Introduction
Titanium (Ti) is used in dental and orthopedic implants and in bone fixation devices [1-3] because of its strength and biological compatibility, including osseointegration. The surface characteristics of a Ti implant typically play a crucial role in the ability of the implant to adhere to soft and hard tissue. Different Ti surface-modification techniques, such as sandblasting [4], plasma-spraying [5], ceramic coating [6] and
acid-etching [7], have been investigated to improve the surface of Ti implants [8-9], but poor osseointegration and peri-implantitis remain problematic [10].

Recently, many research studies have shown that the fabrication of nanostructures on a biomaterial surface improves its biocompatibility [11, 12]. The introduction of nanostructures and nanopatterns enormously increases the surface area of the biomaterial, greatly increasing the wettability and protein absorption properties of the biomaterial [13]. In addition, nano-modified surfaces promote critical cellular actions such as cell proliferation and differentiation [14, 15]. Therefore, the introduction of well-controlled nanostructures on a Ti surface would enhance the self-assembly and self-organization processes required for successful implant adoption by the host.

Carbon-based nanomaterials have been extensively studied for biomedical applications. In particular, carbon nanotubes (CNTs) have novel and useful biological properties, and hold promise for use in biomedical devices as drug-delivery and tissue engineering scaffolds [16-19]. Morphological changes resulting from a CNTs coating have been shown to enhance the bioactivity of a three-dimensional scaffold [20]. CNTs provided new properties to a regenerative scaffold, including mechanical strength, biocompatibility, and enhanced cell activity and bone tissue deposition [21]. Akasaka et al. reported that CNTs effectively induced nucleation and growth of apatite crystallites [22]. Therefore, the biocompatibility of Ti implants could be enhanced by CNTs coating.

Several procedures for the nano-modification of Ti and Ti alloys using CNTs have been presented. For example, Terada et al. reported a CNT-collagen coating comprising a CNT layer laminated onto the surface of a collagen coating on the Ti; thus, the CNTs did not bind to the Ti surface directly [23]. Balani et al. demonstrated that hydroxyapatite -CNT coating onto Ti was performed by plasma spraying [24]. Furthermore, CNTs could be directly fixed onto a Ti surface through annealing. For example, Umeda et al. and Kondoh et al. reported that annealing of well-dispersed CNTs on a Ti surface generated a uniform CNT-Ti composite surface [25, 26]. This easy method, in which Ti surface is modified by coating and annealing of CNTs, may be widely selected for future clinical trials. We postulated that covering a Ti surface with CNT nanostructures by annealing would provide the biological properties required for biomedical applications. Accordingly, the aim of this study was to compare and assess the biological responses to a CNT-Ti composite surface and a pure Ti surface.

Materials and Methods

Fabrication of CNT-Ti composite surface

Two types of multi-walled CNTs were used: Nanocyl NC 7000 (9.5 nm diameter, Nanocyl, Sambreville, Belgium) and VGCF-H (150 nm diameter, Showa Denko, Tokyo, Japan). Each CNT was dispersed in an isopropyl alcohol (IPA-) based zwitterionic surfactant solution at a concentration of 1 wt% as described previously [27]. A pure Ti plate (7 × 7 × 1 mm, purity: 99.5 %, The Nilaco Corporation, Tokyo, Japan) was dip-coated into each CNT dispersion. After drying, Ti plates were annealed at 850°C in a vacuum furnace to remove residual IPA solution, resulting in a thin CNT film on the Ti. The surface and cross section of each sample were characterized using a scanning electron microscopy (SEM, JSM-6500F, JEOL, Tokyo, Japan) coupled with an energy dispersive X-ray spectroscopy unit (EDS, JED-2300, JEOL) at 15 kV acceleration voltage. Changes in the nanostructures of Ti and the CNT layers were examined by X-ray diffraction (XRD, XRD-6100, Shimadzu, Kyoto, Japan) using Cu Kα radiation at 40 kV and 30 mA. Diffractograms were obtained from 2θ = 30° to 80° at 0.02° increments at a scanning speed of 2°/minute. Raman data were collected and analyses were conducted using a Raman spectrophotometer (LabRAM ARAMIS, Horiba, Kyoto, Japan) and associated software; a 532 nm laser was selected, and the acquisition time was 10 seconds. The hydrophilicity of the surface of each sample was investigated using a contact angle meter (DMs-200, Kyowa Electronic Instruments, Tokyo, Japan).
Cell morphology
Mouse osteoblastic MC3T3-E1 cells (1 × 10^4; RIKEN BioResource Center, Tsukuba, Japan) were seeded on Ti surfaces modified with Nanocyl or VGCF-H, and cultured in humidified 5% CO_2 at 37°C using medium (MEM alpha-Glutamax™-I; Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% fetal bovine serum (FBS, Qualified; Thermo Fisher Scientific) and 1% antibiotics (penicillin/ streptomycin; Thermo Fisher Scientific). A pure Ti plate without CNTs was used as a control. After 24 hours of culture, samples were fixed in 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.4) for 30 min, rinsed in cacodylate buffer solution, and then dehydrated in increasing concentrations of ethanol. Following critical point drying, samples were analyzed using SEM (S-4000, Hitachi, Tokyo, Japan) at an acceleration voltage of 10 kV after coating with a thin layer of Pt-Pd.

Proliferation assay
MC3T3-E1 cells (1×10^5) were seeded on CNT-Ti composite surfaces and cultured in humidified 5% CO_2 at 37°C using a medium supplemented with 10% FBS and 1% antibiotics as above. A pure Ti plate without CNTs was used as a control. Cell viability was assessed after 2 and 7 days culture using a cell counting kit-8 (CCK-8, Dojindo Laboratories, Kumamoto, Japan) following the manufacturer's instructions. The optical density was measured using a microplate reader at an absorbance of 450 nm.

In vivo test
The experimental protocol followed the institutional animal use and care regulations of Hokkaido University (Animal Research Committee of Hokkaido University, Approval No. 13-76). Eight 10-week-old male Wistar rats weighing 190 to 210 g were given general anesthesia by intraperitoneal injection of 0.6 mL / kg sodium pentobarbital (Somnopenthal, Kyoritsu Seiyaku, Tokyo, Japan), as well as a local injection of 2% lidocaine hydrochloride with 1:80,000 epinephrine (Xylocaine Cartridge for Dental Use, Dentsply-Sankin K.K., Tokyo, Japan). After a skin incision was made, individual Ti plates were implanted into the subcutaneous tissue of the back of each rat. Skin flaps were sutured (Softretch 4-0, GC, Tokyo, Japan) and tetracycline hydrochloride ointment (Achromycin Ointment, POLA Pharma, Tokyo, Japan) was applied to the wound.

Rats were euthanized using an overdose of sodium pentobarbital (2 mL/kg) at 10 days postsurgery. Following removal of the Ti plate, tissue was excised and tissue blocks were fixed in 10% buffered formalin, embedded in paraffin wax, and cut into 6 μm sections. Sections were stained with hematoxylin-eosin (HE) and examined using light microscopy. The number of giant cells was assessed using three stained sections (200×): one from the center of the excised tissue sample, and one from tissue 1 mm to either side of the center.

In addition, Ti plate were removed at 35 days postsurgery and fixed in 10% buffered formalin and dehydrated in increasing concentrations of ethanol. Samples were analyzed using SEM (S-4000) at an acceleration voltage of 10 kV after coating with a thin layer of Pt-Pd.

Statistical analysis
The means and standard deviations of each parameter were calculated for each group. Statistical analysis was performed using the Scheffé test on each measurement. P-values < 0.05 were considered statistically significant. All statistical procedures were performed using a software package (IBM SPSS 11.0; IBM SPSS Japan, Tokyo, Japan).

Results
Characterization of CNT-Ti composite surface
Ti plates were discolored following coating and annealing with Nanocyl or VGCF-H (Figure 1A). SEM observations showed that a network of CNTs (CNT-net) was fabricated on the Ti surface and was composed of a three-dimensional reticulated CNT structure. CNTs had apparently disassembled into individual tubes. Nanocyl CNTs appeared to be slender and flexible in contrast to VGCF-H CNTs (Figure 1B, C).

XRD patterns for the CNT-Ti composite surfaces and pure Ti are shown in Figure 2. Titanium carbide (TiC) peaks associated with the
solid-phase Ti/carbon reaction were detected following annealing of the CNT covered plates, indicating that carbon atoms were dissolved into the Ti plate.

An EDS analysis of the CNT-Ti composite surface provided the Ti and carbon content (Table 1). The Ti surface treated with Nanocyl comprised approximately 42% elemental carbon, whereas the Ti surface treated with VGCF-H was approximately 73% carbon. The lower carbon content for the Nanocyl treated plates is due to the fact that these nanotubes have a much smaller diameter (9.5 nm) than VGCF-H nanotubes (150 nm), and so more easily form a dense film on the Ti plate surface. This leads to a more effective solid-state reaction with Ti, thus producing a thinner CNT film. SEM-EDS analysis of a cross section of a Ti plate coated with CNTs is shown in Figure 3, where the red line indicates the scan line, the green line shows the carbon content and the blue line shows the Ti content. For both specimens, a TiC layer was clearly detected at the interface between the Ti plate surface and the CNT film.

Raman spectroscopic analysis of each CNT-Ti composite surface showed peaks from the graphite structure-derived G-band and the defect-derived D-band around 1590 cm⁻¹ and 1350 cm⁻¹, respectively. The G/D ratio for pre- and post-annealing was 0.89 to 0.87 for Nanocyl and 3.56 to 3.35 for VGCF-H. The essentially unchanged G/D ratio between pre- and post-annealing suggests that CNTs are not destroyed by heat treatment at high temperature (Figure 4).

The contact angle for the CNT-Ti composite surface was significantly higher than that for the pure Ti surface, with the VGCF CNT-net producing a significantly greater hydrophobic effect than Nanocyl (Figure 5).

Cell morphology

At 1 day of cell culture, SEM observation showed clearer cell spreading on the Nanocyl CNT-net than on the VGCF-H CNT-net or pure Ti plate (Figure 6). On Nanocyl, the cells were star-shaped with multiple elongated cytoplasmic protrusions (Figure 6A, G). It seemed likely that the cells used the CNT fibers as a scaffold and that cell attachment and spreading occurred preferentially on the CNT fibers. Although cells did attach to the VGCF CNT-net, they were generally thin and spindle-shaped, suggesting that the nanomorphology of this CNT-net was incompatible with vigorous cell growth and spreading (Figure 6B). Furthermore, cells were frequently penetrated by VGCF-H fibers in the CNT-net (Figure 6H). At 3 day, cell spreading was exhibited on VGCF-H CNT-net and Ti as well as Nanocyl CNT-net (Figure 6E, F). Marked cell growth was observed on the Nanocyl modified surface (Figure 6D).

Proliferation assay

The degree of cell proliferation on each sample is presented in Figure 6I. After 7 days, cell proliferation on both CNT-Ti composite surfaces was significantly greater than that for the pure Ti surface, with the Nanocyl modified surface showing higher cell proliferation than the VGCF-H modified surface.

In vivo test

Histological observations 10 days after implantation into rat subcutaneous tissue showed minimal inflammatory cell infiltration in the connective tissues around the Nanocyl CNT-net and the pure Ti, suggesting that these samples possessed good biocompatibility (Figure 7A, C). However, aggregates of macrophage-like giant cells were observed on the surface of the VGCF-H modified surface (Figure 7B) to a much greater extent than on pure Ti and the Nanocyl modified surface (Figure 7D).

In SEM observation of the samples after 35 days, the CNT-net structure remained intact on the Ti surface. Cells and extracellular matrices had attached to the CNT-net surface. These observations suggest that the bonds between CNT-net and Ti are stable in the body (Figure 8).

TABLE 1	Elemental composition (at %) of CNT-Ti composite by EDS analysis.	
	Ti	C
Nanocyl	58.0	42.0
VGCF-H	26.2	73.8

Nishida et al., Biological Response to CNT-Ti Surfaces, Nano Biomed 7(1), 11-20, 2015
Figure 1
(A) CNT-Ti composite. (a) Pure Ti plate. (b) Ti plate coated with Nanocyl. (c) Ti plate coated with VGCF-H. (B) SEM image of a Nanocyl CNT-net. (C) SEM image of a VGCF CNT-net. Scale bars represent 1 µm (B, C).

Figure 2
XRD patterns for pure Ti, Nanocyl CNT-net and VGCF CNT-net.

Figure 3
EDS analysis of a cross section of Ti treated with Nanocyl (A) and VGCF-H (B). Scale bars represent 1 µm.

Figure 4
Raman spectra of Ti coated with Nanocyl (A) and VGCF-H (B).

Figure 7
Histological findings at 10 days. (A) Nanocyl. (B) VGCF-H. (C) Pure Ti plate. Macrophage-like giant cells (arrows) were observed close to the VGCF-H surface. Scale bars represent 100 µm (A, B, C). Staining: hematoxylin and eosin. (D) Number of giant cells.
Figure 5
(A) Contact angle images. (a) Pure Ti plate. (b) Ti plate coated with Nanocyl. (c) Ti plate coated with VGCF-H. (B) Bar graph summarizing the contact angle data.

Figure 6
(A) SEM micrograph showing cell morphology on Nanocyl at 1 day. Cells were widely distributed on the Nanocyl CNT-net. (B) SEM micrograph showing cell morphology on VGCF-H at 1 day. The cells appeared to be spindle shaped. (C) SEM micrograph showing cell morphology on pure Ti at 1 day. (D) SEM micrograph showing cell morphology on Nanocyl at 3 days. Cells was proliferated on Nanocyl net. (E) SEM micrograph showing cell morphology on VGCF-H at 3 days. Cell spreading was likely occurred on the VGCF-net. (F) SEM micrograph showing cell morphology on pure Ti at 3 days. (G) Higher magnification of panel A. Cytoplasmic protrusions were frequently observed on Nanocyl CNT-net (arrows). (H) Higher magnification of panel B. VGCF-H fibers pierced the cells (arrows). Scale bars represent 100 μm (A, B, C, D, E, F), 2 μm (G) and 1μm (H). (I) In vitro assessment of cell proliferation using the CCK-8 assay.
Discussion

SEM observation showed significant cell spreading on Nanocyl-net (Figure 6), with a particularly well-formed cell pseudopodial network, suggesting that the nanomorphology of the Nanocyl modified surface improved the cytocompatibility of Ti. Several earlier reports indicated that cells spread on a CNT layer, using it as a scaffold; for example, adhesion of cultured cells was increased by a CNT-net coating, thus providing a regenerative scaffold [28]. However, in the present study, the VGCF-H CNT-net resulted in spindle shaped cells, suggesting that the biocompatibility of the VGCF-H nanostructure was lower than that for Nanocyl, and that cells could recognize the differences in morphology between Nanocyl and VGCF CNT-nets. In general, cells well-attach to relevant hydrophobic surfaces via their cell membrane [29, 30]. We found that the VGCF-H surface was more hydrophobic than the Nanocyl surface (Figure 5). It was suggested that both the nanostructure and the hydrophilicity of the CNT-Ti composite surface significantly influenced cell morphology and behavior.

Osteoblast cell proliferation was stimulated more by CNT modified surfaces than by a pure Ti surface (Figure 6I). Nano-modification of a biomaterial surface may result in morphological changes to the surface, such as increased roughness and surface area, thereby enhancing cell attachment and adsorption of signaling molecules [31, 32]. Similarly, Watari et al. and Yao et al. reported that nano-modification of a material surface promoted bone cell proliferation [33, 34]. Thus, CNT nanomodification seems to confer novel properties to the Ti surface. In addition, the Nanocyl surface promoted cell proliferation significantly more than the VGCF-H surface. Recently, many studies have demonstrated an association between the size of CNTs and their biological effects. Von der Mark et al. demonstrated that 15 nm diameter TiO₂ nanotubes enhanced cell attachment and proliferation more than 100 nm nanotubes, and the larger TiO₂ nanotubes increased cell apoptosis [32]. Furthermore, SEM images frequently showed cells were pierced by VGCF-H nanotubes (Figure 6H). Yamashita et al. demonstrated that long, thick CNTs, but not short, thin CNTs, caused significant DNA damage and inflammatory response [35]. The Nanocyl nanotubes used in this experiment were 9.5 nm in diameter and 1.5 μm in length, whereas the VGCF-H nanotubes were 150 nm in diameter and 15 μm in length. Accordingly, Nanocyl would be expected to exhibit superior flexibility compared to VGCF-H and provide a non-cytotoxic, biocompatible CNT-Ti composite surface. Further studies are required to assess the relation between osseointegration and size of CNTs in bone tissue.

Annealing and electrophoretic deposition was found to bind CNTs strongly and directly to the Ti surface [36, 37], preventing CNT detachment during implantation. Annealing of a well-dispersed CNT solution produced a thin,
uniform CNT film with a network-like structure [25, 26]. In addition, the XRD results clearly showed that annealing resulted in the formation of TiC (Figure 2), indicating that CNTs partially dissolved into the Ti plate, thereby strongly binding the CNTs to the Ti surface. TiC is a bio-safe material with good biocompatibility [38, 39]. It is possible that the thickness of the CNT layer can be regulated by the annealing time and temperature. Further studies are needed to identify the optimal CNT annealing conditions for biomedical applications.

The results of the in vivo test showed few inflammatory cells on the Nanocyl surface, but many macrophage-like giant cells were detected on the VGCF-H surface (Figure 7), suggesting that differences in CNT nanomorphology influenced cell behavior and tissue response both in vivo and in vitro. Several studies reported the accumulation of blackened macrophage-like cells on a CNT substrate, indicative of phagocytosis [28]; however, this was not observed with the Nanocyl samples. Champion et al. reported that particle size of foreign body strongly affected the phagocytosis and attachment of macrophages [40]. They exhibited that microspheres with 2-3 μm sizes were phagocytosed more readily than smaller particles. Therefore, it seemed likely that macrophage-like cells recognized the submicron VGCF-H network structure, whereas inflammatory cells could not recognize and respond to the Nanocyl nano-sized network. In addition, detachment of CNTs from the Ti surface may result in free CNTs adversely affecting the body. Sato et al. investigated the structure of 15 nm diameter CNTs following implantation for 2 years in the subcutaneous tissue of rats and observed that the CNTs were gradually degraded inside macrophage lysosomes. None of the rats displayed symptoms of cancer or severe inflammatory reactions, including necrosis [41]. The long-term effects of in vivo CNT use should be further evaluated prior to future clinical trials.

Conclusion
We fabricated CNT-Ti composite surfaces by annealing Ti plates covered with CNTs and investigated the biological response to CNT nanomorphologies. CNT-Ti composite surfaces promoted desirable cell behavior, including cell proliferation, compared with pure Ti. Furthermore, nanomodification with CNTs, particularly with narrow diameter Nanocyl, provided good biocompatibility.

Acknowledgements
This work was supported by The Akiyama Life Science Foundation and JPSP KAKENHI Grant Number 25463210. This work was performed under the cooperative research program of Joining and Welding Research Institute, Osaka University. The authors report no conflicts of interest related to this study.

References
10) Koka S, Zarb G. On osseointegration: the healing adaptation principle in the context of

(Received: June 20, 2015/ Accepted: June 27, 2015)

Corresponding author:
Hirofumi Miyaji, D.D.S., Ph.D.
Department of Periodontology and Endodontology, Hokkaido University
Graduate School of Dental Medicine, N13 W7 Kita-ku, Sapporo 060-8586, Japan
Tel: +81-11-706-4266, Fax: +81-11-706-4334
E-mail: miyaji@den.hokudai.ac.jp