

Title	Organophosphate-catalyzed bulk ring-opening polymerization as an environmentally benign route leading to block copolyesters, end-functionalized polyesters, and polyester-based polyurethane
Author(s)	Saito, Tatsuya; Aizawa, Yusuke; Tajima, Kenji; Isono, Takuya; Satoh, Toshifumi
Citation	Polymer chemistry, 6(24), 4374-4384 https://doi.org/10.1039/c5py00533g
Issue Date	2016-05-02
Doc URL	http://hdl.handle.net/2115/61450
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	Satoh(Suppl.).pdf

Supplementary Information

Organophosphate-Catalyzed Bulk Ring-Opening Polymerization as an Environmentally Benign Route Leading to Block Copolyesters, End-Functionalized Polyesters, and Polyester-Based Polyurethane

Tatsuya Saito,^a Yusuke Aizawa,^a Kenji Tajima,^b Takuya Isono^b and Toshifumi Satoh*^b

^{*a*} Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan

^b Division of Biotechnology and Macromolecular Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Figure S1. ¹H NMR spectrum of PCL in CDCl₃ (run 1 in Table 1).

Figure S2. (a) MALDI-TOF MS spectrum of PCL (run 1 in Table 1), (b) expanded spectrum (ranging

from 4,400 to 4,800), and (c) theoretical molar mass values.

Figure S3. SEC trace of the obtained PCL initiated from H₂O (eluent, CHCl₃; flow rate, 1.0 mL

 \min^{-1}).

Figure S4. (a) MALDI-TOF MS spectrum of the PCL initiated from H₂O, (b) expanded spectrum

(ranging from 3,200 to 3,500), and (c) theoretical molar mass values and expected structures.

Figure S5. ¹H NMR spectrum of PVL in CDCl₃ (run 13 in Table 2).

Figure S6. (a) MALDI-TOF MS spectrum of PVL (run 13 in Table 2), (b) expanded spectrum

(ranging from 4,000 to 4,300), and (c) theoretical molar mass values.

Figure S7. ¹H NMR spectrum of PDXO in CDCl₃ (run 16 in Table 2).

Figure S8. (a) MALDI-TOF MS spectrum of PDXO, (b) expanded spectrum (ranging from 3,000 to

3,400), and (c) theoretical molar mass values (run 16 in Table 2).

Figure S9. ¹H NMR spectrum of PTMC in CDCl₃ (run 19 in Table 2).

Figure S10. SEC traces of (A) the obtained PCLs, (B) PVLs, (C) PDXOs, and (D) PTMCs with the

[M]₀/[PPA]₀ ratios of (a) 100/1, (b) 50/1, and (c) 25/1 (eluent, CHCl₃; flow rate, 1.0 mL min⁻¹).

Figure S11. SEC trace of the PLLA obtained from run 21 in Table 2 (eluent, CHCl₃; flow rate, 1.0 mL

 \min^{-1}).

Figure S12. ¹H NMR spectrum of PLLA in CDCl₃ (run 21 in Table 2)

Figure S13. ¹H NMR spectrum of PLLA methane resonances with selective decoupling of PLLA

methyl resonances (run 21 in Table 2).

Figure S14. (a) MALDI-TOF MS spectrum of PLLA (run 21 in Table 2), (b) expanded spectrum

(ranging from 4,900 to 5,300), and (c) theoretical molar mass values.

Figure S15. (a); Kinetic plots for the DPP-catalyzed bulk ROP of ε -CL with $[\varepsilon$ -CL]₀/[PPA]₀/[DPP]₀ = 50/1/0.05, and (b); dependence of $M_{n,NMR}$ (•), \mathcal{D}_{M} (\Box) and $M_{n,th.}$ (dotted line) on monomer conversion (conv.).

Figure S16. (a); Kinetic plots for the DPP-catalyzed bulk ROP of TMC with $[TMC]_0/[PPA]_0/[DPP]_0$ = 50/1/0.05, and (b); dependence of $M_{n,NMR}$ (•), \mathcal{D}_M (\Box) and $M_{n,th.}$ (dotted line) on monomer conversion (conv.).

run		monomer (M)	[M] ₀ /[PPA] ₀	time	conv. (%) ^b	M _{n,th.} ^b	M _{n,NMR} ^c	${oldsymbol{\mathcal{D}}_{\mathrm{M}}}^{d}$
31	first	<i>ε</i> −CL	25/1	90min	94.7	2,800	2,800	1.11
	second	δ-VL	25/1	20min	78.6	4,800 ^e	5,000	1.13
32	first	TMC	25/1	560min	96.0	2,600	2,500	1.17
	second	δ -VL	25/1	20min	78.4	4,500	4,800	1.13
33	first	δ-VL	25/1	15min	97.1	2,700	2,600	1.15
	second	ε-CL	25/1	125min	88.0	5,100 ^e	5,200	1.15
34	first	DXO	25/1	210min	97.2	3,000	3,100	1.20
	second	ɛ-CL	25/1	130min	90.1	5,500 ^e	6,000	1.16

Table S1. Block copolymerization of ε -CL, δ -VL, DXO, and TMC catalyzed by DPP in the bulk ^{*a*}

^{*a*} Polymerization conditions: atmosphere, Ar; temperature, 80 °C. ^{*b*} Determined by ¹H NMR spectrum of the obtained polymer in CDCl₃. ^{*c*} Calculated from $[M_1]_0/[PPA]_0 \times \text{conv.} \times (M.W. \text{ of } M_1) + (M.W. \text{ of}$ PPA). ^{*d*} Determined by SEC measurement of the obtained polymer in CHCl₃. ^{*e*} Calculated from $[M_2]_0/[PPA]_0 \times \text{conv.} \times (M.W. \text{ of } M_2) + (M_{n,NMR} \text{ of the polymer obtained from first polymerization}).$

Figure S17. SEC traces of PCL obtained from the 1st polymerization and PCL-*b*-PVL (eluent, CHCl₃; flow rate, 1.0 mL min⁻¹).

Figure S18. ¹H NMR spectrum of PCL-*b*-PVL in CDCl₃ (run 31 in Table S1).

Figure S19. SEC traces of PTMC obtained from the 1st polymerization and PTMC-*b*-PVL (eluent, CHCl₃; flow rate, 1.0 mL min⁻¹).

Figure S20. ¹H NMR spectrum of PTMC-*b*-PVL in CDCl₃ (run 32 in Table S1).

Figure S21. SEC traces of PVL obtained from the 1st polymerization and PVL-*b*-PCL (eluent, CHCl₃; flow rate, 1.0 mL min⁻¹).

Figure S22. ¹H NMR spectrum of PVL-*b*-PCL in CDCl₃ (run 33 in Table S1).

Figure S23. SEC traces of PDXO obtained from the 1st polymerization and PDXO-b-PCL (eluent,

CHCl₃; flow rate, 1.0 mL min⁻¹).

Figure S24. ¹H NMR spectrum of PDXO-*b*-PCL in CDCl₃ (run 34 in Table S1).

Figure S25. ¹H NMR spectrum of N₃-PCL in CDCl₃ (run 22 in Table 3).

Figure S26. ¹H NMR spectrum of MI-PCL in CDCl₃ (run 23 in Table 3).

Figure S27. ¹H NMR spectrum of N₃-PTMC in CDCl₃ (run 24 in Table 3).

Figure S28. ¹H NMR spectrum of MI-PTMC in CDCl₃ (run 25 in Table 3).

Figure 29. ¹H NMR spectrum of PCL-diol in CDCl₃ (run 26 in Table 3).

Figure S30. ¹H NMR spectrum of PCL-triol in CDCl₃ (run 27 in Table 3).

Figure S31. ¹H NMR spectrum of PCL-tetraol in CDCl₃ (run 28 in Table 3).

Figure S32. SEC traces of the obtained polymer in CHCl₃ (solid line, run 28; chained line, run 29; dotted line, run 30).

Figure S33. FT-IR spectrum of the obtained PCL-based polyurethane in the presence of DPP.

Figure S34. SEC traces of the obtained PCL-based polyurethane in the presence of DPP; dotted line and in the absence of DPP; solid line (eluent, CHCl₃; flow rate, 1.0 mL min⁻¹).

One-pot synthesis of PCL-*b***-PVL.**

The syntheses of PTMC-*b*-PVL, PVL-*b*-PCL, and PDXO-*b*-PCL were performed using similar process.

PTMC-*b***-PVL**: Yield, 88.0%. $M_{n,NMR} = 4,800$; $M_{n,SEC} = 7,500$, $D_M = 1.13$. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 1.57-1.78 (m, 2H × m, (-CH₂CH₂CH₂CH₂-)_m; 2H × m, (-CH₂CH₂CH₂CH₂-)_m), 1.96-2.12 (m, 2H × n, (-OCH₂CH₂CH₂O-)_n; 2H, ArCH₂CH₂-), 2.34 (m, 2H × m, (-COCH₂CH₂CH₂CH₂-)_m), 2,72 (t, 2H, J = 7.8 Hz, ArCH₂-), 3.65 (m, 2H, -CH₂OH), 4.08 (m, 2H × (m-1), (-COCH₂CH₂CH₂CH₂CH₂O-)_{m-1}), 4.13-4.30 (m, 2H × n, (-OCH₂CH₂CH₂CH₂O-)_n; 2H × n, (-OCH₂CH₂CH₂O-)_n; 2H, ArCH₂CH₂O-)_n; 2H, ArCH₂CH₂O-)_n; 2H × n,

 3.65 (t, 2H, J = 6.4 Hz, $-CH_2OH$), 4.02-4.12 (m, 2H × n, (-COCH₂CH₂CH₂CH₂CH₂O-)_n; 2H × (m-I), (-CH₂CH₂CH₂CH₂CH₂O-)_{m-I</sup>; 2H, ArCH₂CH₂CH₂-), 4.20 (t, 2H × n, J = 4.8 Hz, (-COCH₂CH₂OCH₂CH₂O-)_n), 7.15-7.31 (m, 5H, aromatic).}

PDXO-*b***-PCL:** Yield, 5.5%. $M_{n,NMR} = 6,000; M_{n,SEC} = 5,200, D_M = 1.16. ¹H NMR (CDCl₃, 400 MHz): <math>\delta$ (ppm) 1.38 (m, 2H × m, (-CH₂CH₂CH₂CH₂CH₂-)_m), 1.58-1.71 (m, 2H × m, (-CH₂CH₂CH₂O-)_m; 2H × m, (-COCH₂CH₂CH₂-)_m), 1.97 (m, 2H × m, ArCH₂CH₂-), 2.28 (m, 2H × m, (-COCH₂CH₂CH₂-)_m), 2.56-2.72 (m, 2H × n, (-COCH₂CH₂O-)_n; 2H, ArCH₂CH₂-), 3.62-3.71 (m, 2H × n, (-COCH₂CH₂CH₂O-)_m; 2H, -CH₂OH), 3.74 (m, 2H × n, (-COCH₂CH₂O-)_n), 4.01-4.11 (m, 2H × (m-1), (-CH₂CH₂CH₂O-)_{m-1}; 2H, ArCH₂CH₂CH₂-), 4.20 (t, 2H × n, J = 4.8 Hz, (-COCH₂CH₂OCH₂CH₂O+)_n), 7.13-7.29 (m, 5H, aromatic).

Syntheses of functional PCLs with various initiators.

N₃-PCL: Procedure A was used for the ROP of ε -CL (1.120 mL, 10.0 mmol) in the presence of AHA (28.6 mg, 200 µmol) and DPP (2.50 mg, 10.0 µmol) for 420 min to give N₃-PCL (740 mg) as a white solid. Yield, 69.9%. $M_{n,NMR} = 5,500$; $M_{n,SEC} = 12,700$, $D_M = 1.11$. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 1.31-1.41 (m, 2H × n, (-CH₂CH₂CH₂CH₂CH₂-)_n; 4H, N₃CH₂CH₂CH₂CH₂-), 1.55-1.69 (m, 2H × n, (-CH₂CH₂CH₂O-)_n; 2H × n, (-COCH₂CH₂CH₂-)_n; 4H, N₃CH₂CH₂CH₂CH₂CH₂-), 2.31 (t, 2H × n, J = 7.6 Hz, (-COCH₂CH₂-)_n), 3.28 (t, 2H, J = 7.0 Hz, N₃CH₂-), 3.63 (m, 2H, -CH₂CH₂OH), 4.01-4.09 (m, 2H × (n-1), (-CH₂CH₂O-)_{n-1}; 2H, N₃CH₂CH₂CH₂CH₂-).

MI-PCL: Procedure A was used for the ROP of ε -CL (1.120 mL, 10.0 mmol) in the presence of HEMI (28.2 mg, 200 µmol) and DPP (2.50 mg, 10.0 µmol) for 450 min to give MI-PCL (779 mg) as a white solid. Yield, 73.2%. $M_{n,NMR} = 5,500$; $M_{n,SEC} = 13,400$, $D_M = 1.15$. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 1.36 (m, 2H × n, (-CH₂CH₂CH₂CH₂CH₂-)_n), 1.58-1.71 (m, 2H × n, (-CH₂CH₂CH₂O-)_n; 2H × n, (-COCH₂CH₂CH₂-)_n), 2.29 (t, 2H × n, J = 8.2 Hz, (-COCH₂CH₂-)_n), 3.64 (m, 2H, -CH₂CH₂OH), 3.79 (t, 2H, J = 5.4 Hz, -NCH₂-), 4.06 (t, 2H × (n-1), J = 6.6 Hz, (-CH₂CH₂O-)_{n-1}), 4.23 (t, 2H, J = 5.2 Hz, -NCH₂CH₂-), 6,74 (s, 2H, -COCHCHCO-).

PCL-diol: Procedure A was used for the ROP of ε -CL (1.120 mL, 10.0 mmol) in the presence of 1,3-propanediol (14.3µL, 200 µmol) and DPP (2.50 mg, 10.0 µmol) for 180 min to give PCL-diol (776 mg) as a white solid. Yield, 75.5%. $M_{n,NMR} = 5,100$; $M_{n,SEC} = 11,400$, $\mathcal{D}_M = 1.13$. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 1.36 (m, 2H × n, (-CH₂CH₂CH₂CH₂CH₂-)_{n/2} × 2), 1.58-1.71 (m, 2H × n, (-CH₂CH₂CH₂-)_{n/2} × 2), 1.58-1.71 (m, 2H × n, (-CH₂CH₂CH₂-)_{n/2} × 2), 1.97 (m, 2H, -OCH₂CH₂CH₂O-), 2.29 (t, 2H × n, J = 8.2 Hz, (-COCH₂CH₂-)_{n/2} × 2), 3.63 (t, 2H × 2, J = 6.4 Hz, -CH₂CH₂OH) 4.06 (t, 2H × (n-1), J = 6.6 Hz, (-CH₂CH₂O-)_{(n-1)/2} × 2), 4.15 (t, 4H, J = 6.2 Hz, -OCH₂CH₂CH₂O-).

PCL-triol: Procedure A was used for the ROP of ε -CL (1.120 mL, 10.0 mmol) in the presence of trimethylolpropane (26.8 mg, 200 µmol) and DPP (2.50 mg, 10.0 µmol) for 150 min to give PCL-triol (666 mg) as a white solid. Yield, 66.1%. $M_{n,NMR} = 5,200$; $M_{n,SEC} = 11,500$, $D_M = 1.07$. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 0.89 (t, 3H, J = 7.4 Hz, CH₃CH₂), 1.36 (m, 2H × n, (-CH₂CH₂CH₂CH₂CH₂-)_{n/3} × 3), 1.55-1.72 (m, 2H, CH₃CH₂-; 2H × (n-1), (-CH₂CH₂CH₂O-)_{n/3} × 3; 2H × n, (-COCH₂CH₂CH₂-)_{n/3} × 3), 2.31 (m, 2H × n, (-OCOCH₂CH₂-)_{n/3} × 3), 3.65 (m, 6H, -CH₂CH₂OH × 3), 4.01 (s, 6H, C(CH₂O-)₃), 4.06 (t, 2H × (n-1), J = 6.6 Hz, (-CH₂CH₂O-)_{(n-1)/3} × 3).

PCL-tetraol: Procedure A was used for the ROP of ε -CL (2.240 mL, 20.0 mmol) in the presence of pentaerythritol (27.2 mg, 200 µmol) and DPP (2.50 mg, 10.0 µmol) for 430 min to give PCL-tetraol (1.07 g) as a white solid. Yield, 48.2%. $M_{n,NMR} = 10,600$; $M_{n,SEC} = 16,900$, $D_M = 1.07$. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 1.37 (m, 2H × n, (-CH₂CH₂CH₂CH₂CH₂-)_{n/4} × 4), 1.54-1.73 (m, 2H × n, (-CH₂CH₂CH₂O-)_{n/4} × 4; 2H × n, (-COCH₂CH₂CH₂-)_{n/4} × 4), 2.32 (m, 2H × n, (-OCOCH₂CH₂-)_{n/4} × 4), 3.65 (t, 8H, J = 6.6 Hz, -CH₂CH₂OH × 4) 4.06 (t, 2H × (n-1), J = 6.6 Hz, (-CH₂CH₂O-)_{(n-1)/4} × 4), 4.11 (s, 8H,C(CH₂CO-)₄).

Syntheses of functional PTMCs with various initiators.

MI-PTMC: Procedure A was used for the ROP of TMC (510 mg, 5.00 mmol) in the presence of HEMI (14.1 mg, 100 µmol) and DPP (1.2 mg, 0.50 µmol) for 19 h to give MI-PTMC (429 mg) as a colorless waxy solid. Yield, 89.7%. $M_{n,NMR} = 4,700$; $M_{n,SEC} = 6,400$, $D_M = 1.13$. ¹H NMR (CDCl₃, 400MHz): δ (ppm) 1.92 (m, 2H, -CH₂CH₂OH), 2.00-2.13 (m, 2H × (*n*-1), (-OCH₂CH₂-)_{*n*-1}), 3.74 (m, 2H, -CH₂OH), 3.85 (t, 2H, J = 5.4 Hz -NCH₂CH₂-), 4.21-4.29 (m, 2H, -NCH₂CH₂-; 4H × *n*-1, (-OCH₂CH₂O-)_{*n*-1}; 2H, -CH₂CH₂CH₂OH), 6,74 (s, 2H, -COCHCHCO-).