e
ol

%{} HOKKAIDO UNIVERSITY
N

x‘

<\

Title Scattering of traveling spots in dissipative systems
Author(s) Nishiura, Yasumasa; Teramoto, Takashi; Ueda, Kei-Ichi
Citation Chao_s: An Interdisciplinary Journal of Nonlinear Science, 15, 047509
https://doi.org/10.1063/1.2087127
Issue Date 2005-12
Doc URL http://hdl.handle.net/2115/6125
Rights Copyright © 2005 American Institute of Physics
Type article
File Information Chaos15.pdf

®

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP



https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

CHAOS 15, 047509 (2005)

Scattering of traveling spots in dissipative systems

Yasumasa Nishiura
Research Institute for Electronic Science, Hokkaido University, Kita-ku, Sapporo,
Hokkaido 060-0812, Japan

Takashi Teramoto
Chitose Institute of Science and Technology, Chitose 066-8633, Japan

Kei-lchi Ueda
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

(Received 10 July 2005; accepted 5 September 2005; published online 30 December 2005)

One of the fundamental questions for self-organization in pattern formation is how spatial periodic
structure is spontaneously formed starting from a localized fluctuation. It is known in dissipative
systems that splitting dynamics is one of the driving forces to create many particle-like patterns
from a single seed. On the way to final state there occur many collisions among them and its
scattering manner is crucial to predict whether periodic structure is realized or not. We focus on the
colliding dynamics of traveling spots arising in a three-component system and study how the
transition of scattering dynamics is brought about. It has been clarified that hidden unstable patterns
called “scattors” and their stable and unstable manifolds direct the traffic flow of orbits before and
after collisions. The collision process in general can be decomposed into several steps and each step
is controlled by such a scattor, in other words, a network among scattors forms the backbone for
scattering dynamics. A variety of input-output relations comes from the complexity of the network
as well as high Morse indices of the scattor. The change of transition manners is caused by the
switching of the network from one structure to another, and such a change is caused by the
singularities of scattors. We illustrate a typical example of the change of transition caused by the
destabilization of the scattor. A new instability of the scattor brings a new destination for the orbit
resulting in a new input-output relation, for instance, Hopf instability for the scattor of peanut type

brings an annihilation. © 2005 American Institute of Physics. [DOIL: 10.1063/1.2087127]

One of the fundamental questions for self-organization in

pattern formation is how spatial periedic structure is

spontaneously formed starting from a localized Huctua-
tion. Two things seem to be necessary to have a periodic
pattern starting from a localized seed, one is an intrinsic
instability of a seed solution like self-replication, the
other is to arrange many localized patterns in order to
form a regular periodic pattern through interaction.
When the seed solution is a two-dimensional traveling
spot, then the interaction occurs mainly through colli-
sions besides weak and long-range interaction. To under-
stand the collisional process is a challenge not only be-
cause of its large deformation but also its influence over
the global coherent dynamics, for instance, if annihilation
occurs upon collision, there is much less chance to have a
regular periodic pattern. What is discussed here is to
clarify the underlying mechanism to control the scatter-
ing dynamics among traveling spots arising in three-
component reaction diffusion systems. It turns out that
hidden saddles called scattors make a traffic control of
orbits during the collision process, in fact the orbital be-
haviors are guided by the stable and unstable manifolds
of such scattors, and the output can be classified by look-
ing at the outcome from the scattor. We also discuss how
the structural change of the network among scattors in-
fluences the input-output relations of scattering dynam-
ics. Such a change is typically caused by a new instability
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of the scattor, which eventually leads to a drastic change
of output after collision.

I. INTRODUCTION

Reaction diffusion media have a vartety of dynamic re-
sponse to spatially localized perturbation. If the medium is
unstable to inhomogeneous perturbation, then small random
fluctuation may cause formation of a periodic structure via
Turing instability, however if the medium is locally stable,
then perturbation of finite amplitude is necessary. It is well
known for excitable systems (monostable media) like
FitzZHugh-Nagumo equations that localized perturbation ex-
ceeding the threshold creates counter-propagating. traveling
pulses in one dimension (1D) however it does not form a
spatially periodic structure on an extended medium and an-
nihilation occurs when they collide. Two things seem to be
necessary to have a periodic pattern starting from a localized
seed, one is an intrinsic instability of a seed solution like
self-replication, the other is to arrange many localized pat-
terns in order to form a regular pattern through interactions.
Nonannihilation property becomes important for the latter
purpose.

One of the recent remarkable discoveries'™ is a variety
of particle-like patterns satisfying the above two require-
ments, namely they replicate by themselves and behave like

© 2005 American Institute of Physics



047508-2

Mishiura, Teramoto, and Ueda

ime = 1400 time = 55000

FIG. 1. From a single spot to traveling coherent structure when (fy.fy, 7)
={0.050,0.060,40.0} for the model equation (1) with periodic boundary
condition, Only v component is shown here.

elastic objects upon collision or merging into a single spot
without annihilation. One example is shown in Fig. | which
solves the model equation (1} in Sec. II: Starting from a
single spot, self-replication occurs and the newly born spots
travel, collide and eventually settle down to a marching pe-
riodic pattern with fixed velocity as in Fig. 1 (=55 000). The
final ordered pattern is maintained dynamically through the
interaction with neighboring spots, in fact if one picks up a
spot from the final state and sets it in a free space, then it
proliferates again, therefore the crowdedness prevents the
spots from self-replication and keeps the coherent structure.

Particle-like patterns have been observed experimentally
and numerically, for instance, in gas-discharge systems,””’
CO-oxidization pr{:n::ess,s_m chemical reactions,”''"™"
nmr[:rhu:-gn:ruaf«is.,'5 and reaction-diffusion systems with a glo-
bal feedback system,'{"” Suppose there are spatially local-
ized moving patterns such as pulses or spots in a free space.
A qualitative change of the pattern may occur either by
means of interaction with other patterns through collision or
intrinsic instability such as splitting or destruction by itself.
It is known that if a localized pattern has an intrinsic insta-
bility like self-replication, then combining with self-
destruction or annihilation process, it produces in general a
complex dynamics like spatiotemporal chaos'® or Sierpinski
gaskets.lg In order to understand the whole dynamics of such
complex patterns, a computer-aided geometric approach is
quite useful as was shown by Refs. 18, 20, and 21. Note that
annihilation does not occur in Fig. 1, so it tends to an ordered
state asymptotically. This indicates that understanding the
local collisional process is a key to predict the whole dynam-
ics, however the underlying mechanism to control such scat-
tering dynamics is very little known compared with the weak
interaction 113g*1;7ne”"2 partly because it contains a large de-
formation in infinite dimensional space. A new viewpoint has
been presented in Refs. 22-24, to shed light on this issue,
namely hidden saddies called “scattors™ make a traffic con-
trol of orbits during the collision process, especially the
above concept is useful to understand the transition of colli-
sion manner, for instance, from bouncing of two traveling
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spots to annihilating each other. In fact the orbital behaviors
are guided by the stable and unstable manifolds of such scat-
tors, and the output can be classified by looking at the out-
come from the scattor. There are several related works point-
ing out the importance of such saddles, see for instance,
Refs. 25-28.

The aim of this paper is twofold: First we extensively
study the head-on collisions of two-dimensional (2D) travel-
ing spots for the three-component system (1) in Sec. II and
find scattors and their interrelations from a global bifurca-
tional viewpoint. Second we discuss how the change of net-
work structure of scattors influences the scattering dynamics.
When a scattor undergoes a new instability, then it has a new
destination along it, which adds a new part to the existing
network and the orbit takes a different route as parameters
vary resulting in a new output after collision.

. MODEL

We employ the following three-component reaction dif-
fusion system in order to investigate the scattering dynamics,

-
-

=D Au~ —u),
1, LAu l+f2w+ﬁ;.{t 1)
uy®
v,=D,Av + —(fo+Filv. (1)
l+ zw

w,= D Aw + falv —w),

where fy, f1, f2, and f5 are all positive parameters related to
inflow and removal rates of « and v, and inhibition and decay
rates for the inhibitor w. This can be regarded as an extended
system of the Gray-Scott model in the sense that an inhibitor
w is added to the two-component Gray-Scott model (2},

1= D, Au—uv® + fo(L —u),

(2)
v,=D,Av +uv? - (fg+fi)v.

The system (1) is called an activator-substrate-depleted
model (Ref. 15). In fact the dynamics of the Kinetic part of
(1) behaves in a similar way to that of (2) as in Fig. 2. In the
sequel we work in the dark-gray region of Fig. 2, ie.,
monostable regime. The reason why we employ the above
system is that (1) is a representative model which shows
most of the interesting scattering dynamics and transitions
among them in two-parameter space as well as drift bifurca-
tion as in Fig. 3. Our approach can be applicable to other
model systems, especially the concept of scattor in Sec. IV
seems to work universally. :

All the computations that follow for (1) are done in the
following setting: the system size is 4 X 2 with the Neumann
boundary condition. The grid sizes are Ax=Ay=27% Ar
=0.10 and the five-point difference approximation is
employed for the Laplacian. The parameters are set
to  (D,.D,,D,)=(20x107%1.0x10%,50x10™) and
(fo,f2.f3)=(0.05,0.50,0.20). Spectral computations for ei-
genvalues and eigenfunctions throughout the paper are done
with 64 X 64 grids. For convenience, only profiles of the v
component are shown throughout the figures.
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FIG. 2. The dark-gray area indicates the existence region of stable traveling
spot in (fy,f,) plane for 7=100.0, which belongs to the monostable regime.
The solid (respectively, light-gray) line corresponds to the saddle-node (re-
spectively, Hopf) bifurcation point for the kinetic part of (1). All the other
parameters are set to f,=0.5, f,=02 D =20% 10 D,=1.0x 10" D,
=5.0x107%,
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FIG. 3. Phase diagram for the outputs of two colliding traveling spots with
respect to (f, 7). There are three qualitatively different outputs, repulsion
(RE), fusion+drift (FD), and annihilation {AN). In the neighborhood of the
triple junction (TJ), all three outputs are observed by a tiny change of pa-
rameters. The broken {respectively, dotted) line indicates Hopf (respectively,
drift) bifurcation for the standing spot. The location of Hopf line almost
-dees not depend on . DH indicates a singolarity of codim 2 point (drift
+Hopf).
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FIG. 4. The propagating velocity of traveling spot as a function of +at f;
=0.0640, which indicates supercritical bifurcation,

lll. PHASE DIAGRAM FOR SCATTERING DYNAMICS

Loosely speaking there are two ways of scattering dy-
namics depending on the strength of interaction; nonfusion
and fusion manners. In the former case one can identify in-
dividual spots throughout the collision process and hence it
includes a weak-interaction regime. On the other hand, in the
latter case, two spots basically merge into one body like a
peanut or disk. There is of course an intermediate regime in
between the above two, however it is outside the scope of the
present study. We mainly focus on the fusion case in this
paper and present a sort of hidden controller for collision
process called a “'scattor” and how a network among scattors
forms a backbone structure for global scattering dynamics.

A. Birth of traveling spot; drift bifurcation

In order to make a scattering experiment, first of all we
need stable traveling spots in an appropriate parameter re-
gime. For the 2D case it is not at all trivial to have such a
stable traveling spot, in fact two-component reaction diffu-
sion sggtems in general do not support such a moving
pattern™ and, hence, it is necessary to introduce the third
species to keep the shape of the spot firmly. The three-
component system (1) tumns out to serve for our purpose.
One way to obtain a traveling spot is a drift bifurcation from
a standing spot. Stable standing spots exist in the light-gray
region of Fig. 3 bounded by dotted (drift bifurcation) and
broken line (Hopf bifurcation}. The intersecting point DH of
these bifurcation lines is a codim 2 singularity and needs
more careful analysis to know the dynamics around it, which
1s not treated here and delegated to Ref. 30. A stable standing
spot starts to move in one direction as the parameter crosses
the drift line, for instance, 7 is increased. It is numerically
confirmed except near DH that this is a supercritical bifurca-
tion from stable standing spots to stable traveling ones as in
Fig. 4. The velocity of the spot is increased as the parameters
leave the drift line until other instabilities like splitting occur.
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B. Three different outputs: repulsion (RE), fusion
+drift (FD), and annihilation (AN)

Let us classify the head-on collision by its output, There
are three qualitatively different outputs for (1): repulsion
(RE), fusion-drift (FD), and annihilation (AN) depending on
two parameters f, and 7 as in Fig. 3.

Since the standing spots in the light-gray region of Fig. 3
repel each other, the collision process for traveling spots near
the drift bifurcation line is expected to inherit its nature,
namely they interact weakly and bounce off with keeping
their original shapes. This is the case for our system except
near the intersecting point DH of the drift bifurcation curve
with the Hopf line in Fig. 3 (i.e., codim 2 point). It is known
that there appears an annihilation regime near such a singu-
larity even though the parameter is arbitrarily close to the
drift line (note the tip of the AN regime in Fig. 3), in fact we
need another singularity, ie., saddle-node point for this,
however we leave the discussions to Ref. 30. The RE regime
expands in the left-up direction. As the velocity of the spot is
increased, the distance between two spots at collision be-
comes shorter, and eventuaily the dynamics is switched to
the FD regime, namely two spots merge into one spot and
start to drift in one direction as in Fig. 5(a). The FD regime
expands as 7 is increased until the splitting instability
emerges. There is another scattering regime in the right-up
region of Fig. 3, i.e., AN regime in which two spots collide
and annihilate each other. There are two ways of annihila-
tion, fusion type and nonfusion type. Along the left boundary
of the AN regime, two spots merge into one body and then
annihilate, on the other hand, along the bottom boundary
except near the triple junction (TJ), two spots do not merge
and they disappear, keeping some distance and these two
boundaries converge to TJ [(f,,7)=(0.0636,73.2)]. These
observations suggest that there are two categories of scatter-
ing dynamics, fusion and nonfusion types. These two cases
coexist in the RE and AN regimes where nonfusion manner
gradually changes into the fusion one as f; is decreased. In
this paper we focus only on the fusion case and study the
origin of how the tip of the annihilation regime appears near
TJ from the global bifurcation viewpoint.

Since f is the decay rate of the activator v, large f;
implies no patterns (ground state) and small f, fosters the
growth of patterns. On the other hand, 7 represents how
quickly the inhibitor w diffuses and responds to the change
of the activator v, namely, for smaller 7, w can block the
propagation of v and support standing spots, however for
larger values, the inhibitor w remains near the colliding area
due to the slow response which enhances annihilation.

IV. SCATTORS IN TWO-DIMENSIONAL SPACE

In order to understand the transitions among RE, FD,
and AN regimes, we first need to study the orbital behaviors
carefully as parameters cross such boundaries.

An ideal head-on collision has D; symmetry in space,
i.e., invariant under left-right and up-down reflections with
respect to the collision line, which suppresses translational
instabilities. A merging spot in the FD region therefore is
supposed to stand still after collision, however, as we will

Chaos 15, 047509 (2005}

(a)
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FIG. 5. Transition from FD to RE at #=63.777 as 7 is decreased with fi
=0.0625. (a) Fusion+drift side. (b} Repulsion side. Peanut-shape is clearly
visible for both cases, then the middle part of it grows and becomes one
body {respectively, decays and splits into two spots) for (a) [respectively,
{b)]. The associated time evolutions of the cross section along the y-axis are
shown in {c) and (d). The orbit stays longer near the peanut shape when the
parameters are closer to the transition point,

see in the following simulations, tiny fluctuations or numeri-
cal errors actually cause the growth of drifting instabilities
after a long time. '

A. From repulsion to fusion +drift

Let us take a closer look at the transition from RE to FD
at I=(f;, 7)=(0.0625,63.777) in Fig. 3. The orbital behavior
on the RE (respectively, FD) side is given by Fig. 5(b) [re-
spectively, Fig. 5(a)]. Both orbits take the peanut shape after
collision and stay there for a certain time, then either it splits
or two humps fuse into one spot and drift away. Closer to the
boundary of two regimes, a longer stay near the peanut shape
indicates the existence of a steady state of saddle type, in fact
it is numerically confirmed by the Newton method that there
exists an unstable steady state of codim 3 the profile of
which is very close to that of t=6000 in Fig. 5. Two of them
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F1G. 6. Global bifurcation diagram for scattors, The bifurcation parameter is
F, with 7 being fixed as (=63.777). The vertical axis corresponds to the L*
norm of the x component. The peanut branch emanates trom the disk branch
by a D.— D, symmeiry-breaking bifurcation at f) =0.0590. Behavior of
eigenvalues are also depicted atong the branches. New pairs of complex
eigenvalues appear and cross the imaginary axis before the limiting points.
The orbital flows near the steady states are indicated by arrows. The Hopf
bifurcation point of the peanut branch (respectively, disk branch) 15 located
at f,==0.0630 (respectively, 0.0658). The parameter T does not affect the
existence of steady states, hence all the branches persist except their stabili-
ties as 7 i varied. The number attached to each branch indicates that of
unstable eigenvalues for 7=76.643. The Hopf bifurcation point (the broken
line in Fig. 3} on the branch of standing spots (large disk) is almost inde-
pendent of 7, as is the Hopf point on the peanut scattor.

are related to the drift instabilities, however they are not
important in our setting due to the symimetry of head-on
collisions. There 1s one more real positive eigenvalue respon-
sible for the symmetry-breaking bifurcation from the disk
pattern. In fact, by using a path-tracking software based on
AUTO {Ref. 31), a peanut-solution branch can be continued
globally with respect to f|, and it emanates from the large
disk pattern as in Fig. 6. The computation of Fig. 6 is done in
a quadrant (i.e., 32X 32) of the full solution thanks to the
symmetry.

It turns out that the orbits are sorted out along the un-
stable manifold associated with this real eigenvalue, in fact,
by adding two types of perturbation to the peanut pattern, the
outputs are consistent with the previous evolutional results as
in Fig. 7. More precisely, depending on the sign of € for the
perturbation term &V, it either grows in the middle of the
peanut and becomes a one spot or decays and pinches off
into two spots as shown in Fig. 7 where W, stands for the
eigenfunction associated with the above real eigenvalue [see
Fig. 7{a)]. Again by the Newton method, it 1s confirmed that
there exists a standing spot at this parameter value close to
the profile of r=7600 in Fig. 5(a) and it has only drift insta-
bility. It eventually therefore starts to move in one direction
due to small fluctuation. Note that the drifting direction
should not be oblique to the colliding direction as in Fig. 5
due to the symmetry. For later use we call the above two
unstable steady patterns “peanut scattor” and “large disk
scattor,” respectively, which actually sort out the orbits along
their unstable manifolds,

B. From fusion+drift to annihilation

_ Next we consider the transition between FD and AN at
H=(f,,7) = (0.064577,90.0) in Fig. 3. The orbits corre-

Chaos 15, 047509 {2005)

time = 300 time = 5000

(c)

time = 200 time = OO

FIG. 7. (a) The peanut scattor at [f;,7) =(0.0623,63.777) (i.e., before the
Hopf bifurcation) has only one unstable eigenvalue A, =0.0141 besides the
drift instabilities. The associated eigenfunction ¥, has flip symmetry with
respect to the x- and y-axes as in (1) with the cross section along the x-axis
(right). Responses of the peanut scattor by adding a small perturbation in the
direction of ¥,. (b} [respectively, (c)] positive (respectively, negative} per-
turbation. These are consistent with the outputs of Fig. 3.

sponding to the parameters on both sides behave in the fol-
lowing way. For FD side, it first approaches a peanut shape,
then fuses into a small disk pattern, grows up to the large
disk, stays there for certain time, and finally drifts away [see
Fig. 8(b)]. On the other hand, for the AN side, after fusing
into a small disk, it decays and annihilates [see Fig. 8(a)].
There appears a new scattor “small disk” in these processes,
in fact it can be detected as in Fig. 8(c) and has codim 3 at
this parameter. Like a large disk scattor, two of them are
drifting instabilities and the remaining positive real one is
responsible for the output, namely its unstable manifold goes
to either the large disk or the homogeneous state (annihila-
tion) as in Fig. 9. Note that the associated eigenfunction @,
in Fig. 9(a) also has flip symmetry like ¥, in Fig. 7(a). The
overall collision process can be understood clearly once we
notice the two-step deformation, l.e., peanutshape
— small disk, then small disk— large disk or small disk
— annihilation.
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(a)

“_LJ' time = 4800

fime = 8500 timea = 6200

time = G000

time = G500

time = 5500 *LJ'

time = 17500

4200

(d)

FIG. 8. Transition from AN to FD at (f;, 7)=(0.064577,90.0) as f, is
decreased. (a) Annihilation side. (b} Fusion+drift side. (¢) Profile of v com-
ponent of the small disk. Merging into one body, the orbit first visits the
small disk, then it decays to homogeneous state (respectively, grows into the
large disk and drifts away) as in (a) [respectively, (b)]. The associated time
evolutions of the cross section along the x-axis are shown in (d} and (e).

C. Triple junction

In view of the phase diagram of Fig. 3, RE-FD transition
changes into FD-AN ftransition via the triple junction point
TJ [(f,,7)=(0.0636,73.2)] as f, is increased. A natural
question is how the annihilation regime emerges through TJ
and how 1ts emergence causes the change of transition man-
ner, especially how it introduces the two-step deformation.
This demands a more precise analysis for the three scattors
and their global interrelation; peanut, large and small disks as
will be discussed in the next section.

Chaos 15, 047509 (2005)

AN

time=10

time = 800

time = 200

FIG. 9. (a) The unstable symmetric eigenfunction @, of small disk solution
at (f;.7h=(0.064 578,90.0) with the profile along the x-axis (right). The
eigenvalue is given to A;=0.0646. Response of the small disk scattor by a
small perturbation in the direction of & (b) [respectively, (c)] negative
(respectively, positive) perturbation, which are consistent with the outputs in
Fig. 8.

Magnifying the TJ region, it turns out that the tip of the
AN region undulates as T changes, which may be caused by
the Hopf instability of the peanut scattor discussed in the
next section.

V. GLOBAL NETWORK AMONG SCATTORS

As observed in the preceding sections, a hidden saddle
called the scattor plays a role like a traffic controller of the
orbits depending on the parameters, however it is still un-
clear that how the annihilation regime emerges and the input-
output relation changes from I to II as f, is increased. In this
section we discuss this issue from the viewpoint of global
interrelation among the scattors and by careful numerics for
the behaviors of unstable manifolds of them. The scenario
for the transition of input-output relation from I (FD-RE) to
II (FD-AN) is as follows. When two spots approach, they
first form a profile close to that of the peanut scattor, there-
fore the fate of the associated orbit is most probably con-
trolled by the largest eigenvalue of Re parts of the spectrum
around the peanut scattor. It turns out that the largest eigen-
value is switched from the real one to the complex pair as f;
is increased (see Fig. 10), therefore the destination along the
unstable manifold associated with the most dangerous one is
also changed from large disk to small disk. The small disk
has a 1D unstable manifold besides drift eigenvalues and one
of the destinations is the homogeneous state (i.e., annihila-
tion). The above crossover point is located at f;=0.06421
(slightly larger than TJ) at which the annihilation regime is
clearly visible. The orbit is basically driven by the manner of
connection among scattors and its switching causes the
change of input-output relation as depicted in Fig. 11.
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FIG. 10. f, dependence of the eigenvalues of the symmeltric unstable mode
for the large peanut solution for 7=76.644. The solid and gray lines indicate
the values of the mode emanating from Hopf and symmetry-breaking bifur-
cations, respectively. The crossover point is located at f, =0.064 21.

A. Heteroclinic connection among scattors

Recalling the RE-FD transition I in Fig. 3, the hetero-
clinic connection between the peanut scattor and the large
disk forms a backbone for scattering dynamics. The orbits
are sorted out like Fig. 12 depending on parameters.

On the other hand, for the FD-AN transition II in Fig. 3,
a small disk emerges as a new scattor and becomes a part of
the two-step deformation at collision, namely peanut
—ssmall disk — large disk or homogeneous state. It was

After Hopf

Before Hopf

Scattors =

FIG. 11. Schematic picture for the network of scattors. Three scattors are
inside the solid line. The interconnection among them is changed when the
~ peanut scattor undergoes Hopf bifurcation. Small disk scattor 1s responsible
for the occurrence of annihilation.

Chaos 15, 047509 (2005)

Drift to the right

Drift to the left

Repulsion .

FIG. 12. Schematic diagram of the heteroclinic connection from peanut
scattor to large disk scattor.

confirmed as in Fig. 9 that the unstable manifold of the
small disk goes to either the large disk or the homogeneous
state.

The aim of this section is to clarify the underlying struc-
ture controlling the above two transitions, especially how the
annihilation regime emerges through the triple junction TJ.
In order to study the precise behaviors near TJ, we take fi
=0.0640 for definiteness. In the neighborhood of this param-
eter regime, annihilation occurs typically in such a way that
the orbit approaches the peanut shape, then the middle part
of it starts to oscillate, and finally disappears. This suggests
that some instability occurs for the peanut scattor as f 1S
increased as RE-FD regime. Moreover if a new instability
really occurs, then we should study its implication, namely
what we must do is the following: .

(1) Study the spectral behavior around the peanut scattor
along the f, axis.

(2) Search for the destination associated with the new
instability.

A key information for the candidates comes from the
global bifurcation diagram for scattors obtained Ty i
here we show it in a superposed form with the phase diagram

LA

-
L

0062 0063 0064 0065 0066

i

FIG. 13. Superposition of the (f,,7) phase diagram (Fig. 3) with the f,
bifurcation diagram (Fig. 6).
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1.0

(d)

0.0 05 x 1
1.0

0.0

FIG. 14. (a) Profiles of scattors at f,=0.0640. (a) Large disk solution at the
lower branch, (b} small disk solution at the upper branch, (c) large peanut
solution at the lower branch, {d) small peanut solution at the upper branch,
only the v component is shown here and the profile along the x-axis is
depicted on the right-hand side. The gray, solid, and broken lines indicate u,
v, and w components, respectively.

as in Fig. 13. Large and small disks are connected via a
saddle-node point and the branch of peanut scattor emanates
from the branch of large disk via a symmetry-breaking bifur-
cation. The peanut branch also turns back via a saddle-node
point. It should be noted that there occurs a Hopf bifurcation
on the peanut branch around f;~=0.0630 and the triple junc-
tion TJ appears slightly before f, = (.0640 and annihilation is
clearly visible at f;=0.0642. There are four steady scattors at
f1=0.0640 depicted in Fig. 14. We shall discuss in the next
section how the interrelation among them is changed as f, is
increased.

B. Destabilization of peanut scattor implies switching
of interconnections among scattors

First we compute numerically the spectrum of the peanut
scattor and its f| dependency. There are three dangerous ei-
genvalues as depicted in Fig. 10, a complex pair of eigenval-
ues (solid line) and one positive real eigenvalue (gray line).
- The complex pair originates in the Hopf bifurcation and the
real one in the symmetry-breaking bifurcation from the large
disk pattern. Recall that before Hopf bifurcation (i.e., for
smaller f), only the real one is dangerous and it is sufficient
to concentrate on the fate of the unstable manifold associated
with it as in Fig. 5. The crossover point is located around
f1=0.064 21, which coincides with the region where annihi-
lation is clearly visible. In order to understand this switching,
let us study the output from the peanut scattor for f,
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FIG. 15. The unstable eigenfunctions of large peanut solution at (f,7)
=(0.0640,76.644) (i.e., after the Hopf bifurcation) with the profiles along
the x-axis for the symmetric functions (a)—(c). The four eigenvalues are
A =0.0127= A;=0.0107 = Re(h;=0.0063£0.0129:) =, =0.0008.  (d),(e)
Two eigenfunctions associated with the drift instabilities.

(b)

Fusion+Drift

(Small Disk @)

Annihilation

FIG. 16. (a) Phase diagram of responses of the peanut scattor by adding a
small perturbation in the direction €W +e&¥,+eV; when (f.7)
= (0.0640,76.644). The (Re e;,Im &3) slices are depicted along the €, axis.
(b) Schematic picture of the connection orbit from peanut scattor to disk
scattors. The solid and broken lines (respectively, gray lines) indicate the
stable and unstable manifolds of the scattors (respectively, the typical orbits
through the neighborhood of the peanut scattor). The destination of the
orbits changes from RE to FD by increasing 7. See the text for details.
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=0.0640 by adding a perturbation of linear combination of
unstable directions. The linearized unstable eigenfunctions
are computed as in Fig. 15, ¥, (respectively, ¥;) corre-
sponds to the largest real eigenvalue (respectively, the com-
plex eigenvalue). Using this eigenform, we perturb the pea-
nut scattor in the form of ¥, +e;¥;3+c.c., the result of
which 1s shown in Fig. 16. The horizontal line stands for the
€ axis and each plane for the complex perturbation ;. First
of all, depending on the sign of €, the outputs are separated
as fusion+drift (light-gray FD region for positive sign) and
repulsion (dark-gray RE region for negative sign) up to the
resolution 107 in a small neighborhood of the origin. This is
a natural consequence of the fact that the symmetry-breaking
real eigenvalue still dominates the dynamics at f,=0.0640,
however there appears an annihilation response (white AN
region) for the rest part of the plane. The orbits starting from
near the boundary of the FD-AN transition become very

fime = 500

time = 800

time = 500

time = 300 tirne = 800

FIG. 17. Responses of the peanut scattor near FD-AN transition via small
disk scattor for (f,, 7)}=(0.0640,76.667). The orbits with parameters taken
along the FD-AN boundaries in Fig. 16(a) approach the small disk scattor
closely. The associated time evolutions of the cross section along the x-axis
are shown in (¢} and (d). :
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close to the small disk pattern, which causes annihilation.
This 1s numerically confirmed for the peanut scattor located
at (fy,7)=(0.0640,76.667) as shown in Fig. 17. These ob-
servations suggest that a new instability on the peanut branch
leads to the mew output AN. More precisely, annihilation
occurs due to the emergence of new heteroclinicity from pea-
nut scattor to small disk. Our discussions can be summarized
in one schematic picture of Fig. 11, which shows the switch-
ing of main routes for orbits before and after Hopf bifurca- .
tion of peanut scattor.

VI. CONCLUDING REMARKS

Scattering dynamics between two traveling spots and the
transition manner of input-output relations of collision pro-
cess are studied. We extend the idea developed in Refs.
22-24 to 2D traveling spots for the three-component system
(1), namely we find three hidden saddles (called scattors),
peanut, large and small disks which make a traffic control of
otbits during the collision process and the orbital behaviors
are guided by the stable and unstable manifolds of such scat-
tors, and the output can be classified by looking at the out-
come from the scattor by adding small perturbations, We
highlight how the structural change of the network among
scattors influences the input-output relations of the scattering
dynamics. Such a change is typically triggered by a new
instability of the scattor, which eventually leads to drastic
change of output as parameters vary. We illustrate this with
global behaviors of scattor’s branch and precise numerical
spectral analysis for (1). It is clarified that Hopf instability of
the peanut scattor is responsible for the transition from the
nonannihilation regime to the annihilation one.

Although we employ a specific three-component system
(1), the approach presented here can be applicable for a
wider class of reaction diffusion systems, in particular, the
concept of scattor and its role for scattering dynamics seem
to be universal, in fact the following three-component system
(3), which was proposed as a qualitative model of a gas
discharge system,” has similar scattors with the same func-
tion (see Ref. 23 for details),

u, =D Au+ flu) — kv — kgw + K4,
w,=D,Av + u-v, (3)

0w, =D Aw+u-w,

where f(1)=2u—u’. Strong collision is a very singular event
for traveling spots, therefore scattors emerging at the transi-
tion point of input-output relations may turn out to be one of
the universal objects independent of model systems.
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