μs(cs))

− (1 − mr (φ))(1 − g̃(φ))

2|∇φ| ∇(�μl(cl))

] ∇φ

|∇φ| , (2.19)

where
1

M̃φ(φ,cs,cl)

= 1

Mφ

+ 1

2|∇φ|2
(c̃s − c̃l)2

(
1 − p(φ)2

)
Ms(1 − p(φ)) + Ml(1 + p(φ))

(2.20)

and

�Gdriv(φ,cs,cl)

= [c̃sμB,s + (1 − c̃s)μA,s − (c̃sμB,l + (1 − c̃s)μA,l)]

−mr (φ)(c̃s − c̃l)(�μs − �μl). (2.21)

Let us make some comments on these equations. First, |∇φ|
appears in the denominators in Eqs. (2.19) and (2.20). Hence,
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these expressions appear to be valid only inside the interface
where |∇φ| �= 0. However, this restriction will be removed
after p(φ) is explicitly defined later. Also, it is important
to note that the term proportional to ∇φ/|∇φ| in Eq. (2.19)
corresponds to the new coupling term which does not appear
in conventional variational formulations. This term plays an
important role in achieving the correct mapping as detailed
later. Next, it is worth noting the meaning of the free energy
given by Eq. (2.21). The free energy in the square brackets
on the right-hand side of Eq. (2.21) corresponds to the change
in the total free energy during crystallization of the solid having
the composition c̃s . On the other hand, the term multiplied by
mr (φ) in Eq. (2.21) represents the change in the free energy
associated with the diffusion across the interface required to
change the composition from c̃l to c̃s by the exchange of A and
B atoms between the solid and liquid. This diffusion across
the interface is called the trains-interface diffusion [44]. The
change in the total free energy can be formally divided into

two contributions [44,45]: the driving force for the migration
of the solid-liquid interface and the free energy dissipated due
to the transinterface diffusion [44]. Hence, when c̃i is regarded
as the composition for i phase inside the interface, �Gdriv cor-
responds to the driving force for the migration of the interface.
The roles of these free energies in the phase transformation
kinetics have been discussed by Hillert and Rettenmayr within
the framework of a sharp-interface model [44,45]. In addition,
�Gdriv with mr (φ) = 1 (mr (φ) = 0) is formally identical to
the driving force with (without) solute drag in the continuous
growth model developed by Aziz and Boettinger [46]. Note
that mr (φ) changes from 0 to 1 as φ changes from 1 to −1. Also,
m(φ) ≈ 0 (≈1) is realized regardless of the value of φ when
Ms � Ml(Ms � Ml).

Next, by substituting Eq. (2.17) into Eqs. (2.15b) and
(2.15c), the following expressions for the diffusion flux are
obtained:

1 + p(φ)

2
	 �Js = −Ms(1 − mr (φ))

(
1 + g̃(φ)

2

∂�μs

∂cs

∇cs + 1 − g̃(φ)

2

∂�μl

∂cl

∇cl

)

−Ms(1 − mr (φ))(�μs − �μl)
g̃′

2
∇φ−(c̃s − c̃l)

mr (φ)(1 + p(φ))

2|∇φ| ∂tφ
∇φ

|∇φ| , (2.22a)

1 − p(φ)

2
	 �Jl = −Mlmr (φ)

(
1 + g̃(φ)

2

∂�μs

∂cs

∇cs + 1 − g̃(φ)

2

∂�μl

∂cl

∇cl

)

−Mlmr (φ)(�μs − �μl)
g̃′

2
∇φ + (c̃s − c̃l)

(1 − mr (φ))(1 − p(φ))

2|∇φ| ∂tφ
∇φ

|∇φ| . (2.22b)

The time evolution equations for ci can be obtained by substituting Eq. (2.22) into (2.10). Furthermore, by substituting
Eqs. (2.22a) and (2.22b) into Eq. (2.8), one finds

1 + g̃(φ)

2
∂tcs + 1 − g̃(φ)

2
∂tcl = ∇ ·

(
Mc(φ)

1 + g̃(φ)

2

∂�μs

∂cs

∇cs + Mc(φ)
1 − g̃(φ)

2

∂�μl

∂cl

∇cl

+ 1 − g̃(φ) − 2mr (φ)

2|∇φ| (c̃l − c̃s)∂tφ
∇φ

|∇φ| +Mc(φ)
g̃′(φ)

2
(�μs −�μl)∇φ

)
+ (cl − cs)

g̃′(φ)

2
∂tφ,

(2.23)

where

Mc(φ)−1 = 1 + p(φ)

2
Ms

−1 + 1 − p(φ)

2
Ml

−1. (2.24)

In recent works [40–42], similar variational formulations
were carried out within the framework of two-phase approach
by utilizing the Lagrange multiplier, while the purposes,
details of the procedures, and thus the final forms of the time
evolution equations differ from those discussed in this paper.
The mobility for φ given by Eq. (2.20) is quite similar to
those in the models of Refs. [40,42]. In Ref. [40], the time
evolution equations for cs and cl were derived on the basis
of the condition that the total composition is conserved inside
a reference volume. The important feature in the model of
Ref. [40] from the point of view of the present purpose is that
the time evolution of ci leads to reduction of the difference in
the diffusion potential between the liquid and solid. This effect
is taken into account in a source term of the time evolution
equation of ci in Ref. [40]. On the other hand, this effect
appears in the diffusion flux in our model, more specifically

in the second term on the right-hand side of Eq. (2.22). Also,
an important feature in our model which does not exist in the
previous two-phase approaches is the last terms of Eqs. (2.22a)
and (2.22b). These terms give rise to the diffusion flux due to
the solute redistribution during the migration of the interface
and they are the origin of the antitrapping current as detailed
below.

We formulated the time evolution equation for the com-
position as Eq. (2.23). In our model, there are two inde-
pendent compositions, viz., two of cs , cl , and c. Hence,
it is necessary to formulate a time evolution equation for
another composition field. However, in the present approach,
instead of directly describing the time change of another
composition field, we introduce a condition relating cs to
cl . As discussed by Baker and Cahn [47], although it would
be thermodynamically possible to crystallize a solid having
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any composition as long as a driving force exists, the
driving force becomes largest when the following relation is
satisfied:

�μs = �μl = �μc. (2.25)

That is, the diffusion potentials of both phases are the
same. The realization of this condition during the migration
of a solid-liquid interface can be understood in the light of
the transinterface diffusion process [44,45]. The transinterface
diffusion induces the solute redistribution at the interface and
this process is usually sufficiently fast to produce a solute
partition almost independent of the velocity of the interface
[44]. The effects of transinterface diffusion on the kinetics
become pronounced when the velocity of the interface is

extremely high and the length scale of the diffusion layer
accordingly becomes comparable to the interface thickness,
i.e., the solute trapping emerges. Except for such high-speed
solidification, the time scale for the relaxation of the free
energy associated with transinterface diffusion is usually much
smaller than that for the migration of the interface [44]. In
other words, the free energy multiplied by mr (φ) in Eq. (2.21)
vanishes under usual solidification conditions. Equation (2.25)
exactly represents this condition. As already mentioned in
Sec. II A, this is the condition of equal diffusion potential first
introduced in the KKS model [36]. However, it is stressed that
this condition is usually introduced into the thermodynamic
potential. In the present approach, this condition is introduced
into the time evolution equations (2.19) and (2.23). Then
Eq. (2.19) is rewritten as

1

M̃φ

∂tφ = ε2∇2φ − ω · f ′
dw − g̃′

2
�Gdriv + (c̃l − c̃s)

∂�μl

∂cl

[
1 − g̃ − 2mr

2|∇φ|
]
∇cl · ∇φ

|∇φ| , (2.26)

where

�Gdriv = μA,s − μA,l = f bulk
s − f bulk

l − (cs − cl)�μc. (2.27)

Also, Eq. (2.23) is rewritten as

1

2
(1 + kc − (1 − kc)g̃)∂tcl = ∇ ·

(
Dlq(φ)∇cl +

[
1 − g̃ − 2mr

2|∇φ|
]

(c̃l − c̃s)∂tφ
∇φ

|∇φ|
)

+ (cl − cs)
g̃′

2
∂tφ, (2.28)

where cs is now related to cl as cs = kcl with the partition coefficient k determined by the condition of Eq. (2.25) and kc is given
as

kc = ∂cs

∂cl

= ∂�μl

∂cl

/
∂�μs

∂cs

. (2.29)

q(φ) in Eq. (2.28) is related to the diffusivity as

q(φ)−1 = 1 + p(φ)

2

(
kcDs

Dl

)−1

+ 1 − p(φ)

2
, (2.30)

where Di = Mi∂�μi/∂ci, q(+1) = kcDs/Dl and q(−1) = 1.0.
For convenience, these time evolution equations are slightly modified by considering the equilibrium property of the interface.

According to Eq. (2.26), in two-phase equilibrium (∂tφ = 0, �Gdriv = 0, and ∇cl = 0), the spatial profile of φ across the interface
satisfies the relation

|∇φ| =
√

2fdw(φ)

W
, (2.31)

where W = ε/ω1/2 is the measure of the interface thickness in this model. The solid-liquid interfacial energy γ is given by

γ = IωW, (2.32)

where I = ∫ +1
−1

√
2fdw(φ)dφ. Using these relations, Eqs. (2.26) and (2.28) can be respectively rewritten as

τ̃ (φ,cl)∂tφ = W 2∇2φ − f ′
dw − g̃′

2

IW

γ
�Gdriv + ac(φ)

W 2

γ
(c̃l − c̃s)

∂�μl

∂cl

∇cl · ∇φ

|∇φ| , (2.33)

1

2
(1 + kc − (1 − kc)g̃)∂tcl = ∇ ·

(
Dlq(φ)∇cl + aAT (φ)(c̃l − c̃s)W∂tφ

∇φ

|∇φ|
)

+ (cl − cs)
g̃′

2
∂tφ,. (2.34)

where τ̃ (φ,u) = (ωM̃φ(φ,cl))−1 and

ac(φ)

I
= aAT(φ) = 1 − g̃(φ) − 2mr (φ)

2
√

2fdw(φ)
. (2.35)
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It is important to point out that the term proportional to ac(φ)
in Eq. (2.33) and the one proportional to aAT(φ) in Eq. (2.34)
naturally emerge in the present formulation, while they do not
appear in the conventional variational formulation. The term
proportional to aAT(φ) is formally identical to the antitrapping
current usually introduced in a nonvariational manner. As will
be discussed later, the term proportional to ac(φ) also plays an
important role in the quantitative description of solidification
for the two-sided case with asymmetric diffusion.

Until now, �ci is not explicitly defined. One can find a
constraint on �ci required for the correct mapping between
the present model and a free-boundary problem of interest
by carrying out an asymptotic analysis. Although the detail
is not explained, the present model correctly recovers the
free-boundary problem for isothermal solidification in a dilute
binary alloy [Eqs. (3.1)–(3.3)] in the thin-interface limit by
defining the following function z(φ, cl) as an odd function
of φ,

z(φ,cl) = 1 + g̃(φ)

2
�cs(φ,cl) + 1 − g̃(φ)

2
�cl(φ,cl). (2.36)

This is not a stringent constraint on �ci and one may find an
appropriate form of �ci to satisfy this constraint. Moreover, it
was found in the asymptotic analysis that instead of explicitly
defining the form of �ci , one can achieve the correct mapping
by assuming z(φ, cl) = 0. Then c̃l − c̃s in Eqs. (2.33) and
(2.34) is replaced by cl − cs . Hence, all the contributions of
the source terms vanish, making the model mathematically
more tractable. In the following discussion, we employ the
condition z(φ, cl) = 0 for the sake of simplicity. The meaning
of the condition z(φ, cl) = 0 can be understood by substituting
Eq. (2.36) with z(φ, cl) = 0 into Eq. (2.16) and also by
utilizing the relations ∂tφ = −vi · ∇φ and ∇φ = −n|∇φ| [48]
where vi and n are the velocity vector of the moving interface
and the unit normal vector of the interface, respectively. It
yields

vi · n(cl − cs) = −	( �Js − �Jl) · n. (2.37)

This is quite similar to the mass conservation law at
the sharp interface (Stefan condition). Namely, the condition
z(φ, cl) = 0 yields the constraint that the Stefan-like condition
given by Eq. (2.37) is satisfied at each spatial point inside the
interface. This condition is also utilized in Ref. [42]. It will
be demonstrated in Sec. III that the present model with this
constraint successfully recovers the free-boundary problem in
the thin-interface limit.

In this study, we employ the dilute solution approximation
to simplify the following exposition and to facilitate a compar-
ison between the present and early models [10,11,25]. Details
of the dilute solution approximation are given in Appendix A.
Equation (2.33) is rewritten for a dilute solution as

τ̃ (φ,u)∂tφ = W 2∇2φ − f ′
dw(φ) − a1g

′(φ)
W

d0
u

+ ac(φ)
W 2

d0
∇u · ∇φ

|∇φ| , (2.38)

where a1 = I/J with the constant J determined from the
function g̃(φ), g(φ) is given as (J/2)g̃(φ) and d0 is the chem-
ical capillary length. u is the dimensionless supersaturation

defined as

u = cl − ce
l

ce
l (1 − k)

. (2.39)

Furthermore, Eq. (2.34) is given as

1

2
(1 + k − (1 − k)h(φ))∂tu

= ∇ ·
(

Dlq(φ)∇u + aAT (φ)(1 + (1 − k)u)W∂tφ
∇φ

|∇φ|
)

+ (1 + (1 − k)u)
h′(φ)

2
∂tφ, (2.40)

where h(φ) = g̃(φ) is employed for the sake of convenience
in the later discussion. The time evolution equations (2.38)
and (2.40) are formally identical to those in the quantitative
phase-field model for the two-sided case with asymmetric
diffusion derived in a nonvariational manner [25], except for
the existence of the last term in Eq. (2.38). In the nonvariational
formulation in Ref. [25], it was necessary to introduce a
parameter relating the diffusion flux to the interface velocity
(χ in Eq. (5.1) of Ref. [25]) that was regarded as a parameter
controlling the convergence of the results. Such an additional
parameter does not need to be introduced in the present model
due to the term with ac(φ) in Eq. (2.38). Details are discussed
in Sec. III.

As described above, Di is defined as Di = Mi∂�μi/∂ci ,
which is formally identical to the Einstein relation indicating
that the diffusivity is proportional to the mobility. It is known
that the Fick’s law with a constant diffusivity is always valid
in the dilute solutions [49]. Therefore, Mi is proportional to
ci in the dilute solution approximation because ∂�μi/∂ci =
RT/(	ci) (Eq. (A4) in Appendix A). The diffusivity Di is a
constant in the following discussion.

C. Tensor diffusivity

As will be explained later, the model derived in Sec. II B
can be successfully mapped onto a sharp-interface model for
low-speed solidification in the thin-interface limit. However,
it leads to an unphysical situation that τ̃ in Eq. (2.38) takes
negative values. In the thin-interface limit, the correction for
the interface effects imposes constraints on φ dependence of
the diffusivity in both normal and parallel directions to the
interface. Although such constraints can be satisfied with the
scalar diffusivity, its dependence on φ causes negative values
of τ̃ . As mentioned in Sec. II B, a tensor form of the mobility
provides higher degrees of freedom in describing diffusion
in the interface than does the scalar form. Hence, the scalar
form is regarded as a special case of the tensor form and it
should be reasonable to adopt the tensor form in the variational
formulation. In this study, to resolve the above-mentioned
problem, the diffusivity is redefined as a tensor quantity inside
the interface. The tensor diffusivity was proposed in a recent
work [50] for the description of the diffusion process with
a static interface and has not been extended to deal with a
moving interface. This is due to a difficulty arising from the
coupling between φ and u in the driving force term in the φ

equation. In the present model, the new term with ac(φ) in the
φ equation provides a means of overcoming this difficulty.
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The mobility Mi for ci is redefined as the following tensor
inside the interface:

Mi(φ) = Mi,⊥�n ⊗ �n + Mi,//(φ)(1 − �n ⊗ �n), (2.41)

where �n = −∇φ/|∇φ|, ⊗ represents the dyadic product, 1 is
the unit tensor, and Mi,⊥ and Mi,//(φ) are the mobility for ci in
the directions normal and parallel to the interface, respectively.
Here the relations Mi,//(±1) = Mi(±1) = Mi,⊥ should be
satisfied for the mobility to be scalar in the bulk phase. Mi,⊥
and Mi,//(φ) are positive and hence Mi(φ) is a positive-definite
tensor. By substituting Eq. (2.41) into Eq. (2.15), the time
evolution equations for φ and u are derived in the same manner
as explained in Sec. II B, which is not repeated here. The final
forms of the time evolution equations for φ and u are exactly
the same as Eqs. (2.38) and (2.40), respectively, except for
the following points. Ms and Ml appearing after Eq. (2.15)
in Sec. II B are replaced by Ms,⊥ and Ml,⊥, respectively, and
q(φ) in Eq. (2.40) is replaced by the tensor diffusivity q(φ),
which is given as

q(φ) = q⊥(φ)�n ⊗ �n + q//(φ)(1 − �n ⊗ �n), (2. 42)

where

q⊥(φ)−1 = 1 + p(φ)

2

(
kDs

Dl

)−1

+ 1 − p(φ)

2
, (2.43)

q//(φ) = 1

Ml,⊥

× Ms,⊥Ml,//(φ)(1−g̃(φ))+Ml,⊥Ms,//(φ)(1+g̃(φ))

Ms,⊥(1−p(φ))+Ml,⊥(1+p(φ))
.

(2.44)

Here kDs = kMs,⊥∂�μs/∂cs and Dl = Ml,⊥∂�μl/∂cl . Ds

and Dl are independent of u, similarly in Sec. II B. Note
that q⊥(+1) = q//(+1) = q(+1) = kDs/Dl and q⊥(−1) =
q//(−1) = q(−1) = 1.

III. THIN-INTERFACE ASYMPTOTICS

In this section, we carry out asymptotic analysis of the
model derived in Sec. II. The analysis is almost the same
as that reported in Ref. [25]. To avoid lengthy discussion,
therefore, we briefly explain only the important points in
the present case. For clarity of exposition, fdw(φ) and
g(φ) are specified as fdw(φ) = (1 − 2φ2 + φ4)/4 and g(φ) =
[φ − (2/3)φ3 + φ5/5]. Then I and J are given as I = 2

√
2/3

and J = 16/15.
As already mentioned, we focus on isothermal solidification

in a dilute binary alloy. The sharp-interface model is repre-
sented by the following equations [25]:

∂tu = qi∇2u, (3.1)

u∗ = −κ − βvn, (3.2)

(1 + (1 − k)u∗)vn = −q(−1)∂nu|+ + q(+1)∂nu|−, (3.3)

where the spatial and temporal scales are measured in units
of d0 and d2

0/Dl , respectively. qs = q(+1)/k = Ds/Dl in
the solid, ql = q(−1) = Dl/Dl = 1.0 in the liquid and u∗ is
the dimensionless supersaturation at the interface. κ is the

curvature of the interface, β is the kinetic coefficient, and
vn is the velocity of the interface in the normal direction.
∂nu|−(∂nu|+) is the spatial derivative of u normal to the
interface taken on the solid (liquid) side of the interface.

Equations (2.38) and (2.40) are rewritten in the above-
mentioned dimensionless spatial and temporal scales as

(α + α̃(φ,u)ε)ε2∂tφ

= ε2∇2φ − f ′
dw(φ) − εa1g

′(φ)u − ε2ac(φ)∇u · �n, (3.4)

1

2
(1 + k − (1 − k)h(φ))∂tu

= ∇ · (q(φ)∇u − εaAT(φ)(1 + (1 − k)u)∂tφ �n)

+ (1 + (1 − k)u)
h′(φ)

2
∂tφ, (3.5)

where α = Dl/(W 2ωMφ) and ε = W/d0. α̃(φ,u)ε on the left-
hand side of Eq. (3.4) originates from the second term in
Eq. (2.20). From Eqs. (2.31) and (2.32) and Eqs. (A4) and
(A5) in Appendix A, α̃(φ,u) is given as

α̃(φ,u) = I (1 + (1 − k)u)

(1 − φ2)2

(
1 − p(φ)2

)
q⊥(+1)(1 − p(φ)) + (1 + p(φ))

,

(3.6)

The asymptotic analysis of Eqs. (3.4) and (3.5) is conducted
by expanding the solutions in the inner and outer regions in
powers of ε as in Refs. [11,25]. The inner region is the region
of the diffuse interface where φ varies rapidly and the outer
region is the bulk region away from the interface. The outer and
inner expansions of φ are given by � = �0 + ε�1 + ε2�2 +
· · · and φ = φ0 + εφ1 + ε2φ2 + · · · , respectively. Also, U =
U0 + εU1 + ε2U2 + · · · and u = u0 + εu1 + ε2u2 + · · · are
the outer and inner solutions for u, respectively. Equations
(3.4) and (3.5) are rewritten using a local orthogonal set of
curvilinear coordinates, the signed distance to the φ = 0 level
set r , and the arc length along the interface s. In the inner
region, furthermore, the spatial coordinate is rescaled as η =
r/ε and then the time evolution equations are given as

∂η
2φ − f ′

dw(φ) + ε[(αvn + κ)∂ηφ − a1g
′(φ)u

− ac(φ)∂ηu] + ε2
[
∂s

2φ − κ2η∂ηφ

+ α̃(φ,u)∂ηφ
] = O(ε3), (3.7)

ε−2∂η(q⊥(φ)∂ηu) + ε−1

[
vn

2
[1 + k − (1 − k)h(φ)]∂ηu

− vn

2
(1 + (1 − k)u)h′(φ)∂ηφ

+ vn∂η(aAT(φ)(1 + (1 − k)u)∂ηφ) + κq⊥(φ)∂ηu

]

− κ2ηq⊥(φ)∂ηu + κvnaAT(φ)(1 + (1 − k)u)∂ηφ

+ ∂s(q//(φ)∂su) = O(ε). (3.8)

The expansions of the solutions in the inner regions are
substituted into Eqs. (3.7) and (3.8) and they are matched
order by order in powers of ε to those in the outer region. The
matching conditions are the same as those given by Eqs. (4.10)
and (4.11) in Ref. [25].
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One first finds that Eq. (3.7) at order ε0 yields φ0(η) =
− tanh(η/

√
2) with the boundary conditions φ0 → −1 for η →

+∞ and φ0 → +1 for η → −∞. From Eq. (3.8) at order ε−2,
∂ηu0 = 0, viz., u0 = Ū0(s) is obtained. Next, Eq. (3.7) at order
ε yields the relation

Ū0 = −κ − αvn. (3.9)

This corresponds to the Gibbs–Thomson relation at the
lowest order. From Eq. (3.8) at order ε−1, u1 is described as

u1 = 1

2
(1 + (1 − k)Ū0)vn

∫ η

0
(p̂(φ0) − 1)dξ

+ q⊥(+1)∂ηU0

∣∣∣∣
− ∫ η

0

1

q⊥(φ0)
dξ + A2, (3.10)

where A2 is an integral constant and

p̂(φ0) − 1 = h(φ0) − 1 − 2aAT (φ0)∂ηφ0

q⊥(φ0)
. (3.11)

By applying the matching condition limη→±∞
[u1 − (U1|± + η∂rU0|±)] = 0 to Eq. (3.10), one obtains

(1 + (1 − k)Ū0)vn = −q⊥(−1)∂ηU0|+ + q⊥(+1)∂ηU0|−,

(3.12)

U1|± = 1
2 (1 + (1 − k)Ū0)vnF

± + q⊥(+1)∂ηU0|−Q±
⊥ + A2,

(3.13)

where

F± =
∫ ±∞

0
(p̂(φ0) ± 1)dη, (3.14)

Q±
⊥ =

∫ ±∞

0

(
1

q⊥(φ0)
− 1

q⊥(∓1)

)
dη. (3.15)

Equation (3.12) is identical to the conservation law at the
interface given by Eq. (3.3). From Eq. (3.13), it is understood
that the discontinuity of the diffusion field can be eliminated
by satisfying the relations F+ = F− and Q+

⊥ = Q−
⊥.

The solutions thus obtained so far are essentially identical to
those reported in the early work [25]. The important difference
appears in Eq. (3.7) at order ε2, which yields

a1

∫ +∞

−∞
g′u1∂ηφ0dη +

∫ +∞

−∞
ac(φ0)∂ηu1∂ηφ0dη

− vn

∫ +∞

−∞
α̃(φ0,Ū0)(∂ηφ0)2dη = 0. (3.16)

The second and third terms in Eq. (3.16) do not exist in
the previous analysis [25]. By substituting Eq. (3.10) into
Eq. (3.16), A2 is determined as

A2 = 1

2
(1 + (1 − k)Ū0)vn

(
K

J
+ Fc

I
− Pq

)

+ q⊥(+1)∂ηU0|−
(

Qg

J
+ Qc

I

)
, (3.17)

where

K =
∫ +∞

−∞
g′(φ0)

[∫ η

0
(p̂(φ0) − 1)dξ

]
∂ηφ0dη, (3.18)

Fc =
∫ +∞

−∞
ac(φ0)(p̂(φ0) − 1)∂ηφ0dη, (3.19)

Pq = 1

2

∫ +∞

−∞

1 − p(φ)2

q⊥(+1)(1 − p(φ)) + 1 + p(φ)
dη, (3.20)

Qg =
∫ +∞

−∞
g′(φ0)

(∫ η

0

1

q⊥(φ0)
dξ

)
∂ηφ0dη, (3.21)

Qc =
∫ +∞

−∞

(
ac(φ0)

q⊥(φ0)

)
∂ηφ0dη. (3.22)

Then Eq. (3.13) is rewritten as

U1

∣∣∣∣
±

= 1

2
(1 + (1 − k)Ū0)vn

(
JF± + K

J
+ FC

I
− Pq

)

+ q⊥(+1)∂ηU0

∣∣∣∣
−(

JQ±
⊥ + Qg

J
+ QC

I

)
. (3.23)

The second term on the right-hand side of Eq. (3.23)
vanishes if the following relation is satisfied:

JQ±
⊥ + Qg

J
+ Qc

I
= 0. (3.24)

Then one can obtain the Gibbs–Thomson condition up to
the first order as

U0 + εU1|± = −κ − βvn, (3.25)

where

β = α−1

2
(1 + (1 − k)Ū0)

(
JF± + K

J
+Fc

I
− Pq

)
ε. (3.26)

Finally, Eq. (3.8) at order ε0 yields the following conserva-
tion law at the interface:

(1 + (1 − k)(Ū0 + εU1|±))vn

= −q⊥(−1)(∂ηU0|+ + ε∂ηU1|+)

+ q⊥(+1)(∂ηU0|− + ε∂ηU1|−). (3.27)

This is valid as long as H+ = H− and Q+
// = Q−

// are
satisfied with H± and Q±

// respectively given as

H± =
∫ ±∞

0
(h(φ0) − h(∓1))dη, (3.28)

Q±
// =

∫ ±∞

0
(q//(φ0) − q//(∓1))dη. (3.29)

The conditions H+ = H− and Q+
// = Q−

// must be satisfied
to eliminate the abnormal interface effects associated with
surface stretching and surface diffusion, respectively.

In the above analysis, we found the requirements for the
correct mapping between the present model and the free-
boundary problem described by Eqs. (3.1)–(3.3). Specifically,
F+ = F−, Q+

⊥ = Q−
⊥, H+ = H−, Q+

// = Q−
// and Eq. (3.24)
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must be satisfied simultaneously. Actually, it is straightforward
to meet all the requirements in this variational model. First,
note that mr (φ) given by Eq. (2.18) can be written as
mr (φ) = q⊥(φ)(1 − p(φ))/2. The substitution of this relation
and fdw(φ) into Eq. (2.35) results in

ac(φ)

I
= aAT(φ)

= 1√
2(1 − φ2)

[1 − g̃(φ) − q⊥(φ)(1 − p(φ))]. (3.30)

Then, from Eq. (3.11), one finds that p̂(φ) = p(φ). There-
fore, the requirement F+ = F− can be satisfied by employing
an odd function for p(φ). This also results in Q+

⊥ = Q−
⊥, as can

be immediately understood from Eq. (2.43). Next, Qg given
by Eq. (3.21) is rewritten as (see Eq. (4.38) of Ref. [25])

Qg = −JQ±
⊥ + J

2
(F̂+ − F̂−), (3.31)

where

F̂± =
∫ ±∞

0

(
g̃(∓1)

q(∓1)
− g̃(φ0)

q⊥(φ0)

)
dη. (3.32)

In addition, by substituting ac(φ) given by Eq. (3.30) into
Eq. (3.22), Qc can be expressed as

Qc = −I

2
(F̂+ − F̂− + Q+

⊥ − Q−
⊥ + F+ − F−)

= −I

2
(F̂+ − F̂−). (3.33)

Therefore, Eq. (3.24) is actually valid without any argu-
ment. Also, H+ = H− is obviously satisfied because h(φ) =
g̃(φ). Now, due to the utilization of tensor diffusivity, we have
a degree of freedom in achieving the correct mapping, i.e., the
form of q//(φ). By using an odd function r(φ), q//(φ) is defined
as

q//(φ) = 1 + r(φ)

2
q(+1) + 1 − r(φ)

2
q(−1). (3.34)

Then Q+
// = Q−

// is satisfied. In summary, the present vari-
ational model exactly recovers the sharp-interface equations
of interest in the thin-interface limit by employing an odd
function for p(φ) and q//(φ) defined by Eq. (3.34).

The difference between the present and previous analyses
is emphasized here. In the previous model [25], a term propor-
tional to ac(φ) does not exist in the φ equation. When ac(φ) = 0
is considered, Qc = 0 in Eq. (3.24) and hence F̂+ = F̂− must
be satisfied to reproduce the Gibbs–Thomson equation (3.25).
In addition, the diffusivity is scalar in the previous model
and, therefore, q⊥(φ) = q//(φ) = q(φ). Then q(φ) should be
a function satisfying Q+

⊥ = Q−
⊥, Q+

// = Q−
//, and F̂+ = F̂−,

simultaneously. This led to a stringent restriction on the form
of q(φ) in the previous analysis, and actually a form of q(φ)
satisfying these requirements has not yet been proposed.

Finally, we discuss τ̃ in Eq. (2.38), where the necessity of
tensor diffusivity becomes apparent. Transforming Eq. (3.26),
one obtains

τ0 = 1

ωMφ

= W 2β

Dl

+ (1 + (1 − k)Ū0)λ
W 2

Dl

(a2 + a3),

(3.35)

10-5 10-3 10-1 101 103 105
10-5

10-3

10-1

101

a 2 +
 a

3

q(+1) = kDs/Dl

p(φ) = (3φ −φ3)/2
p(φ) = (15/8)(φ − (2/3)φ3 + φ5/5)

FIG. 1. Dependence of a2 + a3 on q(+1) calculated for different
forms of p(φ).

where λ = a1W/d0 and

a2 = JF± + K

2I
, (3.36)

a3 = J

2I

(
Fc

I
− Pq

)
. (3.37)

τ0 given by Eq. (3.35) is identical to the relaxation constant
in the previous quantitative models [11,25] except for the dif-
ference in the constant (i.e., a2 + a3). The effect of the kinetic
coefficient β is usually negligible in low-speed solidification
and β = 0 is assumed here. The values of a2 and a3 depend
on the choice of p(φ). Since Mφ is positive by definition,
a2 + a3 must be positive. This is a critical requirement for
the variational model to be thermodynamically consistent.
Here we consider p(φ) = (3φ − φ3)/2 and p(φ) = g̃(φ) as
examples. Note that p(φ) = φ is not appropriate because it
leads to the divergence of ac(φ) and aAT(φ) for φ →−1. The
calculated value of a2 + a3 for each case is plotted with respect
to q(+1) in Fig. 1, where the range of q(+1) > 1 is also shown
for the sake of completeness. In both cases, a2 + a3 gradually
decreases with increasing q(+1) and approaches zero as q(+1)
goes to infinity. The important point is that a2 + a3 is always
positive as long as q(+1) is finite in both cases. Therefore, Mφ

is always positive in the present model.
Next, we focus on τ̃ in Eq. (2.38), which is given as

τ̃ (φ) = (1 + (1 − k)Ū0)λ
W 2

Dl

ξ (φ), (3.38)

where

ξ (φ) = a2 + a3 + J

(1 − φ2)2

× (1 − p(φ)2)

q(+1)(1 − p(φ)) + (1 + p(φ))
. (3.39)

Here β = 0 is considered as mentioned above. In obtaining
Eq. (3.38), we replaced (1 + (1 − k)u) by (1 + (1 − k)Ū0) in
Eq. (3.6) to omit the u dependence of τ̃ for simplicity. τ̃

must be positive for an appropriate description of the motion
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FIG. 2. (a) Calculated values of a4 and a2 + a3 with respect to q(+1) for p(φ) in Eq. (3.40). (b) p(φ) for different values of q(+1).
(c) dependence of ξ (φ) on φ.

of the solid-liquid interface. It is clear that the last term of
Eq. (3.39) is always positive for any value of φ and q(+1) when
p(φ) = (3φ − φ3)/2 or p(φ) = g̃(φ) is employed. Hence, the
present variational model can be applied to solidification for
any value of q(+1).

Although tensor diffusivity is employed in the above
discussion, all the requirements for the correct mapping
can actually be satisfied by using scalar diffusivity in the
present model. In the model with scalar diffusivity, i.e.,
q//(φ) = q⊥(φ) = q(φ), a special function is required for p(φ)
to satisfy Q+

⊥ = Q−
⊥ and Q+

// = Q−
// simultaneously. This can

be constructed by using a combination of odd functions with
adjustable parameter(s). For instance, as reported by Almgren
[7], the following function can be utilized for p(φ):

p(φ) = 1
2 (3φ − φ3) + a4φ(1 − φ2)2, (3.40)

where a4 is a constant. This is an odd function and therefore
satisfies F+ = F− and also Q+

⊥ = Q−
⊥ and Eq. (3.24). The

constant a4 is determined for each value of q(+1) to satisfy
Q+

// = Q−
//. The calculated value of a4 is shown in Fig. 2(a).

Also, the calculated value of a2 + a3 is shown by the dashed
line in Fig. 2(a); a2 + a3 is always positive. Therefore, τ0 and
thus Mφ are always positive in this model. However, we face an
unphysical situation in this case. When p(φ) = (3φ − φ3)/2
or p(φ) = g̃(φ), p(φ) is a monotonically increasing function
having a maximum value of +1 and a minimum value of −1 in
the interval −1 � φ � +1. However, p(φ) given by Eq. (3.40)

is a nonmonotonic function and its maximum and minimum
values are larger than +1 and lower than −1, respectively.
This is exemplified for three different values of q(+1) in
Fig. 2(b). This behavior usually appears when a combination
of odd functions is utilized to satisfy Q+

⊥ = Q−
⊥ and Q+

// = Q−
//

simultaneously. The problem is that the last term of Eq. (3.39)
becomes negative in this case. The calculated ξ (φ) is shown
in Fig. 2(c). It can be seen that ξ (φ) becomes negative,
especially near the liquid side, in all cases and τ̃ (φ) accordingly
becomes negative. Namely, the motion of the interface cannot
be appropriately described in this case. Hence, the use of scalar
diffusivity is not suitable for variational modeling.

As demonstrated in this section, the variational model
derived in Sec. II can successfully reproduce the free-boundary
problem for solidification in a binary dilute alloy with an
arbitrary value of solid diffusivity. It is important to point
out that the reproduction of the free-boundary problem in
the thin-interface limit does not immediately guarantee high
numerical efficiency of the model, which should be examined
by carrying out convergence tests of simulation results with
respect to the interface thickness W. It has been shown in the
study on the symmetric model [9] that a nonvariational form is
actually superior to the variational form in terms of numerical
accuracy. This is also the case for the present model. One of the
obvious causes of the low accuracy is the form of q⊥(φ) given
by Eq. (2.43) where the inverse of the diffusivity in each bulk
is interpolated inside the interface, which is called inverse
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interpolation in this work. Due to this inverse interpolation,
the requirement Q+

⊥ = Q−
⊥ is easily satisfied. However, when

q(+1) decreases, the inverse interpolation results in an abrupt
change in q⊥(φ) near the liquid side in the interface. This is
numerically unfavorable.

It is important to point out that once the variational model is
constructed, it is straightforward to develop the nonvariational
forms and hence one can efficiently find the most appropriate
quantitative model in terms of computational efficiency, ease
of implementation and so forth. This point is exemplified in
this work. In the following sections, we develop nonvariational
forms of the present model and investigate their numerical
performance as well as that of the variational form by carrying
out two-dimensional simulations of free dendritic growth.

IV. VARIATIONAL AND NONVARIATIONAL MODELS
FOR DENDRITIC GROWTH

A. Time evolution equations for dendritic growth

The models for free dendritic growth are explained in this
section. As mentioned above, we focus on the variational and
nonvariational models. Note that all the models examined in
this work, except for the standard model in Sec. IV E, corre-
spond to quantitative models. Namely the anomalous interface
effects are formally eliminated in these models. fdw(φ) = (1 −
2φ2 + φ4)/4 and g(φ) = [φ − (2/3)φ3 + φ5/5] are employed
in all the models. Hereafter, we focus on the range q(+1) < 1.

By including the anisotropy of the solid-liquid interfacial
energy, Eq. (2.38) is rewritten as

τ̃ (φ,
⇀

n)∂tφ = ∇(W (
⇀

n)
2∇φ) + ∂x

(
|∇φ|2W (

⇀

n)
∂W (

⇀

n)

∂(∂xφ)

)

+ ∂y

(
|∇φ|2W (

⇀

n)
∂W (

⇀

n)

∂(∂yφ)

)
+ φ(1 − φ2)

− (1 − φ2)2λu + ac(φ)
W (

⇀

n)
2

d0
∇u · ∇φ

|∇φ| ,
(4.1)

where

W (�n) = W0(1 − 3ε4)

(
1 + 4ε4

1 − 3ε4

(∂xφ)4 + (
∂yφ

)4

|∇φ|4
)

, (4.2)

Here ε4 is a parameter characterizing the strength of
anisotropy of the solid-liquid interfacial energy with four-
fold symmetry. Although not explicitly shown, W, which is
included in τ̃ (Eq. (3.38)), also depends on �n, viz., W (�n). The
diffusion equation is given as

1

2
(1 + k − (1 − k)h(φ))∂tu

= ∇ ·
(

Dlq(φ)∇u + aAT(φ)(1 + (1 − k)u)W0∂tφ
∇φ

|∇φ|
)

+ (1 + (1 − k)u)
h′(φ)

2
∂tφ,. (4.3)

where the dependence of W on �n in the antitrapping cur-
rent is neglected for simplicity. We solved these equations

simultaneously in all the numerical tests. The forms of τ̃ (φ,
⇀

n)
and ac(φ) in Eq. (4.1) and q(φ), aAT(φ) and h(φ) in Eq. (4.3)
differ in the models as detailed below.

B. Variational model (VA model)

In the variational model, we must specify the forms
of p(φ) and r(φ). In the present study, we employed
p(φ) = r(φ) = g̃(φ). Then ac(φ) and aAT(φ) are given by

ac(φ)

I
= aAT(φ) = (1 − q⊥(φ))(1 − g̃(φ))√

2(1 − φ2)
. (4.4)

This equation yields ac(φ) = aAT(φ) = 0 in the symmetric
case [kDs = Dl and q⊥(φ) = 1]. Hence, the present model is
formally consistent with the symmetric model [8,9]. Also, note
that aAT(φ) in Eq. (4.4) is similar to that proposed in the work
on the one-sided case (Eq. (117) of Ref. [11]).

τ̃ (φ,
⇀

n) in Eq. (4.1) is given as

τ̃ (φ,
⇀

n) = (1 + (1 − k)Ū0)λ
W (�n)2

Dl

[
a2 + a3 + J

(1 − φ2)2

× (1 − g̃(φ)2)

q(+1)(1 − g̃(φ)) + (1 + g̃(φ))

]
. (4.5)

The values of a2 + a3 have already been shown in Fig. 1.
In this model, h(φ) in Eq. (4.3) is given as h(φ) = g̃(φ). This
model is hereafter called the VA model.

C. Nonvariational model with tensor diffusivity (NVT model)

As demonstrated later, the variational model in Sec. IV B
exhibits very slow convergence. In this work, we propose
nonvariational forms. It is first convenient to rewrite aAT(φ)
as

aAT(φ) = 1√
2(1 − φ2)

[1 − h(φ) − q⊥(φ)(1 − p̂(φ))]. (4.6)

Here, once h(φ) in Eq. (4.6) is defined, the same odd
function should be employed for h(φ) in Eqs. (4.3) and (3.28).
Similarly, p̂(φ) in Eq. (4.6) should be the same odd function
as that appearing in Eqs. (3.14), (3.18), and (3.19). Now we
can freely choose the forms of q⊥(φ), h(φ), p̂(φ), r(φ), and
ac(φ). In this nonvariational model, we employ h(φ) = p̂(φ) =
r(φ) = φ. It is emphasized that ac(φ) is determined in such a
way that Eq. (3.24) is satisfied as described below.

As already pointed out, one of the causes of the low
numerical accuracy in the variational model is the inverse
interpolation in q⊥(φ). In this nonvariational model, we
employed normal interpolation for q⊥(φ) as follows:

q⊥(φ) = 1
2 (1 + q(+1) − (1 − q(+1))φ) + a4(φ2 − 1), (4.7)

where a4 is determined on the basis of the requirement Q+
⊥ =

Q−
⊥. Then aAT(φ) is given as

aAT(φ) = 1

2
√

2
[1 − q(+1) + 2a4(1 − φ)]. (4.8)

In the set of these functions, all the requirements are
satisfied except for Eq. (3.24). ac(φ) is defined as

ac(φ) = a5(1 − φ2), (4.9)
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FIG. 3. Dependence of a4 and a5 on q(+1) in NVT model.

where a5 is determined on the basis of Eq. (3.24). More
specifically, a5 is calculated from

a5 = −I

2
(F̂+ − F̂−)

/∫ −1

+1

(
1 − φ2

q⊥(φ)

)
dφ0. (4.10)

The form of Eq. (4.9) is chosen so the term with ac(φ)
in the φ equation vanishes in the bulk phases. In this
model, α̃(u,φ) is neglected and, hence,τ̃ (φ,

⇀

n) = τ0(
⇀

n) =
(1 + (1 − k)Ū0)λW (�n)2(a2 + a3)/Dl . Here a2 = 0.6267 and
a3 is given by a3 = (4J/(6I 2))a5 = 0.8a5. The calculated
values of a4 and a5 are shown in Fig. 3. This model is called
the NVT model.

D. Nonvariational model with scalar diffusivity (NVS model)

As demonstrated in Sec. III, the variational model requires
tensor diffusivity because τ̃ (φ,

⇀

n) becomes negative when
scalar diffusivity is employed. However, it is possible to utilize
scalar diffusivity in the nonvariational form. We define the
scalar diffusivity as

q(φ) = 1
2 (1 + q(+1) − (1 − q(+1))p(φ)), (4.11)

where p(φ) is given by Eq. (3.40) in which a4 is adjusted to
satisfy Q+

⊥ = Q−
⊥. Due to the symmetry of p(φ), a4 for each

value of q(+1) is identical to the value shown in Fig. 2(a). Also,
similarly to the NVT model, we employed h(φ) = p̂(φ) =
r(φ) = φ. Then, aAT(φ) is given as

aAT(φ) = 1 − q(+1)

2
√

2

[
1 + 1

2
φ(1 − φ)

+ a4φ(1 − φ)
(
1 − φ2

)]
. (4.12)

For ac(φ), Eq. (4.9) is employed and a5 is given by
Eq. (4.10) in which q⊥(φ) is replaced by q(φ). τ̃ (φ,

⇀

n) is given
by τ̃ (φ,

⇀

n) = τ0(
⇀

n) = (1 + (1 − k)Ū0) × λW (�n)2(a2 + a3)/Dl

with a2 = 0.6267 and a3 = 0.8 a5. The calculated value of a5

is shown in Fig. 4. This model is called the NVS model.

E. Conventional quantitative model (CQ model)
and standard model

As described in the Introduction, our previous quantitative
model for the two-sided case exhibits excellent convergence

10-5 10-4 10-3 10-2 10-1 100
0.00

0.05

0.10

0.15

0.20

a 5

q(+1) = kDs / Dl

FIG. 4. Dependence of a5 on q(+1) in NVS model.

behavior [25,30]. Accurate results for the directional solidifi-
cation of a columnar dendrite and free dendritic growth in the
steady state can be obtained with this model as long as W is
smaller than the dendrite tip radius divided by a constant of
order unity. In other words, all the abnormal interface effects
are sufficiently suppressed in the simulation as long as the
shape and size of the microstructure are precisely described in
the framework of the diffuse interface. This model is called the
CQ model. Numerical simulations using the CQ model were
conducted and the results are employed in the discussion as
benchmark data representing sufficiently high accuracy.

In the CQ model, the scalar diffusivity q(φ) is given as

q(φ) = 1
2 (1 + q(+1) − (1 − q(+1))φ). (4.13)

Also h(φ) = p̂(φ) = r(φ) = φ and aAT(φ) is given as

aAT(φ) = 1

2
√

2
(1 − q(+1))�(χ ), (4.14)

where

�(χ ) = 1 − 1
2 (1 − q(+1))χ. (4.15)

χ is a parameter relating the diffusion flux to the velocity
of the interface. τ̃ (φ,

⇀

n) also depends on χ , as given by
τ̃ (φ,

⇀

n) = τ0(
⇀

n) = (1 + (1 − k)Ū0)λW (�n)2
a2�(χ )/Dl , where

a2 = 0.6267. Note that χ is a parameter controlling the
convergence behavior of the results. It has been shown that
χ = 0 yields reasonable accuracy and therefore we employ
χ = 0 in this work. Also note that ac(φ) = 0 in this model.

To demonstrate the importance of the antitrapping current,
the simulations were carried out by means of the CQ model
with aAT(φ) = 0. This model is called the standard model.
Note that the standard model is not a quantitative model and it
accordingly suffers from the anomalous interface effects.

V. NUMERICAL TESTS

A. Computational details

We carried out two-dimensional simulations of free den-
dritic growth in binary dilute alloys to evaluate the performance
of the models described in Sec. IV. Equations (4.1) and (4.3)
were discretized on the basis of standard second-order finite
difference formulas with a square grid spacing of �x. The
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TABLE I. Numerical values for a4 and a5 in NVT and NVS
models.

NVT model NVS model

q(+1) a4 a5 a4 a5

1.0 × 10−1 0.2778 0.3817 1.066 0.1830
1.0 × 10−2 0.2829 0.2156 0.6573 0.1273
1.0 × 10−3 0.2927 0.1161 0.4927 0.0658
1.0 × 10−5 0.2514 0.0512 0.3985 0.0145

discretization of the diffusion flux using tensor diffusivity is
explained in Appendix B. The time evolutions of the φ and u

fields were solved using a simple first-order Euler scheme.
We employed a square computational box with Lx =

Ly = 4.0 × 10−4 m, where Lx and Ly are the lengths in
the x and y directions, respectively. The zero-flux boundary
condition was applied to the edges in the x direction, while
the periodic boundary condition was employed in the y

direction. The simulations started from a small half disk
of a solid with an initial radius of 1.0 × 10−7 m at the
edge of the box (x = 0 and y = Ly/2). The simulations
were performed for model alloys with ε4 = 0.02, k = 0.5,
d0 = 2.0 × 10−8 m, and Dl = 2.0 × 10−8 m2/s. The initial
supersaturation uinitial = −0.3 was uniformly assigned to all
grid points. �x was set to �x = W0/1.3 and �t was set to
�x2/(5Dl). The values of these parameters were the same in

all the simulations. However, we varied the value of q(+1)
because the accuracy of the models was expected to depend
on it. We set q(+1) to 1.0 × 10−1, 10−2, 10−3, and 10−5. The
values of a4 and a5 in the NVT and NVS models for these
values of q(+1) are listed in Table I.

To simulate the steady-state growth of the dendrite within a
reasonable computational time, we employed a moving frame
calculation in which the computational box was moved with
a certain velocity in the x direction. Also, the simulation was
accelerated by using a TESLA K40 graphics processing unit
(GPU) [51].

B. Results and discussion

The convergence behavior calculated for q(+1) =
1.0 × 10−1 is shown in Fig. 5. Figures 5(a) and 5(b) show the
dependences of the steady-state velocity Vn and the curvature
radius of the dendrite tip ρ, respectively, on W0/d0. The
tip radius was calculated by fitting the φ = 0 contour at the
dendrite tip into a parabola. Figure 5(c) shows the error in
the Gibbs–Thomson relation �GT. Including the anisotropy
of the solid-liquid interfacial energy, the Gibbs–Thomson
relation is written as u∗ = −d0(1 − 15ε4)/ρ. Here �GT is
defined as

�GT = ui + d0(1 − 15ε4)

ρ
, (5.1)

where ui is a value of u near the interface obtained from
the simulation. In this study, ui was estimated in the solid at
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FIG. 6. Convergence behavior of (a) velocity, (b) curvature radius of dendrite tip, (c) error in Gibbs–Thomson relation defined by Eq. (5.1),
and (d) concentration in the solid near the dendrite tip with respect to W0/d0. The diffusivity ratio is q(+1) = 1.0 × 10−2.

a distance of about 1.8 × 10−7 m behind the interface where
φ ≈ 1. Figure 5(d) shows the concentration in the solid near the
interface, cs/c

e
l = k[1 + (1 − k)ui]. The data of the standard

model for W0/d0 = 86.8 are not plotted in Fig. 5 because a
stable solution cannot be obtained for this condition using
the standard model. This is also the case for q(+1) = 1.0 ×
10−2, 1.0 × 10−3, and 1.0 × 10−5 as shown later in Figs. 6–8.

It can be seen in Fig. 5 that the NVT and NVS models
exhibit rapid convergence. The accuracy of these models is
as high as that of the CQ model. The convergence of these
three models starts to break down when W0/d0 > 25, which
corresponds to W/ρc > 0.2. Here ρc is the well-converged
value of ρ and was estimated to be ρc ≈ 2.5 × 10−6 m in this
case. Within the diffuse interface approach, as discussed in
Ref. [30], accurate description of the size and morphology of
microstructures is not possible when the interface thickness
is larger than the minimum curvature radius of the interface
appearing in the microstructure. The breakdown of the conver-
gence for W/ρc > 0.2 originates from this fact. In other words,
the abnormal interface effects are sufficiently suppressed in
these models. However, the convergence of the standard model
and VA model is rather slow. In the case of the standard model,
there are large errors in the Gibbs–Thomson relation and thus
cs/c

e
l . In the case of the VA model, on the other hand, although

there are only small errors in the Gibbs–Thomson relation and
cs/c

e
l , the accuracy of Vn and ρ is quite low. Note that these

errors in Vn and ρ in the VA model are not related to the inverse
interpolation of the diffusivity. When q(+1) = 1.0 × 10−1,

q⊥(φ) does not abruptly change inside the interface. The errors
in the VA model in this case are attributed to the fact that
the fifth-order polynomial is employed for p(φ) and h(φ).
Although not demonstrated here, it was found that a model with
the inverse interpolation for q⊥(φ) and with p(φ) = h(φ) = φ,
which is a nonvariational model, shows excellent convergence.
The accuracy of such a nonvariational model is as high as that
of the NVT, NVS, and CQ models when q(+1) = 1.0 × 10−1.

The results for q(+1) = 1.0 × 10−2 are shown in Fig. 6.
The same tendency as in Fig. 5 is observed in this case. The
accuracy of the NVT and NVS models is as high as that of
the CQ model, while the accuracy of the VA and standard
models is low. In this case especially, small but noticeable
errors in the Gibbs–Thomson relation and cs/c

e
l appear in the

results of the VA model. These errors are mainly attributed
to abrupt changes in q⊥(φ) in the interface caused by the
inverse interpolation. When q(+1) is decreased to 1.0 × 10−3,
stable solutions cannot be obtained by the VA model. Figure 7
shows the results for q(+1) = 1.0 × 10−3, where the data of
the VA model are lacking for this reason. Also, in this case,
the errors in the Gibbs–Thomson relation and cs/c

e
l become

noticeable in the results of the NVS model. Such errors in
the NVS model increase as q(+1) decreases. The results for
q(+1) = 1.0 × 10−5 are given in Fig. 8. Large errors in the
Gibbs–Thomson relation and cs/c

e
l are involved in the results

of the NVS model. Hence, the NVS model does not work well
when q(+1) is less than 1.0 × 10−3. This should be ascribed to
the nonmonotonic dependences of q(φ) and aAT(φ) on φ inside
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FIG. 7. Convergence behavior of (a) velocity, (b) curvature radius of dendrite tip, (c) error in Gibbs–Thomson relation defined by Eq. (5.1),
and (d) concentration in the solid near the dendrite tip with respect to W0/d0. The diffusivity ratio is q(+1) = 1.0 × 10−3.

the interface, which stem from the nonmonotonic function
p(φ) in Eq. (3.40).

The results of the numerical test are summarized as
follows.

(1) The accuracy of the standard model is not sufficient in
all cases as compared to that of the quantitative models.

(2) The results of the VA model (especially, ρ) are not
well converged in Fig. 6. In other words, the convergence
of the VA model is very slow. Furthermore, stable solutions
cannot be obtained with this model when q(+1) is less than
10−2. Hence, the VA model is not advantageous in terms of
the numerical efficiency and the range of application.

(3) The NVT and NVS models exhibit nice performance
which is comparable to that of CQ model. But the NVT is
superior to the NVS when q(+1) is low as shown in Fig. 8.

The VA model is the most appealing from the viewpoint of
thermodynamic consistency. On the other hand, all the models
used in this section except for the standard model are reduced
to the identical free-boundary problem in the thin-interface
limit. Therefore, the effectiveness of the models as a tool
to tackle the free-boundary problem should be evaluated on
the basis of their numerical performance. As demonstrated in
Figs. 5–8, the VA model exhibits poor numerical performance.
The errors are partly attributed to the use of high-order
polynomial for p(φ) and h(φ), similar to the finding for
the symmetric model [9]. Furthermore, the errors, especially
for low values of q(+1), are associated with the inverse
interpolation in q⊥(φ). Hence, it is reasonable to observe fast

convergence for the results of the NVT model, which utilizes
p(φ) = h(φ) = φ and normal interpolation for q⊥(φ). Note
that calculations for the ac(φ) term and the tensor diffusivity
are unnecessary in the CQ model. Therefore, the CQ model
is superior to the NVT model in terms of the computational
cost. However, the numerical performance of the CQ model
essentially depends on the choice of χ . Although it has been
found that the CQ model with χ = 0 works very well for
steady-state dendritic growth [25,28,30], the optimal value
of χ must be determined by trial and error for general
cases. In this regard, the NVT model, which is free from
such an additional parameter, should be suitable for general
cases. The important point here is that once the variational
model is established, it is not difficult to find a nonvariational
form enabling easy implementation with high computational
accuracy, as demonstrated in this section.

VI. CONCLUSIONS

In this study, we have demonstrated the variational for-
mulation of a quantitative phase-field model for alloy so-
lidification in a binary dilute alloy with diffusion in the
solid. On the basis of the two-phase approach, the diffusion
fluxes for the compositions in the solid and liquid were
separately formulated from the functional derivative of the
free energy. Then these fields were made mutually dependent
by imposing the condition of equal diffusion potential. This
procedure turns out to be the variational formulation for the
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FIG. 8. Convergence behavior of (a) velocity, (b) curvature radius of dendrite tip, (c) error in Gibbs–Thomson relation defined by Eq. (5.1),
and (d) concentration in the solid near the dendrite tip with respect to W0/d0. The diffusivity ratio is q(+1) = 1.0 × 10−5.

quantitative phase-field model for the two-sided case. In this
formulation, cross-coupling terms between the phase-field φ

and composition field c including the antitrapping current term
naturally arise in the time evolution equations. The present
approach differs from the previous attempt at the variational
formulation of a quantitative model [33] in that nondiagonal
transport coefficients are not utilized in the present approach.
The advantage of the present approach from a theoretical point
of view is that there is no limitation to the diffusivity ratio
used in the model. Due to the cross-coupling terms, the correct
mapping between this model and the sharp-interface equations
can be achieved in the thin-interface limit. We have also shown
that the diffusivity should be a tensor inside the interface to
obtain a positive relaxation coefficient τ̃ . We investigated
the numerical accuracy of the variational model and its
nonvariational versions. It was found that the nonvariational
model with tensor diffusivity shows high accuracy, which is
comparable to that of the previously developed quantitative
model [25].

In future works, the present approach should be extended
to deal with solidification processes with coupled solutal and
thermal diffusion and multiphases in multicomponent alloy
systems. Although the solute partition between the solid and
liquid was made constant by imposing the condition of equal
diffusion potential in this work, it is important to model
the transinterface diffusion process within the framework
of the present approach. In doing so, the solute trapping

phenomenon can be described within the framework of the
quantitative model, which should be especially important for
the description of solidification in multicomponent alloys
consisting of fast and slow diffusing elements. Finally, it is
worth pointing out that the recent rapid progress in high-
performance computing environments has made phase-field
simulations more powerful and more effective for investigating
solidification phenomena [30,52,53]. In combination with
high-performance computing techniques, quantitative phase-
field simulations should play an increasingly important role in
the field of solidification science and engineering.

ACKNOWLEDGMENTS

This research was supported by a Grant-in-Aid for Sci-
entific Research (B) (No. 25289266) from Japan Society
for the Promotion of Science (JSPS), Japan, 22nd ISIJ Re-
search Promotion Grants from the Iron and Steel Institute of
Japan (ISIJ), the Strategic Programs for Innovative Research
(SPIRE), Ministry of Education, Culture, Sports, Science
and Technology (MEXT) and the Computational Materials
Science Initiative (CMSI), Japan. Also, this work was partly
supported by the Joint Usage/Research Center for Interdisci-
plinary Large-scale Information Infrastructures (JHPCN) and
the High Performance Computing Infrastructure (HPCI) in
Japan.

012802-17



MUNEKAZU OHNO, TOMOHIRO TAKAKI, AND YASUSHI SHIBUTA PHYSICAL REVIEW E 93, 012802 (2016)

APPENDIX A: DILUTE SOLUTION APPROXIMATION

Within the dilute solution approximation, the chemical free-
energy density of the bulk is given as [11,25]

f bulk
i = f 0

i (T ) + εici + RT

	
(ci ln ci − ci), (A1)

where f 0
i (T ) is the free-energy density of solvent A in phase

i, εi is a constant related to the internal energy and R is the gas
constant. When Eq. (2.25) is satisfied, the partition coefficient
k is given as

k = cs

cl

= ce
s

ce
l

= exp

(
− εs − εl

RT
/
	

)
, (A2)

where ce
l is the equilibrium composition in phase i. In the

equilibrium state, the driving force �Gdriv in Eq. (2.27)
vanishes. By considering this condition and by substituting
Eq. (A1) into Eq. (2.27), �Gdriv is given as

�Gdriv = RT

	
(1 − k)

(
cl − ce

l

)
. (A3)

The second derivative of Eq. (A1) with respect to ci yields

∂�μi

∂ci

= RT

	ci

. (A4)

Hence, kc defined by Eq. (2.29) is given as kc = k in the
dilute solution approximation.

The chemical capillary length d0 is defined as

d0 = γ(
ce
l − ce

s

)2
(∂�μ/∂cl)e

= γ	

ce
l (1 − k)2RT

. (A5)

By substituting Eqs. (A2)–(A5) into Eq. (2.33), one obtains

τ̃ ∂tφ = W 2∇2φ − f ′
dw − g̃′

2

IW

γ

RT

	
(1 − k)

(
cl − ce

l

)

+ aC

W 2

γ
(cl − cs)

RT

	cl

∇cl · ∇φ

|∇φ|

= W 2∇2φ − f ′
dw − g̃′

2
I
W

d0

cl − ce
l

ce
l (1 − k)

+ aC

W 2

d0
∇ cl − ce

l

ce
l (1 − k)

· ∇φ

|∇φ| , (A6)

where z(φ, cl) given by Eq. (2.36) was set to 0. Also the
substitution of Eq. (A2) and kc = k into Eq. (2.34) results in

1

2
(1 + k − (1 − k)g̃)∂tcl = ∇ ·

(
Dlq(φ)∇cl

+ aAT(1 − k)clW∂tφ
∇φ

|∇φ|
)

+ (1 − k)cl

g̃′

2
∂tφ. (A7)

Then, using the dimensionless supersaturation defined by
Eq. (2.39), one obtains Eqs. (2.38) and (2.40).

APPENDIX B: NUMERICAL METHOD FOR TENSOR DIFFUSIVITY

The differential operators in Eq. (4.3) are approximated by finite differences. q(φ) is expressed in a two-dimensional system
as

q(φ) =
(

qxx(φ) qxy(φ)
qyx(φ) qyy(φ)

)
= q⊥(φ)

(
nxnx nxny

nynx nyny

)
+ q//(φ)

(
1 − nxnx −nxny

−nynx 1 − nyny

)
, (B1)

where qkl(φ) is the k-l component of q(φ) and nk is the k component of the unit vector normal to the interface. To express the
difference equations, u and φ at node (i, j ) are denoted as ui,j and φi,j , respectively. Similarly to Ref. [50], for convenience, we
define the averaging operator on the k coordinate μ±

k as

μ±
x qkl(φi,j ) = qkl(φi±1,j ) + qkl(φi,j )

2
, (B2)

μ±
y qkl(φi,j ) = qkl(φi,j±1) + qkl(φi,j )

2
. (B3)

Also, we define the difference operator in the k direction �±
k , which is given in the x direction as an example as

�+
x ui,j = ui+1,j − ui,j

�x
, (B4)

�−
x ui,j = ui,j − ui−1,j

�x
. (B5)

Using these operators, the discrete versions of the diffusion flux are given as

∂x(qxx(φ)∂xu) = �−
x [(μ+

x qxx(φi,j ))(�+
x ui,j )], (B6)

∂y(qyy(φ)∂yu) = �−
y [(μ+

y qyy(φi,j ))(�+
y ui,j )]. (B7)

When the x and y derivatives are mixed, the following equations are employed:

∂x(qxy(φ)∂yu) = �−
x 〈μ−

y {qxy(φi,j )[μ+
x (�+

y ui,j )]}〉, (B8)

∂y(qyx(φ)∂xu) = �−
y 〈μ−

x {qyx(φi,j )[μ+
y (�+

x ui,j )]}〉. (B9)
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The unit vector normal to the interface must be calculated to obtain qkl(φ). The unit vector for qkl(φi,j ) was calculated on each
link related to the difference operation of ui,j . For instance, the following equations were employed for qkk(φi,j ) in Eqs. (B6)
and (B7):

μ+
x qxx(φi,j ) = μ+

x q//(φi,j ) + nx
i:i+1,j n

x
i:i+1,jμ

+
x (q⊥(φi,j ) − q//(φi,j )), (B10)

μ+
y qyy(φi,j ) = μ+

y q//(φi,j ) + n
y

i,j :j+1n
y

i,j :j+1μ
+
y (q⊥(φi,j ) − q//(φi,j )), (B11)

where

nx
i:i+1,j = �+

x φi,j /

√
(�+

x φi,j )
2 + (μ+

x [μ−
y (�+

y φi,j )])
2
, (B12)

n
y

i,j :j+1 = �+
y φi,j /

√
(μ+

y [μ−
x (�+

x φi,j )])
2 + (�+

y φi,j )
2
. (B13)

For qkl(φi,j ) in Eqs. (B8) and (B9), the following equations were used:

qxy(φi,j )[μ+
x (�+

y ui,j )] = (q⊥(φi,j ) − q//(φi,j ))nx
i,j :j+1n

y

i,j :j+1[μ+
x (�+

y ui,j )], (B14)

qyx(φi,j )[μ+
y (�+

x ui,j )] = (q⊥(φi,j ) − q//(φi,j ))nx
i:i+1,j n

y

i:i+1,j [μ+
y (�+

x ui,j )], (B15)

where

nx
i,j :j+1 = (μ+

y [μ−
x (�+

x φi,j )])/
√

(μ+
y [μ−

x (�+
x φi,j )])

2 + (�+
y φi,j )

2
, (B16)

n
y

i:i+1,j = (μ+
x [μ−

y (�+
y φi,j )])/

√
(�+

x φi,j )
2 + (μ+

x [μ−
y (�+

y φi,j )])
2

(B17)
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Continuum Mech. Thermodyn. (2015), doi: 10.1007/s00161-
015-0447-0

[36] S. G. Kim, W. T. Kim, and T. Suzuki, Phys. Rev. E 60, 7186
(1999).

[37] J. Tiaden, B. Nestler, H. J. Diepers, and I. Steinbach, Physica D
115, 73 (1998).

[38] A. Choudhury and B. Nestler, Phys. Rev. E 85, 021602
(2012).
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