<table>
<thead>
<tr>
<th>Title</th>
<th>Evaluation of the motion of lung tumors during stereotactic body radiation therapy (SBRT) with four-dimensional computed tomography (4DCT) using real-time tumor-tracking radiotherapy system (RTRT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Harada, Keiichi; Katoh, Norio; Suzuki, Ryusuke; Ito, Yoichi M.; Shimizu, Shinichi; Onimaru, Rikiya; Inoue, Tetsuya; Miyamoto, Naoki; Shirato, Hiroki</td>
</tr>
<tr>
<td>Citation</td>
<td>Physica medica : European journal of medical physics, 32(2): 305-311</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2016-02</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/61917</td>
</tr>
<tr>
<td>Rights(URL)</td>
<td>http://creativecommons.org/licenses/by-nc-nd/4.0/</td>
</tr>
<tr>
<td>Type</td>
<td>article</td>
</tr>
<tr>
<td>Additional Information</td>
<td>There are other files related to this item in HUSCAP. Check the above URL.</td>
</tr>
<tr>
<td>File Information</td>
<td>PhysMed_32_305.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
Original Paper

Evaluation of the motion of lung tumors during stereotactic body radiation therapy (SBRT) with four-dimensional computed tomography (4DCT) using real-time tumor-tracking radiotherapy system (RTRT)

Keiichi Harada a,b, Norio Katoh c,*, Ryusuke Suzuki b, Yoichi M. Ito d, Shinichi Shimizu e, Rikiya Onimaru a, Tetsuya Inoue b, Naoki Miyamoto b, Hiroki Shirato a,c

a Department of Radiation Medicine, Hokkaido University Graduate School of Medicine, North-15 West-7, Kita-ku, Sapporo 060-8638, Japan
b Department of Radiation Oncology, Hokkaido University Hospital, North-14 West-5, Kita-ku, Sapporo 060-8638, Japan
c Global Station for Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University Graduate School of Medicine, North-15 West-7, Kita-ku, Sapporo 060-8638, Japan
d Department of Biostatistics, Hokkaido University Graduate School of Medicine, North-15 West-7, Kita-ku, Sapporo 060-8638, Japan
e Department of Radiation Oncology, Hokkaido University Graduate School of Medicine, North-15 West-7, Kita-ku, Sapporo 060-8638, Japan

ARTICLE INFO

Article history:
Received 20 August 2015
Received in revised form 9 October 2015
Accepted 23 October 2015
Available online 2 March 2016

Keywords:
Four-dimensional computed tomography
Stereotactic body radiation therapy
Real-time tumor-tracking radiotherapy
Organ motion

ABSTRACT

Purpose: We investigated the usefulness of four-dimensional computed tomography (4DCT) performed before stereotactic body radiation therapy (SBRT) in determining the internal margins for peripheral lung tumors.

Methods and Materials: The amplitude of the movement of a fiducial marker near a lung tumor measured using the maximum intensity projection (MIP) method in 4DCT imaging was acquired before the SBRT (AmpCT) and compared with the mean amplitude of the marker movement during SBRT (Ampmean) and with the maximum amplitude of the marker movement during SBRT (Ampmax) using a real-time tumor-tracking radiotherapy (RTRT) system with 22 patients.

Results: There were no significant differences between the means of the Ampmean and the means of the AmpCT in all directions (LR, P = 0.45; CC, P = 0.80; AP, P = 0.65). The means of the Ampmax were significantly larger than the means of the AmpCT in all directions (LR, P < 0.01; CC, P = 0.03; AP, P < 0.01). In the lower lobe, the mean difference of the AmpCT from the mean of the Ampmax was 5.7 ± 8.0 mm, 12.5 ± 16.7 mm, and 6.8 ± 8.5 mm in the LR, CC, and AP directions, respectively.

Conclusions: Acquiring 4DCT MIP images before the SBRT treatment is useful to establish the mean amplitude for a patient during SBRT but it underestimates the maximum amplitude during actual SBRT. Caution must be paid to determine the margin with the 4DCT especially for tumors at the lower lobe where it is of the potentially greatest benefit.

© 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Stereotactic body radiation therapy (SBRT) is widely used in the therapy of localized lung malignancies with patients where the malignancy is inoperable or where patients refuse to undergo surgical resection [1–3]. It is important to reduce uncertainties in the target delineation and localization, and thereby limit the doses to the surrounding normal tissue [4–6].

Four-dimensional computed tomography (4DCT) has been widely used to estimate the internal motion of lung cancers in SBRT. Underberg et al. have shown that 4DCT is useful to determine the internal target volume (ITV) in stereotactic body radiation therapy (SBRT) for stage I lung cancer [7]. Using 4DCT, Liu et al. have shown that the principal component of the tumor motion was in the cranio-caudal direction (CC), with only 10.8% of tumors moving >1.0 cm based on the data of 4DCT [8].

The accuracy of the ITV determination based on 4DCT has been compared with other imaging modalities. Cai et al. found that ITVs based on 4DCT were comparatively smaller than those based on dynamic magnetic resonance imaging (MRI) in both phantom studies and lung tumor patient studies [9]. Purdie et al. have shown that tumor motion of the planning 4DCT scan did not match that of...
Patients

We obtained approval from the research ethics committee of Hokkaido University Hospital for this retrospective study (No. 012-0395). From May 2011 to October 2013, 22 patients with peripheral lung tumors, who underwent 4DCT and SBRT with a RTRT system, were included in this study. The median age was 77.5 years (range 63–89). Tumor locations were: 11 upper-middle lobes and 11 lower lobes (Table S1). As previously described, in a RTRT system, the three-dimensional (3D) coordinates of a fiducial marker which has been implanted near the lung tumor were recorded every 0.033 seconds during the SBRT using two sets of fluoroscopes [11]. The outcome of the SBRT using RTRT has been reported elsewhere [13]. In our institution, we used RTRT for the lung SBRT using the RTRT system. The RTRT is basically a gated radiotherapy where the therapeutic beam is delivered only when the internal fiducial marker near the tumor is within a ±2-mm of the planned position at the end of expiration. This is the reason why we used breath-hold CT images acquired at the end of expiration for the determination of CTV and for dose calculations. Five mm was added to the CTV to make the PTV. The 4DCT image was used for research purposes in this study. The prescription was 40 Gy in 4 fractions to the 95% of PTV in principle.

Measurement of amplitudes using 4DCT

Fiducial markers with a diameter of 2 mm were implanted through endoscopy before the 4DCT. For each lung tumor, 3–4 markers were implanted near the tumor. No training or visual monitoring of breath was used during the 4DCT and RTRT. Patients were breathing freely and naturally throughout the 4DCT and SBRT procedures in this study. The marker nearest the tumor center is used for the RTRT. The 4DCT scan was performed on a 16-slice CT scanner (Optima CT580 W; GE Healthcare, Waukesha, WI) within one week before the SBRT, with transaxial images acquired during free breathing in the cine mode. The scan parameters were: 1.0 s gantry rotation, 0.5 s cine interval, 20 mm beam collimation, and 2.5-mm slice thickness. The datasets at each table position were acquired for at least the duration of one respiratory cycle of the patient. During the CT scan, the respiratory signals of each patient were recorded and monitored using a Varian Real-time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA): a box with two infrared reflective markers was placed on the upper abdomen of the patient and its movement was captured by an infrared camera. The raw 4DCT images and the corresponding respiratory signal data were transferred to an Advantage Workstation 4.5 (GE Healthcare, Waukesha, WI) to sort the 4DCT images into 10 respiratory phase-based bins of 3DCT images. Maximum intensity projection (MIP) images were automatically generated from all 10 phase-based bins of the 3DCT images using the Advantage 4D software (GE Healthcare, Waukesha, WI).

We used the MIP images from the 4DCT (4DCT MIP) for the measurements of the amplitude of the fiducial marker that was tracked by the RTRT system during the SBRT. The window width was set to 2000 HU and the window level as 150 HU, and defined a high-density area over 1000 HU as the trajectory of the marker. Not training or visual monitoring of breath was used during the 4DCT and RTRT. Patients were breathing freely and naturally throughout the 4DCT and SBRT procedures in this study. The marker nearest the tumor center is used for the RTRT. The 4DCT scan was performed on a 16-slice CT scanner (Optima CT580 W; GE Healthcare, Waukesha, WI) within one week before the SBRT, with transaxial images acquired during free breathing in the cine mode. The scan parameters were: 1.0 s gantry rotation, 0.5 s cine interval, 20 mm beam collimation, and 2.5-mm slice thickness. The datasets at each table position were acquired for at least the duration of one respiratory cycle of the patient. During the CT scan, the respiratory signals of each patient were recorded and monitored using a Varian Real-time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA): a box with two infrared reflective markers was placed on the upper abdomen of the patient and its movement was captured by an infrared camera. The raw 4DCT images and the corresponding respiratory signal data were transferred to an Advantage Workstation 4.5 (GE Healthcare, Waukesha, WI) to sort the 4DCT images into 10 respiratory phase-based bins of 3DCT images. Maximum intensity projection (MIP) images were automatically generated from all 10 phase-based bins of the 3DCT images using the Advantage 4D software (GE Healthcare, Waukesha, WI).

We used the MIP images from the 4DCT (4DCT MIP) for the measurements of the amplitude of the fiducial marker that was tracked by the RTRT system during the SBRT. The window width was set to 2000 HU and the window level as 150 HU, and defined a high-density area over 1000 HU as the trajectory of the marker. Not training or visual monitoring of breath was used during the 4DCT and RTRT. Patients were breathing freely and naturally throughout the 4DCT and SBRT procedures in this study. The marker nearest the tumor center is used for the RTRT. The 4DCT scan was performed on a 16-slice CT scanner (Optima CT580 W; GE Healthcare, Waukesha, WI) within one week before the SBRT, with transaxial images acquired during free breathing in the cine mode. The scan parameters were: 1.0 s gantry rotation, 0.5 s cine interval, 20 mm beam collimation, and 2.5-mm slice thickness. The datasets at each table position were acquired for at least the duration of one respiratory cycle of the patient. During the CT scan, the respiratory signals of each patient were recorded and monitored using a Varian Real-time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA): a box with two infrared reflective markers was placed on the upper abdomen of the patient and its movement was captured by an infrared camera. The raw 4DCT images and the corresponding respiratory signal data were transferred to an Advantage Workstation 4.5 (GE Healthcare, Waukesha, WI) to sort the 4DCT images into 10 respiratory phase-based bins of 3DCT images. Maximum intensity projection (MIP) images were automatically generated from all 10 phase-based bins of the 3DCT images using the Advantage 4D software (GE Healthcare, Waukesha, WI).

We used the MIP images from the 4DCT (4DCT MIP) for the measurements of the amplitude of the fiducial marker that was tracked by the RTRT system during the SBRT. The window width was set to 2000 HU and the window level as 150 HU, and defined a high-density area over 1000 HU as the trajectory of the marker. Not training or visual monitoring of breath was used during the 4DCT and RTRT. Patients were breathing freely and naturally throughout the 4DCT and SBRT procedures in this study. The marker nearest the tumor center is used for the RTRT. The 4DCT scan was performed on a 16-slice CT scanner (Optima CT580 W; GE Healthcare, Waukesha, WI) within one week before the SBRT, with transaxial images acquired during free breathing in the cine mode. The scan parameters were: 1.0 s gantry rotation, 0.5 s cine interval, 20 mm beam collimation, and 2.5-mm slice thickness. The datasets at each table position were acquired for at least the duration of one respiratory cycle of the patient. During the CT scan, the respiratory signals of each patient were recorded and monitored using a Varian Real-time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA): a box with two infrared reflective markers was placed on the upper abdomen of the patient and its movement was captured by an infrared camera. The raw 4DCT images and the corresponding respiratory signal data were transferred to an Advantage Workstation 4.5 (GE Healthcare, Waukesha, WI) to sort the 4DCT images into 10 respiratory phase-based bins of 3DCT images. Maximum intensity projection (MIP) images were automatically generated from all 10 phase-based bins of the 3DCT images using the Advantage 4D software (GE Healthcare, Waukesha, WI).

Measurement of amplitudes during SBRT using RTRT log data

In the RTRT system, log files are created continuously during the delivery of the therapeutic beam for each port unless there is a...
to divide the whole of the obtained data into two groups: ages 77 or younger vs. 78 or older, FEV1.0 <1.8 L vs. ≥1.8 L or larger, lobe upper-middle vs. lower and 3DSA <10 mm vs. ≥10 mm or larger. The means of the differences in the amplitudes were compared between groups using the Wilcoxon test. A P value < 0.05 was considered to show statistical significance.

Results

The mean period between the dates of the 4DCT scan and the start of the SBRT was 5.6 days (range 3–6). The duration for acquisition of 4DCT images ranged from 87.8 to 139.5 seconds (mean 104.6). In 96 treatments with the 22 patients, the length of the log-data of the RTRT system for one treatment was from 395 to 1924.3 seconds (mean 1025.5). The duration of the SBRT was about 10 times longer than the 4DCT. The average length of session of RTRT log data was 92.4 seconds (range: 49.6–174.2). There were 11.3 sessions per fraction of SBRT.

Measurement of amplitudes using 4DCT

The mean of the AmpCT in the 22 patients was 3.6 ± 1.3 mm (range 1.9–6.4), 9.4 ± 8.1 mm (1.9–36.1), and 5.5 ± 1.9 mm (3.4–10.4) in the LR, CC, and AP directions, respectively. The median 3DSA was 9.8 mm (range 4.6–37.7) (Tables S1 and S2).

Analysis based on the mean amplitude of each patient during SBRT

The mean of the Ampmean was 4.2 ± 2.8 mm (0.9–13), 11.4 ± 1.6 mm (11.1–38.0), and 5.7 ± 3.6 mm (1.5–15.7) in the LR, CC, and AP directions, respectively (Table S2). There were no significant differences between the mean of the Ampmean and the mean of the AmpCT in any direction (LR, P = 0.45; CC, P = 0.80; and AP, P = 0.65) (Fig. 3a).

In the upper-middle lobe, the mean difference from the amplitude measured with the 4DCT to the mean of the Ampmean in the 22 patients was −0.2 ± 0.8 mm, −1.2 ± 2.7 mm, and −0.9 ± 1.1 mm in the LR, CC, and AP directions, respectively. In the lower lobe, it was 1.5 ± 3.5 mm, 5.2 ± 11.7 mm, and 1.2 ± 3.8 mm in the LR, CC, and AP directions, respectively. There were no statistically significant differences between the differences in the lower lobe and in the upper-middle lobe in any of the directions (LR, P = 0.15; CC, P = 0.19; and AP, P = 0.26).

Analysis based on the maximum amplitude of a patient during SBRT

The mean of the Ampmax of all patients was 7.0 ± 2.8 mm (1.7–28.8), 15.9 ± 16.4 mm (2.0–52.3), and 9.5 ± 7.5 mm (2.4–34.8) in the LR, CC, and AP directions, respectively (Table S2). The mean of the Ampmax was statistically significantly larger than the AmpCT in all three directions (LR, P < 0.01; CC, P = 0.03; and AP, P < 0.01) (Fig. 3b).

In the upper-middle lobe, the mean difference between the AmpCT and the mean of the Ampmax was 1.3 ± 1.1 mm, 0.6 ± 3.1 mm, and 1.1 ± 1.7 mm in the LR, CC, and AP directions. In the lower lobe, it was 5.7 ± 8.0 mm, 12.5 ± 16.7 mm, and 6.8 ± 8.5 mm in the LR, CC, and AP directions. The differences in the lower lobe were larger than those in the upper-middle lobe in the CC and AP directions (LR, P = 0.15; CC, P < 0.05; and AP, P = 0.21) (Fig. 4). Figure 5 illustrates the position of the markers and the differences between the means of the Ampmax and AmpCT.

The mean and standard deviations of the difference between the AmpCT and the Ampmax for the selected clinical characteristics (age, FEV1.0, lobe, and 3DSA) are shown in Table 1. The difference was significantly larger in the lower lobe than in the upper-middle lobe in the CC (Upper-middle 0.6 ± 3.1, Lower 12.5 ± 16.7, P < 0.05). The difference was also larger for those with 3DSA 10 mm or larger than

Statistical analysis

The JMP 9 (SAS, Cary, NC) software was used for the statistical analysis. The AmpCT was compared with the mean of the Ampmean and Ampmax using the Wilcoxon test. The mean difference of the AmpCT from the mean of the Ampmean and Ampmax was compared for the upper-middle and the lower lobes also using the Wilcoxon test. The statistical relationships between several clinical characteristics and the difference in the AmpCT versus the Ampmean and the Ampmax were investigated using analysis of variance (ANOVA). The restricted maximum likelihood (REML) method in linear random effects model was used to estimate the variance components. As the clinical characteristics in the analysis, the age, the forced expiratory volume in 1 second (FEV1.0), lobe, and the 3DSA were used. In clinical practice, emphysematous and fibrotic changes in lung tissue are more common in old age. Also FEV1.0 is often changed in the diseased lung tissue. Therefore, we have included these parameters in the analysis. For each factor, the median value was used
those with 3DSA less than 10 mm in the LR direction (<10 mm 0.9 ± 1.7, 10 mm 6.0 ± 1.7, \(P = 0.01 \)). No other statistical differences were observed.

Relationships between the several clinical characteristics and the mean difference between the AmpCT and the mean of the Ampmax were investigated using ANOVA. Estimated percentages of total variance components using the REML method were determined as shown in Table 2. For age, FEV1.0, lobe, and 3DSA, it was 0.0%, 4.4%, 5.1%, and 24.0%, respectively, in the LR direction; 0.0%, 1.1%, 29.7%, and 0.0% in the CC direction; and 0.0%, 0.0%, 21.3%, and 5.5% in the AP direction. These percentages suggest that the lobe and the 3DSA contribute to the mean difference in the LR, CC, and AP directions (Table 2). However, the residual component other than these clinical characteristics in the variance is still large in all three directions.

Discussion

As a simple approach to generate individualized ITVs from 4DCT, Ezhil et al. have investigated the accuracy of MIP-based ITV compared with the method of contouring on all 10 phases [14]. Here it was found that the MIP-based ITV underestimated the volume

![Figure 3](image_url)
Figure 3. a. Plots of the mean of the Ampmean and the mean of the AmpCT. (a) The mean of the Ampmean and (b) the mean of the AmpCT in the LR, CC, and AP directions.
b. Plots of the mean of the Ampmax and the mean of the AmpCT. (a) The mean of the Ampmax and (b) the mean of the AmpCT in the LR, CC, and AP directions.

![Figure 4](image_url)
Figure 4. The mean differences of the AmpCT from the Ampmax. (I) In the upper-middle lobe and (II) in the lower lobe for the LR, CC, and AP directions.

![Figure 5](image_url)
Figure 5. The positions of each marker and its corresponding difference between the Ampmax and the AmpCT. On the frontal chest image (left panel), the vertical and horizontal bars indicate the degrees of the differences expressed by ‘the Ampmax minus the AmpCT’ in the CC and LR directions, respectively. On the lateral chest image (right panel), the vertical and horizontal bars indicate the degrees of the differences in the CC and AP directions, respectively. Green lines represent plus values and red lines represent minus values of the differences. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
in stage I and stage III NSCLC patients. It was further pointed out that the MIP images may not fully display mobile structures if the adjacent structures have similar densities, which is the case for lesions located near the mediastinum, diaphragm, liver, and chest wall. Mancosu et al. have proposed a semiautomatic technique for defining the internal margins of lung tumors close to the liver cupula by 4DCT to overcome measurement errors due to the limitations of MIP images [15]. In the present study, there are possible measurement errors by metal marker artifacts on the 4DCT MIP images. However, since the CT image number is much higher than that of the surrounding tissue, we considered that any ambiguity in the motion measurements was less than in the measurements of the tumor mass which is composed of soft tissue and would present the possibility of partial volume effects at the edge of the tumor.

The present study showed that the mean of the Ampmean was not statistically different from the mean of the AmpCT in all three of the LP, CC, and AP directions. This allows the conclusion that, as long as the object is to determine the Ampmean it is sufficient and acceptable to use the AmpCT.

At the same time, the present study also showed that the mean of the Ampmean was statistically significantly larger than the mean of the AmpCT in all three of the LP, CC, and AP directions. This is consistent with previous suggestions of possible underestimation of the maximum amplitudes measured with 4DCT MIP images [9]. The reason why AmpCT is underestimated may be because the reconstructed 4DCT MIP images are vulnerable to variations in respiratory motion and to differences between internal respiratory motion and to differences between internal motion [16, 17] as well as to the motion of the skin surface marker used in 4DCT.

The longer time period for the delivery of SBRT compared to the time needed for the 4DCT may also be a cause. Baseline drift of the respiratory motion and changes in the depth of respiration may occur during the longer period of the SBRT [18]. Remaining and new challenges of radiotherapy of 4D imaging have been reported previously [19].

The mean difference between the AmpCT and the mean of the Ampmean was larger in the lower lobe. This may be because of an inaccurate reconstruction due to higher speed of motion of the tumor in the lower lobe [11]. It is reasonable to expect that the smaller motion in the upper and middle lobes resulted in the smaller differences in the amplitudes of the upper and middle lobes. These results do not disagree with previous results of differences in the three-dimensional trajectory of skin surface and internal fiducial markers either [20].

In general, previous reports have suggested that 4DCT can be expected to be useful especially for the lower lobe where the tumor motion is large. However, the present study showed that the difference is significantly larger in the lower lobe. This result stresses that it is not safe to reduce the internal margin for tumors in the lower lobe by using an ITV solely based on the 4DCT MIP. The magnitude of the difference reached 12.5 ± 16.7 mm in the CC direction, leading us to suggest that it cannot be recommended to use 4DCT to estimate the internal margin for tumors in the lower lobe in general. For tumors in the upper and middle lobes, Onodera et al. have reported that an insignificant proportion of these tumors have large amplitudes in patients with poor pulmonary function and in patients who have a history of surgical operations of the thorax [21]. Based on these results, 4DCT may be considered adequate to estimate the internal margins for tumors at the upper and middle lobes in patients with normal pulmonary function.

In dynamic tracking of radiation therapy with real-time monitoring, the margins added to the clinical target volume (CTV) can in principle be kept smaller than those determined for SBRT in free-breathing [22–24]. However, our results suggest that extreme caution must be paid not to miss-estimate the CTV when the external skin surface or surrogate signals are used during the dynamic tracking of a tumor based on the 4DCT data. Similarly, the most careful attention should be paid to passive scattering particle therapy and even more caution shown with intensity modulated radiotherapy and spot scanning particle therapy where interplay effects of beam and organ motion may deteriorate the dose distribution further.

It could be possible to improve the accuracy of the 4DCT by increasing the time period where images are taken but this would result in additional X-ray exposure. Also the difference in the respiratory pattern at the treatment planning and at the actual treatment will not be overcome by increasing the time for the 4DCT. This study found that 3DSA and the position of the lobe contributed to the variation in the difference between treatment planning and the actual treatment patterns. However, the residual

Table 1

<table>
<thead>
<tr>
<th>Lobe</th>
<th>Variance (mm²)</th>
<th>95% CI (mm²)</th>
<th>²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><77 yrs</td>
<td>3.1 ± 3.7</td>
<td>3.9 ± 7.9</td>
<td>0.51</td>
</tr>
<tr>
<td>≥78 yrs</td>
<td>4.6 ± 8.2</td>
<td>2.4 ± 2.4</td>
<td>0.74</td>
</tr>
<tr>
<td>FEV1.0</td>
<td>1.3 ± 1.1</td>
<td>5.7 ± 8.0</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>0.9 ± 1.7</td>
<td>6.0 ± 1.7</td>
<td>0.01*</td>
</tr>
<tr>
<td>Lobe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper-middle</td>
<td>5.1 ± 6.2</td>
<td>12.5 ± 16.7</td>
<td>0.049*</td>
</tr>
<tr>
<td>Lower</td>
<td>4.0 ± 11.9</td>
<td>9.1 ± 14.6</td>
<td>0.17</td>
</tr>
<tr>
<td>3DSA</td>
<td>1.1 ± 1.7</td>
<td>6.8 ± 8.5</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>1.7 ± 4.6</td>
<td>6.2 ± 7.8</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Abbreviations: LR = left-right, CC = cranial-caudal, AP = anterior-posterior, FEV1.0 = forced expiratory volume in 1 second, 3DSA = three-dimensional scalar amplitude. The asterisk in Table 1 shows the statistical significance (P < 0.05).

Table 2

<table>
<thead>
<tr>
<th>Lobe</th>
<th>Variance (mm²)</th>
<th>95% CI (mm²)</th>
<th>²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><77 yrs</td>
<td>0.2–8.7</td>
<td>4.4 ± 2.3</td>
<td>0.6–4.0</td>
</tr>
<tr>
<td>≥78 yrs</td>
<td>0.7–3.14</td>
<td>16.1 ± 12.6</td>
<td>0.10</td>
</tr>
<tr>
<td>AP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>0.2–3.0</td>
<td>5.1 ± 61.4</td>
<td>9.9–3,106.996.7</td>
</tr>
<tr>
<td>Total</td>
<td>0.0–543.9</td>
<td>143.4 ± 207.1</td>
<td>82.3–310.4</td>
</tr>
</tbody>
</table>

Abbreviations: LR = left-right, AP = anterior-posterior, CI = confidence interval, FEV1.0 = forced expiratory volume in 1 second, 3DSA = three-dimensional scalar amplitude.

* Contribution of clinical characteristics to the total variance was shown as the percentage.
Acknowledgements

This study has been presented in 55th annual meeting of American Society of Radiation Oncology, September 22–25, 2013, Atlanta, GA. Further, this study was supported by grants from a Grant-in-Aid for Young Scientists (B) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government (Nos. 24791260 and 24791264).

Appendix Supplementary material

Supplementary data to this article can be found online at doi:10.1016/j.ejmp.2015.10.093.

References
