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One of the fundamental questions for self·organization in pattern formation is how spatial periodic 
structure is spontaneously formed staning from a localized fluctuation. It is lcnown in. dissipative 
systems that splitting dynamics is one of the driving forces to create many particle.like patterns 
from a single seed. On the way to final state there occur many collisions among them and its 
scattering manner is cruci(l110 predict whether periodic structure is realized or not. We focus on the 
colliding dynamiC$ of traveling spotS ari$ing in a three-component system and study how the 
transition of scattering dynamics is brought about. It has been cJarifii."<Ithm hidden un..~table patterns 
called "scattors" and their stable and unstable manifolds direct the traffic flow of orbits before and 
after collisions. The collision process in general can be decomposed into several steps and each step 
is controlled by su\:h a scattor, in other words, a network among scallors forms the backbone for 
scattering dynamics. A variety of input.output relations comes from the complexity of the network 
as well as high Morse imJices of the !>tattor. The change of lransition manners is caused by the 
switching of the network from one st ructure 10 anOlher, and such (l change is caused by the 
singular:i tie..~ of scallOfS. We illustratc a typical e:ll.ample of the change of tr.msition caused by the 
destabilizat ion of the scallor. A new instability of the scallor brings a new destination for the orbit 
resulting in a new input·output relation, for instance. Hopf instabili ty for the scattor of peanut type 
brings an annihilation. C 2005 American II1Sli/ule of Physic.f. [001: 10.1063/1.2087127] 

One orthe fundamental queslions for self-orgalliUltlon in 
pattern rormation i~ how spatial periodic structure is 
spontaneously rormed starling from a localized Huctua· 
lion. Two things seem to be necessary to ha\'e a periodic 
pattern start ing from a localized seed, one is an intrinsic 
instablllt,' of a seed solution like self·replicatioll, Ihe 
other is tn arrange many localized patterns in order 10 
form a regular periodic pattern through interaction. 
When the seed solution is a two-dimensional tnl\'eling 
s pol, then the interaction occurs mainly through colli · 
sions besides weak and long·range interaction. To under­
stand the col1 i.sional process is a challenge not only be­
cause of its la rge defo rmation but also its illflu ent.~ over 
the global coherent dynamics, ror instance, if a nnihilation 
occun; upon collision, there is much less chance to havi: a 
regultlr periodic pattern, Whll t is discussed here i .~ to 
clariry the underlying mechunism to control the scatter­
ing dynamics among traveling spots arising in th ree­
romponenl reaction diffusion systems. It turns oul that 
hidden saddles called scallon; make a traffic cont rol of 
orbits during Ihe collision process, in fact the orbital be­
haviors ure guided by the stable and uns table manifolds 
of such scaUors, and the output can be classified by look­
Ing Itt the outcome from the SCaUor. We also discuss how 
Ihe st ructural change of the network among scatlors in­
flu ences the input·output re lations or scattering dynam­
ics. Such a change is typically caused by a new instability 

of the sean or. which eventually leads to a drastic change 
of output after collision. 

I. INTRODUCTION 

Reaction diffusion media have a variely of dynamic reo 
sponsc to spat ially localized pcrturbmion. If the medium is 
unstable to inhomogeneous perturbation, then small random 
fluctuation may cause fonnation of a periodic structure via 
Turing instabi lity, however if the medium is locally stable, 
then perturbation of finite amplitude is necessary. II is wcll 
known for excitable systems (monostable media) like 
FitzHugh-Nngurno equations that localized perturbation ex· 
ceeding the threshold creates counter· propagating traveling 
pulses in one dimension {lDl however it does not form a 
spatially periodic structure on an extended medium and an· 
nihilation occurs when they collide. Two things seem to be 
necessary to have a periodic p3nem starting from a \Qcal ized 
seed, one is an intrinsic instability of Ii seed solution like 
sclf. replication, the other is to arrange many local ized pat· 
terns in order to form II regular pattern through interactions. 
Nonannihilation property becomes imporlalll for the lallcr 
purpose. 

One of the reccnt remarkable discoveriesH is a variety 
of panicle, like patterns salisfying the above two require­
ments, namely they replicate by themselves and behave like 
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time. 1400 ~me. 55000 

FlO. l. From a si ngle spot 10 tt:tvcling "ohc~n' struc,ure whw (Jo./,,~) 
_(O.050.0,060.4<l.O) for lhe: model eq"-,,ion (1) wi lh periodi~ boondary 
condi'ion. O<Ily u componen' il sho .... n here. 

elastic objects upon collision or mcrging into a single spot 
without annihilation. One ellample is shown in Fig. I which 
solves the model equation (I) in Sec. II: Staning from a 
single spot, self-replication occurs and the newly born spotS 
travel, collide and eventually settle down to a man;:hing pe­
riodic pattern with fixed velocity as in Fig. I ((",55000). The 
final ordered pattern is maintained dynamically through the 
interaction with neighboring spots, in fact if one picks up a 
spot from the final state and sets it in a free space, then it 
proliferates again. therefore the crowded ness prevents the 
spots from self-replication and Uep5 the coherent s tructure. 

Particle-like patterns have been observed ellperimentall~ 
and llumerically, for instance, in gas-discharge syslems,,s.. 
CQ-oll idization proces.s,8-10 chemical reactions.I-4·II -14 
morphogenesis. IS and reaction-diffusion systems with a glo­
bal feedback system. '~l1 Suppose there are spatia!]y local­
ized moving patterns sueh as pulses or spots in a free space, 
A qualitative change of the pattern may occur either by 
means of interaction with other patterns through collision or 
intrinsic instability such as splitting or destruction by ilself, 
It i~ known that if a localized pattern has an intrinsic insta­
bility like self-replication. then combining with self­
destruction or annihilation process. il produces in general a 
complell dynamics like spatiotemporal chaos 'S or Sierpinski 
gaskets,19 In order to understand the whole dynamics of such 
complex patterns. a computer-aided gcometric approach is 
quite useful as was shown by Refs. 18.20. and 21. NOIe mat 
annihilation does not occur in Fig. I. so it tends to an ordered 
state asymptotically. This indicates that understanding the 
local collisional process is a key to predict the whole dynam­
ics. however the underlying mechanism 10 control such scat­
tering dynamics is very little known compared with the weak 
interaction regime 1

1.12 panty because it contains a large de­
formation in infinite dimensional space. A new viewpoint has 
been presented in Refs. 22- 24. [0 shed light on this isslle. 
namely hidden saddles called "scattors" make a traffic con­
[rol of orbits during the collision process. especially the 
above concept is lIseful to understand the transition of colli­
sion manner. for instance. from bouncing of two traveling 
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spots to annihilating each other. [n fact the orbital behaviors 
are guided by thc stable and uns table manifolds of such scat­
tors, and the output can be clnssified by lOOking at the out­
come from the seanor. There arc several related works point­
ing out the impon3nce of such saddles. see for instance, 
Refs. 25-28. 

The aim of th is paper is twofold: Firs t we extensively 
study the head-on collisions of two-dimensional (20) [ravel­
ing spots for the three-component system (I) in Sec. n and 
find scattors and their interrelations from a global bifurca­
tional viewpoint. Second we discuss how the change of net­
work StruCture of scilnors influences the scattering dynamics. 
When a scattor undergoes a new instability, then it has a new 
destination along it. which adds a new part to the cx.isting 
network and the orbit takes a different rOute as paramcters 
vary resulting in a new output after collision. 

II. MODEL 

We employ the followi ng three-component reaction dif­
fusion system in order to inves tigate the scattering dynamics. 

IIV l 
1I,=D.l1u- +/o( l - u). 

I +h w 

1'W, '" D,.Aw + h(v - w). 

where 10, ft. h. and h are all poshive parameters related to 
inflow and removal rates of u and v. and inhibition and decay 
rates for the inhibitor w. This can be reg3rded as an extended 
system of the Gray-Scon model in the sense that an inhibitor 
w is added to the [wQ-Componcnt Gray-Scoll modcl (2), 

U,= D. I1I4 - UV!+!o( l -u), 

(2) 
v, '" DJlv + uv2_ (Jo + It)u. 

The system (I) is called an activator-substrate-depleted 
model (Rcf. IS). In fact the dynamics of the kinetic pan of 
(I) behaves in a similar way to that of (2) as in Fig. 2. In the 
sequel we work in the dark-gray region of Fig. 2, Le .• 
rnonostable regime. The reason why we employ the above 
system is that (I ) is a representative model which shows 
most of the interesting scanering dynamics and transit ions 
among them in two-parameter space as well as drift bIfurca­
tion as in Fig. 3. Our approach can be applicable to ()(ber 
model systems, especially the concept of scattor in Sec. IV 
seems to work universally. 

AlIlhe computations that follow for (I) are done in the 
following setting: the system size is 4 x 2 wilh the Neumann 
boundary condition. The grid sizes are 6x=l!,y=2-6• Ilr 
=0.10 and the five-point difference approllimation is 
employed for the Laplacian. The parameters are sel 
to (D., Dv ,D ... )= (2.0X IO ..... I .O X 10 ..... S.Ox 10 .... ) and 
(Jo./2.h)=(O.05,0.50.0.20). Spectral computations for ei­
genvalues and eigenfunctions throughout the paper are done 
with 64 X 64 grids. For convenience. only profiles of the u 
component are shown throughout the figures. 
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FIG. 4. n-.. prop'g.!ing ,·. Iocily of traveling spot as a fUllCtion of 'T at j , 
=0.0640. which indicate' supercri lical bifurcalion, 

III. PHASE DIAGRAM FOR SCATTERING DVNAMICS 

Loosely speaking there are two ways of scattering dy­
namics depending on the strength of interaction; nonfusion 
and fusion manners. In the former case one can identify in· 
dividual spots throughout the collision process and hence it 
includes a weak·interaction regime. On the other hand, in the 
latter case, two spots basically merge into one body like a 
peanut or disk. There is of course an intermediate regime in 
between the above two. however it is outside the scope of the 
present study, We mainly focus on the fusion case in this 
paper and present a son of hidden controller for collision 
process called a "scaUor" and how a network among scauors 
forms a backbone structure for global scattering dynamics, 

A. Birth of traveling spot; drift bifurcation 

In order to make a scattering e:o::periment, first of all we 
need stable traveling spots in an appropriate parameter re­
gime. For the 2D case it is not at all trivial to have such a 
stable traveling spot. in fact two-component reaction diffu­
sion systems in general do not support such a moving 
pattem29 and, hence. il is necessary to introduce the third 
species to keep the shape of the spot firmly. The three­
component system (I) turns out to serve for our purpose. 
One way to obtain a traveling spot is a drift bifurcation from 
a standing spot. Stable standing spots exist in the light-gray 
region of Fig. 3 bounded by dotted (drift bifurcation) and 
broken line (Hopf bifurcation), The intersecting point DH of 
these bifurcation lines is a codim 2 singularity and needs 
more careful analysis to know the dynamics around it, which 
is not treated here and delegated to Ref. 30. A stable standing 
spot starts to move in one direction as the parameter crosses 
the drift line, for instance, T is increased, It is numerically 
confi rmed except near DH that this is a supercritical bifurca­
tion from stable standing spots to stable traveling ones as in 
Fig. 4, The velocity of the spot is increased a.~ the parameters 
leave the drift liue until other instabilities like splitting occur. 
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B, Three different outputs: repulsion (RE), fusion 
+ d rift (FD), and annihilat Ion (AN) 

Let us classify the head-on collision by its output. There 
are three qualitatively different outputs for (1); repulsion 
(RE), fusion -drift (FD). and annihilation (AN) depending on 
two parameters It and .,. as in Fig. 3. 

Since the standing spots in the light-gmy region of Fig. 3 
repel each other, the collision process for Imveling spots near 
the drift bifurcation line is expected to inherit its nature. 
namely they interact weakly and bounce off with keeping 
thei r Original shapes. This is the case fat our system except 
ncar the intersecting point DH of the drift bifurcation curve 
with the Hopf line in Fig. 3 (i.e., codim 2 point) . It is known 
that there appears an annihilation regime near such a singu­
larity even though the parameter is arbitrarily close to the 
dri ft line (note the tip of the AN regime in Fig. 3), in fac t we 
need another singularity, i.e .. saddle-node point for this, 
however we leave the discussions to Ref. 30. The RE regime 
e)(pands in the left-up direction. As the velocity of the sp<.>( is 
increased. the distance between two spots at collision be­
comes shorter. and eventually the dynamics is switched to 
the FD regime, namely two spots merge into one spa{ and 
start to dri ft in one direction as in Fig. 5(a) . 1be FD regime 
e)(pands as T is increased unt il the splitting instability 
cme rges. There is another scattering regime in the right-up 
region of Fig. 3, i.e" AN regime in which two spotS collide 
and annihilate each other. There are two ways of annihila­
tion. fusion type and nonfusion type. Along the left boundary 
of the AN regime. twO ~pots merge into one body and then 
annihilate, on the other hand. along the bottom boundary 
~xcept near lhe triple junction (TI). two spots do not merge 
and they disappear. keeping some distance and these two 
boundaries converge to TI [((, . 1') - (0.0636.73.2)]. These 
observations suggest thaI there are two categories of scatter­
ing dynamics. fusion and nonfusion types. 'Illesc two cases 
coc)( ist in the RE and AN regimes where nonfusion manner 
gradually changes into the fusion one as II is (\e(:reased. In 
this paper we focus only on the fusion case and study the 
origin of how the tip of the annihilation regime appears near 
TJ from the global bifurcation viewpoint. 

Since I I is the decay rate of the activator v, large il 
implies no patterns (ground state) and small i t fosters the 
growth of patterns. On the other hand, T represen ts how 
quickly the inhibitor w diffuses and responds 10 the change 
of the activator v. namely, for smaller T. w can block the 
propagation of v and support standing spots, however for 
larger values. the inhibitor w remains near the colliding area 
due to the slow response which enhances annihilation. 

IV. SCATTORS IN TWO-DIMENSIONAL SPACE 

In order to understand the transitions among RE, FD. 
and AN regimes, we first need 10 study the orbital behaviors 
carefully as paramelm cross such boundaries. 

An ideal head-on collision has Dl symmetry in space, 
i.e., invariant under left-right Ilnd up-down reflect ions with 
respect to the collision line. which suppresses translational 
instabilities. A merging spot in the FD region therefore is 
supposed to stand still after collision, however. as we will 

Chaos 15, 047509 (2005) 

lime _ 6000 

FIG. ~. Transition from fD w RE at .. -6J.m as T is decreased willi I, 
. 0.062$. (I) Fusioo+dri n side. {b) Rqrul$iOI'I sK!.. Punulo$h.ape i. c learly 
visible for booth case$. then lhe middle pan of il grows and becomes 0"" 

body (rcspecliv~ly. decays and sp\il1 inw twO spots) fOf (a) [tespectively. 
(b)j. n.. . ,.ociated time evoluliQn5 of the cross $eelion aloni the .. _.~il at<: 

1hown ill (~l and (d). 1M oro.t Slays longer near the peanUt sllape when lhe 
p,>rame\m are closer 10 ,he tr1lnsition f'Oint. 

see in (he following simulations, liny fluctuations or numeri­
cal errors actually cause the growth of drifting instabili ties 
after a long time. 

A. From repuls ion to fu sfon+drift 

Let us lake a closer look at the tmnsition from RE to FD 
at I:{fl' T) "" (0.0625 ,63.n 7) in Fig. 3, The orbital behavior 
on the RE (respectively, FD) side is given by Fig. 5(b) [re­
spectively, Fig. 5(a)]. Both orbits take the peanut shape after 
collis ion and stay there for a certain time, then ei ther it splilS 
or two humps fuse into one spot and drift away. Closer to the 
boundary of two regimes, a longer stay near the peanut shape 
indicates the existence of a Steady state of saddle type. in fact 
it is numerically confirmed by the NeWlon methoti that there 
e)(isls an unstable steady state of cOOim 3 the profile of 
which is very close to that of 1=6000 in Fig. S. Two of them 
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FlO. 6. Olobll b;f"rc~t;on d;'graIO f"" SC~ll"n, 1lIe bifurcation panlmeter is 
I, wi,h 7 bci"i hed os , - 63777) . The '.niul n i. rorrespoods!O tile L' 
I>OmI of the "component n... peanut bAoc~ em.nates frum ,he disk bnlnch 
by a 0 __ 0 , symmruy·breakins b,fu!e'.Mioo at 1, - 0.0590. fl.ehlvio. of 

ei,Cllvll"'$ .~ abo .rpiocot:d "onl tl>o: br.IIC ..... New pllirs of con'plu 
~i,.nnllOe$ appear and cross 'he imagi~ry ~.,'" hef{l(~ lhe limiting points. 
Tbe OI"hi~1 Howl ncar 11>0 steady $I.t.$ an: Indica,ed by arrows. "The 1I0pf 
bi furc.tion poinl of tl>o peonllt ""'''''h (~!peo tivdy. di,k branch) is to)l;a.~d 
at f, "' O.06>O (n:'pectively. O,()658) . The parameter r dncs not nff.~1 Ihe 
.~i.I. IICC of steady state,. I1enc •• llihe brancl1es rer:;iSl exc< pl Iheir slabi li­
lies os 7 il v:.ned. "The nu",\ler attached to . oeh br,,,,,h indicate. Ihat of 
uosllble ~il:"n v.I""" for no 76.643, "The Hopf bifurca,ioo po,nl (the brol:en 
line in Fi,. ) OIl the """"''' of s.uond,ng """'. (Large di,k) i. al....m inde· 
pendent of 7. as is !hi: Hopr point On Ille peanut .caUor. 

are related to the drift instabili ties, however they an: nOl 
imponant in our set[in~ due to the sy mmelI)' of head-on 
collisions. There is om: more real positive eigenvalue respoll ­
sible for the symmetry-breaking bifurcation from the disk 
pattern. In fact. by using a path-tracking software based on 
AlfTO (Ref. 31). a peanut-solution branch can be continued 
globally with respect 10 II alld it emanates from the large 
disk pattern as in Fig. 6. The computation of Fig. 6 is done in 
a quadrant (i.e., 32 X 32) of the full solut ion thanks to the 
symmetry. 

It turns out that the orbits are sorted (Jut along the un­
stable manifold associated with this real eigenvalue, in fact, 
by adding two types of penurbation to the peanut pattern, the 
outputs are consistent with the previous evolll!ional resulis as 
in Fig. 7. More precisely. depending on the sign of l for the 
pet1urbation lenn "''''"" it either grows in the middle of the 
peanll! and becomcs a One spot or decays and pinches off 
into two spots as shown in Fig. 7 whcre 0/ I stands for the 
eigenfunct ion associated with thc above real cigcnvalue [sec 
Fig. 7(a)). Again by the NeWlon method. it is confirmed that 
there ex-isIS a standing spot at this parameter value close to 
the profile of 1=7600 in Fig. 5(a) and it has only dri ft insta­
bility. It evcntually therefore starts to move in one direction 
due to small Huctuation. Note that the drifting directiOn 
should not be oblique to the COlliding di rection as in Fig. 5 
due to Ihe symmetry. For later use we call the above two 
unstable steady patteTtlS "peanut scallor"' and "large d i~k 

scallor." n:spcrtiveJy, which actually son out the orbi ts along 
their unstable manifolds. 

B. From lu s ion + drift to annihilation 

Next we consider tlK: transi tion between FD and AN at 
U=(f, ,1") '" (0.064577.90.0) in Fig. 3. The orbi ts corre-
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lime _ 200 

FlO. 1. (~) The pt:mUI scallor at lfl. "' ''(0 .Q6ll.61.n7) (i.e .• before \be 
Hopf bifurca'ion) bllS only one unSlObie ei~va.t\le ~ ,~O.O I 41 bn.idcs the 
drift iDSlabilWes. Tbe associated eigenfunction 'fI , bas Oip .ymmecry ",,,II 
respect !<) \be A- and ,..:ues as in (al with.he CrtH-' _lion along tM ~·uil 
(righ!) . RespoIls(:1 of llIe reanut seonor by .dding •• mal! penurb,alioo in the 
di"",lion of "' ,. (bl [~spectively, (ell p<>Sitive (rcsptc!i.ely, neg.tive) per· 
turbation . The"" • .., consistcn' with Ihe OO!p"" of Fig. 5. 

sponding to the parameters on both sides behave in the fol­
lowing way. For FD side. it first approaches a peanll! shape. 
then fuses into a small disk pnttern, grows up to the large 
disk. stays [here for ccrtain time, and finally drifts away [see 
Fig. 8(bj). On the other hand, for the AN side, after fusing 
into a small disk. it decays and annihilates [see Fig. 8(a)]. 
'IlIere appears a new seanor "small disk" in these processes, 
in fact it can be detected as in Fig. 8(c) and has codim 3 at 
th is parameter. Like a large disk scallor. two of them are 
drifting instabilities and the remaining posi tive real one is 
responsible for the output. namely its unstable manifold goes 
to either the large disk or the homogeneous state (annihila­
tion) as in Fig. 9. Nole that Ihe associated eigenfunction (1)1 
in Fig. 9(a) also has flip symmetry like 'It I in Fig. 7(a) . The 
overall collision process can be understood clearly once we 
notice the two-step defonnation. i.e.. peanut shape 
.... small disk. then small disk-- large disk or small disk 
..... annihilation. 
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lime. S500 .J.J. time. 6500 ------- ---
10) 

, 

lImO. 17500 

FIG. g, Tnnsilion from AN In FD ill ifl. r)-(O.064S77.90.0) U /, i, 
(lecrc:ase4. (.) Annihilalion ,id., (b) Fusion+drift sid.. (c) Profile of ~ Com­
ponenl uf Ihe small disk. Merging into oru: body. the orbit fir$t visits the 
.m.ll disk. thon il decays 10 homogeneous >!aR: (respeclively. grows into the 
large di sk and drifts away) as in (a) (u'pornvely. (bJ]. The asJOCiated time 
evolutions of the cros.s section along the -,,-axis are soown in (d) and (e). 

C. Triple junc tio n 

In vicw of the phase diagram of Fig. 3. RE-FD transit ion 
changes into FD-AN transition via the triple junction point 
TJ [(fI,T)-(0.0636.73.2)] as II is increased. A natural 
question is how the annihilation regime emerges through TJ 
and how its emergence causes the changc of transition man­
ner. especially how it introduces the two-step defonnation. 
This demands a more precise analysis for the three scatlors 
and their global interrelation; peanut , large and small disks as 
will be discussed in the next section. 
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" 0.' X 1 .0 

lime . 0 time .O 

fime . 200 lime _ 800 

AG, 9. (I) The "nSIoble symmetric eigenfunction <1> , of small disk solution 
at (f, . ., - (O,064S78,9(1.0) with the profile along the -,,·axis (righl), Th. 
eigennlue is given to ~t .O,0646. Respon"" of tbe small disk seanor by a 
&mall ponurbltioD in the direclion of <1> 1 (b) [respectively. (c)] negalive 
(respectively. positive) pcnurbation . whiCh are tonsistcnt with lhe wtpu t:s in 
Fig. 8. 

Magnifying the TJ region. it turns out Ihat the lip of Ihe 
AN region undulates as "T changes. which may be caused by 
the Hopf instabili ty of the peanut scattor discussed in the 
nellt section. 

V. GLOBAL NETWORK AMONG SCATTORS 

As obsct:Ved in the preceding sections, a hidden saddle 
called the scattor plays a role like a traffic controller of the 
orbits depending on the parnmeters. however it is still un­
clear that I'Iow the annihilation regime emerges and the input­
output relation changes from I to II as II is increased. In Ihis 
seaion we discuss this issue from the viewpoint of global 
intem:lation among the scattOfS and by careful numerics for 
the behaviors of unstable manifolds of thcm, The scenario 
for the transi tion of input-output relation from I (FD-RE) to 
II (FD-AN) is as follows. When two spots approach, they 
first fonn a profile close to that of the peanut scattQr, there· 
fore the fate of the associated orbi t is most probably con­
trolled by the largest eigenvalue of Re parts of the spectrum 
around the peanut scattor. It turns out that the largest eigen. 
value is switched from the real one 10 the complex pair as II 
is increased (see Fig. 10). therefore the destination along the 
unstable manifold associated with the most dangerous one is 
also changed from large disk to small disk. The small disk 
has a ID unstable manifold besides drift eigenvalues and one 
of the destinations is the homogeneous state (i.e .• annihila­
tion). The above crossover point is located at 11 "' 0.06421 
(slightly larger than TIl at which the annihilation regime is 
clearly visible. The orbit is basically driven by the manner of 
connection amOng scattors and its switching causes the 
change of input-output relation as depicled in Fig. II. 
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FlG. 10. I, deper.den« of ,he eigcnvalI>CS of lhe lymml:uic uruaable mode 
for ,he laflle peanu, soMi"" for T" 76.644. ",., solid ,nd ,noy tines indi<:ale 
the v,lues of the mode .m"nlling from HClpf and symmelry·breaking bifur­
cations. "'Sp<:C'ively. The crossover point i$ localed at I, " 0.064 21. 

A. Heteroclinic connection among scattors 

Recalling the RE·FD transition [ in Fig. 3, the hetero­
clinic connection between the peanul scatlor and the [argc 
disk forms a backbone for scattering dynamics. The orbits 
are sorted out like Fig. [2 depending on parnmeters. 

On the O(her hand. for the FD·AN transition H in Fig. 3. 
a small disk emerges as a new scattor and becomes a part of 
the two-step deformation at collision, namely peanut 
..... small disk-large disk or homogeneous siale. It was 

Alter Hopf 

Scanors 

Repulsion •• .... --
FIG. II . Schemalic pictu~ for ,he netwon: 0( sell",". 11> ..... seilltD1""5 are 
inside the JOIid line. lhe onlCrc:onnectloll am"", them is changed WhM the 
pe.lDUI seanor uodcrJOeS Hopf bifurc:alioa. Small disk scallOf is responsible 
for the oo:currencc of annihilation. 
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Drift to the righ.'.;~ __ -., 

n.,. '" the left 

FIG. 12. Schemalic diljl1lm 0( lhe Ilotcroelinic oooroeo;lion from peanu, 
sc.:wor 10 large di<k scaltor. 

confirmed as in Fig. 9 that the u.nstable manifold of the 
small disk goes to either the large disk or the homogeneous 

state. 
The aim of this section is to clarify the underlying struc­

ture controlling the above two transitions, especially how the 
annihi lation regime emerges through the triple junction TJ. 
In order to study the precise behaviors near TJ, we take I, 
=0.0640 for definiteness. In the neighborhood of this paramo 
eter regime. annihilation occurs typica lly in such a way that 
the orbit approaches the peanut shape, then the middle part 
of it starts to oscillate. and finally disappears. This suggests 
that some instability occurs for the peanut seatlo!" as 11 is 
increased as RE-fD regime. Moreover if a new instability 
really occurs, then we should study its implication, namely 
what we must do is the following: 

(I) Study the spectra l behavior around the peanut seauor 
along the I, allis. 

(2) Search for the destination associated with the new 
instabil ity. 

A key infonnation for the candidates comes from the 
global bifurcation diagram for seattors obtained in Sec. [V, 
here we show it in a superposed form with the phase diagram 

.. 
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FIG. 13. Superposition of 1M (f,. r) phase dilJrtm (Fil· 3) willi the I, 
bifllJCalion diagnom (Fig. 6). 
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depicted OIl the righl·hand side. The ,I1IY, solid. and broken line$ indica.:~. 
U, and '" c;omponents, respecti vely. 

as in Fig. 13. Large and small disks are conlleCted via a 
saddle-node point and the branch of peanut seauor emanates 
from the branch of large disk via a symmetry-breaking bifur­
cation. The peanut branch also turns back via a saddle-node 
point. It should be noted that there occurs a Hopf bifurcation 
on the peanut branch around 1, - 0.0630 and the triple junc­
tion TJ appears slightly before I , - 0.0640 and annihilation is 
clearly visible at I, ::0.0642. There are four steady scattors at 
11=0.0640 depicted in Fig. 14. We shall discuss in the next 
section how the interrelation among them is changed as I, is 
increased. 

B. DestabilizatIon of peanut scattor implies switching 
of Interconnections among scattors 

First we compule numerically the spectrum of the peanut 
scallor and its II dependency. There are three dangerous ei­
genvalues as depicted in Fig, 10, a complex pair of eigenval­
ues (solid line) and one positive real eigenvalue (gray line). 
The complex pair originates in the Hopf bifurcation and the 
real one in the symmetry-breaking bifurcation from the large 
disk pattern. Recall that before Hopf bifurcation (i.e .. foc 
smaller II), only the real one is dangerous and it is sufficient 
to concentrate on the fate of the unstable manifold associated 
with it as in Fig. 5. The crossover point is located around 
/1 =0.064 21, which coincides with the region when:: annihi­
lation is clearly visible. In order to understand this Switching, 
let us study the output from the peanut scattor for II 

'oJ 
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).. , =0,0]27 > )..,=0.0107 > Re()..)_0.OO6hO,0 129!1 > 10... .0.0008. (d).(e) 
TWo ciacnfunctions associ,led wilh the drift instabililies. 
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I ; 

Fusion+Dri ft 

(Small Disk - I 
Annihilation 

FIG. 16. (a) Phase diagram of responses of the peanUI $Cat1Qt" by addina' 

small perrurbalion ill the direction "1"'1+"1"'1+<'1"1 when {fl .'; 
.. (0.0640. 76.644). 1be (J«. "1.110 "II slices are depicled aJona !he f t axis. 
(b) Schematic pictu~ of the COOfICCtion orbil from peanut scallOr to di:;l:: 

5aIIOn. The IOlid and brouQ lines (~pc<;lively. gny lines) indicate lhe 
stable and unsubLe manifolds of the K"anon (respectivdy. the typical orbits 
through the DCighborbood of lbe peanUl scattor), The dcsl;lUttion of the 
0Ibi1S changes from RE 10 FD by iDCl"cuing ? See the IClI rot: details. 
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=0.0640 by adding a perturbation of linear combination of 
unstable directions. The linearized unstable eigenfunctions 
arc computed as ill Fig. IS. "'1 (respectively. 'ltl ) corre­
sponds to the largest It:al eigenvalue (respectively, the com­
plex eigenvalue). Using Ihis eigenform. we perturb the pea­
nul scattor in the form of 1!"1 'lt 1+I!"J"'3+C, C" the result of 
which is shown in Fig. 16. The horizontal line stands for the 
£1 axis and each plane for the complex perturbation e). First 
of all, depending on the sign of I!"I' the outputs are separated 
as fusion+drift (light-gray FD region for positive sign) and 
repulsion (dark.gray RE It:gion for negative sign) up to the 
resolution 10-1 in a small neighborhood of the origin. This is 
a natural consequence of thc fact that the symmetry-breaking 
real eigenvalue still dominates the dynamics at 11:::0.0640, 
however tllere appears an annihilation It:sponsc (white AN 
region) for the rest part of the plane. The orbits starting from 
near the boundary of the FO-AN transition become very 

lime _300 _.800 

FIG. t7. R~ of the peanul SC3l1or l\C~r fD-AN IrlInsitiOll via ~I 
disk seauor for (f" ~" (O.O64O , 76.667). The orbits with pann>eten taken 
aJOOJ the FD· AN boundaries ,n Fil . 16(1) approach the small dist scalI« 
doscty. The associa~ time e ..... lutiOll. of the cross sectiOll alOllI the x.axi • 
.,.., sIIown in (el and (d). 
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close 10 the small disk pattem. which causes annihilation. 
This is numerical1y con finned for the peanut scallor located 
at ifl,T) -(0.0640,76.667) as shown in Fig. 17. These ob· 
servations suggest that a new instability on the peanut branch 
leads to the new output AN. More precisely, annihilation 
occurs due to the emergence of new heteroclinicity from pea­
nut scattor to small disk. Our discussions can be summarized 
in one schematic picture of Fig. II. which shows the switch­
ing of main routeS for orbits before and after Hopf bifurca­
tion of peanut scattor. 

VI. CONCLUDING REMARKS 

Scattering dynamics between two traveling spots and the 
transition manner of input-output It:lations of collision pro­
cess are studied. We eJttend the idea developed in Refs. 
22-24 to 20 traveling spots for the thlt:e-componenl systcm 
(1), namely we find three hidden saddles (called scattors), 
peanut. large and small disks which make a traffic control of 
orbits during the collision process and the orbital behaviors 
are guided by Ihe stable and unstable manifolds of such scat· 
tors, and the output can be classified by looking at the out­
come from the seallor by adding small perturbations. We 
highlight how the structural change of the network among 
scallOrs influences the input-outputlt:lations of the scanering 
dynamics. Such a change is typically triggered by a new 
instability of the seattor, which evenlUaUy leads to drastic 
change of output as parameters vary. We illustrate this with 
global behaviors of scattor's branch and precise numerical 
spectral analysis for (1). It is clarified that Hopr instability of 
the peanut seattor is responsible for the transition from the 
nonannihiJation regime to the annihilation one. 

Although we employ a spe<:ific three-component system 
(I ), the approach presented here can be applicable for a 
wider class of reaction diffusion systems, in panicular. the 
concept of scattor and its role for scattering dynamics seem 
to be universal, in fac t Ihe following three-component system 
(3), which was proposed as a quali tative model of a gas 
discharge syslem,12 has similar scattors with the same func­
tion (see Ref. 23 for details). 

1V, =D"Au+u -u, (3) 

Ow, =D",Aw+u-w, 

wheref{u)=2u - uJ . Strong collision is a very singular event 
for traveling spots. therefore scattors emerging al Ihe transi· 
tion point of input-output relations may tum OUlto be one of 
the universal objects independent of mode) systems. 
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