<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Study on biomacromolecules concerning biofuel and illness by X-ray crystallography</td>
</tr>
<tr>
<td>Author(s)</td>
<td>葉 宇鑫</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2016-06-30</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/62469</td>
</tr>
<tr>
<td>Type</td>
<td>theses (doctoral - abstract of entire text)</td>
</tr>
<tr>
<td>Note</td>
<td>この博士論文全文の閲覧方法については、以下のサイトをご参照ください。【担当：理学部図書室】</td>
</tr>
</tbody>
</table>

この博士論文全文の閲覧方法については、以下のサイトをご参照ください。【担当：理学部図書室】

https://www.lib.hokudai.ac.jp/dissertations/copy-guides/
Biomacromolecules, including nucleic acids (polynucleotides), proteins (polypeptides), and
glycans (polysaccharides), have always been the central topics of biochemical literature and at the
very core interest of scientist for their important roles for human life. To better understand the
active mechanism of these biomacromolecules, their detail structure information at the atomic
level are essential. X-ray crystallography deserves much of the credit as a major method to solve
the atomic structure of biomacromolecules. Its application of analyze biomacromolecules has
ushered in a new discipline.

In this study, we focus on the biomacromolecules concerning two hotspot issues, renewable biofuels and live health, and try to use X-ray crystallography to reveal the related mechanisms of molecular biology.

I. Study on phosphorylases from GH130 concerning renewable bioenergy

In recent decades, how to generate the sustainable biofuels energy by effectively utilizing
renewable biomass has become the very core interest of global world. Mannan, as an important
component of biomass, is an abundant resource for the production of biofuel. The pro-treatment
of biomass is an essential process for producing biofuels. In this step, multiple mannan-degrading
enzymes efficiently conduct the bioconversion of original biomass into monomeric sugars and
subsequent products. Glycoside hydrolase family 130 (GH130), containing hydrolases and
phosphorylases that catalyze the hydrolysis and phosphorolysis of β-mannosidic linkages at the
non-reducing end of substrates, was identified recently. *Ruminococcus albus* 4-O-β-D-mannosyl-D-glucose phosphorylase (*RaMP1*) and β-(1-4)-mannooligosaccharide phosphorylase (*RaMP2*) are classified into GH130 subfamily1 (MGP-Type) and subfamily2 (MOP-Type), respectively, with significant different substrate specificity. *RaMP1* catalyzed the phosphorolytic and synthetic reactions of Man-Glc with high specificity, while *RaMP2* had higher phosphorolytic activity toward β-1,4-mannooligosaccharides longer than β-1,4-mannobiose. So far, the details of substrate recognition mechanisms of them are still unclear.

In this study, we determined the crystal structure of *RaMP1*, *RaMP2*, and their complex with
substrates. Both enzymes are oligomer and the catalytic pockets of them are generated by two
adjacent molecules of the homotrimer. The structural comparison and the calorimetry experiments
of *RaMP1* and *RaMP2* indicate that the oligomeric structure of *RaMP1* should be more stable than
that of *RaMP2*. In addition, the structures provided evidence to illuminate the substrate
recognition mechanisms of *RaMP1* and *RaMP2*. The highly conserved five-bladed β-propeller
fold core structure and the interactions with the Man residue at the −1 subsite and phosphate in
RaMP1 and RaMP2 suggest that these two enzymes share a recognition mechanism toward the Man residue at the non-reducing end. In contrast to the −1 subsite, recognition at the +1 subsites of these two enzymes is very different. RaMP1 shows a compact +1 subsite with a narrow substrate entrance pathway, while the +1 subsite of RaMP2 is spacious and has a wide-open entrance. Three loops are important in substrate recognition in the +1 subsite of two enzymes. Loop2 plays a role in restricting the derivatives at the C6 position of +1 substrate residue by precise interaction with substrate in RaMP2 but not in RaMP1. The conformational differences of Loop1 and Loop3 (Loop3 is contributed from the adjacent molecule) in RaMP1 and RaMP2 indicate that RaMP1 has a structural restriction for substrate chain length, but RaMP2 does not. Deletion of Loop1 from RaMP1 did not significantly reduce the activity, and it allowed the accommodation of methyl β-D-glucoside as an acceptor, while deletion of Loop3 would almost completely abolish the phosphorolytic activity in RaMP1. Moreover, we found that RaMP1 forms a hydrogen-bond network in the catalytic center through the His245 of the Loop3 linking adjacent molecules. The substitution of His245 with Ala in RaMP1 resulted in losing most of activity and lower affinities to the substrate. This result suggests that the hydrogen-bond network might be important for binding substrate.

II. Study on translation initiation factors involved in illness

Translation initiation is the most complicated process for mRNA translation on the ribosome in all cells. Deregulation of translation initiation results in abnormal gene expression, and thus leads to uncontrolled cell growth potentially resulting in several illnesses, such as cancer and leukoencephalopathy. In eukaryotic cells, eukaryotic initiation factors 2 (eIF2), a trimeric factor containing a typical G protein subunit, tRNA-binding subunit, and β subunit, plays an essential role in translation initiation. The eIF2/GTP/Met-tRNAMet ternary complex binds the eIF1, eIF3 and eIF5 to form a multifactor complex for high accuracy recognizing the start codon in eukaryotic initiation. After start codon recognition, GTPase activity in eIF2 is triggered and the GTP bound to eIF2 is converted to GDP and form eIF2/GDP complex. This eIF2/GDP complex binds a pentameric factor eIF2B (comprising α, β, γ, δ and ε subunits) for re-activation by guanine nucleotide exchange. Therefore, eIF2 binds different partners, eIF5 and eIF2B, during translation initiation. Both eIF5-CTD and eIF2Be-CTD possess two conserved eIF2β subunit binding site, AA-box, while of eIF2β binds eIF5-CTD/eIF2Be-CTD through three Lysine-rich motifs (K-box) in N-terminal domain. Structural comparison showed that eIF5-CTD and eIF2Be-CTD have very similar secondary structures and topologies but with different orientations in tertiary structure. It is suggested that eIF5-CTD and eIF2Be-CTD may bind to the same binding site of eIF2β-NTD in different manners. However, it still remains unclear how eIF2β binds to different target proteins eIF5 and eIF2Be with the same binding site. In this part, we tried to address this problem by solving the crystal structures of (eIF2β-NTD)-(eIF2Be-CTD) complex and (eIF2β-NTD)-(eIF5-CTD) complex. The attempts of crystallization of two complexes from Candida albicans were performed. Only crystals contain eIF5-CTD was obtained. Interestingly, the AA-box2 motif was firstly observed in helix form by the structural analysis of (Caef2β-NTD)-(Caef2Be-CTD) complex. Considering the disorder probability result and previous SAXS data, we proposed that the structural conformation change might be occurred in the AA box2 of eIF5CTD coupled with the interaction with eIF2β-NTD, which transfer from a flexible form to a rigid helix form.