Title	Organophosphate catalyzed bulk ring-opening polymerization as an environmentally benign route leading to block copolyesters, end-functional ized polyesters, and poly ester-based polyurethane
Author(s)	Saito, Tatsuya; A izawa, Y usuke; Tajima, Kenji; Isono, Takuy a; Satoh, Toshifumi
Citation	Polymer chemistry, 6(24), 4374.4384 https://doi.org/10.1039/c5py00533g
Issue Date	2016-05-02
Doc URL	http://hdl. handle.net/2115/61450
Type	There are other files related to this item in HUSCAP. Check the above URL.
Additional Information	Satoh(Suppl.).pdf
File Information	

Instructions for use

Supplementary Information

Organophosphate-Catalyzed Bulk Ring-Opening Polymerization as an Environmentally Benign Route Leading to Block Copolyesters, End-Functionalized Polyesters, and Polyester-Based Polyurethane

Tatsuya Saito, ${ }^{\mathrm{a}}$ Yusuke Aizawa, ${ }^{\mathrm{a}}$ Kenji Tajima, ${ }^{\mathrm{b}}$ Takuya Isono ${ }^{\mathrm{b}}$ and Toshifumi Satoh ${ }^{* b}$
${ }^{a}$ Graduate School of Chemical Sciences and Engineering, Hokkaido University,
Sapporo, 060-8628, Japan
${ }^{b}$ Division of Biotechnology and Macromolecular Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of PCL in CDCl_{3} (run 1 in Table 1).

Figure S2. (a) MALDI-TOF MS spectrum of PCL (run 1 in Table 1), (b) expanded spectrum (ranging from 4,400 to 4,800), and (c) theoretical molar mass values.

Figure S3. SEC trace of the obtained PCL initiated from $\mathrm{H}_{2} \mathrm{O}$ (eluent, CHCl_{3}; flow rate, 1.0 mL $\left.\min ^{-1}\right)$.

Figure S4. (a) MALDI-TOF MS spectrum of the PCL initiated from $\mathrm{H}_{2} \mathrm{O}$, (b) expanded spectrum (ranging from 3,200 to 3,500), and (c) theoretical molar mass values and expected structures.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of PVL in CDCl_{3} (run 13 in Table 2).

Figure S6. (a) MALDI-TOF MS spectrum of PVL (run 13 in Table 2), (b) expanded spectrum (ranging from 4,000 to 4,300), and (c) theoretical molar mass values.

Aromatic

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of PDXO in CDCl_{3} (run 16 in Table 2).

Figure S8. (a) MALDI-TOF MS spectrum of PDXO, (b) expanded spectrum (ranging from 3,000 to 3,400), and (c) theoretical molar mass values (run 16 in Table 2).

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of PTMC in CDCl_{3} (run 19 in Table 2).

Figure S10. SEC traces of (A) the obtained PCLs, (B) PVLs, (C) PDXOs, and (D) PTMCs with the $[\mathrm{M}]_{0} /[\mathrm{PPA}]_{0}$ ratios of (a) $100 / 1$, (b) $50 / 1$, and (c) $25 / 1$ (eluent, CHCl_{3}; flow rate, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$).

Figure S11. SEC trace of the PLLA obtained from run 21 in Table 2 (eluent, CHCl_{3}; flow rate, 1.0 mL $\left.\min ^{-1}\right)$.

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of PLLA in CDCl_{3} (run 21 in Table 2)

Figure S13. ${ }^{1}$ H NMR spectrum of PLLA methane resonances with selective decoupling of PLLA methyl resonances (run 21 in Table 2).

Figure S14. (a) MALDI-TOF MS spectrum of PLLA (run 21 in Table 2), (b) expanded spectrum (ranging from 4,900 to 5,300), and (c) theoretical molar mass values.

Figure S15. (a); Kinetic plots for the DPP-catalyzed bulk ROP of ε-CL with $[\varepsilon \text {-CL }]_{0} /[\mathrm{PPA}]_{0} /[\mathrm{DPP}]_{0}$ $=50 / 1 / 0.05$, and (b); dependence of $M_{\mathrm{n}, \mathrm{NMR}}$
$(\bullet), Ð_{\mathrm{M}}(\square)$ and $M_{\mathrm{n}, \mathrm{th}}$ (dotted line) on monomer conversion (conv.).

Figure S16. (a); Kinetic plots for the DPP-catalyzed bulk ROP of TMC with $[\mathrm{TMC}]_{0} /[\mathrm{PPA}]_{0} /[\mathrm{DPP}]_{0}$ $=50 / 1 / 0.05$, and (b); dependence of $M_{\mathrm{n}, \mathrm{NMR}}$ $(\bullet), Ð$ (口) and $M_{\mathrm{n}, \mathrm{th} \text {. }}$ (dotted line) on monomer conversion (conv.).

Table S1. Block copolymerization of ε-CL, δ-VL, DXO, and TMC catalyzed by DPP in the bulk ${ }^{a}$

run		monomer (M)	$[\mathrm{M}]_{0} /[\mathrm{PPA}]_{0}$	time	$\text { conv. (\%) }{ }^{b}$	$M_{\mathrm{n}, \mathrm{th} .}{ }^{b}$	$M_{\mathrm{n}, \mathrm{NMR}}$	$Ð_{\mathrm{M}}{ }^{d}$
31	first	ε-CL	25/1	90 min	94.7	2,800	2,800	1.11
	second	δ VL	25/1	20 min	78.6	$4,800{ }^{e}$	5,000	1.13
32	first	TMC	25/1	560min	96.0	2,600	2,500	1.17
	second	δ-VL	25/1	20 min	78.4	4,500	4,800	1.13
33	first	δ-VL	25/1	15 min	97.1	2,700	2,600	1.15
	second	ε-CL	25/1	125 min	88.0	5,100 ${ }^{\text {e }}$	5,200	1.15
34	first	DXO	25/1	210 min	97.2	3,000	3,100	1.20
	second	ε-CL	25/1	130min	90.1	5,500 ${ }^{e}$	6,000	1.16

${ }^{a}$ Polymerization conditions: atmosphere, Ar; temperature, $80{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR spectrum of the obtained polymer in $\mathrm{CDCl}_{3} .{ }^{c}$ Calculated from $\left[\mathrm{M}_{1}\right]_{0} /[\mathrm{PPA}]_{0} \times$ conv. $\times\left(\mathrm{M} . \mathrm{W}\right.$. of $\left.\mathrm{M}_{1}\right)+(\mathrm{M} . \mathrm{W}$. of PPA). ${ }^{d}$ Determined by SEC measurement of the obtained polymer in $\mathrm{CHCl}_{3} .{ }^{e}$ Calculated from $\left[\mathrm{M}_{2}\right]_{0} /[\mathrm{PPA}]_{0} \times$ conv. $\times\left(\mathrm{M} . \mathrm{W}\right.$. of $\left.\mathrm{M}_{2}\right)+\left(M_{\mathrm{n}, \mathrm{NMR}}\right.$ of the polymer obtained from first polymerization $)$.

Figure S17. SEC traces of PCL obtained from the 1st polymerization and PCL-b-PVL (eluent, CHCl_{3}; flow rate, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$).

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{PCL}-b-\mathrm{PVL}$ in CDCl_{3} (run 31 in Table S1).

Figure S19. SEC traces of PTMC obtained from the 1st polymerization and PTMC-b-PVL (eluent, CHCl_{3}; flow rate, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$).

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of PTMC-b-PVL in CDCl_{3} (run 32 in Table S1).

Figure S21. SEC traces of PVL obtained from the 1st polymerization and PVL-b-PCL (eluent, CHCl_{3}; flow rate, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$).

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{PVL}-b-\mathrm{PCL}$ in CDCl_{3} (run 33 in Table S 1).

Figure S23. SEC traces of PDXO obtained from the 1st polymerization and PDXO-b-PCL (eluent, CHCl_{3}; flow rate, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$).

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum of PDXO-b-PCL in CDCl_{3} (run 34 in Table S1).

Figure S25. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{N}_{3}-\mathrm{PCL}$ in CDCl_{3} (run 22 in Table 3).

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum of MI-PCL in CDCl_{3} (run 23 in Table 3).

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum of N_{3} - PTMC in CDCl_{3} (run 24 in Table 3).

Figure S28. ${ }^{1} \mathrm{H}$ NMR spectrum of MI-PTMC in CDCl_{3} (run 25 in Table 3).

Figure 29. ${ }^{1} \mathrm{H}$ NMR spectrum of PCL-diol in CDCl_{3} (run 26 in Table 3).

Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum of PCL-triol in CDCl_{3} (run 27 in Table 3).

Figure S31. ${ }^{1} \mathrm{H}$ NMR spectrum of PCL-tetraol in CDCl_{3} (run 28 in Table 3).

Figure S32. SEC traces of the obtained polymer in CHCl_{3} (solid line, run 28; chained line, run 29; dotted line, run 30).

Figure S33. FT-IR spectrum of the obtained PCL-based polyurethane in the presence of DPP.

Figure S34. SEC traces of the obtained PCL-based polyurethane in the presence of DPP; dotted line and in the absence of DPP; solid line (eluent, CHCl_{3}; flow rate, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$).

One-pot synthesis of PCL-b-PVL.

$\varepsilon-\mathrm{CL}(0.570 \mathrm{~mL}, 5.00 \mathrm{mmol}), \operatorname{PPA}(27.2 \mu \mathrm{~L}, 200 \mu \mathrm{~mol})$ and DPP $(2.50 \mathrm{mg}, 10.0 \mu \mathrm{~mol})$ were placed in a reaction vessel, which was sealed under an argon atmosphere. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ in an oil bath. After 90 min , we obtained a portion of the reaction mixture for SEC measurement and ${ }^{1} \mathrm{H}$ NMR measurement, then δ - $\mathrm{VL}(0.453 \mathrm{~mL}, 5.00 \mathrm{mmol})$ was added to the reaction mixture. The polymerization was quenched by adding Amberlyst ${ }^{\circledR}$ A21. The reaction mixture was purified by reprecipitation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution into cold methanol $/ n$-hexane $(\mathrm{v} / \mathrm{v}=9 / 1)$ to give the $\mathrm{PCL}-b$-PVL $(812 \mathrm{mg})$ as a white solid. Yield, $84.6 \% . M_{\mathrm{n}, \mathrm{NMR}}=5,000 ; M_{\mathrm{n}, \mathrm{SEC}}=8,700, Ð_{\mathrm{M}}=1.13 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta(\mathrm{ppm}) 1.37\left(\mathrm{~m}, 2 \mathrm{H} \times n,\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n}\right), 1.57-1.75(\mathrm{~m}, 2 \mathrm{H} \times n$, $\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n} ; 2 \mathrm{H} \times n,\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n} ; 2 \mathrm{H} \times m,\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{m} ;$ $\left.2 \mathrm{H} \times m,\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{m}\right), 1.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 2.26-2.40(\mathrm{~m}, 2 \mathrm{H} \times n$, $\left.\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n} ; 2 \mathrm{H} \times m,\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{m}\right), 2.69\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{ArCH}_{2}-\right)$ $3.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.02-4.13\left(\mathrm{~m}, 2 \mathrm{H} \times n,\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n} ; 2 \mathrm{H} \times(m-1)\right.$, (- $\left.\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{m-1}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$), $7.16-7.32$ (m, 5 H , aromatic).

The syntheses of PTMC- b-PVL, PVL- $b-\mathrm{PCL}$, and PDXO- b-PCL were perfomed using similar process.

PTMC- \boldsymbol{b}-PVL: Yield, $88.0 \% . M_{\mathrm{n}, \mathrm{NMR}}=4,800 ; M_{\mathrm{n}, \mathrm{SEC}}=7,500, Ð_{\mathrm{M}}=1.13 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta(\mathrm{ppm})$ 1.57-1.78 (m, $\left.2 \mathrm{H} \times m,\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{m} ; 2 \mathrm{H} \times m,\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)_{m}\right)$, 1.96-2.12 (m, $\left.2 \mathrm{H} \times n, \quad\left(-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n} ; \quad 2 \mathrm{H}, \quad \mathrm{ArCH}_{2} \mathrm{CH}_{2}-\right), \quad 2.34(\mathrm{~m}, \quad 2 \mathrm{H} \times m$, $\left.\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)_{m}\right), 2,72\left(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{ArCH}_{2}-\right), 3.65\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OH}\right), 4.08(\mathrm{~m}, 2 \mathrm{H} \times$ $\left.(m-1),\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{m-1}\right), 4.13-4.30\left(\mathrm{~m}, 2 \mathrm{H} \times n,\left(-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n} ; 2 \mathrm{H} \times n\right.$, $\left.\left(-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n} ; 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 7.16-7.32$ (m, 5 H , aromatic).

PVL-b-PCL: Yield, $74.1 \% . M_{\mathrm{n}, \mathrm{NMR}}=5,200 ; M_{\mathrm{n}, \mathrm{SEC}}=7,000, Đ_{\mathrm{M}}=1.15 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta(\mathrm{ppm}) 1.38\left(\mathrm{~m}, 2 \mathrm{H} \times m,\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)_{m}\right), 1.58-1.75(\mathrm{~m}, 2 \mathrm{H} \times n$, $\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n} ; 2 \mathrm{H} \times n,\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n} ; 2 \mathrm{H} \times m,\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{m} ;$ $\left.2 \mathrm{H} \times m,\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{m}\right), 1.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}-\right), 2.27-2.40(\mathrm{~m}, 2 \mathrm{H} \times n$, $\left.\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n} ; 2 \mathrm{H} \times m,\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)_{m}\right), 2.69\left(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{ArCH}_{2}-\right)$,
$3.65\left(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{OH}\right), 4.02-4.12\left(\mathrm{~m}, 2 \mathrm{H} \times n,\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n} ; 2 \mathrm{H} \times(m-1)\right.$, $\left.\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{m-1} ; \quad 2 \mathrm{H}, \quad \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 4.20 \quad(\mathrm{t}, \quad 2 \mathrm{H} \times n, \quad \mathrm{~J}=4.8 \mathrm{~Hz}$, $\left.\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}-\right)_{n}\right)$, $7.15-7.31$ (m, 5 H , aromatic).

PDXO- b-PCL: Yield, $5.5 \% . M_{\mathrm{n}, \mathrm{NMR}}=6,000 ; M_{\mathrm{n}, \mathrm{SEC}}=5,200, Đ_{\mathrm{M}}=1.16 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta(\mathrm{ppm}) 1.38\left(\mathrm{~m}, 2 \mathrm{H} \times m,\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)_{m}\right), 1.58-1.71(\mathrm{~m}, 2 \mathrm{H} \times m$, $\left.\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{m} ; 2 \mathrm{H} \times m,\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)_{m}\right), 1.97\left(\mathrm{~m}, 2 \mathrm{H} \times m, \mathrm{ArCH}_{2} \mathrm{CH}_{2}-\right), 2.28(\mathrm{~m}, 2 \mathrm{H} \times m$, $\left.\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)_{m}\right), 2.56-2.72\left(\mathrm{~m}, 2 \mathrm{H} \times n,\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n} ; 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}-\right), 3.62-3.71(\mathrm{~m}, 2 \mathrm{H} \times$ $\left.n,\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}-\right)_{n} ; 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OH}\right), 3.74\left(\mathrm{~m}, 2 \mathrm{H} \times n,\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n}\right), 4.01-4.11(\mathrm{~m}, 2 \mathrm{H} \times$ $\left.(m-1), \quad\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{m-1} ; \quad 2 \mathrm{H}, \quad \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right), \quad 4.20 \quad(\mathrm{t}, \quad 2 \mathrm{H} \times n, \quad J=4.8 \mathrm{~Hz}$, $\left.\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}-\right)_{n}\right)$, 7.13-7.29 (m, 5 H , aromatic).

Syntheses of functional PCLs with various initiators.

\mathbf{N}_{3}-PCL: Procedure A was used for the ROP of ε - $\mathrm{CL}(1.120 \mathrm{~mL}, 10.0 \mathrm{mmol})$ in the presence of AHA ($28.6 \mathrm{mg}, 200 \mu \mathrm{~mol}$) and DPP ($2.50 \mathrm{mg}, 10.0 \mu \mathrm{~mol}$) for 420 min to give $\mathrm{N}_{3}-\mathrm{PCL}(740 \mathrm{mg})$ as a white solid. Yield, $69.9 \% . M_{\mathrm{n}, \mathrm{NMR}}=5,500 ; M_{\mathrm{n}, \mathrm{SEC}}=12,700, Ð_{\mathrm{M}}=1.11 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ (ppm) 1.31-1.41 (m, $\left.2 \mathrm{H} \times n,\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)_{n} ; 4 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2^{-}}\right), 1.55-1.69(\mathrm{~m}, 2 \mathrm{H}$ $\left.\times n,\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{n} ; 2 \mathrm{H} \times n,\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{n} ; 4 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 2.31(\mathrm{t}, 2 \mathrm{H} \times n$, $\left.J=7.6 \mathrm{~Hz},\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2}-\right)_{n}\right), 3.28\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{~N}_{3} \mathrm{CH}_{2}-\right), 3.63\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 4.01-4.09$ (m, $\left.2 \mathrm{H} \times(n-1),\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n-1} ; 2 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$.

MI-PCL: Procedure A was used for the ROP of ε-CL $(1.120 \mathrm{~mL}, 10.0 \mathrm{mmol})$ in the presence of HEMI ($28.2 \mathrm{mg}, 200 \mu \mathrm{~mol}$) and DPP ($2.50 \mathrm{mg}, 10.0 \mu \mathrm{~mol}$) for 450 min to give MI-PCL (779 mg) as a white solid. Yield, $73.2 \% . M_{\mathrm{n}, \mathrm{NMR}}=5,500 ; M_{\mathrm{n}, \mathrm{SEC}}=13,400, \oplus_{\mathrm{M}}=1.15 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: $\delta(\mathrm{ppm}) 1.36\left(\mathrm{~m}, 2 \mathrm{H} \times n,\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)_{n}\right), 1.58-1.71\left(\mathrm{~m}, 2 \mathrm{H} \times n,\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n} ; 2 \mathrm{H} \times\right.$ $\left.n,\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)_{n}\right), 2.29\left(\mathrm{t}, 2 \mathrm{H} \times n, J=8.2 \mathrm{~Hz},\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2}-\right)_{n}\right), 3.64\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$, $3.79\left(\mathrm{t}, 2 \mathrm{H}, J=5.4 \mathrm{~Hz},-\mathrm{NCH}_{2}-\right), 4.06\left(\mathrm{t}, 2 \mathrm{H} \times(n-1), J=6.6 \mathrm{~Hz},\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n-1}\right), 4.23(\mathrm{t}, 2 \mathrm{H}, J=5.2$ $\mathrm{Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{2}-$), 6,74 (s, 2H, -COCHCHCO-).

PCL-diol: Procedure A was used for the ROP of ε-CL ($1.120 \mathrm{~mL}, 10.0 \mathrm{mmol}$) in the presence of 1,3-propanediol ($14.3 \mu \mathrm{~L}, 200 \mu \mathrm{~mol})$ and DPP ($2.50 \mathrm{mg}, 10.0 \mu \mathrm{~mol}$) for 180 min to give PCL-diol (776 $\mathrm{mg})$ as a white solid. Yield, $75.5 \% . M_{\mathrm{n}, \mathrm{NMR}}=5,100 ; M_{\mathrm{n}, \mathrm{SEC}}=11,400, \varnothing_{\mathrm{M}}=1.13 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta(\mathrm{ppm}) 1.36\left(\mathrm{~m}, 2 \mathrm{H} \times n,\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)_{n / 2} \times 2\right), 1.58-1.71(\mathrm{~m}, 2 \mathrm{H} \times n$, $\left.\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n / 2} \times 2 ; 2 \mathrm{H} \times n,\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)_{n / 2} \times 2\right), 1.97\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right), 2.29(\mathrm{t}$, $\left.2 \mathrm{H} \times n, J=8.2 \mathrm{~Hz},\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2}-\right)_{n / 2} \times 2\right), 3.63\left(\mathrm{t}, 2 \mathrm{H} \times 2, J=6.4 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right) 4.06(\mathrm{t}, 2 \mathrm{H} \times$ $\left.(n-1), J=6.6 \mathrm{~Hz},\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{(n-1) / 2} \times 2\right), 4.15\left(\mathrm{t}, 4 \mathrm{H}, J=6.2 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)$.

PCL-triol: Procedure A was used for the ROP of ε-CL ($1.120 \mathrm{~mL}, 10.0 \mathrm{mmol}$) in the presence of trimethylolpropane $(26.8 \mathrm{mg}, 200 \mu \mathrm{~mol})$ and DPP $(2.50 \mathrm{mg}, 10.0 \mu \mathrm{~mol})$ for 150 min to give PCL-triol $(666 \mathrm{mg})$ as a white solid. Yield, $66.1 \% . M_{\mathrm{n}, \mathrm{NMR}}=5,200 ; M_{\mathrm{n}, \mathrm{SEC}}=11,500, \searrow_{\mathrm{M}}=1.07 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 0.89\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.36(\mathrm{~m}, 2 \mathrm{H} \times n$, $\left.\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)_{n / 3} \times 3\right), 1.55-1.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}-; 2 \mathrm{H} \times(n-1),\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n / 3} \times 3 ; 2 \mathrm{H}\right.$ $\left.\times n,\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)_{n / 3} \times 3\right), 2.31\left(\mathrm{~m}, 2 \mathrm{H} \times n,\left(-\mathrm{OCOCH}_{2} \mathrm{CH}_{2}-\right)_{n / 3} \times 3\right), 3.65\left(\mathrm{~m}, 6 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right.$ $\times 3), 4.01\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{O}-\right)_{3}\right), 4.06\left(\mathrm{t}, 2 \mathrm{H} \times(n-1), J=6.6 \mathrm{~Hz},\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{(n-1) / 3} \times 3\right)$.

PCL-tetraol: Procedure A was used for the ROP of ε-CL ($2.240 \mathrm{~mL}, 20.0 \mathrm{mmol}$) in the presence of pentaerythritol ($27.2 \mathrm{mg}, 200 \mu \mathrm{~mol}$) and DPP ($2.50 \mathrm{mg}, 10.0 \mu \mathrm{~mol}$) for 430 min to give PCL-tetraol $(1.07 \mathrm{~g})$ as a white solid. Yield, $48.2 \% . M_{\mathrm{n}, \mathrm{NMR}}=10,600 ; M_{\mathrm{n}, \mathrm{SEC}}=16,900, \Xi_{\mathrm{M}}=1.07 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 1.37\left(\mathrm{~m}, 2 \mathrm{H} \times n,\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)_{n / 4} \times 4\right), 1.54-1.73(\mathrm{~m}, 2 \mathrm{H} \times n$, $\left.\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n / 4} \times 4 ; 2 \mathrm{H} \times n,\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)_{n / 4} \times 4\right), 2.32\left(\mathrm{~m}, 2 \mathrm{H} \times n,\left(-\mathrm{OCOCH}_{2} \mathrm{CH}_{2}-\right)_{n / 4} \times\right.$ 4), $3.65\left(\mathrm{t}, 8 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \times 4\right) 4.06\left(\mathrm{t}, 2 \mathrm{H} \times(n-1), J=6.6 \mathrm{~Hz},\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{(n-1) / 4} \times 4\right)$, 4.11 (s, $\left.8 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{CO}-\right)_{4}\right)$.

Syntheses of functional PTMCs with various initiators.

$\mathbf{N}_{\mathbf{3}}$-PTMC: Procedure A was used for the ROP of TMC ($510 \mathrm{mg}, 5.00 \mathrm{mmol}$) in the presence of AHA ($14.3 \mathrm{mg}, 100 \mu \mathrm{~mol}$) and DPP ($1.2 \mathrm{mg}, 0.50 \mu \mathrm{~mol}$) for 19 h to give N_{3}-PTMC $(379 \mathrm{mg})$ as a colorless waxy solid. Yield, $84.1 \% . M_{\mathrm{n}, \mathrm{NMR}}=4,500 ; M_{\mathrm{n}, \mathrm{SEC}}=5,600, Ð_{\mathrm{M}}=1.09 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ (ppm) $1.42\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$) $) 1.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right.$), 2.01-2.11 (m, 2 H , $\left.\mathrm{N}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-; 2 \mathrm{H} \times(n-1),\left(-\mathrm{OCH}_{2} \mathrm{CH}_{2}-\right)_{n-1}\right), 3.28\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{~N}_{3} \mathrm{CH}_{2}-\right), 3.74\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OH}\right)$, 4.21-4.27 (m, $2 \mathrm{H}, \quad \mathrm{N}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-; \quad 4 \mathrm{H} \times(n-1), \quad\left(-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n-1} ; 2 \mathrm{H}$, $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$).

MI-PTMC: Procedure A was used for the ROP of TMC ($510 \mathrm{mg}, 5.00 \mathrm{mmol}$) in the presence of HEMI ($14.1 \mathrm{mg}, 100 \mu \mathrm{~mol}$) and DPP ($1.2 \mathrm{mg}, 0.50 \mu \mathrm{~mol}$) for 19 h to give MI-PTMC (429 mg) as a colorless waxy solid. Yield, $89.7 \% . M_{\mathrm{n}, \mathrm{NMR}}=4,700 ; M_{\mathrm{n}, \mathrm{SEC}}=6,400, Ð_{\mathrm{M}}=1.13 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta(\mathrm{ppm}) 1.92\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 2.00-2.13\left(\mathrm{~m}, 2 \mathrm{H} \times(n-1),\left(-\mathrm{OCH}_{2} \mathrm{CH}_{2}-\right)_{n-1}\right), 3.74(\mathrm{~m}$, $\left.2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OH}\right), 3.85\left(\mathrm{t}, 2 \mathrm{H}, J=5.4 \mathrm{~Hz}-\mathrm{NCH}_{2} \mathrm{CH}_{2}-\right), 4.21-4.29\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{2}-; 4 \mathrm{H} \times n-1\right.$, $\left.\left(-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)_{n-1} ; 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 6,74(\mathrm{~s}, 2 \mathrm{H},-\mathrm{COCHCHCO}-)$.

