<table>
<thead>
<tr>
<th>Title</th>
<th>The N-terminal domain of N-pro of classical swine fever virus determines its stability and regulates type I IFN production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Mine, Junki; Tamura, Tomokazu; Mitsuhashi, Kazuya; Okamatsu, Masatoshi; Parchariyanon, Sujira; Pinyochon, Wasana; Ruggli, Nicolas; Tratschin, Jon-Duri; Kida, Hiroshi; Sakoda, Yoshihiro</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of General Virology, 96(7): 1746-1756</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2015-07</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/62343</td>
</tr>
<tr>
<td>Type</td>
<td>article (author version)</td>
</tr>
<tr>
<td>Additional Information</td>
<td>There are other files related to this item in HUSCAP. Check the above URL.</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
The N-terminal domain of Npro of classical swine fever virus determines its stability and regulates type I interferon production

Junki Mine¹, Tomokazu Tamura¹, Kazuya Mitsuhashi¹, Masatoshi Okamatsu¹, Sujira Parchariyanon², Wasana Pinyochon², Nicolas Ruggli³, Jon-Duri Tratschin³, Hiroshi Kida¹,⁴,⁵, Yoshihiro Sakoda¹,⁵

¹Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
²National Institute of Animal Health, Kaset Klang, Chatuchak, Bangkok 10900, Thailand
³The Institute of Virology and Immunology IVI, Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland
⁴Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
⁵Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Sapporo 001-0020, Japan

Corresponding author

Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo 060-0818, Japan

Phone: +81-11-706-5207; Fax: +81-11-706-5273
E-mail: sakoda@vetmed.hokudai.ac.jp

Summary word count: 242
The text word count: 5356, 7 figures, 1 tables, 3 supplementary figures
Running title: The N-terminal domain of CSFV Npro determines its stability
Keywords: CSFV; Npro; IFN-α/β; stability
Contents Category: Animal — Positive-strand RNA Viruses
The DDBJ accession number for the sequence of KPP/93 is LC016722.
SUMMARY

The viral protein Npro is unique to the pestiviruses within the \textit{Flaviviridae} family. After autocatalytic cleavage from the nascent polyprotein, Npro suppresses type I interferon (IFN-\(\alpha/\beta\)) induction by mediating proteasomal degradation of interferon regulatory factor 3 (IRF-3). Previous studies found that the Npro-mediated IRF-3 degradation was dependent of a TRASH domain in the C-terminal half of Npro coordinating zinc by means of the amino acid residues C112, C134, D136 and C138. Interestingly, four classical swine fever virus (CSFV) isolates obtained from diseased pigs in Thailand in 1993 and 1998 did not suppress IFN-\(\alpha/\beta\) induction despite the presence of an intact TRASH domain. By systematic analyses, it was found that an amino acid mutation at position 40 or mutations at positions 17 and 61 in the N-terminal half of Npro of these four isolates were related to the lack of IRF-3 degrading activity. Restoring a histidine at position 40 or both, a proline at position 17 and a lysine at position 61 based on the sequence of a functional Npro contributed to higher stability of the reconstructed Npro compared with the Npro from the Thai isolate. This led to enhanced interaction of Npro with IRF-3 along with its degradation by the proteasome. The results of the present study revealed that amino acid residues in the N-terminal domain of Npro are involved in the stability of Npro, in interaction of Npro with IRF-3 and subsequent degradation of IRF-3, leading to down-regulation of IFN-\(\alpha/\beta\) production.
INTRODUCTION

Viral infection triggers complex cellular antiviral defence mechanisms. Double-stranded RNA triggers the type I interferon (IFN-α/β) pathway, leading to antiviral responses such as the destruction of viral RNA, inhibition of cellular transcription and translation and promotion of apoptosis (Randall et al., 2008). IFN-α/β induction depends on a family of transcription factors, the interferon regulatory factors (IRFs) (Taniguchi et al., 2001). IRF-3 is ubiquitously expressed in the cytoplasm and activated in response to viral infection (Au et al., 1995). The activation of the pathway leads to phosphorylation, dimerization and translocation of IRF-3 into the nucleus, and to formation of the enhanceosome that binds to the IFN-α/β promoters (Honda et al., 2006; Saitho et al., 2006). Previous studies have demonstrated that several viruses employ various strategies to counter this antiviral response. For instance, classical swine fever virus (CSFV) promotes IRF-3 degradation, hepatitis C virus inhibits IRF-3 phosphorylation, thogoto virus inhibits transcription complex assembly and influenza virus inhibits IRF-3 translocation into the nucleus (La Rocca et al., 2005; Hiliton et al., 2006; Haller et al., 2006; Jennings et al., 2005; Talon et al., 2000).

CSFV belongs to the genus Pestivirus of the family Flaviviridae together with bovine viral diarrhoea virus (BVDV) and border disease virus. CSFV possesses a single-stranded positive-sense RNA genome of approximately 12.3 kb with one large open reading frame flanked by a 5′ and 3′ untranslated region. It yields 12 cleavage products (Npro, C, Ems, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A and NS5B) through co- and post-translational processing of the polyprotein by cellular and viral proteases (Lindenbach et al., 2007; Lamp et al., 2013). Npro is a protein unique to pestiviruses and is generated autocatalytically by cleaving its own carboxyl terminus through its protease activity. The amino acid residues H49 and C69 in the N-terminal domain of Npro form a catalytic diad responsible for the autoprotease activity (Gottipati et al., 2013; Zögg et al., 2013). Npro is not essential for viral replication (Tratschin et al., 1998) but is involved in pathogenicity by suppressing IFN-α/β induction through IRF-3 degradation in host cells (Mayer et al., 2004; Hiliton et al., 2006; Bauhofer et al., 2007; Ruggli et al., 2009; Tamura et al., 2014). A TRASH zinc-binding domain located in the
C-terminal half of Npro and involving the amino acid residues at positions 112, 134, 136 and 138, is required for mediating IRF-3 degradation (Ruggli et al., 2009; Szymanski et al., 2009; Tamura et al., 2014).

By means of Npro, CSFV interferes with IFN-\textgreek{a}/\textgreek{b} induction, which can be measured with IFN-\textgreek{a}/\textgreek{b} indicators such as Newcastle disease virus (NDV). This is termed ‘exaltation of NDV’ (END) (Kumagai et al., 1958; Tamura et al., 2014). Four CSFV strains termed KPP/93, RBR/93, NKRS/98 and NKS/98 were isolated from diseased pigs in Thailand in 1993 and 1998. Surprisingly, these isolates were END-negative (END−), representing the first END− CSFV isolated in nature. All END− strains described so far were derived in the laboratory (Shimizu et al., 1970; Sakoda et al., 1999). In the present study, we identified amino acid residues responsible for the suppression of IFN-\textgreek{a}/\textgreek{b} induction and elucidated the molecular mechanisms underlying this activity by Npro of CSFVs isolated in Thailand.

RESULTS

Characterisation of CSFVs isolated in Thailand

To assess the involvement of Npro of the Thai isolates in pathogenicity in pigs, three 4-week-old pigs were inoculated intramuscularly with 107.0 TCID\textsubscript{50} of the KPP/93 strain and observed for 14 days. None of the inoculated pigs showed clinical symptoms. Although a small amount of virus was isolated from the tissue of one pig, no virus was isolated from other tissues and blood (Table 1). These data indicate that the pathogenicity of the KPP/93 strain in pigs is very low. Following this, we analysed the characteristics of the four Thai isolates in porcine cells. To clarify whether these isolates prevent IFN-\textgreek{a}/\textgreek{b} induction \textit{in vitro}, porcine SK-L cells were infected at a multiplicity of infection (MOI) of 1.0 with the vGPE− and vGPE−/N136D viruses as control, and with the four Thai isolates KPP/93, RBR/93, NKRS/98 or NKS/98. As expected, the vGPE− virus did not suppress IFN-\textgreek{a}/\textgreek{b} induction, as opposed to the vGPE−/N136D virus, in which the zinc-binding domain important for IRF-3 degradation was restored with an aspartic acid at position 136, which mediated IRF-3 degradation in
accordance with the findings of previous reports (Ruggli et al., 2009, Tamura et al., 2014). All four Thai isolates induced IFN-α/β in SK-L cells, as observed with vGPE− (Fig. 1a). In addition, they did not induce IRF-3 degradation as observed with vGPE−, while IRF-3 was not detected in SK-L cells inoculated with vGPE−/N136D (Fig. 1b). These data show that the four Thai isolates KPP/93, RBR/93, NKRS/98 and NKS/98 do not suppress IFN-α/β induction.

Comparison of the amino acid sequences of Npro of END+ and END− CSFV strains

Previous studies demonstrated that the amino acid residues C112, C134, D136 and C138 of CSFV Npro form a TRASH domain and are essential for the suppression of IFN-α/β induction (Ruggli et al., 2009; Szymanski et al., 2009). Four CSFV isolates in Thailand were classified into genotype 1.1 based on the E2 gene sequence (Fig. S1). These isolates shared 99% and 100% nucleotide sequence identity in E2 and Npro, respectively (data not shown). The accession number of 11,677 nucleotides of the genome between the 5′ terminal domain and NS5B of the KPP/93 strain was deposited to the GenBank/EMBL/DDBJ public database (accession # LC016722). The amino acid sequences of Npro of two out of the four strains isolated in Thailand, of three laboratory END− strains (ALD-END−, Ames-END− and GPE−), and of seven END-positive (END+) strains (Alfort/187, Alfort/Tübingen, ALD, Brescia, C-strain, CAP and Eystrup) were compared. Amino acid residues specific to the CSFV isolated in Thailand were identified (Fig. 2, grey boxes). The alignment revealed H5Y, L8F, P17S, H40L, K61N, E113D and T151S as candidate mutations that may represent critical residues for the regulation of IFN-α/β induction. Interestingly, these seven amino acid positions were not located in the TRASH domain that was previously reported to be essential for Npro-mediated IRF-3 degradation.

Identification of amino acid residues critical for the suppression of IFN-α/β induction

To identify amino acid residues of Npro involved in the suppression of IFN-α/β induction, vA187-Npro(KPP)-derived mutant viruses with substitutions in Npro were constructed as described in
Fig. 3. The backbone virus vA187-N^{pro}(KPP) was a chimeric virus obtained by replacing the N^{pro} gene of vA187-1 (Ruggli et al., 1996) with the N^{pro} gene of the KPP/93 strain. The original vA187-1 virus down-regulates IFN-α/β production and is an established END⁺ virus <i>in vitro</i> (Ruggli et al., 2009). The nucleotide sequence identity of N^{pro} of the four CSFV isolates in Thailand was 100%, as described above; therefore, N^{pro} of the KPP/93 strain was considered as prototype for the four Thai isolates. IFN-α/β bioactivity was measured in the supernatant of cells inoculated with the different mutant viruses (Fig. 3). The vA187-N^{pro}(KPP)/D113E; S151T virus in which vA187-1 sequence was restored in the C-terminal part of KPP/93 N^{pro} did not suppress IFN-α/β production. Therefore, the five N-terminal amino acid residues at positions 5, 8, 17, 40 and 61 were suspected to be involved in this function. The histidine at position 40 of vA187-1 was close to the TRASH domain according to the 3D structure of N^{pro} (Fig. S2). The histidine at position 5 and the phenylalanine at position 8 were not plotted because of the lack of the N-terminal sixteen amino acids in 3D structure of N^{pro}. Interestingly, the L40H substitution in the KPP/93 N^{pro} backbone sequence was sufficient to confer the END⁺ phenotype as demonstrated with complete suppression of IFN-α/β production in SK-L cells infected with vA187-N^{pro}(KPP)/L40H. Interestingly also, vA187-N^{pro}(KPP)/Y5H; F8L; S17P; N61K did also suppress IFN-α/β production, suggesting that the remaining four amino acid residues were involved in this function too, independently of residue at position 40. By systematic analyses of mutant viruses carrying substitutions of either of these four residues alone or combination, we found that the two S17P and N61K substitutions together in the KPP/93 N^{pro} backbone sequence were sufficient to restore functional N^{pro} as measured by suppression of IFN-α/β production in SK-L cells inoculated with vA187-N^{pro}(KPP)/S17P; N61K (Fig. 3). In addition, IRF-3 protein was down-regulated in SK-L cells inoculated with vA187-N^{pro}(KPP)/L40H and vA187-N^{pro}(KPP)/S17P; N61K (Fig. 4). These data indicate that H40 or both, P17 and K61 are critical for the suppression of IFN-α/β induction by vA187-N^{pro}(KPP).

Time course of IRF-3 expression in cells infected with parent and mutant CSFVs
To elaborate on the contribution of the residues 17, 40 and 61 to the degradation of IRF-3 by Npro, SK-L cells were infected with the END− strain vA187-Npro(KPP) which carries Npro of the END− KPP/93 in the vA187-1 backbone, and with the END+ strains vA187-1, vA187-Npro(KPP)/L40H carrying the mutation at amino acid position 40 or vA187-Npro(KPP)/S17P; N61K carrying the mutations of amino acid residues 17 and 61. Cells were lysed at 0, 12, 24, 36, 48, 60, 72, 84, 96, 108 and 120 hours post-infection (hpi) and the extracts were analysed for IRF-3 expression. IRF-3 remained unchanged for the 5 days of the experiment in cells infected with vA187-Npro(KPP) while it was clearly detectable for 24 hpi and then rapidly decreased to 3% of the initial IRF-3 levels by 36 hpi in cells infected with vA187-1 (Fig. 4). In cells infected with vA187-Npro(KPP)/L40H, IRF-3 was detected at 0, 12, 24 and 36 hpi and then gradually decreased to less than 9% of the original IRF-3 level by 48 hpi. Similar decrease of IRF-3 expression was observed in cells infected with the KPP/93 strain carrying the double mutations at positions 17 and 61 [vA187-Npro(KPP)/S17P; N61K] from 12 to 36 hpi, with 27% of the original IRF-3 level at 36 hpi. IRF-3 degradation in cells infected with these latter viruses was dependent on proteasomal activity as shown with the proteasome inhibitor MG-132 (Fig. S3). These data suggest that histidine at position 40 or both, proline at position 17 and lysine at position 61 are critical for Npro to mediate proteasomal degradation of IRF-3 in infected cells.

Stability of Npro of the KPP/93 strain and mutant viruses in cell culture

In a previous study, Npro of the END+ strain Alfort/187 carrying a single mutation at amino acid position 112 or 136, which are located in the TRASH domain was less stable than wild-type Npro in vitro (Seago et al., 2010). To determine whether the amino acid residues at positions 17, 40 and 61 were responsible for the stability of Npro, Npro of the vA187-1 strain, KPP/93 strain and different amino acid mutants of Npro of the KPP/93 virus were expressed in HEK293T cells and analysed for stability over time after treatment with the translation inhibitor cycloheximide (CHX) (Fig.5). vA187-1 Npro carrying a single mutation at position 136 [Npro(A187-1)/D136N] was mostly degraded after 12 hours in comparison with vA187-1 Npro. This was in accordance with the findings of a previous report by
Seago et al. (2010). KPP/93 Npro became undetectable within the first 4 h after CHX treatment. The KPP/93 Npro carrying the residues of the vA187-1 virus at the positions 17 and 61 [Npro(KPP)/S17P; N61K] was detected at 4 h after CHX treatment but became undetectable at 8 h. KPP/93 Npro carrying the histidine of vA187-1 at position 40 [Npro(KPP)/L40H] or the three residues of vA187-1 at positions 17, 40 and 61 [Npro(KPP)/S17P; L40H; N61K] were detected for 12 h after CHX treatment, similarly to vA187-1 Npro. These data demonstrate that the amino acids of the END+ vA187-1 at positions 40 or 17 and 61 enhance the stability of the KPP/93 Npro.

Interaction of IRF-3 with Npro of the KPP/93 virus and mutants thereof

A previous study demonstrated that IRF-3 was not degraded in porcine cells inoculated with the vA187-D136N virus which carried a mutation at position 136 of Npro in the TRASH domain, abolishing zinc binding. In addition, the results of a mammalian two-hybrid assay showed that vA187-D136N Npro did not interact with IRF-3, while vA187-1 Npro did (Ruggli et al., 2009). According to the results of the present study, histidine at position 40 or both, proline at position 17 and lysine at position 61 are required by Npro for the suppression of IFN-\(\alpha/\beta\) induction. Therefore, the importance of these amino acid residues of Npro for the interaction with IRF-3 was explored using the KPP/93 Npro backbone and a mammalian two-hybrid assay. Co-expression of the VP16 transactivator fused to IRF-3 and of the GAL4 DNA-binding domain fused to vA187-1 Npro resulted in luciferase expression from the reporter plasmid due to the interaction of IRF-3 and Npro (Fig. 6). As expected, vA187-1 Npro carrying the D136N mutation [Npro(A187-1)/D136N] did not interact with IRF-3, in accordance with previous findings (Ruggli et al., 2009). KPP/93 Npro did not interact with IRF-3 either, similarly to vA187-D136N Npro. The mutant KPP/93 Npro carrying a histidine at position 40 [Npro(KPP)/L40H] resulted in significantly higher luciferase activity than KPP/93 Npro; however, the activity was not as high as with vA187-1 Npro. The mutant KPP/93 Npro carrying the two residues of vA187-1 at positions 17 and 61 [Npro(KPP)/S17P; N61K], showed low luciferase activity, which was comparable to that of the KPP/93 Npro. Finally, the triple mutant KPP/93 Npro carrying the residues of vA187-1 at positions 17, 40 and 61
[N$^{\text{pro}}$(KPP)/S17P; L40H; N61K] resulted in significantly higher luciferase activity than N$^{\text{pro}}$(KPP)/L40H, comparable with the luciferase activity obtained with vA187-1 N$^{\text{pro}}$. Taken together, these data indicate that, besides an intact TRASH domain, the amino acid residue at position 40 of N$^{\text{pro}}$ is critical for the interaction of N$^{\text{pro}}$ with IRF-3, and that the amino acid residues at positions 17 and 61 act in synergy with the residue at position 40 to mediate the interaction of N$^{\text{pro}}$ with IRF-3.

Discussion

From 1993 to 1998, four END− CSFVs (KPP/93, RBR/93, NKRS/98 and NKS/98 strains) were isolated from diseased pigs in Thailand, while other CSFV strains isolated in nature were all END+ strains until now. The KPP/93 strain showed low pathogenicity in pigs. In previous studies, the suppression of IFN-α/β induction by N$^{\text{pro}}$ was related to pathogenicity in pigs (Mayer *et al*., 2004; Ruggli *et al*., 2009; Tamura *et al*., 2014), suggesting that inability of KPP/93 N$^{\text{pro}}$ to suppress IFN-α/β induction may contribute to the low pathogenicity of the KPP/93 strain in pigs. In the present study, we identified amino acid residues of N$^{\text{pro}}$ responsible for the suppression of IFN-α/β induction by N$^{\text{pro}}$. We found that either the amino acid residue at position 40 or the combination of the amino acid residues at positions 17 and 61 of N$^{\text{pro}}$ were responsible for the suppression of IFN-α/β induction. These three amino acid residues are located outside of the TRASH domain considering the crystal structure of N$^{\text{pro}}$ revealed by Gottipati *et al*., (2013), suggesting that besides the C-terminal half of N$^{\text{pro}}$, the N-terminal half of N$^{\text{pro}}$ is also important for the suppression of IFN-α/β induction.

We then explored the molecular mechanisms underlying the suppression of IFN-α/β induction mediated by these amino acid residues of N$^{\text{pro}}$. To this end, we analysed the kinetics of IRF-3 expression in porcine SK-L cells infected with chimeric viruses carrying N$^{\text{pro}}$ of the KPP/93 strain and mutants thereof in the vA187-1 backbone. No differences in the growth kinetics of CSFV vA187-1, vA187-N$^{\text{pro}}$(KPP), vA187-N$^{\text{pro}}$(KPP)/L40H and vA187-N$^{\text{pro}}$(KPP)/S17P; N61K were observed during a period of 120 hpi (data not shown). Nevertheless, IRF-3 was clearly down-regulated in cells infected with vA187-1, vA187-N$^{\text{pro}}$(KPP)/L40H and vA187-N$^{\text{pro}}$(KPP)/S17P; N61K, compared with cells
infected with vA187-Npro(KPP). To clarify the reasons for these differences, the stability of Npro was
examined. This was motivated by a recent study showing that Npro of the END+ strain Alfort/187
carrying a single mutation at amino acid position 112 or 136 located in the TRASH domain, was less
stable than wild-type Npro (Seago et al., 2010). Thus, we assessed whether the amino acid residues
at positions 17, 40 and 61 also influenced the stability of Npro. Npro(KPP)/L40H and Npro(KPP)/S17P;
N61K showed higher stability than the parental KPP/93 Npro indicating that the amino acid residues at
positions 17, 40 and 61 are involved in stabilising Npro. vA187-1 Npro with the D136N mutation
[Npro(A187-1)/D136N] showed reduced stability; however, the stability was higher than that of
Npro(KPP)/S17P; N61K conferring an END+ phenotype, while the vA187-1/D136N virus was END−.
These results suggest that while Npro(KPP)/S17P; N61K can still mediate IRF-3 degradation despite
slightly reduced stability, Npro(A187-1)/D136N has lost the capacity to mediate IRF-3 degradation due
to the mutation destroying the TRASH domain. In a previous study, Npro of the END+ vA187-1 strain
interacted with IRF-3 in cell culture as determined by a mammalian two-hybrid assay, and infection
with this virus promoted IRF-3 degradation. On the other hand, Npro of the END− vA187-1/D136N
virus did not interact with IRF-3, and this virus did not promote IRF-3 degradation (Ruggli et al.,
2009). In the present study, a single amino acid mutation at position 40 of Npro(KPP) was sufficient to
restore interaction of Npro with IRF-3, and two additional amino acid substitutions at positions 17 and
61 of Npro(KPP)/L40H further enhanced the interaction of Npro(KPP)/L40H with IRF-3. There was no
interaction observed between Npro(KPP)/S17P; N61K and IRF-3 using the mammalian two-hybrid
assay despite the END+ phenotype conferred by this mutant Npro, suggesting that further experiments
are required to assess the interaction of Npro with IRF-3 in more depth; in addition, the interaction of
Npro with other host factors needs also to be explored as suggested previously (Jefferson et al., 2014).
Our data suggest that the differences in Npro-mediated IRF-3 degradation in SK-L cells can be
attributed to the degree of Npro stability and to the strength of Npro interaction with IRF-3.

Our results revealed that the stability of Npro may influence the interaction of Npro with IRF-3 and
the subsequent down-regulation of IFN-α/β production. The amino acid residue at position 40 in the
N-terminal half of Npro does clearly contribute to the stability of Npro. A previous study of Npro of BVDV demonstrated that this histidine at position 40 forms an ion-binding site for protein interactions together with the amino acid residues at positions 117 and 127 (Zögg et al., 2013). Therefore, the formation of this ion-binding site may act to stabilise Npro. As described in Fig. 7, stable Npro(KPP)/L40H results in a large amount of functional Npro in cells, leading to efficient degradation of IRF-3 by the proteasome. In contrast, unstable Npro(KPP) results in insufficient functional Npro for IRF-3 degradation and for inhibition of IFN-α/β induction. Restoring the vA187-1 residues at positions 17 and 61 of Npro(KPP) did only slightly enhance the stability of KPP/93 Npro, resulting in a small amount of functional Npro in cells. This small amount of Npro was nevertheless sufficient to mediate degradation of IRF-3 and subsequent down-regulation of IFN-α/β production. Npro(A187-1)/D136N showed higher stability than Npro(KPP)/S17P; N61K although it was described to be defective in mediating IRF-3 degradation (Ruggli et al., 2009). This suggests that the lack of IRF-3 degradation by this TRASH domain mutant is indeed due to the lack of interaction with IRF-3 as described by Ruggli et al., (2009) rather than to Npro instability although contribution of the latter cannot be excluded.

In conclusion, the present study reveals that the amino acid residues at positions 17, 40, and 61 in the N-terminal half of Npro were contributed to the stability of Npro and to the interaction of Npro with IRF-3, leading to degradation of IRF-3 and subsequent down-regulation of IFN-α/β production. Thus, these data show that the N-terminal half and the C-terminal TRASH domain of Npro are both involved with specific characteristics in the counteraction of type I IFN induction through mediating IRF-3 degradation.

METHODS

Cells

The porcine kidney cell line SK-L (Sakoda & Fukusho, 1998) was propagated in Eagle’s minimum
essential medium (MEM) (Nissui, Tokyo, Japan) supplemented with 0.295% tryptose phosphate broth (TPB) (Becton Dickinson, San Jose, CA, USA), 10 mM N,N-bis-(2-hydroxyethyl)-2-aminoethanesulfonic acid (Sigma-Aldrich, St. Louis, MO, USA) and 10% horse serum (Invitrogen, Carlsbad, CA, USA). The SK6-MxLuc cell line carrying a Mx/Luc reporter gene (Ocaña-Macchi et al., 2009) was propagated in MEM supplemented with 0.295% TPB and 7% horse serum. The human embryonic kidney cell line HEK293T was maintained in Dulbecco's MEM (Life Technologies, Carlsbad, CA, USA) and 10% foetal calf serum (Cambrex, Grand Island, NY, USA). All cells were incubated at 37°C in the presence of 5% CO₂.

Viruses

The CSFV KPP/93, RBR/93, NKRS/98 and NKS/98 strains were isolated from pigs in Kamphaeng Phet province in 1993, in Ratchaburi province in 1993, in Nakhon Ratchasima province in 1998 and in Nakhon Sawan province in 1998, respectively. The KPP/93 strain was isolated from diseased pigs showing clinical symptoms of CSF *i.e.* conjunctivitis, clustering, staggering, joint swelling and hemorrhagic skin lesion with a mortality of only 10%. After the isolation from the field, the KPP/93 strain was cloned by limiting dilution and passaged 5 times in porcine cells before this study. There is no other information about RBR/93, NKRS/98 and NKS/98 strains. The moderately virulent END⁺ vA187-1 and the vA187-Npro(KPP) virus which was obtained by replacing the Npro gene in the vA187-1 backbone with the Npro gene of the KPP/93 strain, were derived from the full-length cDNA pA187-1 (Ruggli et al., 1996) and pA187-Npro(KPP), respectively. The vA187-Npro(KPP)-derived mutant viruses were rescued from mutant cDNA plasmids that were constructed using the QuikChange XL Site-Directed Mutagenesis Kit (Agilent Technologies, Santa Clara, CA, USA) and oligonucleotide primers containing the respective mutation, applying standard techniques as described previously (Tamura et al., 2012). All cDNA-derived viruses were rescued as described previously (Moser et al., 1999; Tamura et al., 2012). In brief, plasmid constructs were linearised at the SrfI site located at the end of the viral genomic cDNA sequence, and RNA was obtained by
run-off transcription using the MEGAscript T7 kit (Ambion, Huntingdon, UK). After DNase I treatment and purification on S-400 HR Sephadex columns (GE Healthcare, Buckinghamshire, UK), RNA was quantified using a spectrophotometer (Amersham Bioscience Co., Ltd. UK) and used to electroporate SK-L cells. The whole genomes of rescued viruses were verified by nucleotide sequencing to exclude any accidental mutation. Rescued viruses were stored at −80°C.

Sequencing

Full-length cDNA clones and *in vitro*-rescued viruses were completely sequenced as described previously (Tamura *et al.*, 2012). In brief, nucleotide sequencing of cDNA clones and PCR fragments of viral RNA was performed using the BigDye Terminator v3.1 Cycle Sequencing Kit (Life Technologies) and a 3500 Genetic Analyzer (Life Technologies). Sequencing data were analysed using GENETYX® Network version 12 (GENETYX, Tokyo, Japan).

Virus titration

Virus titres were determined by end-point dilution on SK-L cells and immunoperoxidase staining using the anti-NS3 monoclonal antibody (mAb) 46/1, as described previously (Sakoda *et al.*, 1998; Kameyama *et al.*, 2006). The titres were calculated using the formula of Reed and Muench (1938) and expressed in 50% tissue culture infective dose (TCID₅₀/ml).

SDS-PAGE and western blotting

SDS-PAGE and western blotting were performed as described previously (Tamura *et al.*, 2014). The concentration of SDS polyacrylamide gels was 15%. As primary antibodies, anti-porcine IRF-3 mAb 34/1 (Bauhofer *et al.*, 2007), anti-FLAG M2 mAb (Sigma-Aldrich) and anti-β actin antibody (Cosmo Bio, Tokyo, Japan) were used. Immobilon Western Detection Reagents (Millipore, Bedford, MA, USA) and the LumiVision PRO 400EX system (Aisin Seiki, Aichi, Japan) were used for the signal detection.
IFN bioassay

The bioactivity of porcine IFN-α/β was assessed as described previously (Tamura et al., 2014). In brief, supernatants of cells inoculated with viruses were inactivated using a UV crosslinker (ATTO, Tokyo, Japan) and added to SK6-MxLuc cells. Recombinant porcine IFN-α/β produced in 293T cells was used as a standard. The cell extracts were prepared with 100 µl of passive lysis buffer, and firefly luciferase activities were measured using the Luciferase Assay System (Promega, Madison, WI, USA) and a PowerScan4 microplate reader (DS Pharma Biomedical Co., Ltd., Osaka, Japan). The activities were analysed using Gen5 software (DS Pharma Biomedical Co., Ltd.). Results were recorded for three independent experiments and each experiment was performed in duplicate. Statistically significant differences were detected using Student’s t test.

Experimental infection of pigs

To assess the pathogenicity of the KPP/93 strain, three 4-week-old crossbred Landrace × Duroc × Yorkshire SPF pigs (Yamanaka Chikusan, Hokkaido, Japan) were intramuscularly injected with 10⁷.0 TCID₅₀ of the KPP/93 strain and observed for 14 days. From the three pigs kept for 14 days, blood was collected in tubes containing EDTA (Terumo, Tokyo, Japan) on days 0, 3, 5, 7, 9, 11 and 14 pi for virus titration. The pigs were euthanised with pentobarbital on day 14 pi, and tissues from tonsils, kidneys and mesenteric lymph nodes were collected aseptically. The collected samples were homogenised in MEM to obtain a 10% suspension for virus titration. Virus titres were expressed as TCID₅₀/ml (blood) or gram (tissue). Neutralisation titres against the KPP/93 strain of sera collected on days 14 pi were measured. This animal experiment was conducted in the BSL-3 facility of the Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan accredited by AAALAC International. The institutional animal care and use committee of the Graduate School of Veterinary Medicine authorized animal experiment of pigs (approval number: 12-0013). All experiments were performed according to the guidelines of this committee.
Time course analysis

The SK-L cells seeded in 6-well plates were inoculated with viruses at an MOI of 5.0 and incubated at 37°C in the presence of 5% CO₂. At 0, 12, 24, 36, 48, 60, 72, 84, 96, 108 and 120 hpi, the supernatants were collected for virus titration and IFN-α/β quantification. The cell lysates were prepared for the detection of the IRF-3 protein. The intensity of the specific band of IRF-3 was quantified using the image analysis software Image J (Schneider et al., 2012)

Stability test of N^{pro} in HEK293T cells

For the measurement of the stability of N^{pro}, HEK293T cells were seeded in 24-well plates at a density of 10⁵ cells per well. After 24 h, the cells were transfected with 1 µg of pCl-M-FLAG-N^{pro}-derived plasmids. FLAG-N^{pro} was expressed at 37°C for 24 h. After incubation, the expression was stopped by adding 200 ng of the protein synthesis inhibitor CHX (Sigma-Aldrich). Cell lysates were prepared with the passive lysis buffer at 0, 4, 8 and 12 h after CHX treatment. FLAG-N^{pro} was detected by western blotting.

Mammalian two-hybrid assay.

The mammalian two-hybrid assays were performed as described previously (Ruggli et al., 2009). In brief, 293T cells were transfected with pFN10A(ACT)-IRF3 expressing porcine IRF-3 fused to the VP16 transactivator and with pFN11A(BIND)-derived plasmids expressing a fusion of the GAL4 DNA-binding domain and N^{pro} protein of CSFVs. The empty vectors pACT and pBIND and the corresponding plasmids expressing MyoD and Id (Promega) served as controls. Cells were incubated for 24 h at 37°C in the presence of 5% CO₂ prior to extraction, and luciferase activity was measured as mentioned above. Results were recorded for three independent experiments, and each experiment was performed in duplicate. Statistically significant differences were calculated with the Student’s t test.
Acknowledgements

We thank Dr. Kay Choi (The University of Texas Medical Branch, Galveston, USA) for the protein data of Npro. We also thank N. Nagashima and Y. Fujimoto for excellent technical support and continuous assistance. The present work was partly supported by the Program for Leading Graduate Schools (F01) from Japan Society for the Promotion of Science (JSPS) and by the Swiss National Science Foundation grant # 3100A0-116608.

REFERENCES

Table 1. Virus recovery and neutralization titres from pigs inoculated with the KPP/93 strain.

<table>
<thead>
<tr>
<th>Virus</th>
<th>Pig No.</th>
<th>Blood (log TCID$_{50}$/ml) on day pi</th>
<th>Tissue (log TCID$_{50}$/g) on days 14 pi</th>
<th>Neutralization titre on days 14 pi</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPP/93</td>
<td>1</td>
<td>−*</td>
<td><1.8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>−</td>
<td>−</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>−</td>
<td>−</td>
<td>1</td>
</tr>
</tbody>
</table>

* −*: not isolated.
Porcine SK-L cells were inoculated at an MOI of 1.0 with the CSFV strains KPP/93, RBR/93, NKRS/98, NKS/98, the END− CSFV strain vGPE− and the END+ strain vGPE−/N136D. After 5 days of incubation at 37°C in the presence of 5% CO₂, the supernatants were collected for quantification of IFN-α/β bioactivity (a), and the cells were lysed for analysis of IRF-3 expression (b). (a) The IFN-α/β bioactivity was measured in duplicate using the SK6-MxLuc reporter cells. The data represent the mean from three independent experiments, and the error bars show the standard errors. The significance of the differences was calculated using Student’s t test. ‘∗’ indicates \(p < 0.05 \). (b) The cell extracts were prepared with passive lysis buffer and analysed by SDS-PAGE and Western blotting as described in materials and methods. IRF-3 was detected with the monoclonal antibody 34/1 against porcine IRF-3 shown with an arrow.

The N\(^{pro}\) amino acid sequences of selected END+ CSFV strains which suppress IFN-α/β induction (Alfort/187, Alfort/Tübingen, ALD, Brescia, C-strain, CAP, and Eystrup), and of selected END− strains that suppress IFN-α/β induction (KPP/93, NKS/98, ALD-END−, Ames-END− and GPE−) are aligned. The GenBank accession numbers are as follows: Alfort/187, X87939; Alfort/Tübingen, J04358; Eystrup, AF326963; Brescia, AF091661; C-strain, Z46258; CAP, X96550; ALD, D49532; GPE−, D49533. The N\(^{pro}\) sequences of the ALD-END− and Ames-END− strains were published previously (Ruggli et al., 2009). The amino acid numbering corresponds to the Alfort/187 sequence. The grey boxes highlight the amino acids unique to KPP/93 and NKS/98. The dotted boxes indicate the amino acids at position 112, 134, 136 and 138, located in the TRASH domain.

Production of IFN-α/β in supernatants of SK-L cells inoculated with vA187-1,
vA187-Npro(KPP) or mutant viruses

The swine SK-L cells were inoculated at an MOI of 1.0 with vA187-1, vA187-Npro(KPP) or 12 mutant viruses. The vA187-Npro(KPP) virus was generated by replacing the Npro gene in the END+ vA187-1 backbone with the Npro gene of the END− KPP/93 strain. Twelve mutant viruses were constructed by selected amino acid mutagenesis in Npro of the vA187-Npro(KPP) virus. SK-L cells infected with the different viruses were incubated at 37°C in the presence of 5% CO2 for 5 days. IFN-α/β bioactivity in the cell supernatants was measured in duplicate using the SK6-MxLuc reporter gene assay. The data represent the mean from three independent experiments, and the error bars show the standard errors. The significance of the differences was calculated using Student’s t test. ‘*’ indicates p < 0.05.

Fig. 4. Time course of IRF-3 expression in cells infected with parent and mutant CSFV

SK-L cells were mock infected or inoculated with the vA187-Npro(KPP), vA187-Npro(KPP)/L40H, vA187-Npro(KPP)/S17P; N61K and vA187-1 viruses. The cells were lysed at 0, 12, 24, 36, 48, 60, 72, 84, 96, 108 and 120 hpi. IRF-3 and β-actin were detected with the monoclonal antibody against porcine IRF-3 (34/1) and against β-actin, respectively.

Fig. 5. Stability of Npro and mutant Npro in HEK293T cells

HEK293T cells were transfected with pCl-FLAG-Npro-derived plasmids expressing the original or mutant Npro [Npro(A187-1), Npro(KPP), Npro(KPP)/L40H, Npro(KPP)/S17P; N61K, Npro(KPP)/S17P; L40H, N61K and Npro(A187-1)/D136N] tagged with a N-terminal FLAG epitope. Twenty-four hours after transfection, CHX was added to stop translation. The cells were extracted at 0, 4, 8 and 12 h after CHX treatment for the detection of FLAG-Npro by Western blot with the anti-FLAG M2 monoclonal antibody.

Fig. 6. Evaluation of the interaction of the Npro protein with IRF-3 by mammalian two-hybrid assay
HEK293T cells were co-transfected with pFN10A(ACT)-derived plasmids expressing IRF-3 fused to the VP16 transactivator and with pFN11A(BIND)-derived plasmids expressing different forms of Npro \text{[Npro(A187-1), Npro(KPP), Npro(KPP)/L40H, Npro(KPP)/S17P; N61K, Npro(KPP)/S17P; L40H, N61K and Npro(A187-1)/D136/N]} fused to the GAL4 DNA-binding domain. The empty vectors pACT and pBIND served as controls. After 24 h of incubation, the cells were lysed and the firefly luciferase activity was measured. The results are shown as relative luciferase activity compared with Npro(A187-1). The data represent the mean from three independent experiments, and the error bars show the standard errors. The significance of the differences was calculated using Student’s t test. ‘*’ indicates \(p < 0.05 \).

Fig. 7. Model of the molecular mechanisms of suppression of IFN-\(\alpha/\beta \) induction by Npro

In cells infected with vA187-Npro(KPP), Npro is rapidly degraded and double-stranded RNA triggers the activation of the IRF-3 phosphorylation pathway according to mechanisms described by Honda \textit{et al.} (2006), leading to IFN-\(\beta \) production. In cells infected with vA187-1 or vA187-Npro(KPP)/L40H, Npro is stable, which results in a large amount of functional Npro leading to efficient IRF-3 degradation by the proteasome to suppress IFN-\(\beta \) production. In cells infected with vA187-Npro(KPP)/S17P; N61K, despite limited stability of Npro, there is sufficient functional Npro to degrade IRF-3 resulting in suppression of IFN-\(\beta \) production.
Figure 1, Mine et al.

(a) IFN-α/β (U)

(b) IRF-3

VGPE+/N136D, VGPE−, KPP/93, RBR/93, NKS/98, NKRS/98
Alfort/187	1 MELNHFDLLYKTNQKPPMGVEEPVYDATGKPLFGDPSEVHPQSTLKLPHDGSRGNIKTTL 60
Alfort/Tübingen	1 ... S ... V ... TA.R ... N ... R ... D.R ... 60
ALD	1 ... R ... N ... R ... 60
Brescia	1 ... V ... R ... N ... 60
C-strain	1 ... R ... N ... 60
CAP	1 ... R ... N ... 60
Eystrup	1 ... R ... N ... 60
KPP/93	1 ... Y ... F ... S ... R ... L ... 60
NKS/98	1 ... Y ... F ... S ... R ... L ... 60
ALD-END	1 ... R ... N ... 60
Ames-END	1 ... R ... N ... 60
GPE	1 ... R ... N ... 60

Figure 2, Mine et al.
Figure 3, Mine et al.

Npro(KPP)/Y5H; F8L; S17P; L40H; N61K; D113E; S151T

Npro(KPP)/D113E; S151T

Npro(KPP)/L40H

Npro(KPP)/Y5H; F8L; S17P; N61K

Npro(KPP)/Y5H; F8L; S17P

Npro(KPP)/N61K

Npro(KPP)/Y5H; N61K

Npro(KPP)/F8L; N61K

Npro(KPP)/S17P; N61K

Npro(KPP)/Y5H; F8L; N61K

Npro(KPP)/Y5H; S17P; N61K

Npro(KPP)/F8L; S17P; N61K
Figure 4, Mine et al.
\[N_{\text{pro}}(A187-1) \]

\[N_{\text{pro}}(\text{KPP}) \]

\[N_{\text{pro}}(\text{KPP})/L40H \]

\[N_{\text{pro}}(\text{KPP})/S17P; \text{N61K} \]

\[N_{\text{pro}}(\text{KPP})/S17P; \text{L40H; N61K} \]

\[N_{\text{pro}}(A187-1)/D136N \]

Figure 5, Mine et al.
Figure 6, Mine et al.
IFN-β gene

Npro(KPP)/S17P; N61K Npro(KPP)
Npro(KPP)/L40H
Npro(A187-1)

Figure 7, Mine et al.