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Application of the lace expansion to the φ4 model

Akira Sakai∗

December 29, 2014

Abstract

Using the Griffiths-Simon construction of the φ4 model and the lace expansion
for the Ising model, we prove that, if the strength λ ≥ 0 of nonlinearity is sufficiently
small for a large class of short-range models in dimensions d > 4, then the critical
φ4 two-point function ⟨φoφx⟩µc is asymptotically |x|2−d times a model-dependent

constant, and the critical point is estimated as µc = Ĵ − λ
2 ⟨φ

2
o⟩µc + O(λ2), where

Ĵ is the massless point for the Gaussian model.
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1 Introduction and the main results

The (lattice) φ4 model is a pedagogical yet nontrivial model in scaler field theory. It is
also considered to be an interface model defined by a Hamiltonian having a quartic self-
energy term. (See, e.g., [7] for recent development in another class of interface models,
called gradient fields.) If that quartic term is absent, then it becomes the Gaussian model
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and its two-point function satisfies the same convolution equation as the random-walk’s
Green function. In particular, for the massless Gaussian model, which is a lattice version
of Gaussian free fields, the two-point function decays as a multiple of |x|2−d as |x| → ∞
when d > 2.

On the other hand, the φ4 two-point function is known to satisfy a nonlinear equation,
called the Schwinger-Dyson equation. The nonlinearity is due to involvement of four-spin
expectations. This implies that, in order to find the exact expression for the two-point
function, we must also know the exact expressions for four-spin expectations. In general,
the Schwinger-Dyson equation for 2n-spin expectations involves (2n+2)-spin expectations.
Therefore, it is seemingly impossible to solve those infinitely many simultaneous equations
to find the exact expression for the two-point function.

Instead of solving those simultaneous equations, there have been many useful ideas to
study the phase transition and critical behavior for the φ4 model. Among those are the
use of reflection positivity [11, 12] and correlation inequalities obtained by the random-
current representation [1] and the random-walk representation [3, 4]. They imply that,
for the nearest-neighbor model in dimensions d > 2, there is a nontrivial critical point
µc ∈ R such that the two-point function ⟨φoφx⟩µ is bounded above by a multiple of
|x|2−d uniformly in µ > µc, and therefore all critical exponents take on their mean-field
values in dimensions d > 4 [1, 10, 29] (see also [9] and references therein). Moreover, for
the nearest-neighbor model, the rigorous renormalization-group (RG) approach based on
the block-spin transformation [13, 14, 16] may identify an asymptotic expression for the
critical two-point function ⟨φoφx⟩µc , which is presumably C|x|2−d as |x| → ∞ for some
constant C ∈ (0,∞). This is proven to be affirmative when d = 4 (cf., [8, Theorem I.2]
and [15, (8.32)]; see also [2] for the recent RG results on the n-component |φ|4 model in 4
dimensions). However, as far as we are aware, such strong results have not been reported
in dimensions d > 4.

For the Ising model, which is considered to be in the same universality class as the φ4

model, we have been able to show [25] that, not only for the nearest-neighbor model but
also for a large class of spread-out models which do not necessarily satisfy reflection posi-
tivity, the critical Ising two-point function is asymptotically a model-dependent multiple
of |x|2−d, if the dimension d or the range of spin-spin coupling is sufficiently large. The
proof is based on the lace expansion, which was first applied to weakly self-avoiding walk
[5] and then developed for lattice trees and lattice animals [19], percolation [20], oriented
percolation [23] and the contact process [24]. The asymptotic behavior of the critical
two-point function for each spacial model is proved in [17, 18, 25]. The methodology has
been extended to cover the case of power-law decaying spin-spin coupling [6] (see also [21]
for results in the Fourier space).

In this paper, we apply the lace expansion for the Ising model to prove asymptotic
behavior of the φ4 two-point function. In order to do so, we first use the Griffiths-Simon
construction [27] to approximate each φ4 spin by a sum of N Ising-spin variables. This
is a well-known approach to study the φ4 model (see, e.g., [1, Section 10]). Then, we
investigate the lace-expansion coefficients and determine the right scaling in powers of N .
As a result, we prove the expected asymptotic behavior of the critical two-point function,
i.e., ⟨φoφx⟩µc ∼ ∃C|x|2−d as |x| → ∞, for a large class of short-range models on Zd with
d > 4, if the strength λ ≥ 0 of nonlinearity is sufficiently small. This implies triviality
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of the continuum limit, as pointed in [10, Section 7] (see also [1]). During the course, we
also obtain the λ-expansion of the critical point µc up to O(λ2) around the massless point
for the Gaussian model.

Before showing the precise statement of the above result, we first provide the precise
definition of the model.

1.1 The φ4 model

For a finite set Λ ⊂ Zd, we define the Hamiltonian HΛ on the space RΛ of spin configu-
rations as follows: for φ ≡ (φx)x∈Λ ∈ RΛ,

HΛ(φ) = −1

2

∑
u̸=v∈Λ

Ju,vφuφv +
∑
v∈Λ

(
µ

2
φ2
v +

λ

4!
φ4
v

)
, (1.1)

where Ju,v is a nonnegative, translation-invariant and Zd-symmetric coupling function:
Ju,v = Jo,v−u ≡ J (v − u) ≥ 0. We also assume J (o) = 0 and that J is summable:

Ĵ ≡
∑
v∈Zd

J (v) < ∞. (1.2)

The parameter µ ∈ R plays the role of temperature, while λ ≥ 0 is the intensity of
nonlinearity. We call the model Gaussian if λ = 0, and in that case, we can rewrite the
Hamiltonian as

H λ=0

Λ (φ) =
Ĵ

2
(φ,−∆φ) +

µ− Ĵ

2
|φ|2, (1.3)

where (·, ·) is the inner product and ∆ is the lattice Laplacian defined by the transition

probability J (x)/Ĵ . The first term on the right-hand side represents the kinetic energy,
while the second term represents the potential. We call the Gaussian model massless if
the potential is zero (i.e., µ = Ĵ ).

The key quantity we are interested in is the two-point function ⟨φoφx⟩µ, which is
the increasing limit as Λ ↑ Zd (due to the second Griffiths inequality, e.g., [9]) of the
finite-volume expectation ⟨φoφx⟩µ,Λ:

⟨φoφx⟩µ = lim
Λ↑Zd

⟨φoφx⟩µ,Λ ≡ lim
Λ↑Zd

∫
RΛ

φoφx e
−HΛ(φ) dφ∫

RΛ

e−HΛ(φ) dφ
. (1.4)

Due to Lebowitz’ inequality [22], there exists a critical point µc ≡ µc(d,J , λ) ≤ Ĵ such
that the susceptibility

χµ ≡
∑
x∈Zd

⟨φoφx⟩µ (1.5)

is finite if and only if µ > µc and diverges as µ ↓ µc (cf., Figure 1).
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0

µ = µc(λ)

λ

χµ

µ = Ĵ

µ

Figure 1: Divergence of the susceptibility χµ as µ ↓ µc(λ) for a fixed λ > 0 (along the

horizontal dotted line). The susceptibility is still finite below the massless line µ = Ĵ ,

whereas the potential HΛ(φ)− Ĵ
2
(φ,−∆φ) is not convex any more.

One of the possible approaches to investigate the two-point function is to use the result
of integration by parts: ⟨∂HΛ

∂φo
φx⟩Λ = δo,x. Plugging (1.1) into this identity and taking the

infinite-volume limit, we obtain the Schwinger-Dyson equation

−
∑
v

Jo,v⟨φvφx⟩µ + µ⟨φoφx⟩µ +
λ

3!
⟨φ3

oφx⟩µ = δo,x. (1.6)

This immediately implies that the two-point function for the Gaussian model satisfies the
same convolution equation as the random-walk’s Green function generated by the 1-step
distribution J /Ĵ with killing rate 1− Ĵ /µ. Therefore, at the massless point µ = Ĵ ,
the two-point function exhibits the same asymptotic behavior as the Green function for
the underlying random walk. In this paper, in addition to the properties stated below
(1.1), we assume that all moments of J are finite. In particular, we define the variance

V =
∑
x∈Zd

|x|2J (x)

Ĵ
. (1.7)

Then, by the Cramér-Edgeworth expansion (e.g., [6, Theorem A.1]), we can estimate the

n-fold convolution of J /Ĵ and its “derivative” as (cf., [6, (1.21) and (1.24)])

J ∗n(x)

Ĵ n
≤ O(n)

(|x| ∨ 1)d+2
, (1.8)∣∣∣∣J ∗n(x)

Ĵ n
− J ∗n(x+ y) + J ∗n(x− y)

2Ĵ n

∣∣∣∣ ≤ O(n)|y|2

(|x| ∨ 1)d+4
[|y| ≤ 1

3
|x|]. (1.9)
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Consequently, by the standard random-walk analysis, we can readily show that the mass-
less Gaussian two-point function ⟨φoφx⟩λ=0

Ĵ
exhibits the asymptotic behavior

⟨φoφx⟩λ=0

Ĵ
∼

|x|→∞

d
2
Γ(d−2

2
)π−d/2

Ĵ V |x|d−2
. (1.10)

For the φ4 model with λ > 0, however, the last term on the left-hand side of (1.6)
destroys linearity, and therefore it is not obvious any more whether we can get an explicit
expression for the two-point function, or at least we can estimate its asymptotic behavior.

1.2 The main result

In this paper, we extend the lace-expansion methodology to factorize the nonlinear term
in (1.6) and prove the expected asymptotic behavior of the critical two-point function for
d > 4. By virtue of this approach, we can avoid the assumption of reflection positivity.
The precise statement is the following.

Theorem 1.1. For d > 4, there is a λ0 = λ0(d,J ) ∈ (0,∞) such that the following
holds for all λ ∈ [0, λ0]: there is a Φµ(x) = ⟨φ2

o⟩µδo,x + O(λ)/(|x| ∨ 1)3(d−2) uniformly in
µ > µc such that a linearized version of the Schwinger-Dyson equation

−
∑
v

Jo,v⟨φvφx⟩µ + µ⟨φoφx⟩µ +
λ

2

∑
v

Φµ(v)⟨φvφx⟩µ = δo,x (1.11)

holds. Consequently,

µc = Ĵ − λ

2
⟨φ2

o⟩µc +O(λ2), (1.12)

and there are A = Ĵ V +O(λ2) and κ < 2 such that, as |x| → ∞,

⟨φoφx⟩µc =
d
2
Γ(d−2

2
)/πd/2

A|x|d−2
+O(|x|κ−d). (1.13)

Remark 1.2. (a) We may prove similar results for arbitrarily large λ if Ĵ is sufficiently
large (e.g., the nearest-neighbor model with d ≫ 4). In fact, the O(λ) term in the
above Φµ is actually O(λ/µ3) (cf., (3.94)). Although the constant in the O(λ/µ3)
term may depend on the range of J , which is potentially large, the denominator µ3

(≃ Ĵ 3 around the critical point) should be large enough to cancel that effect.

(b) We may also extend the results to the case of power-law decaying spin-spin coupling,
J (x) ∝ |x|−d−α for some α > 0. However, the variance V in (1.7) does not exist if
α < 2. In this case, the underlying random walk is in the domain of attraction of
α-stable motion, and the critical two-point function ⟨φoφx⟩µc should asymptotically
be a multiple of |x|α−d as |x| → ∞, in dimensions d > 2α. See [6] for more details.
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(c) The actual proof of (1.12)–(1.13) assuming (1.11) goes as follows. First, we note that
the sum of (1.11) yields

−Ĵ + µ+
λ

2

∑
v

Φµ(v) = χ−1
µ . (1.14)

Using this, we can rearrange (1.11) as

µ⟨φoφx⟩µ = δo,x +
∑
v

J (v)− λ
2
Φµ(v)

µ
µ⟨φvφx⟩µ

= δo,x +
∑
v

µ− χ−1
µ

µ

J (v)− λ
2
Φµ(v)

Ĵ − λ
2

∑
y Φµ(y)

µ⟨φvφx⟩µ. (1.15)

Let

Gµ(x) = µ⟨φoφx⟩µ, Dµ(x) =
J (x)− λ

2
Φµ(x)

Ĵ − λ
2

∑
y Φµ(y)

, (1.16)

so that

Gµ(x) = δo,x +
∑
v

(
1−

χ−1
µ

µ

)
Dµ(v)Gµ(x− v). (1.17)

This is identical to the convolution equation for the random-walk’s Green function
generated by the 1-step distribution Dµ with killing rate χ−1

µ /µ. Therefore, by the
standard random-walk analysis (e.g., [6, Proposition 2.1]), we obtain

Gµc(x) =
d
2
Γ(d−2

2
)/πd/2∑

y |y|2Dµc(y)
|x|2−d +O(|x|κ−d), (1.18)

for some κ < 2, where Dµc is defined in terms of arbitrary subsequential limit Φµc ≡
limµj↓µc Φµj

, which exists and obeys

Φµc(x) = ⟨φ2
o⟩µcδo,x +

O(λ)

(|x| ∨ 1)3(d−2)
, (1.19)

due to the uniformity of Φµ in µ > µc. Using this and (1.14), we obtain

µc = Ĵ − λ

2

∑
v

Φµc(v) = Ĵ − λ

2
⟨φ2

o⟩µc +O(λ2). (1.20)

Moreover, since 3(d− 2) = d+ 2 + 2(d− 4), we obtain∑
y

|y|2Dµc(y) =
1

Ĵ − λ
2

∑
y Φµc(y)

∑
y ̸=o

|y|2
(

J (y)− λ

2
Φµc(y)

)
=

1

µc

(
Ĵ V +

∑
y ̸=o

O(λ2)

|y|d+2(d−4)

)
≡ A

µc

. (1.21)

This together with (1.18) implies (1.13).

6



Figure 2: The nearest-neighbor bonds from a single vertex on Z̃d
4 ≡ Zd × [4]. Each block

contains four vertices with a common spatial coordinate.

1.3 Organization

The rest of this paper is organized as follows. In Section 2, as a preliminary section,
we introduce some notation and summarize relevant properties of the two-point function.
Then, in Section 3, we use those properties and the lace expansion for the Ising model to
prove the main theorem, Theorem 1.1.

2 Approximation by the Ising model

In this section, we briefly review two key components for the proof of Theorem 1.1. One
of them is the Griffiths-Simon construction (Section 2.1), by which we can approximate
the φ4 model with a sum of N Ising systems. The other component is the random-current
representation (Section 2.2), by which we can think of the Ising two-point function as
a certain connectivity function. As a result, we can find many useful properties of the
two-point function (Section 2.3). The lace expansion for the Ising model (Section 3.1) is
one of them.

2.1 The Griffiths-Simon construction

Let

[N ] = {1, 2, . . . , N}, Λ̃N = Λ× [N ], (2.1)
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and define the Ising Hamiltonian on Λ̃N as

HΛ̃N
(σ) = −1

2

∑
x̸=y∈Λ
i,j∈[N ]

Jx,yσ(x,i)σ(y,j) −
I

2

∑
x∈Λ

i,j∈[N ]

σ(x,i)σ(x,j)

= −1

2

∑
x̸=y∈Λ

Jx,yσ̃xσ̃y −
I

2

∑
x∈Λ

σ̃2
x, (2.2)

where σ ≡ (σ(x,i))(x,i)∈Λ×[N ] is the Ising-spin configuration and

σ̃x ≡
∑
i∈[N ]

σ(x,i) (2.3)

is what we call in this paper the block spin at x ∈ Λ. It is known [27] that, if I, J and
σ are determined from λ, µ,J and φ with proper scaling (e.g., σ̃x 7→ ϵN σ̃x, with an
appropriate scaling factor ϵN), then

ϵ2N⟨⟨σ̃oσ̃x⟩⟩Λ̃N
≡ ϵ2N

∑
σ∈{±1}Λ̃N

σ̃oσ̃x e
−HΛ̃N

(σ)

∑
σ∈{±1}Λ̃

e
−HΛ̃N

(σ)
→

N↑∞

∫
RΛ

φoφx e
−HΛ(φ) dφ∫

RΛ

e−HΛ(φ) dφ
= ⟨φoφx⟩µ,Λ. (2.4)

Now, we provide heuristic explanation of the aforementioned proper scaling. For more
details, refer to [27]. First, we note that the marginal distribution given σ̃ = (σ̃x)x∈Λ is(

1

2

)|Λ̃N | ∑
σ∈{±1}Λ̃N

(σ̃ fixed)

e
−HΛ̃N

(σ)

= exp

(
1

2

∑
x ̸=y∈Λ

Jx,yσ̃xσ̃y +
I

2

∑
x∈Λ

σ̃2
x

)∏
x∈Λ

∑
σ(x,1),...,σ(x,N)

(σ̃x fixed)

(
1

2

)N

= exp

(
1

2

∑
x ̸=y∈Λ

Jx,yσ̃xσ̃y +
I

2

∑
x∈Λ

σ̃2
x

)∏
x∈Λ

(
N

N+σ̃x

2

)(
1

2

)N

. (2.5)

By Stirling’s formula (i.e.,
√
2πn(n

e
)ne

1
12n+1 ≤ n! ≤

√
2πn(n

e
)ne

1
12n for all n ∈ N),

log

((
N

N+σ̃x

2

)(
1

2

)N
)

= −N

2

((
1 +

σ̃x

N

)
log

(
1 +

σ̃x

N

)
+

(
1− σ̃x

N

)
log

(
1− σ̃x

N

))
+O(σ̃2

x/N
2) + O(logN)︸ ︷︷ ︸

independent of σ̃x

. (2.6)

Let ηx = σ̃x/N . Then, by the Taylor expansion,

(1± ηx) log(1± ηx) = (1± ηx)

(
± ηx −

η2x
2

± η3x
3

− η4x
4

± η5x
5

+ o(η5x)

)
, (2.7)
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which implies

(1 + ηx) log(1 + ηx) + (1− ηx) log(1− ηx) = 2

(
η2x
2

+
η4x
12

+ o(η5x)

)
. (2.8)

Therefore,

(2.5) ∝ exp

(
1

2

∑
x ̸=y∈Λ

Jx,yσ̃xσ̃y

)∏
x∈Λ

exp

(
1

2

(
I − 1

N
+O(N−2)

)
σ̃2
x −

1

12

σ̃4
x

N3
+ o

(
σ̃5
x

N4

))
.

(2.9)

Let

1

12

σ̃4
x

N3
=

λ

4!
φ4
x, or equivalently φx = ϵN σ̃x ≡

(
λ

2
N3

)−1/4

σ̃x, (2.10)

and

Jx,y = Jx,yϵ
2
N , I =

1

N
− µϵ2N . (2.11)

Then, we arrive at

(2.9) = exp

(
1

2

∑
x̸=y∈Λ

Jx,yφxφy −
∑
x∈Λ

(
µ+O(N−1/2)

2
φ2
x +

λ

4!
φ4
x + o(N−1/4φ5

x)

))
∼ e−HΛ(φ). (2.12)

In Section 3, we apply the lace expansion [25] to the ferromagnetic Ising model defined
by the Hamiltonian (2.2). For the ferromagnetic condition I ≥ 0, we assume from now on

N ≥ 2µ2

λ
. (2.13)

2.2 The random-current representation

In this subsection, we explain the random-current representation (e.g., [1]) and introduce
some notation.

First, we rewrite the Ising Hamiltonian (2.2) as

HΛ̃N
(σ) = −1

2

∑
x ̸=y∈Λ
i,j∈[N ]

Jx,yσ(x,i)σ(y,j) −
I

2

∑
x∈Λ

i̸=j∈[N ]

σ(x,i)σ(x,j) −
I

2
|Λ̃N |

= −
∑

b∈BΛ̃N

J̃bσb1σb2 −
I

2
|Λ̃|, (2.14)

where BΛ̃N
= {b = {b1, b2} : b1 ̸= b2 ∈ Λ̃N} and

J̃(x,i),(y,j) = Jx,y + Iδx,y(1− δi,j) =


Jx,y [x ̸= y],

I [x = y and i ̸= j],

0 [otherwise].

(2.15)
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Then, by expanding exponentials, we obtain(
1

2

)|Λ̃N | ∑
σ∈{±1}Λ̃

e
−HΛ̃N

(σ)
=

(
eI/2

2

)|Λ̃N | ∑
σ∈{±1}Λ̃N

∏
b∈BΛ̃N

∑
nb∈Z+

(J̃bσb1σb2)
nb

nb!

= eI|Λ̃N |/2
∑

n=(nb)

( ∏
b∈BΛ̃N

J̃nb
b

nb!︸ ︷︷ ︸
wΛ̃N

(n)

) ∏
x̃∈Λ̃N

1

2

∑
σx̃∈{±1}

σ
∑

b∋x̃ nb

x̃︸ ︷︷ ︸
1{

∑
b∋x̃ nb is even}

= eI|Λ̃N |/2
∑
∂n=∅

wΛ̃N
(n), (2.16)

where ∂n ≡ {x̃ ∈ Λ̃N :
∑

b∋x̃ nb is odd} is the set of sources in the current configuration

n = (nb) ∈ Z
BΛ̃N
+ . Similarly, for x̃, ỹ ∈ Λ̃N ,(

1

2

)|Λ̃N | ∑
σ∈{±1}Λ̃

σx̃σỹ e
−HΛ̃N

(σ)
= eI|Λ̃N |/2

∑
∂n=x̃△ỹ

wΛ̃(n), (2.17)

where x̃ △ ỹ is the abbreviation for the symmetric difference {x̃}△{ỹ}. As a result, we
arrive at the random-current representation for the Ising two-point function

⟨⟨σx̃σỹ⟩⟩Λ̃N
≡

∑
σ∈{±1}Λ̃N

σx̃σỹ e
−HΛ̃N

(σ)

∑
σ∈{±1}Λ̃

e
−HΛ̃N

(σ)
=

∑
∂n=x̃△ỹ

wΛ̃N
(n)∑

∂n=∅

wΛ̃(n)
. (2.18)

2.3 Basic properties of the two-point function

In this subsection, we summarize the properties of the Ising two-point function obtained
from the random-current representation (2.18).

Lemma 2.1 ((2.28) and (2.37) of [6]). Let Λ ⊂ Zd be the d-dimensional hypercube centered
at the origin o ∈ Zd. For any I ≥ 0, the following two inequalities hold:

(i) For any x ∈ Λ,

⟨⟨σõσx̃⟩⟩Λ̃N
− δõ,x̃ ≤

∑
ṽ∈Λ̃N

(tanh J̃õ,ṽ) ⟨⟨σṽσx̃⟩⟩Λ̃N
. (2.19)

(ii) Suppose that the radius of Λ is bigger than a given ℓ < ∞. Then, for |x| > ℓ,

⟨⟨σõσx̃⟩⟩Λ̃N
≤

∑
ũ,ṽ∈Λ̃N

(|u|≤ℓ<|v|)

⟨⟨σõσũ⟩⟩Λ̃N
(tanh Ju,v)⟨⟨σṽσx̃⟩⟩Λ̃N

. (2.20)
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Proposition 2.2. Let

GΛ̃N
(o, x) =

1− (N − 1) tanh I

N
⟨⟨σ̃oσ̃x⟩⟩Λ̃N

, (2.21)

and denote its (unique and translation-invariant) infinite-volume limit by

GN(x) = lim
Λ↑Zd

GΛ̃N
(o, x). (2.22)

Let µ > µN ≡ inf{µ :
∑

xGN(x) < ∞}.

(i) Let Sp(x) be the random-walk’s Green function whose 1-step distribution and fugacity
are defined, respectively, as

D(v) =
tanh Jo,v∑

v∈Zd tanh Jo,v
, p =

N
∑

v∈Zd tanh Jo,v

1− (N − 1) tanh I
. (2.23)

Then, GN(x) ≤ Sp(x) for all x ∈ Zd.

(ii) Suppose that there is an α > 0 such that Jo,x = O(|x|−d−α) as |x| → ∞ (α can be
an arbitrarily large number in the current setting). Then, there is a Kµ < ∞ such
that GN(x) ≤ Kµ(|x| ∨ 1)−d−α for all x ∈ Zd.

Proof of (i). Let õ = (o, i) and x̃ = (x, j). Summing (2.19) over i, j ∈ [N ], we obtain

⟨⟨σ̃oσ̃x⟩⟩Λ̃N
−Nδo,x ≤

∑
ṽ∈Λ̃N

∑
i∈[N ]

(tanh J̃(o,i),ṽ) ⟨⟨σṽσ̃x⟩⟩Λ̃N

=
∑
v∈Λ

∑
i,j∈[N ]

tanh J̃(o,i),(v,j)
⟨⟨σ̃vσ̃x⟩⟩Λ̃N

N

≤ (N − 1)(tanh I)⟨⟨σ̃oσ̃x⟩⟩Λ̃N
+N

∑
v∈Λ

(tanh Jo,v)⟨⟨σ̃vσ̃x⟩⟩Λ̃N
. (2.24)

Solving this inequality for ⟨⟨σ̃oσ̃x⟩⟩Λ̃N
and using (2.21)–(2.23), we arrive at

GN(x) ≤ δo,x + p(D ∗GN)(x) ≡ δo,x + p
∑
v∈Zd

D(v)GN(x− v). (2.25)

Repeated application of this inequality yields GN(x) ≤
∑∞

n=0 p
nD∗n(x) = Sp(x).

Proof of (ii). Let õ = (o, i) and x̃ = (x, j). Summing (2.20) over i, j ∈ [N ] and using
(2.21)–(2.23), we readily obtain the Simon-Lieb type inequality

GN(x) ≤
∑

u,v∈Zd

(|u|≤ℓ<|v|)

GN(u)
N tanh Ju,v

1− (N − 1) tanh I
GN(x− v)

=
∑

u,v∈Zd

(|u|≤ℓ<|v|)

GN(u) pD(v − u)GN(x− v). (2.26)
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Under the assumption on the decay of J , the 1-step distribution D obeys the same asymp-
totic bound D(x) = O(|x|−d−α) as |x| → ∞. Then, we can follow the same proof as [6,
Lemma 2.4] to obtain GN(x) ≤ Kµ(|x| ∨ 1)−d−α, where Kµ is finite as long as µ > µN .

Before closing this section, we provide bounds on ⟨⟨σõσx̃⟩⟩Λ̃N
in terms of GN(x). Notice

that, by symmetry,

⟨⟨σ̃oσ̃x⟩⟩Λ̃N
= N⟨⟨σõσ̃x⟩⟩Λ̃N

= N ×

{
1 + (N − 1)⟨⟨σõσõ′⟩⟩Λ̃N

[x = o],

N⟨⟨σõσx̃⟩⟩Λ̃N
[x ̸= o],

(2.27)

where õ′ is another vertex than õ whose spatial coordinate is o. Then, for x̃ ̸= õ,

⟨⟨σõσx̃⟩⟩Λ̃N
=

1
N
⟨⟨σ̃oσ̃x⟩⟩Λ̃N

− δo,x

N − δo,x
≤

GΛ̃N
(o, x)

(1− (N − 1) tanh I)(N − 1)

≤
GΛ̃N

(o, x)

µϵ2N(N − 1)2
. (2.28)

Since N2/(N − 1)2 ≤ 4 for N ≥ 2 and GΛ̃N
(o, x) ≤ GN(x), we have

⟨⟨σõσx̃⟩⟩Λ̃N
≤ δõ,x̃ + (1− δõ,x̃)

2GN(x)

µϵ2NN
2
. (2.29)

Similarly, we obtain∑
ṽ

(tanh J̃õ,ṽ)⟨⟨σṽσx̃⟩⟩Λ̃N
≤ (tanh I)⟨⟨σ̃oσx̃⟩⟩Λ̃N

+
∑
v

(tanh Jo,v)⟨⟨σ̃vσx̃⟩⟩Λ̃N

=
(tanh I)GΛ̃N

(o, x) +
∑

v(tanh Jo,v)GΛ̃N
(v, x)

1− (N − 1) tanh I

≤ 1

µϵ2NN
2

(
GN(x) + Ĵ ϵ2NN(D ∗GN)(x)

)
, (2.30)

where the factor Ĵ ϵ2NN is smaller than 1 if we choose N > 2Ĵ 2/λ.

3 Proof of the main theorem

In this section, we prove Theorem 1.1 by first showing the expected x-space infrared bound
(Section 3.2), which has been proven to be true only for the nearest-neighbor model so far
[29]. Then, by using that infrared bound, we derive the linear Schwinger-Dyson equation
(Section 3.3), which is the core of the main theorem. Both sections depend heavily on
the lace expansion for the Ising model (Section 3.1).

3.1 The lace expansion

The lace expansion has been successful in proving asymptotic behavior of the critical two-
point function for various models. In particular, for the ferromagnetic Ising model, which
is considered to be in the same universality class as the φ4 model, the critical two-point
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function is proven to be |x|2−d times a model-dependent constant as |x| → ∞ when the
spin-spin coupling has a finite (2 + ε)th moment for some ε > 0 [6, 25].

In this subsection, we apply the lace expansion for the Ising model [25] to the approxi-
mate model constructed in Section 2.1 and investigate the N -dependence of the expansion
coefficients.

According to [25], for every T ∈ Z+, there are functions π(≤T )

Λ̃N
and r(T+1)

Λ̃N
on Λ̃N × Λ̃N

such that the following identity holds:

⟨⟨σõσx̃⟩⟩Λ̃N
= π(≤T )

Λ̃N
(õ, x̃) +

∑
ũ,ṽ∈Λ̃N

π(≤T )

Λ̃N
(õ, ũ) (tanh J̃ũ,ṽ) ⟨⟨σṽσx̃⟩⟩Λ̃N

+ r(T+1)

Λ̃N
(õ, x̃). (3.1)

In fact, π(≤T )

Λ̃N
(õ, x̃) is an alternating sum of nonnegative functions π(t)

Λ̃N
(õ, x̃), 0 ≤ t ≤ T .

Moreover, the remainder r(T+1)

Λ̃N
(õ, x̃) is bounded uniformly in x as

|r(T+1)

Λ̃N
(õ, x̃)| ≤

∑
ũ

π(T )

Λ̃N
(õ, ũ)

∑
ṽ

(tanh J̃ũ,ṽ) ⟨⟨σṽσx̃⟩⟩Λ̃N

≤ (1 + Ĵ ϵ2NN)
∑
ũ

π(T )

Λ̃N
(õ, ũ), (3.2)

where we have used the inequality∑
ṽ

tanh J̃ũ,ṽ = (N − 1) tanh I +N
∑
v

tanh Ju,v ≤ 1 + Ĵ ϵ2NN. (3.3)

The functions π(t)

Λ̃N
(õ, x̃), t ≥ 0, are defined by using the random-current representation.

For example,

π(0)

Λ̃N
(õ, x̃) =

∑
∂n=õ△x̃

wΛ̃N
(n)1{õ⇐⇒

n
x̃}∑

∂n=∅

wΛ̃N
(n)

, (3.4)

where õ ⇐⇒
n

x̃ means that there are at least two bond-disjoint paths in Λ̃N from õ to x̃,

consisting of bonds b with nb > 0. The precise definitions of those functions are irrelevant,
and we refrain from showing them here. What matters most is their diagrammatic bounds
[25, Proposition 4.1] (cf., Figure 3). Combining with (2.29)–(2.30), we can show the
following proposition.

Proposition 3.1. Let

|||x||| = |x| ∨ 1, λ̃ =
1

µϵ2NN
2
=

1

µ

√
λ

2N
, (3.5)

and let λ ≪ 2µ2 and N > 2(Ĵ ∨µ)2/λ (so that Ĵ ϵ2NN < 1 and λ̃ < λ̃2N ≪ 1). Suppose
that supx |||x|||d−2GN(x) is bounded by a constant which is independent of λ, µ,N . Then,
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π(0)

Λ̃N
(õ, x̃) ≤ õ x̃ π(1)

Λ̃N
(õ, x̃) ≤

õ x̃

+ · · ·

π(2)

Λ̃N
(õ, x̃) ≤

õ

x̃

+
õ

x̃

+ · · ·

Figure 3: The leading bounding diagrams for π(t)

Λ̃N
(õ, x̃), t = 0, 1, 2. Each line segment

represents an Ising two-point function, e.g., π(0)

Λ̃N
(õ, x̃) ≤ ⟨⟨σõσx̃⟩⟩3Λ̃N

. The unlabeled vertices

are summer over Λ̃N . The tiny rectangles represent tanh J̃ .

for d > 4,

0 ≤ π(0)

Λ̃N
(õ, x̃)− δõ,x̃ ≤ O(λ̃)3

|||x|||3(d−2)
, (3.6)

0 ≤ π(1)

Λ̃N
(õ, x̃)− δõ,x̃

∑
ṽ

(tanh J̃õ,ṽ)⟨⟨σṽσõ⟩⟩Λ̃N
≤ O(λ̃)2

(
δõ,x̃ +

O(λ̃)

|||x|||3(d−2)

)
, (3.7)

0 ≤ π(t)

Λ̃N
(õ, x̃) ≤ O(λ̃)t

(
δõ,x̃ +

O(λ̃)

|||x|||3(d−2)

)
[t ≥ 2], (3.8)

where the constants in the O(λ̃) terms are independent of λ, µ,N and Λ.

As a result of the above proposition and (3.2), we have limT→∞ r(T+1)

Λ̃N
(õ, x̃) = 0, and

therefore the alternating series πΛ̃N
(õ, x̃) ≡ limT→∞ π(≤T )

Λ̃N
(õ, x̃) converges and satisfies∣∣∣∣πΛ̃N

(õ, x̃)− δõ,x̃

(
1−

∑
ṽ

(tanh J̃õ,ṽ)⟨⟨σṽσõ⟩⟩Λ̃N

)∣∣∣∣ ≤ O(λ̃2)

(
δõ,x̃ +

O(λ̃)

|||x|||3(d−2)

)
. (3.9)

We will use this estimate in the next subsection to investigate (the T → ∞ limit of) (3.1)
and prove that the assumed bound on GN in Proposition 3.1 indeed holds.

Proof of Proposition 3.1. The inequality (3.6) is readily obtained by applying (2.29)
to the diagrammatic bound π(0)

Λ̃N
(õ, x̃) ≤ ⟨⟨σõσx̃⟩⟩3Λ̃N

in [25, Proposition 4.1] (see also [26]

for intuitive explanation). The proof of the other inequalities (3.7)–(3.8) are much more
involved, and we only explain in detail how to bound the leading diagram for π(1)

Λ̃N
(õ, x̃),

which is depicted in Figure 3:

π(1)

Λ̃N
(õ, x̃) ≤

∑
ũ,ṽ,ỹ

∑
w̃

′
⟨⟨σõσũ⟩⟩2Λ̃N

⟨⟨σõσw̃⟩⟩Λ̃N
⟨⟨σw̃σũ⟩⟩Λ̃N

(tanh J̃ũ,ṽ)⟨⟨σṽσỹ⟩⟩Λ̃N

× ⟨⟨σỹσw̃⟩⟩Λ̃N
⟨⟨σw̃σx̃⟩⟩Λ̃N

⟨⟨σỹσx̃⟩⟩2Λ̃N
+ error term, (3.10)

where
∑′

w̃ is interpreted as the sum over the singleton {õ} if ũ = õ, or over the singleton
{x̃} if ỹ = x̃, or over Λ̃N otherwise. The leading term is the contribution from P ′(0)

Λ;u in [25,
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(4.12)], while the error term is the contribution from the series
∑

j≥1 P
′(j)
Λ;u in [25, (4.12)].

By a simpler version of the diagrammatic bounds explained below, we can show that P ′(j)
Λ;u

for j ≥ 1 is bounded as [25, (5.14)], which is the bound on P ′(0)
Λ;u in [25, (5.12)] multiplied

by the exponentially small factor O(θ20)
j (in the current setting, θ0 = λ̃). Therefore, we

only need to bound the leading term in (3.10). The higher order functions π(t)

Λ̃N
(õ, x̃),

t ≥ 2, can be estimated similarly; each extra factor
∑

b:b=y τbQ
′′
Λ;u,v(b̄, x) in [25, (4.15)]

gives rise to the O(θ0) term in [25, (5.17)], which leads to the exponentially decaying
bound in (3.8). For those interested in more details about diagrammatic bounds, refer
also to [21, Appendix B] and [25, Section 4].

Now, we prove that the sum on the right-hand side of (3.10) obeys the inequality
(3.7). First, we split it into three sums depending on whether (i) õ = ũ and ỹ = x̃ (hence
w̃ = õ = x̃), (ii) õ ̸= ũ and ỹ = x̃ (hence w̃ = x̃), or (iii) ỹ ̸= x̃. Then, we obtain

The sum in (3.10) ≤ δõ,x̃
∑
ṽ

(tanh J̃õ,ṽ)⟨⟨σṽσõ⟩⟩Λ̃N

+ ⟨⟨σõσx̃⟩⟩Λ̃N

∑
ũ(̸=õ),ṽ

⟨⟨σõσũ⟩⟩2Λ̃N
⟨⟨σx̃σũ⟩⟩Λ̃N

(tanh J̃ũ,ṽ)⟨⟨σṽσx̃⟩⟩Λ̃N

+
∑

ũ,ṽ,w̃,ỹ(̸=x̃)

⟨⟨σõσũ⟩⟩2Λ̃N
⟨⟨σõσw̃⟩⟩Λ̃N

⟨⟨σw̃σũ⟩⟩Λ̃N
(tanh J̃ũ,ṽ)⟨⟨σṽσỹ⟩⟩Λ̃N

× ⟨⟨σỹσw̃⟩⟩Λ̃N
⟨⟨σw̃σx̃⟩⟩Λ̃N

⟨⟨σỹσx̃⟩⟩2Λ̃N
. (3.11)

In fact, the first term on the right-hand side is the trivial contribution to π(1)

Λ̃N
(õ, x̃), and

therefore π(1)

Λ̃N
(õ, x̃)− δõ,x̃

∑
ṽ(tanh J̃õ,ṽ)⟨⟨σṽσõ⟩⟩Λ̃N

≥ 0.

It remains to show that the second and third terms on the right-hand side of the above
inequality are bounded by the right-hand side of (3.7). In order to achieve this goal, we
use the following convolution bounds.

Lemma 3.2 ([6, 18]). (i) For any a ≥ b > 0 with a ̸= d and a + b > d, there is a
C < ∞ such that ∑

y∈Zd

|||x− y|||−a |||y|||−b ≤ C|||x|||a∨d−a−b. (3.12)

(ii) Let f and g be functions on Zd, with g being Zd-symmetric. Suppose that there are
C1, C2, C3 > 0 and ρ > 0 such that

f(x) = C1|||x|||2−d, |g(x)| ≤ C2δo,x + C3|||x|||−d−ρ.

Then there is a ρ′ ∈ (0, ρ ∧ 2) such that, for d > 2,

(f ∗ g)(x) = C1∥g∥1
|||x|||d−2

+
O(C1C3)

|||x|||d−2+ρ′
. (3.13)

We use Lemma 3.2(i) to control the sums over ũ, w̃, ỹ ∈ ΛN in (3.10), which correspond
to the unlabeled vertices of degree 4 in the bounding diagram in Figure 3. For example,
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(3.14) :
x̃3

x̃1

x̃4

x̃2

(3.15) :
x̃3

x̃1

x̃4

x̃2

 ≤ O(λ̃2N)
x̃3

x̃1

x̃4

x̃2

(3.16) :
x̃3

x̃1

x̃4

x̃2

≤ O(λ̃2N)
x̃3

x̃1

x̃4

x̃2

(3.17) :
x̃3

x̃1

x̃4

x̃2

≤ O(1)
x̃3

x̃1

x̃4

x̃2

(3.18) :
x̃3

x̃1

x̃4

x̃2

≤ O(1)
x̃3

x̃1

x̃4

x̃2

(3.19) :
x̃3

x̃1

x̃4

x̃2

≤ O(1)
x̃3

x̃1

x̃4

x̃2

Figure 4: Schematic representations for (3.14)–(3.19). If a line segment between ũ = (u, ·)
and ṽ = (v, ·) is slashed, then it represents λ̃/|||u − v|||d−2; if it is unslashed, then it
represents δũ,ṽ + λ̃/|||u− v|||d−2.

by Lemma 3.2(i) with a = b = d− 2, we obtain that, for d > 4,∑
ṽ∈Λ̃N

λ̃

|||x1 − v|||d−2

λ̃

|||v − x2|||d−2

λ̃

|||x3 − v|||d−2

λ̃

|||v − x4|||d−2

= N
∑
v∈Zd

λ̃

(|||x1 − v||| ∨ |||v − x2|||)d−2

λ̃

(|||x1 − v||| ∧ |||v − x2|||)d−2

× λ̃

(|||x3 − v||| ∨ |||v − x4|||)d−2

λ̃

(|||x3 − v||| ∧ |||v − x4|||)d−2

≤ 4d−2Cλ̃2N
λ̃

|||x1 − x2|||d−2

λ̃

|||x3 − x4|||d−2
, (3.14)

where we have used the triangle inequality |||xi−v|||∨|||v−xj||| ≥ |||xi−xj|||/2 (cf., Figure 4).
Similarly, if Kronecker’s delta is added to one of those four fractions, then we have∑

ṽ∈Λ̃N

(
δx̃1,ṽ +

λ̃

|||x1 − v|||d−2

)
λ̃

|||v − x2|||d−2

λ̃

|||x3 − v|||d−2

λ̃

|||v − x4|||d−2

≤ λ̃

|||x1 − x2|||d−2

2d−2λ̃2

|||x3 − x4|||d−2
+ 4d−2Cλ̃2N

λ̃

|||x1 − x2|||d−2

λ̃

|||x3 − x4|||d−2

≤ C ′λ̃2N
λ̃

|||x1 − x2|||d−2

λ̃

|||x3 − x4|||d−2
, (3.15)
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with C ′ = 2d−2+4d−2C, where we have used the assumption λ̃ < λ̃2N . Moreover, if there
are two fractions with Kronecker’s delta, then we have

∑
ṽ∈Λ̃N

(
δx̃1,ṽ +

λ̃

|||x1 − v|||d−2

)(
δṽ,x̃2 +

λ̃

|||v − x2|||d−2

)
λ̃

|||x3 − v|||d−2

λ̃

|||v − x4|||d−2

≤
(
δx̃1,x̃2 +

λ̃

|||x1 − x2|||d−2

)
2d−2λ̃2

|||x3 − x4|||d−2
+ C ′λ̃2N

λ̃

|||x1 − x2|||d−2

λ̃

|||x3 − x4|||d−2

≤ (2d−2 + C ′)λ̃2N

(
δx̃1,x̃2 +

λ̃

|||x1 − x2|||d−2

)
λ̃

|||x3 − x4|||d−2
, (3.16)

or ∑
ṽ∈Λ̃N

(
δx̃1,ṽ +

λ̃

|||x1 − v|||d−2

)
λ̃

|||v − x2|||d−2

(
δx̃3,ṽ +

λ̃

|||x3 − v|||d−2

)
λ̃

|||v − x4|||d−2

≤
(
δx̃1,x̃3 +

λ̃

|||x1 − x3|||d−2

)
λ̃

|||x3 − x2|||d−2

λ̃

|||x3 − x4|||d−2

+ C ′λ̃2N
λ̃

|||x1 − x2|||d−2

λ̃

|||x3 − x4|||d−2

≤
(
1 + (2d−2 + C ′)λ̃2N

) λ̃

|||x1 − x2|||d−2

λ̃

|||x3 − x4|||d−2
. (3.17)

By similar computations, we can show that there is a C ′′ < ∞ such that

∑
ṽ∈Λ̃N

3∏
j=1

(
δx̃j ,ṽ +

λ̃

|||xj − v|||d−2

)
λ̃

|||v − x4|||d−2
≤ C ′′

(
δx̃1,x̃2 +

λ̃

|||x1 − x2|||d−2

)
λ̃

|||x3 − x4|||d−2
,

(3.18)

and

∑
ṽ∈Λ̃N

4∏
j=1

(
δx̃j ,ṽ +

λ̃

|||xj − v|||d−2

)
≤ C ′′

(
δx̃1,x̃2 +

λ̃

|||x1 − x2|||d−2

)(
δx̃3,x̃4 +

λ̃

|||x3 − x4|||d−2

)
.

(3.19)

Now, we resume the proof of bounding the second and third terms on the right-hand
side of (3.11). First, by (2.30) and Ĵ ϵ2NN < 1, we have

∑
ṽ

(tanh J̃ũ,ṽ)⟨⟨σṽσx̃⟩⟩Λ̃N
≤ O(λ̃)

|||x− u|||d−2
. (3.20)
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(ỹ)

õ x̃

(3.15)

.
õ

x̃

(w̃)

(3.18)

.
(ũ)

õ x̃

(3.17)

. õ x̃

Figure 5: Schematic representations for (3.22)–(3.23). Each inequality gives a bound on
the sum over vertices labeled with the letter in the parentheses. The factors O(λ̃2N) are
omitted for brevity.

Therefore, by (3.15), the second term on the right-hand side of (3.11) is bounded as

⟨⟨σõσx̃⟩⟩Λ̃N

∑
ũ(̸=õ),ṽ

⟨⟨σõσũ⟩⟩2Λ̃N
⟨⟨σx̃σũ⟩⟩Λ̃N

(tanh J̃ũ,ṽ)⟨⟨σṽσx̃⟩⟩Λ̃N

≤ ⟨⟨σõσx̃⟩⟩Λ̃N

∑
ũ

O(λ̃)2

|||u|||2(d−2)

(
δx̃,ũ +

O(λ̃)

|||x− u|||d−2

)
O(λ̃)

|||x− u|||d−2

≤
(
δõ,x̃ +

O(λ̃)

|||x|||d−2

)
O(λ̃4N)

|||x|||2(d−2)
. (3.21)

Similarly, by (3.15), the third term on the right-hand side of (3.11) is bounded as (cf.,
Figure 5)∑

ũ,w̃

⟨⟨σõσũ⟩⟩2Λ̃N
⟨⟨σõσw̃⟩⟩Λ̃N

⟨⟨σw̃σũ⟩⟩Λ̃N
⟨⟨σw̃σx̃⟩⟩Λ̃N

×
∑

ṽ,ỹ( ̸=x̃)

(tanh J̃ũ,ṽ)⟨⟨σṽσỹ⟩⟩Λ̃N
⟨⟨σỹσw̃⟩⟩Λ̃N

⟨⟨σỹσx̃⟩⟩2Λ̃N

≤
∑
ũ,w̃

⟨⟨σõσũ⟩⟩2Λ̃N
⟨⟨σõσw̃⟩⟩Λ̃N

⟨⟨σw̃σũ⟩⟩Λ̃N
⟨⟨σw̃σx̃⟩⟩Λ̃N

×
∑
ỹ

O(λ̃)

|||y − u|||d−2

(
δw̃,ỹ +

O(λ̃)

|||y − w|||d−2

)
O(λ̃)2

|||x− y|||2(d−2)

≤
∑
ũ

⟨⟨σõσũ⟩⟩2Λ̃N

O(λ̃3N)

|||x− u|||d−2

∑
w̃

⟨⟨σõσw̃⟩⟩Λ̃N
⟨⟨σw̃σũ⟩⟩Λ̃N

⟨⟨σw̃σx̃⟩⟩Λ̃N

O(λ̃)

|||x− w|||d−2
. (3.22)

Then, by applying (3.18) to control the sum over w̃, and then applying (3.17) to control
the sum over ũ, we obtain

(3.22) ≤
(
δõ,x̃ +

O(λ̃)

|||x|||d−2

)∑
ũ

⟨⟨σõσũ⟩⟩2Λ̃N

O(λ̃4N)

|||x− u|||2(d−2)

≤
(
δõ,x̃ +

O(λ̃)

|||x|||d−2

)
O(λ̃4N)

|||x|||2(d−2)
. (3.23)

Summarizing (3.10)–(3.11) and (3.21)–(3.23) and then using λ̃2N ≪ 1, we conclude
that the sum on the right-hand side of (3.10) obeys the inequality (3.7). We finish the
proof of Proposition 3.1.
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3.2 Bound on the two-point function

In this subsection, we prove that the assumed bound on GN in Proposition 3.1 indeed
holds for all µ ∈ (µN , µ

(0)

N ] (n.b., µN ≤ µ(0)

N is due to Proposition 2.2(i)), where

µN = inf

{
µ :
∑
x∈Zd

GN(x) < ∞
}
, (3.24)

µ(0)

N =
1

ϵ2N

(
1

N
− tanh−1 1−N

∑
x tanh Jo,x

N − 1

)
. (3.25)

We note that µ(0)

N is the value of µ at which p = 1. Although the exact expression for µ(0)

N

is unimportant, it shows that µ(0)

N tends to the massless point Ĵ for the Gaussian model
as N → ∞. In fact,

µ(0)

N <
1

ϵ2N

(
1

N
− 1−N

∑
x tanh Jo,x

N − 1

)
<

ĴN

N − 1
. (3.26)

For now, we assume Ĵ /2 < µN < µ(0)

N , which is to be verified later.
Let

K̃ = sup
x∈Zd

|||x|||d−2S1(x), (3.27)

where we recall that S1 is the random-walk’s Green function generated by the 1-step
distribution D(x) = tanh Jo,x/

∑
y tanh Jo,y. Notice that, under the assumption in Propo-

sition 3.1 (cf., Ĵ ϵ2NN < 1 and N ≥ 2),

Jo,x ≥ tanh Jo,x ≥ Jo,x

(
1−

J2
o,x

3

)
≥ Jo,x

(
1− (Ĵ ϵ2N)

2

3

)
≥ 11

12
Jo,x, (3.28)

and therefore D inherits all the properties of J /Ĵ . In particular, there is a τ ∈ (0, 2)
such that

1− D̂(k) =
|k|2

2d

∑
x

|x|2D(x) +O(|k|2+τ ), (3.29)

D∗n(x) ≤ O(n)

|||x|||d+2
, (3.30)∣∣∣∣D∗n(x)− D∗n(x+ y) +D∗n(x− y)

2

∣∣∣∣ ≤ O(n)|y|2

|||x|||d+4
[|y| ≤ 1

3
|x|]. (3.31)

Applying those bounds to the analysis in [6] for the random-walk’s Green function, we
can choose the value of K̃ in (3.27) independently of λ, µ,N .

Now, we prove the following theorem.

Theorem 3.3. Let d > 4, N > 2Ĵ 2

λ
∨
(
2µ2

λ

)3
and λ ≪ 2µ2. Then, for any µ ∈ (µN , µ

(0)

N ],

Ḡµ ≡ sup
x

|||x|||d−2GN(x) ≤ 2K̃. (3.32)
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Proof. First, we note that Ḡ
µ
(0)
N

≤ K̃, due to Proposition 2.2(i). In order to complete the

proof, it thus suffices to show

(I) continuity of Ḡµ in µ ∈ (µN , µ
(0)

N ],

(II) existence of a forbidden region: Ḡµ /∈ (2K̃, 3K̃] for every µ ∈ (µN , µ
(0)

N ).

In order to prove (I), we use the following lemma, which is a simple adaptation of [28,
Lemma 5.13] to the current setting.

Lemma 3.4. Let {gµ(x)}x∈Zd be an equicontinuous family of functions in µ ∈ [m,M ],
i.e., for any ε > 0, there exists a δ > 0 such that |µ − µ′| < δ ⇒ |gµ(x) − gµ′(x)| < ε,
uniformly in µ, µ′ ∈ [m,M ] and x ∈ Zd. If ḡµ ≡ supx gµ(x) is finite for each µ ∈ [m,M ],
then ḡµ is also continuous in µ ∈ [m,M ].

In order to apply this lemma to the current setting and prove continuity of Ḡµ, it
suffices to show that {|||x|||d−2GN(x)}x∈Zd is an equicontinuous family of functions in µ ∈
[m,µ(0)

N ], for everym ∈ (µN , µ
(0)

N ). However, since GN(x) is an increasing limit of GΛ̃N
(o, x)

as Λ ↑ Zd, it boils down to show that |||x|||d−2 d
dµ
GΛ̃N

(o, x) is bounded uniformly in x ∈ Zd,

Λ ⊂ Zd and µ ∈ [m,µ(0)

N ]. First, by using Lebowitz’ inequality [22],∣∣∣∣ ddµGΛ̃N
(o, x)

∣∣∣∣ = ϵ2N

∣∣∣∣ ddI
(
1− (N − 1) tanh I

N
⟨⟨σ̃oσ̃x⟩⟩Λ̃N

)∣∣∣∣
= ϵ2N

∣∣∣∣− N − 1

N cosh2 I
⟨⟨σ̃oσ̃x⟩⟩Λ̃N

+
1− (N − 1) tanh I

N

∑
y∈Λ

∑
1≤i<j≤N

⟨⟨σ̃oσ̃x; σ(y,i)σ(y,j)⟩⟩Λ̃N

∣∣∣∣
≤ ϵ2N

(
N − 1

N
⟨⟨σ̃oσ̃x⟩⟩Λ̃N

+
1− (N − 1) tanh I

N

∑
y∈Λ

∑
i,j∈[N ]
(i̸=j)

⟨⟨σ̃oσ(y,i)⟩⟩Λ̃N
⟨⟨σ(y,j)σ̃x⟩⟩Λ̃N

)

≤ ϵ2NN

1− (N − 1) tanh I

(
GΛ̃N

(o, x) +
∑
y∈Λ

GΛ̃N
(o, y)GΛ̃N

(y, x)

)
≤ 1

µ

(
GN(x) +

∑
y∈Zd

GN(y)GN(x− y)

)
. (3.33)

By Proposition 2.2(ii), we have GN(y − x) ≤ K̄/|||y − x|||d+α, where K̄ = max
µ∈[m,µ

(0)
N ]

Kµ

and α is an arbitrarily large number in the current setting. Therefore, we arrive at

|||x|||d−2

∣∣∣∣ ddµGΛ̃N
(o, x)

∣∣∣∣ ≤ K̄

m|||x|||2+α
+

|||x|||d−2

m

∑
y∈Zd

K̄

|||y|||d+α

K̄

|||y − x|||d+α
≤ C

|||x|||2+α
, (3.34)

where the constant C is independent of Λ and µ. This completes the proof of (I).

Next, we prove (II) by showing that Ḡµ ≤ 3K̃ implies Ḡµ ≤ 2K̃ for each µ ∈ (µN , µ
(0)

N ).
First, we derive an identity for GN using (3.1). Under the assumption Ḡµ ≤ 3K̃ and the
hypothesis of the theorem, we can use Proposition 3.1 to obtain the T → ∞ limit of (3.1):

⟨⟨σõσx̃⟩⟩Λ̃N
= πΛ̃N

(õ, x̃) +
∑

ũ,ṽ∈Λ̃N

πΛ̃N
(õ, ũ) (tanh J̃ũ,ṽ) ⟨⟨σṽσx̃⟩⟩Λ̃N

, (3.35)

20



where πΛ̃N
(õ, x̃) satisfies (3.9). Let

ΠΛ̃N
(o, x) =

∑
i,j∈[N ]

πΛ̃N
((o, i), (x, j)). (3.36)

which satisfies∣∣∣∣ΠΛ̃N
(o, x)

N
− δo,x

(
1−

∑
ṽ

(tanh J̃õ,ṽ)⟨⟨σṽσõ⟩⟩Λ̃N

)∣∣∣∣ ≤ O(λ̃2)

(
δo,x +

O(λ̃N)

|||x|||3(d−2)

)
. (3.37)

Then, there is a subsequential limit ΠN ≡ limΛj↑Zd ΠΛj×[N ] such that, for every x ∈ Zd,∣∣∣∣ΠN(x)

N
− δo,x

(
1−

õ

)∣∣∣∣ ≤ O(λ̃2)

(
δo,x +

O(λ̃N)

|||x|||3(d−2)

)
λ̃<λ̃2N

≤ O(λ̃3N)

|||x|||3(d−2)
, (3.38)

where

õ

=
∑
ṽ∈Z̃d

N

(tanh J̃õ,ṽ)⟨⟨σṽσõ⟩⟩Z̃d
N

(2.30)
= O(λ̃). (3.39)

Therefore, the limit of the sum of (3.35) equals

⟨⟨σ̃oσ̃x⟩⟩Z̃d
N
= ΠN(x) +

∑
ũ,ṽ∈Z̃d

N

ΠN(u)

N
(tanh J̃ũ,ṽ)

⟨⟨σṽσ̃x⟩⟩Z̃d
N

N

= ΠN(x) +
∑

u,v∈Zd

ΠN(u) (tanh Ju,v) ⟨⟨σ̃vσ̃x⟩⟩Z̃d
N

+ (N − 1)(tanh I)
∑
v∈Zd

(
ΠN(v)

N
− δo,v

)
⟨⟨σ̃vσ̃x⟩⟩Z̃d

N

+ (N − 1)(tanh I) ⟨⟨σ̃oσ̃x⟩⟩Z̃d
N
. (3.40)

Solving this identity for ⟨⟨σ̃oσ̃x⟩⟩Z̃d
N
and then dividing both sides by N , we obtain

GN(x) =
ΠN(x)

N
+
∑

u,v∈Zd

ΠN(u)

N
pD(v − u)GN(x− v)

+
(N − 1) tanh I

1− (N − 1) tanh I

∑
v∈Zd

(
ΠN(v)

N
− δo,v

)
GN(x− v)

=
ΠN(x)

N
+
∑
v∈Zd

FN(v)GN(x− v), (3.41)

where

FN(x) =
∑
u∈Zd

ΠN(u)

N
pD(x− u) +

(N − 1) tanh I

1− (N − 1) tanh I

(
ΠN(x)

N
− δo,x

)
. (3.42)
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Here, we note that, by summing (3.41) over x ∈ Zd,

∑
x∈Zd

GN(x) = ĜN(0) =
Π̂N(0)/N

1− F̂N(0)
. (3.43)

Since Π̂N(0)/N > 0 when λ̃2N ≪ 1 (cf., (3.38)), it must be that F̂N(0) < 1 for µ > µN ,
which is equivalent to

Π̂N(0)

N
N
∑
x∈Zd

tanh Jo,x + (N − 1)(tanh I)

(
Π̂N(0)

N
− 1

)
< 1− (N − 1) tanh I

⇔ N
∑
x∈Zd

tanh Jo,x + (N − 1) tanh I <
1

Π̂N(0)/N
. (3.44)

Since supx Jo,x < N−1 (∵ N > 2Ĵ 2/λ) and I = N−1(1 − o(1)) (∵ N > (2µ2/λ)3), the
left-hand side of the above inequality is bounded below by

N
∑
x

Jo,x

(
1−

J2
o,x

3

)
+NI

(
1− I2

3

)
≥
(
1−O(N−2)

)(
N
∑
x

Jo,x +NI

)
=
(
1−O(N−2)

)(
1 + (Ĵ − µ)ϵ2NN

)
. (3.45)

As a result, (3.44) implies

1 + (Ĵ − µ)ϵ2NN <
1 +O(N−2)

Π̂N(0)/N

⇔ µ > Ĵ − 1 +O(N−2)

ϵ2NN

(
1

Π̂N(0)/N
− 1

)
− O(N−2)

ϵ2NN

= Ĵ − 1 +O(N−2)

ϵ2NN

(
õ

+O(λ̃3N)
)

︸ ︷︷ ︸
O(λ)/µ

−λ

µ
O(N−4/3) = Ĵ − O(λ)

µ
, (3.46)

where we have used N > (2µ2/λ)3 to evaluate the O(N−4/3) term. Therefore, the assumed

bound µ > Ĵ /2 (cf., below (3.26)) is indeed true if λ ≪ 1 (or Ĵ ≫ 1).
Next, we compare (3.41) with the convolution equation for the random-walk’s Green

function:

Sq(x) = δo,x + (qD ∗ Sq)(x). (3.47)

Inspired by their similarity, we approximate GN by rΠN

N
∗ Sq, with some r ∈ (0,∞) and

q ∈ [0, 1]. In order to do so, we first rearrange those convolution equations to get

Π

N
= G ∗ (δ − F ), δ = (δ − qD) ∗ Sq, (3.48)
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where, for brevity, we have omitted the subscripts and the spatial variables. Using those
identities, we can rewrite G as

G = r
Π

N
∗ Sq +G ∗ δ − r

Π

N
∗ Sq

= r
Π

N
∗ Sq +G ∗ (δ − qD) ∗ Sq − rG ∗ (δ − F ) ∗ Sq

= r
Π

N
∗ Sq +G ∗ E ∗ Sq, (3.49)

where

E = (δ − qD)− r(δ − F ). (3.50)

We choose q and r to satisfy
Ê(0) = 1− q − r

(
1− F̂ (0)

)
= 0,

∇̄2Ê(0) ≡ lim
|k|→0

Ê(0)− Ê(k)

1− D̂(k)
= −q + r∇̄2F̂ (0) = 0,

(3.51)

or equivalently

q = r∇̄2F̂ (0), r =
1

1− F̂ (0) + ∇̄2F̂ (0)
. (3.52)

Then, we can rewrite E as

E = δ − r
(
δ − F + ∇̄2F̂ (0)D

)
= r
(
−
(
F̂ (0)δ − F

)
+ ∇̄2F̂ (0)(δ −D)

)
. (3.53)

However, since (cf., (3.42))

F̂ (k) =
Π̂(k)

N
pD̂(k) +

(N − 1) tanh I

1− (N − 1) tanh I

(
Π̂(k)

N
− 1

)
, (3.54)

we have

F̂ (0)δ − F = p
Π

N
∗ (δ −D) +

(
p+

(N − 1) tanh I

1− (N − 1) tanh I

)(
Π̂(0)

N
δ − Π

N

)
, (3.55)

so that

∇̄2F̂ (0) = p
Π̂(0)

N
+

(
p+

(N − 1) tanh I

1− (N − 1) tanh I

)
∇̄2Π̂(0)

N
. (3.56)

Therefore,

r =

(
1 +

(N − 1) tanh I

1− (N − 1) tanh I

(
1− Π̂(0)

N
+

∇̄2Π̂(0)

N

)
+ p

∇̄2Π̂(0)

N

)−1

, (3.57)
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and

E = r

(
p

(
Π̂(0)

N
δ − Π

N

)
∗ (δ −D)

−
(
p+

(N − 1) tanh I

1− (N − 1) tanh I

)(
Π̂(0)

N
δ − Π

N
− ∇̄2Π̂(0)

N
(δ −D)

))
. (3.58)

Due to those rewrites, we can show the following proposition, whose proof follows after
completion of the proof of (II).

Proposition 3.5. Let q and r be chosen to satisfy (3.51)–(3.52). Under the hypothesis
of Theorem 3.3, there is a ρ > 0 such that

r = 1−O(λ̃2N), 0 ≤ 1− q ≤ O(λ̃2N), |(E ∗ Sq)(x)| ≤
O(λ̃2N)2

|||x|||d+ρ
. (3.59)

Finally, we can conclude Ḡµ ≤ 2K̃ (hence (II)) by first rewriting (3.49) as

G = r
Π̂(0)

N
Sq − r

(
Π̂(0)

N
δ − Π

N

)
∗ Sq +G ∗ E ∗ Sq, (3.60)

and then applying (3.38), Lemma 3.2 and Proposition 3.5. This completes the proof of
Theorem 3.3.

Proof of Proposition 3.5. To evaluate r, we must investigate (N − 1)(tanh I)/(1− (N −
1) tanh I), p and ∇̄2Π̂(0)/N in (3.57). For the first two, it is easy to show that

(N − 1) tanh I

1− (N − 1) tanh I
≤ NI

1−NI
≤ 1

µϵ2N
, (3.61)

and that, by using Ĵ < µ+O(λ)/µ (cf., (3.46)),

p ≤ N
∑

x Jo,x
1−NI

=
Ĵ

µ
= 1 +

O(λ)

µ2
= 1 +O(λ̃2N). (3.62)

On the other hand, since N > (2µ2/λ)3 (so that µϵ2N < λ̃2N), we have

(N − 1) tanh I

1− (N − 1) tanh I
≥

(N − 1)(I − 1
3
I3)

1− (N − 1)(I − 1
3
I3)

≥ (N − 1)I −NI3

1− (N − 1)I +NI3

≥
NI − 1

N
− 1

N2

1−NI + 1
N
+ 1

N2

≥ 1− µϵ2N(1 + 2λ̃)

µϵ2N(1 + 2λ̃)
≥ 1−O(λ̃2N)

µϵ2N
. (3.63)

Moreover, by using (3.26) and N > 2(Ĵ ∨ µ)2/λ (so that Ĵ 2ϵ4 < 1/N2), we have

p ≥
N
∑

x(Jo,x −
1
3
J3
o,x)

1− (N − 1)(I − 1
3
I3)

≥ Ĵ ϵ2N(1− Ĵ 2ϵ4)

µϵ2N(1 + 2λ̃)

≥ N − 1

N
(1− Ĵ 2ϵ4)(1− 2λ̃) ≥ 1−O(λ̃2N). (3.64)
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Since 1/(µϵ2N) = λ̃N , we can summarize the above bounds as

(N − 1) tanh I

1− (N − 1) tanh I
= λ̃N

(
1−O(λ̃2N)

)
, p = 1 +O(λ̃2N). (3.65)

For ∇̄2Π̂(0)/N in (3.57), we use (3.38) to obtain∣∣∣∣Π̂(0)

N
− Π̂(k)

N

∣∣∣∣ ≤∑
x

(
1− cos(k · x)

)∣∣∣∣Π(x)

N

∣∣∣∣ ≤ O(λ̃3N)
∑
x ̸=o

1− cos(k · x)
|x|3(d−2)

. (3.66)

However, since d > 4, there is a 0 < τ < 2 ∧ (2(d− 4)) such that∑
x ̸=o

1− cos(k · x)
|x|3(d−2)

=
|k|2

2d

∑
x ̸=o

1

|x|d+2(d−4)
+O(|k|2+τ ). (3.67)

Using (3.29), we obtain

∇̄2Π̂(0)

N
= lim

k→0

Π̂(0)/N − Π̂(k)/N

1− D̂(k)
=

∑
x |x|2Π(x)/N∑

x |x|2D(x)
= O(λ̃3N). (3.68)

As a result,

r =

(
1 + λ̃N

(
1−O(λ̃2N)

)(
õ

+ O(λ̃3N)
)
+O(λ̃3N)

)−1

= 1−O(λ̃2N). (3.69)

To evaluate 1− q is straightforward. By (3.52) and (3.54), we obtain

1− q = r
(
1− F̂ (0)

)︸ ︷︷ ︸
≥0 (cf., (3.43))

= r

(
1− Π̂(0)

N
p− (N − 1) tanh I

1− (N − 1) tanh I

(
Π̂(0)

N
− 1

))

= r

(
1− p+

(
p+

(N − 1) tanh I

1− (N − 1) tanh I

)(
õ

+ O(λ̃3N)
))

= O(λ̃2N). (3.70)

Finally, we investigate (E ∗ Sq)(x). First, for a given T ∈ (0,∞), we split it into two
as

(E ∗ Sq)(x) =

∫
[−π,π]d

ddk

(2π)d
Ê(k)

e−ik·x

1− qD̂(k)

=

∫ ∞

0

dt

∫
[−π,π]d

ddk

(2π)d
Ê(k)e−t(1−qD̂(k))−ik·x ≡ X>T +X<T , (3.71)

where

X>T =

∫ ∞

T

dt

∫
[−π,π]d

ddk

(2π)d
Ê(k)e−t(1−qD̂(k))−ik·x, (3.72)

X<T =

∫ T

0

dt

∫
[−π,π]d

ddk

(2π)d
Ê(k)e−t(1−qD̂(k))−ik·x. (3.73)
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The value of T is arbitrary for now, but it is to be determined shortly.
Next, we estimate X>T by taking the Fourier transform of (3.58) as

Ê(k) = r
(
1− D̂(k)

)(
p

(
Π̂(0)

N
− Π̂(k)

N

)

−
(
p+

(N − 1) tanh I

1− (N − 1) tanh I

)(
Π̂(0)/N − Π̂(k)/N

1− D̂(k)
− ∇̄2Π̂(0)

N

))
. (3.74)

By (3.29) and using (3.65)–(3.68) to evaluate the expression in the biggest parentheses of
(3.74), we obtain

|Ê(k)| ≤ O(λ̃2N)2|k|2+τ . (3.75)

Therefore, by substituting this to (3.72) and using (3.29) and q ≥ 1−O(λ̃2N) (cf., (3.70)),
we obtain

|X>T | ≤
∫ ∞

T

dt

∫
[−π,π]d

ddk

(2π)d
|Ê(k)|e−tq(1−D̂(k)) = O(λ̃2N)2

∫ ∞

T

dt t−1− d+τ
2

= O(λ̃2N)2 T− d+τ
2 . (3.76)

Let

ρ =
2τ

d+ 2 + τ
, T = |||x|||2−ρ. (3.77)

Then, we arrive at

|X>T | ≤
O(λ̃2N)2

|||x|||d+ρ
. (3.78)

Next, we estimate X<T by first expanding etqD̂(k) as

X<T =

∫ T

0

dt e−t

∞∑
n=0

(tq)n

n!

∫
[−π,π]d

ddk

(2π)d
Ê(k) D̂(k)n e−ik·x

=

∫ T

0

dt e−t

∞∑
n=0

(tq)n

n!
(E ∗D∗n)(x). (3.79)

Since (3.58) can be rearranged as

E = r

(
− p

(
Π̂(0)

N
δ − Π

N

)
∗D − (N − 1) tanh I

1− (N − 1) tanh I

(
Π̂(0)

N
δ − Π

N

)

+

(
p+

(N − 1) tanh I

1− (N − 1) tanh I

)
∇̄2Π̂(0)

N
(δ −D)

)
, (3.80)
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we have

(E ∗D∗n)(x) = r

(
− p

∑
y ̸=o

Π(y)

N

(
D∗(n+1)(x)−D∗(n+1)(x− y)

)
− (N − 1) tanh I

1− (N − 1) tanh I

∑
y ̸=o

Π(y)

N

(
D∗n(x)−D∗n(x− y)

)
+

(
p+

(N − 1) tanh I

1− (N − 1) tanh I

)
∇̄2Π̂(0)

N

×
∑
y ̸=o

D(y)
(
D∗n(x)−D∗n(x− y)

))
. (3.81)

Suppose that ∣∣∣∣∑
y ̸=o

Π(y)

N

(
D∗n(x)−D∗n(x− y)

)∣∣∣∣ ≤ O(λ̃3N)

|||x|||d+2

(
n

|||x|||2
+ 1

)
, (3.82)∣∣∣∣∑

y ̸=o

D(y)
(
D∗n(x)−D∗n(x− y)

)∣∣∣∣ ≤ O(1)

|||x|||d+2

(
n

|||x|||2
+ 1

)
, (3.83)

so that, by (3.65) and (3.69),

|(E ∗D∗n)(x)| ≤ O(λ̃2N)2

|||x|||d+2

(
n

|||x|||2
+ 1

)
. (3.84)

Then, by (3.77) and (3.79), we obtain

|X<T | ≤
O(λ̃2N)2 T

|||x|||d+2

(
T

|||x|||2
+ 1

)
=

O(λ̃2N)2

|||x|||d+ρ
. (3.85)

Combining this with (3.71) and (3.78), we obtain the desired bound on (E ∗ Sq)(x), as in
(3.59).

Now, it remains to show (3.82)–(3.83). Since their proofs are almost identical, we only
show here (3.82). First, we split the sum into three as∑

y ̸=o

Π(y)

N

(
D∗n(x)−D∗n(x− y)

)
= Σ1 +Σ2 +Σ3, (3.86)

where

Σ1 =
∑

y:0<|y|≤ 1
3
|x|

Π(y)

N

(
D∗n(x)−D∗n(x− y)

)
, (3.87)

Σ2 =
∑

y:|x−y|≤ 1
3
|x|

Π(y)

N

(
D∗n(x)−D∗n(x− y)

)
, (3.88)

Σ3 =
∑

y:|y|∧|x−y|> 1
3
|x|

Π(y)

N

(
D∗n(x)−D∗n(x− y)

)
. (3.89)
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We estimate Σ2, Σ3 and Σ1 in order, by using (3.30)–(3.31) and (3.38).
For Σ2, since |y| ≥ |x| − |x− y| ≥ 2

3
|x| and 3(d− 2) > d+ 2 for d > 4, we obtain

|Σ2| ≤
O(λ̃3N)

|||x|||3(d−2)

∑
y:|x−y|≤ 1

3
|x|

(
D∗n(x) +D∗n(x− y)

)
≤ O(λ̃3N)

|||x|||d+2

(
n

|||x|||2
+ 1

)
. (3.90)

For Σ3, we bound both D∗n(x) and D∗n(x− y) by O(n)/|||x|||d+2 and use 3(d− 2) > d+ 2
again to obtain

|Σ3| ≤
O(n)

|||x|||d+2

∑
y:|y|> 1

3
|x|

∣∣∣∣Π(y)

N

∣∣∣∣ ≤ O(λ̃3N)

|||x|||d+4
n. (3.91)

For Σ1, we first use the Zd-symmetry of Π and then use (3.31) to obtain

|Σ1| =
∣∣∣∣ ∑
y:0<|y|≤ 1

3
|x|

Π(y)

N

(
D∗n(x)− D∗n(x+ y) +D∗n(x− y)

2

)∣∣∣∣
≤ O(n)

|||x|||d+4

∑
y ̸=o

|y|2
∣∣∣∣Π(y)

N

∣∣∣∣ ≤ O(λ̃3N)

|||x|||d+4
n
∑
y ̸=o

1

|y|d+2(d−4)
=

O(λ̃3N)

|||x|||d+4
n. (3.92)

This completes the proof of (3.82), hence the proof of Proposition 3.5.

3.3 The linear Schwinger-Dyson equation

Finally, we derive the linear Schwinger-Dyson equation (1.11) and complete the proof of
the main theorem.

In the previous subsection, we have proved that, if d > 4, λ is sufficiently small and
N is sufficiently large, then there is a c < ∞, which is independent of λ, µ,N , such that
GN(x) ≤ c/|||x|||d−2 holds for all x ∈ Zd and µ > µN . Then, by Proposition 3.1, we have
(3.38) uniformly in µ > µN . Therefore, by (3.41)–(3.42), we obtain that, for µ > µN ,

GN =
ΠN

N
+

(
ΠN

N
∗ pD +

(N − 1) tanh I

1− (N − 1) tanh I

(
ΠN

N
− δ

))
∗GN . (3.93)

Let

ΦN(x) = −ϵ2NN
2

(
ΠN(x)

N
− δo,x

)
(3.38)
= ϵ2NN

2

õ

δo,x +
O(λ/µ3)

|||x|||3(d−2)
, (3.94)

so that we can rewrite (3.93) as

GN = δ − ΦN

ϵ2NN
2
+

(
pD −

(
pD +

(N − 1) tanh I

1− (N − 1) tanh I
δ

)
∗ ΦN

ϵ2NN
2

)
∗GN . (3.95)
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Now, we consider the N ↑ ∞ limit of (3.95). First, we claim that limN↑∞ µN = µc. In
order to see this, we recall that

GN(x) =
1− (N − 1) tanh I

ϵ2NN
ϵ2N⟨⟨σ̃oσ̃x⟩⟩Z̃d ≥ 0. (3.96)

Since ϵ2N⟨⟨σ̃oσ̃x⟩⟩Λ̃N
tends as N ↑ ∞ to ⟨φoφx⟩Λ that is bounded above by ⟨φ2

o⟩Zd uniformly
in x and Λ (due to monotonicity and the Schwarz inequality), we can change the order of
the limits to obtain

lim
N↑∞

ϵ2N⟨⟨σ̃oσ̃x⟩⟩Z̃d = ⟨φoφx⟩µ, (3.97)

hence

lim
N↑∞

GN(x) = µ⟨φoφx⟩µ. (3.98)

Because of the nonnegativity of GN , the N ↑ ∞ limit of
∑

xGN(x) is finite if and only if
χµ is finite. This implies limN↑∞ µN = µc.

Suppose that, for every µ > µc, there is a subsequential limit Φµ ≡ limNj↑∞ ΦNj
and

that it is summable. Since

1

ϵ2NN
2
=

√
λ

2N
, pD →

N↑∞

J

µ
,

(N − 1) tanh I

1− (N − 1) tanh I
∼

N↑∞

1

µ

√
λN

2
, (3.99)

we can take the limit of (3.95) along this subsequence to obtain

µ⟨φoφx⟩µ = δo,x +
∑
v

(
J (v)− λ

2
Φµ(v)

)
⟨φvφx⟩µ, (3.100)

which is equivalent to the linear Schwinger-Dyson equation (1.11).
In order to complete the proof, it remains to show existence and summability of the

assumed subsequential limit Φµ ≡ limNj↑∞ ΦNj
. However, since the last term in (3.94) is

summable uniformly in N , we only need to show existence of the limit of the first term
in (3.94). Notice that, by (2.27) (see (2.28) as well),

ϵ2NN
2

õ

= ϵ2NN
2
∑
ṽ

(tanh J̃õ,ṽ)
1
N
⟨⟨σ̃vσ̃o⟩⟩Z̃d − δv,o

N − δv,o

= ϵ2NN(tanh I)
(
⟨⟨σ̃2

o⟩⟩Z̃d −N
)
+ ϵ2NN

∑
v

(tanh Jo,v)⟨⟨σ̃vσ̃o⟩⟩Z̃d

= N(tanh I)

(
ϵ2N⟨⟨σ̃2

o⟩⟩Z̃d − ϵ2NN +
∑
v

tanh Jo,v
tanh I

ϵ2N⟨⟨σ̃vσ̃o⟩⟩Z̃d

)
. (3.101)

Since

N tanh I = 1− µϵ2NN →
N↑∞

1, ϵ2NN =

√
2

λN
→

N↑∞
0,

tanh Jo,v
tanh I

∼
N↑∞

ϵ2NNJ (v),

(3.102)
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we obtain (cf., (3.97))

lim
N↑∞

ϵ2NN
2

õ

= ⟨φ2
o⟩µ. (3.103)

This completes the proof of the main theorem.
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[9] R. Fernández, J. Fröhlich and A.D. Sokal. Random walks, critical phenomena, and
triviality in quantum field theory (Springer, Berlin, 1992).

30
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