神田 真聡

配架番号：2246

Masatoshi_Kanda.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
学位論文

Invariant natural killer T 細胞における interferon-gamma 産生の分子機序の解明

(Molecular mechanism of interferon-gamma production in invariant natural killer T cells)

2016 年 6 月

北海道大学

神田 真聡

Masatoshi Kanda
Invariant natural killer T 細胞における interferon-gamma 産生の分子機序の解明
(Molecular mechanism of interferon-gamma production in invariant natural killer T cells)

2016年6月

北海道大学

神田 真聡

Masatoshi Kanda
発表論文目録及び学会発表目録

1. 緒言
1-1 invariant NKT 細胞
1-2 iNKT 細胞と疾患
1-3 Basic helix-loop-helix, family member e40 (Bhlhe40)
1-4 仮説および本研究の目的

2. 略語表

3. 実験方法
3-1 細胞およびマウス
3-2 定量 real-time Polymerase Chain Reaction (PCR)
3-3 フローサイトメトリとソーティング
3-4 細胞増殖アッセイと Enzyme-linked immuno-sorbent assay (ELISA)
3-5 in vivo における α-GC 刺激とサイトカイン測定
3-6 メラノーマ転移モデル
3-6-1 肺転移モデル
3-6-2 肝転移モデル
3-7 ルシフェラーゼレポーターアッセイ
3-8 Bhlhe40 に対する Short hairpin RNA によるノックダウン
3-9 共免疫沈降とウエスタンブロッティング
3-10 Chromatin immunoprecipitation (ChIP)
3-11 骨髄由来樹状細胞 (bone marrow dendritic cells (BMDC)) の in vitro 分化誘導
3-12 T-bet 陽性あるいは陰性 iNKT 細胞の in vitro 培養
3-13 統計処理

4. 実験結果
4-1 iNKT 細胞における IFN-γ 産生に関わる候補因子の抽出
4-2 iNKT 細胞における Bhlhe40 mRNA 発現
4-3 Bhlhe40 マウスでは iNKT 細胞は正常に分化・成熟する
4-4 Bhlhe40 は iNKT 細胞の IFN-γ 産生を制御する
4-5 Bhlhe40 欠損は iNKT 細胞の抗腫瘍活性を低下させる
4-6 Bhlhe40 自身は Ifng プロモーター活性を増強しない ... 54
4-7 Bhlhe40 は T-bet の存在下において IFN-γ 産生に関与する 58
4-8 Bhlhe40 は IL-12 刺激による Ifng 産生を制御する .. 64
4-9 Bhlhe40 は iNKT 細胞では、Ifng 領域のヒストン H3-K9 アセチル化が低下する . 69

5. 考察 .. 89
6. 総括及び結論 .. 92
7. 謝辞 .. 93
8. 引用文献 .. 94
発表論文目録及び学会発表目録

本研究の一部は以下の論文に発表した。
Masatoshi Kanda, Hiroyuki Yamanaka, Satoshi Kojo, Yuu Usui, Hiroaki Honda, Yusuke Sotomaru, Michishige Harada, Masaru Taniguchi, Nao Suzuki, Tatsuya Atsumi, Haruka Wada, Muhammad Baghdadi, Ken-ichiro Seino

Transcriptional regulator Bhlhe40 works as a cofactor of T-bet in the regulation of IFN-γ production in iNKT cell

Proc. Natl. Acad. Sci. USA in press

本研究の一部は以下の学会に発表した。

関連する学会発表なし
1. 緒言

1-1 invariant natural killer T (iNKT)細胞

高等生物に存在する免疫担当細胞は、大きく分けて自然免疫担当細胞と獲得免疫担当細胞に分類される。前者はマクロファージ・樹状細胞・好中球・natural killer 細胞などが主にその役割を担っている。自然免疫は初期免疫応答において極めて重要な役割を担っており、外来抗原を認識する pattern-recognition-receptor と呼ばれる受容体を介して活性化される。活性化された自然免疫担当細胞は、サイトカインなどの放出を介してそのシグナルを獲得免疫担当細胞に伝え、抗原特異的な免疫応答を惹起するの助ける。

natural killer T (NKT)細胞は、T 細胞マーカーおよびnatural killer 細胞マーカーを発現するリンパ球なので糖脂質や脂質を認識して活性化される。NKT 細胞のうち CD1d 拘束性を持つもので、特定の T cell receptor (TCR)を持つものを invariant NKT (iNKT)細胞という。iNKT 細胞は NKT 細胞のなかで、最もよく研究されている細胞群である。特定の TCR とは、マウスでは Vα14–Jα18/Vβ8 あるいは Vβ7 または Vβ2 とされ、ヒトでは Vα24/Vβ11 を持つものとされる。

iNKT 細胞は、樹状細胞などの抗原提示細胞の CD1d 分子上に提示された糖脂質の刺激を受けて活性化され、すみやかにさまざまなサイトカインを産生する特徴をもつ。これらのサイトカインには interferon-gamma (IFN-γ), interleukin (IL)-2, IL-4, IL-13, IL-17, IL-21, IL-22, tumor necrosis factor-alpha (TNF-α) などが含まれており、iNKT 細胞は NK1.1 および CD44 の発現パターンから Stage 1 (NK1.1hi CD44hi), Stage 2 (NK1.1hi CD44hi), Stage 3 (NK1.1hi CD44hi) に分けられる。また、iNKT 細胞は、その発現するサイトカインの産生のパターンから、IFN-γ 産生を特徴とする Th1-like iNKT 細胞 (iNKT1), IL-13 産生を特徴とする Th2-like iNKT 細胞 (iNKT2), IL-17A・IL-22 産生を特徴とする Th17-like iNKT 細胞 (iNKT17) などにサブセット分類される。

過去の検討から iNKT 細胞はさまざまな働きを持つことが示されているが、中でも iNKT 細胞によってすみやかでかつ大量に産生される IFN-γ は、iNKT 細胞の特徴的な性質とされ、腫瘍排除や感染応答において重要な働きをしているとされる。しかしながら、iNKT 細胞がどのようにしてすみやかにかつ大量の IFN-γ を産生するのかに
ついての分子機構についてはまだ十分に明らかになっていない。

1-2 NKT細胞と疾患

NKT細胞のマウスにおいては血液中の0.2-0.5%程度、ヒト末梢血においては、0.01-0.5%程度と、血球における占める割合は少ないが、生体においては重要な働きをしており、NKT細胞の異常は種々の疾患に関与しているとされている。

NKT細胞の異常と関連のある疾患としては、ライム病や結核などの感染症、悪性腫瘍、乾癬・アトピー性皮膚炎などの皮膚疾患、移植片対宿主病や拒絶反応、動脈硬化、喘息、ひいてはI型糖尿病・全身性エリテマトーデスなどの自己免疫疾患にも関与している。

さらに、これらの疾患に対して、NKT細胞による細胞治療や、alpha-galactosylceramide (α-GC)などの抗原刺激によるNKT細胞の賦活化による疾患治療が試みられている。

1-3 Basic helix-loop-helix, family member e40 (Bhlhe40)

本研究では後述する実験方法・結果により、Basic helix-loop-helix, family member e40 (Bhlhe40)が、NKT細胞によるIFN-γ産生の分子機構に関わる候補因子である可能性を見出した。

Bhlhe40はbasic helix-loop-helix protein familyに分類される転写因子の一つで、元来時計遺伝子の一つとして、日内変動をきたす分子として注目された歴史をもつ。転写因子としてはclass B E-box配列に結合し、転写抑制として働くことがよく知られていた。しかしながら、最近になって、直接転写制御領域に結合して働くだけでなく、他の転写因子の補因子として働くという報告や、ときには転写の活性化を起こすなどさまざまな働きをもつことが報告されている。

Bhlhe40はこれらの複雑な働きを介して、細胞増殖やアポトーシス、免疫応答を制御しているとされ、興味深い分子である。また、Bhlhe40マウスはT細胞・B細胞の異常活性化によるリンパ増殖症を引き起こし、自己抗体の産生および、糸球体に免疫複合体沈着をおこし、自己免疫疾患を発症するとされている。
仮説および本研究の目的

上記から、iNKT 細胞のもつ迅速かつ大量の IFN-γ を産生はさまざまな疾患病態の根柢にあるにもかかわらず、その分子メカニズムが明らかにされていない。

そこで、本研究では、iNKT 細胞の IFN-γ 産生の分子機序を明らかにすることを目的とした。
2. 略語表

本文中のおよび図中で使用した略語は以下の通りである。

<table>
<thead>
<tr>
<th>略語</th>
<th>含義</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-AAD</td>
<td>7-amino-actinomycin D</td>
</tr>
<tr>
<td>Ab</td>
<td>Antibody</td>
</tr>
<tr>
<td>BMDC</td>
<td>bone marrow dendritic cell</td>
</tr>
<tr>
<td>Bhlhe40</td>
<td>basic helix-loop-helix，family member e40</td>
</tr>
<tr>
<td>Bhlhe40 shRNA</td>
<td>knockdown-resistant Bhlhe40</td>
</tr>
<tr>
<td>CNS</td>
<td>conserved non-coding sequence</td>
</tr>
<tr>
<td>ChIP</td>
<td>chromatin immunoprecipitation</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DP</td>
<td>double positive</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGTA</td>
<td>ethylene glycol tetraacetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immuno-sorbent assay</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>HEPES</td>
<td>2-[4- (2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid</td>
</tr>
<tr>
<td>Hprt</td>
<td>hypoxanthine-guanine phosphoribosyl transferase</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>interferon-gamma</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>KD</td>
<td>knock-down</td>
</tr>
<tr>
<td>MEF</td>
<td>mouse embryonic fibroblast</td>
</tr>
<tr>
<td>NF-κB</td>
<td>nuclear factor-kappa B kinase</td>
</tr>
<tr>
<td>NFAT</td>
<td>nuclear factor of activated T cells</td>
</tr>
<tr>
<td>NKT</td>
<td>natural killer T</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PEI</td>
<td>polyethyleneimine</td>
</tr>
<tr>
<td>PMA</td>
<td>phorbol 12-myristate 13-acetate 4-O-methyl ether</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SLAMF1</td>
<td>signaling lymphocytic activation molecule family member 1</td>
</tr>
<tr>
<td>T-bet</td>
<td>T-box transcription factor Tbx21</td>
</tr>
<tr>
<td>TNF-α</td>
<td>tumor necrosis factor-alpha</td>
</tr>
<tr>
<td>Th1</td>
<td>Type 1 helper T</td>
</tr>
<tr>
<td>Tris</td>
<td>tris (hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>WCL</td>
<td>whole cell lysate</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary deoxyribo nucleic acid</td>
</tr>
<tr>
<td>iNKT</td>
<td>invariant NKT</td>
</tr>
<tr>
<td>shRNA</td>
<td>short hairpin ribonucleic acid</td>
</tr>
<tr>
<td>α-GC</td>
<td>alpha-galactosylceramide</td>
</tr>
</tbody>
</table>
実験方法

3-1 細胞およびマウス

本研究では Lenti-X™ 293T (Clontech Laboratory)，B16 マウスメラノーマ細胞株（ATCC），EL-4 マウス T 細胞リンパ腫細胞株（理研バイオリソースセンター）を購入して使用した。いずれの細胞も Dulbecco's Modified Eagle's Medium (和光純薬) に，10%牛胎児血清 (fetal bovine serum; FBS) （ニチレイバイオサイエンス），100 IU/ml ペニシリン・ストレプトマイシン（Gibco），0.1 mM 非必須アミノ酸（Gibco）を添加したもので glossy）を添加したもので，37°C，5% CO₂ の条件下で培養した。

野生型（C57BL/6）マウスは日本 SLC より購入して用いた。Bhlhe40⁻/⁻マウスおよび，Jα18⁻/⁻マウスは既報告に従って作製されたものを使用した。NKTクローンマウスは NKT細胞の核移植により作製された NKT-nt-ES 細胞を自己交配して作製した。マウスは北海道大学遺伝子病制御研究所の室温の管理されたルームで飼育した。実験には 6-8 週齢のマウスを使用した。

3-2 定量 real-time polymerase chain reaction (PCR)

細胞からの RNA の抽出は RNeasy® Plus Mini Kit (QIAGEN) を用いて，標準プロトコールによって行った。cDNA の合成は SuperScript® III (Invitrogen) や RivaTra Ace® (TOYOBO) を用いて標準プロトコールで可能であった。cDNA 合成産物は，Fast SYBR® green PCR Master Mix (Applied Biosystems) を用いて，StepOne™ Real-time PCR system (Applied Biosystems) による real-time PCR を行った。

プライマーは QuantiTect primer assays (QIAGEN) を用いて行い，ターゲット配列は，Iifng，Il4，Il17a，Bhlhe40，Tbet および hypoxanthine-guanine phosphoribosyl transferase (Hprt) とした。データは内部コントロールとして Hprt を用い，比較 Ct 法によって解析した。

3-3 フローサイトメトリーとソーティング

解析に用いるサンプルは，Fcγ 受容体に対する非特異的な結合を回避するために，Fc 受容体ブロッカー（2.4G2）による前処置を行った。その後，標準プロトコールを用いて，蛍光色素で標識された標的抗体あるいはアイソタイプを一致させたコントロール抗体と反応させた。サンプル解析は最終的に 2% FBS と 0.05% アジ化ナトリウムを
含む phosphate buffered saline (PBS)に混ぜて行った。死細胞除去には 7-AAD (BD Bioscience)を用いた。

サイトカインの細胞内染色では、細胞表面タンパクを蛻光色素で標識された標的抗体あるいはアイソタイプを一致させたコントロール抗体と反応させた後、Cytofix/Cytoperm™ kit (BD Bioscience)の標準プロトコールを用いて、細胞の固定および透過処理を行った。その後に、細胞内タンパクを蛻光色素で標識された抗体あるいはアイソタイプを一致させたコントロール抗体と反応させた。

蛻光抗体で標識したサンプルは、フローサイトメトリーは FACS Calibur™あるいは、FACS Canto™ II (BD Bioscience)を用いて行い、セルソーティングは FACS Aria™ II (BD Bioscience)を用いて行い、データ解析には FlowJo™ software (LLC) を用いた。

ソーティングでは、ソーティング後サンプルの純度は 98%以上であることを確認した。

a-GC-CD1d dimer は、CD1d 融合タンパク (dimer XI, BD Bioscience), a-GC (KRN7000, Kirin Pharma Co), phycoerythrin 標識ラット anti-mouse IgG1 Ab (BD Biosciences)を用いて既報告の方法を用いて自家調整した28. その他の蛻光標識に用いた抗体を表1, 表2に示す。
<table>
<thead>
<tr>
<th>Antibody name</th>
<th>Target protein</th>
<th>Clone name</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-TCRβ Ab</td>
<td>Tcrβ</td>
<td>H57-597</td>
<td>Biolegend</td>
</tr>
<tr>
<td>α-T-bet Ab</td>
<td>T-bet</td>
<td>4B10</td>
<td>Biolegend</td>
</tr>
<tr>
<td>α-NK1.1 Ab</td>
<td>Nk1.1</td>
<td>PK136</td>
<td>eBioscience</td>
</tr>
<tr>
<td>α-CD4 Ab</td>
<td>Cd4</td>
<td>RM4-5</td>
<td>Biolegend</td>
</tr>
<tr>
<td>α-CD19 Ab</td>
<td>Cd19</td>
<td>MB19-9</td>
<td>eBioscience</td>
</tr>
<tr>
<td>α-CD44 Ab</td>
<td>Cd44</td>
<td>IM7</td>
<td>Biolegend</td>
</tr>
<tr>
<td>α-CD150 Ab</td>
<td>Cd150</td>
<td>TC15-12F12.2</td>
<td>Biolegend</td>
</tr>
<tr>
<td>α-Ly49A Ab</td>
<td>Ly49a</td>
<td>YE1/48.10.6</td>
<td>Biolegend</td>
</tr>
<tr>
<td>α-Ly49C Ab</td>
<td>Ly49c</td>
<td>SW5E6</td>
<td>BD Bioscience</td>
</tr>
<tr>
<td>α-Ly49G2 Ab</td>
<td>Ly49g2</td>
<td>4D11</td>
<td>eBioscience</td>
</tr>
<tr>
<td>α-IL-4 Ab</td>
<td>IL-4</td>
<td>BVD6-24G2</td>
<td>BD Bioscience</td>
</tr>
<tr>
<td>α-IL-17RB Ab</td>
<td>Il17rb</td>
<td>9B10</td>
<td>Biolegend</td>
</tr>
<tr>
<td>α-IFN-γ Ab</td>
<td>IFN-γ</td>
<td>XMG1.2</td>
<td>Biolegend</td>
</tr>
</tbody>
</table>
表 2. アイソタイプコントロール抗体リスト

<table>
<thead>
<tr>
<th>Antibody name</th>
<th>Isotype</th>
<th>Clone name</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamster IgG isotype control</td>
<td>Armenian hamster IgG</td>
<td>HTK888</td>
<td>Biolegened</td>
</tr>
<tr>
<td>Mouse IgG1 κ isotype control</td>
<td>Mouse IgG1 κ</td>
<td>MOPC-21</td>
<td>Biolegend</td>
</tr>
<tr>
<td>Mouse IgG2a κ isotype control</td>
<td>Mouse IgG2a κ</td>
<td>MOPC-173</td>
<td>Biolegend</td>
</tr>
<tr>
<td>Rat IgG2a κ isotype control</td>
<td>Rat IgG2a κ</td>
<td>RTK2758</td>
<td>Biolegend</td>
</tr>
<tr>
<td>Rat IgG2b κ isotype control</td>
<td>Rat IgG2b κ</td>
<td>RTK4530</td>
<td>Biolegend</td>
</tr>
<tr>
<td>Rat IgG1 κ isotype control</td>
<td>Rat IgG1 κ</td>
<td>RTK2071</td>
<td>Biolegend</td>
</tr>
</tbody>
</table>
3-4 細胞増殖アッセイと Enzyme-linked immuno-sorbent assay (ELISA)

野生型または Bhlhe40^{−/−}マウスの脾臓から iNKT 細胞 (TCRβ^{+} CD1d- α-GC dimer^{+}) および CD4^{+} T 細胞を FACS Aria™II を用いて分取し、96 ウェル孔底プレートに 1 ウェルあたり 2×10^{5} 個を散布した。そこにさらに 2×10^{5} 個/ウェルの割合で、Jα18^{−/−}マウスの脾臓細胞に 35Gy の放射線照射したものを作成した。培地は 10% FBS 含有 RPMI-1640 (和光純薬)に 0.1 mM 非必須アミノ酸、1 mM ビリルビン酸、10 mM 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES) (Gibco)、100 IU/ml ペニシリン・ストレプトマイシン、2 mM L-グルタミン、100 μM β-メルカプトエタノール (Gibco) を添加したものを使った。各ウェルに α-GC を 0、0.1、1、10、100 ng/ml の濃度で添加し、37℃、5% CO_{2} の条件下において培養した。40時間後、培地に ^3 H-thymidine (1 μCi/well) を加え、さらに 8 時間 37℃、5% CO_{2} の条件下において培養した。^3 H-thymidine によって標識された細胞を cell harvester (INOTECH) を用いて、Filtermat A (PerkinElmer) に吸着させたのち、MicroBeta™2 (PerkinElmer) を用いて DNA への ^3 H-thymidine の取り込みを測定した。同様の条件下における培養上清を回収し、IFN-γ と IL-4 の産生を ELISA で測定した (Mouse IFN-γ DuoSet® R&D (DY485), Mouse IL-4 DuoSet® R&D (DY404))。

3-5 In vivo における α-GC 刺激とサイトカイン測定

8 週齢の野生型および Bhlhe40^{−/−}マウス 各 3 匹に 2 μg の α-GC を尾静脈注射し、0, 6, 12, 24, 36, 48 時間後の血清を採取した。採取した血清中の IFN-γ と IL-4 の濃度を CBA kit (BD Biosciences) で評価した。フローサイトメトリは FACS Canto™II を使用し、FCAP array™ v3.0 (BD Biosciences) を用いて解析を行った。

Add-back 実験においては、NKT クローンマウスおよび Bhlhe40^{−/−}×NKT クローンマウスを用いた。それぞれのマウスの脾臓から、2×10^{5} 個の iNKT 細胞 (TCRβ^{+} CD1d- α-GC dimer^{+}) を FACS Aria™II を用いて分取し、8 週齢の Jα18^{−/−}マウスに尾静脈投与した。iNKT 細胞投与 1 時間後に、2 μg の α-GC を尾静脈投与した。iNKT 細胞投与を 0 時間とした、0、1、6、12、24、36、48 時間後の血清を採取した。採取した血清中の IFN-γ と IL-4 の濃度を上記と同様の方法で評価した。

サイトカインの細胞内染色は、8 週齢の野生型および Bhlhe40^{−/−}マウス 各 3 匹に 1.5 μg の α-GC を尾静脈注射し、1 時間後に肝臓を摘出し、TCRβ^{+} CD1d-α-GC dimer^{+} 細胞における、IFN-γ と IL-4 の発現を FACS Canto™II で測定し、FlowJo™ software で解析した。

3-6 メラノーマ転移モデル

3-6-1 肺転移モデル

C57BL/6 マウス由来メラノーマ細胞株である B16 (5×10^{5} 個)を 6-8 週齢の野生型お
よび Bhlhe40−マウス各 3 匹に尾静脈から接種し、続けて 4μg の α-GC あるいは同体積の PBS を腹腔内投与した。接種 7 日目に屠殺し、肺を摘出し、肺表面に顕微鏡下に認められるメラノーマ転移結節数を測定した。

3-6-2 肝転移モデル
B16 (1×10⁶ 個)を 6-8 週齢の野生型および Ja18−マウス各 3 匹の脾臓に接種した。このマウスに NKT クローンマウスおよび Bhlhe40−×NKT クローンマウスの脾臓から FACS Aria™ II を用いて分取した 1×10⁶ の iNKT 細胞 (TCRβ+CD1d-α-GC dimer+)を尾静脈投与し、続いて 2μg の α-GC あるいは同体積の PBS を腹腔内投与した。接種 10 日目に屠殺し、肝を摘出し、肉眼所見を写真に記録し、肝表面におけるメラノーマ細胞の占める割合を解析した。

3-7 ルシフェラーゼレポーターアッセイ
Lenti-X™ 293T 細胞は polyethyleneimine (PEI)により、1μg のベクターをトランスフェクションした。一方、EL-4 とマウス胎児線維芽細胞 mouse embryonic fibroblast (MEF) は、10μg のベクターを Neon® system (Invitrogen)のエレクトロポレーションによりトランスフェクションした。ルシフェラーゼレポータープラスミドには表 3 のものを用いた。

T-bet 発现ベクターは 0.01 μg あるいは 0.1 μg で行い、トランスフェクションのコントロールとして 10 μg の pSV-β galactosidase control vector を同時にトランスフェクションした。pGL4.32-luc2P/NFκB-RE/Hygro をトランスフェクションした MEF にはトランスフェクション後 0 時間あるいは 16 時間後に phorbol 12-myristate 13-acetate 4-O-methyl ether (PMA) (Sigma) 刺激を行い、pGL4.30-luc2P/NFAT-RE/Hygro をトランスフェクションした EL-4 には、トランスフェクション直後に 500 nM の ionomycin で刺激を行った。ルシフェラーゼ活性は Luciferase Assay System (Promega)用いて、トランスフェクション後 24 時間あるいは 48 時間において、POWERSCAN4 (DS ファーマ)で測定した。

なお、遺伝子組換え操作に関しては、「北海道大学遺伝子組換え実験等安全管理規定」を遵守し行った。
表 3. ルシフェラーゼアッセイベクターリスト

<table>
<thead>
<tr>
<th>Vector name</th>
<th>Provider / Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>pBS-luc-IFNγ</td>
<td>Dr. Kenneth M. Murphy, Washington University<sup>29,30</sup></td>
</tr>
<tr>
<td>pGL4.32-luc2P/NFκB-RE/Hygro</td>
<td>Promega (E8491)</td>
</tr>
<tr>
<td>pGL4.30-luc2P/NFAT-RE/Hygro</td>
<td>Promega (E8481)</td>
</tr>
<tr>
<td>pSV-β galactosidase control vector</td>
<td>Promega (E1081)</td>
</tr>
</tbody>
</table>
3-8 Bhlhe40 に対する short hairpin RNA によるノックダウン

マウス Bhlhe40 に対する short hairpin (shRNA)シークエンスをレンチウイルスプラスミドにクローニングし、レンチウイルスパッケージングシステムを用いてレンチウイルスを作製した。パッケージングには Lenti-X™ 293T 細胞を用いて、self-inactivating vector, entry vector, packaging constructs を構成するプラスミドを PEI で一過性発現させ、48 時間後のレンチウイルスパーティクルを含む上清を用いて、EL-4 あるいは iNKT 細胞に感染させた。これらの実験に用いたベクターを表 4 に示す。
表 4. レンチウイルス関連ベクターリスト

<table>
<thead>
<tr>
<th>Vector name</th>
<th>Provider / Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-RFA-EC</td>
<td>Dr. Miyoshi Hiroyuki, RIKEN BioResource</td>
</tr>
<tr>
<td>pENTR4-H1</td>
<td>Center, Ibaraki, Japan</td>
</tr>
<tr>
<td>pCAG-HIVgp</td>
<td></td>
</tr>
<tr>
<td>pCMV-VSV-G-Rev</td>
<td></td>
</tr>
</tbody>
</table>
3-9 共免疫沈降とウエスタンブロッティング

共免疫沈降には、HA タグで標識した Bhlhe40 あるいは実験系とは無関係と考えられるタンパク質 (chloramphenicol acetyl transferase) を HA タグで標識したものと Myc タグで標識した T-bet、Stat4 あるいはコントロールベクターを Lenti-X™293T 細胞に PEI でトランスフェクションしたものを用いた。トランスフェクション 48 時間後に細胞を M-PER® Mammalian Protein Extraction Reagent (Thermo Scientific) 500 μl で処理し、氷上で 20 分インキュベートした。不溶性分画は遠心分離により除去したものを実験に用いた。内在性の Bhlhe40 と T-bet の結合の確認実験では、NKT クローンマウスの脾臓から 3×10⁶ 個の iNKT 細胞を採取し、未処理あるいは Hamstar IgG (10 μg/ml) で架橋した α-CD3/CD28 Abs (3ug/ml) による刺激を 60 分間行った。それらの細胞を M-PER® Mammalian Protein Extraction Reagent にリン酸化阻害薬としてオルタバナジン酸ナトリウムとフッ化ナトリウムを加えたもので、氷上で 20 分インキュベートし、不溶性分画を遠心分離により除去したものを利用した。細胞溶解液は 20 μl protein G セファロースビーズ (Beads Pierce) を加えてローテーター上 4℃で 1 時間プレクリアを行った。その後、10000 rpm、1 分間 4℃で遠心したのちに、上清を回収し、α-HA、α-Myc、α-T-bet あるいは α-Bhlhe40 Ab を氷上で 1 時間反応させたのちに、20 μl の protein G セファロースビーズを加え、ローテーター上 4℃で 1 時間反応させた。ビーズを lysis buffer (1% Nonidet P-40、20 mM Tris-HCl (pH 7.5)、150 mM NaCl、5 mM EDTA) で 5 回洗ったのちに、95℃で 5 分間煮沸したものを 10% SDS-PAGE ゲルで Bio-Rad のウエスタンブロッティングシステムを用いて、ポリアクリルアミド電気泳動を行った。Immobilon®-P (Millipore) に PAGE ゲルタンパク質を転写した。トランスフェクションサンプルでは α-HA あるいは α-Myc Ab で、内在性サンプルでは α-Bhlhe40 (DEC1, Novus) あるいは α-T-bet Ab (H-210, Santa Cruz -21003) でウエスタンブロッティングを行った。二次抗体には horseradish peroxidase 標識抗体を用い、Super signal West Femto (Thermo Scientific) あるいは ECL prime (GE health care) によって化学発光したものを、ImageQuant™ LAS 4000 で検出した。

3-10 Chromatin immunoprecipitation (ChIP)

クロマチン免疫沈降 (ChIP) では、1×10⁶ 個の iNKT 細胞を 1 ml の細胞培養培地に懸濁したものを用いて実験を行った。ホルムアルデヒドを含む固定液 (11x、11% ホルムアルデヒド、50 mM HEPES (pH 8.0)、100 mM NaCl、1 mM EDTA (pH 8.0)、0.5 mM EGTA) を加えてローテーター上室温 10 分間反応させたのちに、1.5 M グリシン 100μl を加えて、10 分間インキュベートし反応を停止させ、遠心分離して上清を取り除いた。1 ml の低張液 (2% FBS、0.05% Na₃ ヒドロキシアム合含有 PBS) でローテーター上 4℃で 10 分間反応させ、遠心分離して上清を取り除いた。その後、プロテアーゼ阻害薬を含む SDS 細胞溶解液 (50
mM Tris-HCl (pH 8.0), 10 mM EDTA (pH 8.0), 1% SDSを500 μl混ぜて、氷上で20分インキュベートした。抽出したクロマチンをBioruptor (UCD-250, コスモバイオ)超音波破砕機によって氷冷しながらソニケーションし、DNAを200 bp程度に断片化した（250 W 30秒、インターバル30秒を3回コース繰り返して3サイクル）。Top speedで遠心分離した上清を200 μl回収し、ChIP dilution buffer (50mM Tris-HCl (pH 8.0), 167 mM NaCl, 1.1% Triton X-100, 0.11% sodium deoxycholate)で5倍に希釈したものをInputサンプルとした。断片処理済みのサケ精子DNAとBovine Serum Albuminを含むRIPAバッファー (50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1 mM EDTA (pH 8.0), 1% Triton X-100, 0.1% SDS, 0.1% sodium deoxycholate)でオーバーナイトした50%スラリーprotein Gセファロースビーズ60 μlを加え、2時間プレクリアを行った。その後遠心分離して、上清を回収した。Acetyl-Histone H3 (K9) (CSB11, Cell Signaling), Tri-Methyl-Histone H3 (K4) (C42D8, Cell Signaling), Di-Methyl-Histone H3 (K4) (C54G9, Cell Signaling), α-Bhlhe40 ポリクローナル抗体あるいはnormal rabbit IgG (Santa Cruz (SC-2027))を10 μg/sampleでそれぞれ加えてオーバーナイトインキュベートした。反応液に20 μlの50%スラリーprotein Gセファロースビーズを加え、2時間インキュベートしたのちに遠心分離し、上清を除去し、RIPAバッファー、500 mM NaCl/RIPAバッファー、LiCl含有洗浄液 (10 mM Tris-HCl (pH 8.0), 0.25 M LiCl, 1 mM EDTA (pH 8.0), 0.5% Nonidet P-40, 0.5% sodium deoxycholate), Tris-EDTA bufferでそれぞれ1回ずつ洗浄した後にChIP direct elution buffer (10 mM Tris-HCl (pH 8.0), 300 mM NaCl, 5 mM EDTA (pH 8.0), 0.5% SDS)を200 μl加え、0.1 mM DTTを8μl加えて65℃でオーバーナイトインキュベートし、脱クロスリンクを行った。RNase A (4 μg/ml, Invitrogen) を加え37℃で30分インキュベートし、Proteinase K (1 μg/ml, 和光純薬)を加えて55℃で1時間インキュベートした。抽出されたクロマチンはChIP DNA Clean & ConcentratorTM (ZYMORESEARCH CORP) を用いて精製し、StepOneTMを用いて，Genomic PCRを行った。Ifng領域の増幅に利用したプライマーペア31-34を表5に記し、Il4領域の増幅には利用したプライマーペアを表6に示す35.
表 5. *Ifng* 領域プライマーリスト

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence</th>
<th>PCR position</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Forward</td>
<td>CAGGAAGGAGATGGGAAGTCA</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>CTGTCTTTTGGACAATGAGCAGAAAT</td>
</tr>
<tr>
<td>#2</td>
<td>Forward</td>
<td>AAGACCATCAGAGGACACAGA</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>AAACCTTCAGTGATGGGTCT</td>
</tr>
<tr>
<td>#3</td>
<td>Forward</td>
<td>GACAGGACTATGACTCTCTAG</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>GTTACCTCCTCCACCCGTCCA</td>
</tr>
<tr>
<td>#4</td>
<td>Forward</td>
<td>TCATGACATGCTGTGCCTACG</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>ACTGCTGTCATCAGTGCCCTT</td>
</tr>
<tr>
<td>#5</td>
<td>Forward</td>
<td>CCATAACGCAGACACATTG</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>TAGAAACACGGAGCTCTGGG</td>
</tr>
<tr>
<td>#6</td>
<td>Forward</td>
<td>TCTCTTGAGGTCTCCATG</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>GCACATCTCTGCTAGCTTTG</td>
</tr>
<tr>
<td>#7</td>
<td>Forward</td>
<td>GAACATAGAACGGTCCCCTG</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>TCCTGGTCTACAGATGGAG</td>
</tr>
<tr>
<td>#8</td>
<td>Forward</td>
<td>CTGGGTCAAGATAACTGGG</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>TCAGCCAAAAGGCTCAACCA</td>
</tr>
<tr>
<td>#9</td>
<td>Forward</td>
<td>CACGTGACCCGTGAGTGAT</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>GAGGAAACTCTTTGGGCTTC</td>
</tr>
<tr>
<td>#10</td>
<td>Forward</td>
<td>GTCGAAGGAAACTCTACATGCC</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>ATCAGCTGATGTTGTCTTCTGAG</td>
</tr>
<tr>
<td>#11</td>
<td>Forward</td>
<td>TCAGCTGATCTTTGGACCC</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>CTCAGAGCTAGGCGAGCAAG</td>
</tr>
</tbody>
</table>

18
<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence</th>
<th>PCR position</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Forward GCCAGAACATCAGGGTTAGTT</td>
<td>+14856~+15140</td>
</tr>
<tr>
<td></td>
<td>Reverse CAGCCTGGACTACATTGGAC</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Forward ATCCAGAACATCAGGGTTAGTT</td>
<td>+12497~+12865</td>
</tr>
<tr>
<td></td>
<td>Reverse ATGCCAACCATTGAAGACATACC</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Forward CTCTTCTGCTCTCTTTAATTTC</td>
<td>+11172~+11659</td>
</tr>
<tr>
<td></td>
<td>Reverse CTGATGGCATCCCTTAGTAAAGTG</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Forward AGGCATTTTATCCCATGAGGTC</td>
<td>+9056~+9347</td>
</tr>
<tr>
<td></td>
<td>Reverse CAGCCCTGCTTATCAGTCAAGT</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Forward AGGACTGCAAGTCTAGTTAGC</td>
<td>+8332~+8555</td>
</tr>
<tr>
<td></td>
<td>Reverse CTGTGAGTACTTCCGTGCAG</td>
<td></td>
</tr>
<tr>
<td>E’</td>
<td>Forward GTATGTATGATGTATGTATG</td>
<td>+6902~+7142</td>
</tr>
<tr>
<td></td>
<td>Reverse GCATGGCACTACACCC</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Forward CCCACCCACACACATATTAGG</td>
<td>+3286~+3632</td>
</tr>
<tr>
<td></td>
<td>Reverse CCCACCTTGGTTATTATAGC</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Forward GGTTGTAATAAGCCATATTTG</td>
<td>+2333~+2507</td>
</tr>
<tr>
<td></td>
<td>Reverse CCCAGGTGTTACATGAGG</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Forward GCCTGTAGGGGACCATAAGA</td>
<td>+788~+1019</td>
</tr>
<tr>
<td></td>
<td>Reverse GCCTTGTGTTAGTACGTTAC</td>
<td></td>
</tr>
<tr>
<td>Grogan</td>
<td>Forward TTGGTGCTGTGTTACAGGG</td>
<td>+4~+177</td>
</tr>
<tr>
<td></td>
<td>Reverse AACAATGCAATGCTTGG</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Forward GGAGGTTTCTGGGCTAGGGT</td>
<td>-608~908</td>
</tr>
<tr>
<td></td>
<td>Reverse GGCGGTTTCTGGGCTAGGGT</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Forward CTGGAGCCAAAGAATAGACC</td>
<td>-2475~2752</td>
</tr>
<tr>
<td></td>
<td>Reverse TCCAGCCTCTGCCTTATATC</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Forward AGAGTGCACTGAGACTTAG</td>
<td>-7032~7227</td>
</tr>
<tr>
<td></td>
<td>Reverse TGCACTGTGCTGTTAGG</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Forward CATGCCAGTTGAGATTG</td>
<td>-9849~10168</td>
</tr>
<tr>
<td></td>
<td>Reverse GAATGCCAGTTGCTCTTACAGT</td>
<td></td>
</tr>
</tbody>
</table>
3-11 骨髄由来樹状細胞 (bone marrow dendritic cell (BMDC)) の in vitro 分化誘導

8 週齢の野生型マウスの大腿骨および、脛骨から骨髄前駆細胞を取り出し、5×10^5 個/ウェルで 24 ウェルプレートに散布した。培地は 1 ウェルあたり 1ml の RPMI-1640 に 10% FBS, 1 mM 非必須アミノ酸, 100 IU/ml ペニシリン・ストレプトマイシン, 0.03% L-グルタミン, 100 μM β-メルカプトエタノール, granulocyte-monocyte colony stimulating factor (10 ng/ml, Promega), IL-4 (1 ng/ml, Promega) を添加したものを作用して、37℃, 5% CO₂の条件下において培養した。2 日目に 1 回の頻度で 3 分の培地を新しい培地に交換し、6 日目の付着性細胞を BMDC として、回収し 35 Gy 放射線照射処理を行った。

3-12 T-bet 阳性あるいは陰性 iNKT 細胞の in vitro 培養

6-8 週齢の野生型マウスの脾臓から、CD1d-α-GC dimer⁺細胞を magnetic-activated cell sorting (MACS® Miltenyi Biotech) を用いて、ポジティブセレクションで分離した。分離した細胞をさらに FACS Aria™ II を用いて、T-bet 陽性細胞サブセット (TCRβ⁺ CD1d-α-GC dimer⁺ CD4⁺ IL17RB⁺) と T-bet 陰性細胞サブセット (TCRβ⁺ CD1d-α-GC dimer⁺ CD4⁺ IL17RB⁺) に分離した。ソーティング後的目的細胞の純度は 98%以上であることを確認した。ソーティングにより分離した細胞はサブセット毎に 1×10^5 個/ウェルずつ、2×10^5 個の放射線照射済 BMDC と共に共培養した。培地には RPMI-1640 に 10% FBS, 1 mM 非必須アミノ酸, 100 IU/ml ペニシリン・ストレプトマイシン, 0.03% L-グルタミン, α-CD3 Ab (3 μg/ml, 145-2C11 Biolegend) と α-CD28 Ab (1 μg/ml, 37.51 Biolegend) を加えたものを用いた。3 日目に培養上清の半分を RPMI-1640 に上記サプリメントを加えたものに、さらに IL-2 (20 ng/ml, Promega) と IL-7 (20 ng/ml, Promega) を加えた培地に交換し、以後 3 日毎に培地の半分を上記培地に交換して培養を行った。およそ 3 週間培養したのち、その他の実験に使用した。

3-13 統計処理

すべてのデータは平均±標準誤差を示している。サンプル群間の比較は T 検定あるいはウェルチの T 検定を行った。p 値は 0.05 以下のものを有意とし、NS の記載是有意差なしを示す。
4. 実験結果

4-1 iNKT細胞におけるIFN-γ産生に関わる候補因子の抽出

iNKT細胞におけるIFN-γ産生に関わる候補因子を抽出するために、公開マイクロアレイデータベースであるReference genomics Database of Immune Cells (RefDIC; http://refdic.rcai.riken.jp/profile.cgi)※を利用し、以下の3つの性質を持つ因子を抽出した。
1. iNKT細胞で強い発現が認められるもの 2.Type1 helper T (Th1)細胞の検討において、IFN-γ産生への関与が示唆されるもの 3. 詳細な機能解析がなされていないもの、これららの条件により候補因子群を17遺伝子抽出した（図1）。

これらの候補因子で、LentivirusによるshRNAでknock-down (KD)を行い、iNKT細胞におけるIFN-γ産生への影響を調べた。上記の中からBhlhe40に対するshRNAにおいて、KDによりiNKT細胞における、IFN-γ産生を低下させる傾向があることを確認した（図2）。

上記スクリーニングの結果から、以後Bhlhe40がiNKT細胞においてどのような機序でIFN-γ産生を制御するかという点に注目して検討を進めることとした。
図1 RefDICにより抽出されたiNKT細胞におけるIFN-γ産生に関わる候補因子群

RefDICによって抽出されたiNKT細胞における発現を表すヒートマップを示す。縦軸は抽出された遺伝子の略称、横軸はデータセットを示す。1. 2:WTマウスの脾臓から抽出されたNK1.1⁺TCRβ⁺CD1β2M⁺iNKT細胞のデータセット（Sample ID: RMSPNT004001, RMSPNT005001）3: α-GCで刺激された野生型マウスの脾臓から抽出されたTCRβ⁺CD1d-α-GC dimer⁺iNKT細胞のデータセット（Sample ID: RMSPNT006001）4: α-GCで刺激されたNKTクローンマウスの脾臓から抽出されたCD1d-α-GC dimer⁺iNKT細胞のデータセット（Sample ID: RMSPNT007001）5: 野生型マウスの脾臓から抽出されたTCRβ⁺CD1d-α-GC dimer⁺iNKT細胞のデータセット（Sample ID: RMSPNT008001）6: α-GCで刺激されたNKTクローンマウスの胸腺から抽出されたCD1d-α-GC dimer⁺iNKT細胞のデータセット（Sample ID: RMTYNT002001）
図 2 Bhlhe40 knock-down による iNKT 細胞における IFN-γ 産生への影響

Lentivirus による Bhlhe40 shRNA を脾臓由来 iNKT 細胞 (TCRβ⁺ CD1d-α-GC dimer⁺) に感染させ、α-GC 刺激した 48 時間後における培養上清中の IFN-γ 産生を ELISA によって測定した結果を示す。データは 3 回の実験結果の平均値と標準誤差を示す。
4-2 iNKT細胞におけるBhlhe40 mRNA発現

これまでのRefDICとLentivirusによるスクリーニング解析の結果からBhlhe40に注目して検討をすすめたところ、iNKT細胞におけるBhlhe40の発現を詳細に検討した報告がないことから、まずはiNKT細胞におけるBhlhe40の生理学的な性質について検討することとした。

まず、Bhlhe40のiNKT細胞における発現量を検討するために、野生型マウスの脾臓CD4⁺T細胞およびCD8⁺T細胞をコントロールとして、iNKT細胞におけるBhlhe40mRNAの発現を検討した(図3)。iNKT細胞では、CD4⁺T細胞およびCD8⁺T細胞と比較して、Bhlhe40mRNAの発現量が多いことが示された。

iNKT細胞は胸腺細胞から成熟し、その成熟過程はNK1.1およびCD44の発現パターンからStage 1(NK1.1⁺CD44⁻)、Stage 2(NK1.1⁺CD44⁺)、Stage 3(NK1.1⁺CD44⁺)に分類される8(図4)。これら胸腺iNKT細胞のdevelopmental stageにおけるBhlhe40、Ifng、Tbet mRNAの発現量を検討したところ、iNKT細胞のdevelopmental stageが進むにつれて、これらの3つのmRNAの発現量が増加する傾向があった(図5)。

また、iNKT細胞はCD4およびIL-17 receptor B(IL-17RB)の発現パターンによりサブセット分類される12(図6)。このサブセット分類では、それぞれ異なるサイトカインの産生パターンを示す。CD4⁺IL-17RB⁺(iNKT1)サブセットではIFN-γの産生能が高いとされ、CD4⁺IL-17RB⁺(iNKT2)サブセットではIL-4やIL-13の産生能が高く、CD4⁺IL-17RB⁺(iNKT17)サブセットではIL-17AやIL-22の産生能が高いとされる9-12。これらのサブセットにおいてBhlhe40mRNAの発現量を検討したところ、developmental stageにおける検討と同様に、IFN-γの産生能が高い細胞であるCD4⁺IL-17RB⁺(iNKT1)サブセットにおいて、Bhlhe40mRNAの発現量が高い傾向があった(図7)。

Bhlhe40は哺乳類における生体分子時計の制御に重要な働きをするとされており、視交叉では日内リズムに対応してBhlhe40の発現量が変化する18。そこでiNKT細胞においてもBhlhe40の発現量に日内リズムが存在するかを検討した。野生型マウスの脾臓iNKT細胞およびCD4⁺T細胞のBhlhe40mRNAの発現量の日内リズムを調べたところ、iNKT細胞およびCD4⁺T細胞ではBhlhe40mRNAの発現量に日内リズムによる変化は認められなかった(図8)。

さらに、iNKT細胞にTCR刺激が入り活性化した際に、Bhlhe40mRNAの発現量がどのように変化するかについて検討した。脾臓iNKT(TCRβ⁺CD1d-α-GC dimer⁺)細胞に、α-CD3/CD28Absで刺激し、0、24、48時間におけるBhlhe40mRNAの発現量を評価したところ、α-CD3Ab単独あるいはα-CD3/CD28Absによる刺激によりBhlhe40mRNAの発現量が増加する傾向があった(図9)。

これらの結果から、iNKT細胞ではCD4⁺T細胞やCD8⁺T細胞と比較して、Bhlhe40
mRNA の発現量が多く、IFN-γ 産生能の高い developmental stage 3 の胸腺 iNKT 細胞 や、CD4⁺ IL-17RB iNKT 細胞 (iNKT1) において Bhlhe40 mRNA の発現量が多いこと が分かった。更に、iNKT 細胞では Bhlhe40 mRNA の発現量は α-CD3/CD28 Abs によ る TCR 刺激により増加するが、日内リズムによる変化はないことが示された。
図3 T細胞およびiNKT細胞におけるBhlhe40 mRNAの発現量の比較

野生型マウスの脾臓CD4⁺T細胞 (CD4⁺T; CD3⁺CD4⁺細胞)・CD8⁺T細胞 (CD8⁺T; CD3⁺CD8⁺細胞)・iNKT細胞 (iNKT; TCRβ⁺CD1d-α-GC dimer⁺細胞)における，Bhlhe40 mRNAの発現を定量real-time PCRにより測定した結果を示す。データはCD4⁺T細胞を1とした比較Ct法により検討したものを示す。3回の独立した実験結果のうち代表的なデータを示す。
図 4 胸腺 iNKT 細胞の細胞表面マーカーによる developmental stage

野生型マウスにおける胸腺 iNKT 細胞の NK1.1 および CD44 の発現パターンを示す。Dot plot は TCRβ⁺CD1d-α-GC dimer⁺ゲート後に、NK1.1 および CD44 で展開したものを示す。四分割領域は各アイソタイプコントロールを用いて設定し、領域内の数字は表示ゲート内の全細胞における領域内細胞の占める割合(%)を示す。
図 5 胸腺 iNKT 細胞の developmental stage における Bhlhe40, Ifng, Tbet mRNA の 発現量の比較

野生型マウスの胸腺 iNKT (TCRβ⁺ CD1d-α-GC dimer⁺) 細胞の各 Stage における Bhlhe40, Ifng, Tbet mRNA の発現量を示す．1 は Stage 1 (NK1.1⁻ CD44⁻), 2 は Stage 2 (NK1.1⁺ CD44⁻), 3 は Stage 3 (NK1.1⁺ CD44⁺) を指す．定量 real-time PCR の結果を Stage 1 = 1 とした比較 Ct 法により検討したものを示す．3 回の独立した実験結果のうち代表的なデータを示す．
図 6 iNKT 細胞のサブセット分類

野生型マウスの脾臓 iNKT 細胞の CD4 および IL-17RB の発現パターンを示す。Psudocolor plot は TCRβ⁺ CD1d-α-GC dimer⁺ でゲートしたのちに、CD4 および IL-17RB で展開したものを示す。四分割領域は各アイソタイプコントロールを用いて設定し、領域内の数字はゲート内の全細胞における領域内細胞の占める割合 (%) を示す。
図 7 iNKT 細胞のサブセットにおける Bhlhe40 mRNA の発現量の比較

野生型マウスの脾臓のiNKT細胞のサブセットにおける Bhlhe40 mRNA の発現量を示す。CD4+ Ifng± (CD4+ IL-17RB−), CD4+ Ifng± (CD4+ IL-17RB−), Il4+ (CD4+ IL-17RB−), Il17a+ (CD4+ IL-17RB+) を示し、定量 real-time PCR の結果を CD4+ Ifng± = 1 とした比較 Ct 法により検討したものを示す。3 回の独立した実験結果のうち代表的なデータを示す。
図 8 iNKT 細胞および CD4⁺ T 細胞における、日内リズムによる Bhlhe40 mRNA の発現量の変化

野生型マウスにおける脾臓 iNKT 細胞 (iNKT) および CD4⁺T 細胞 (CD4 T) の Bhlhe40 mRNA の日内変動を示す。定量 real-time PCR の結果を 8 時における CD4⁺ T 細胞の 1 サンプル = 1 とした比較 Ct 法により検討したものを示す。点は各マウスのデータを示し、線は平均値を示す。8 時から 21 時までが明周期、21 時から 8 時までが暗周期を示す。3 回の独立した実験結果のうち代表的なデータを示す。
図 9 TCR 刺激による iNKT 細胞の Bhlhe40 mRNA の発現量の変化

野生型マウスにおける iNKT 細胞に、in vitro で α-CD3 Ab および α-CD3/CD28 Abs による TCR 刺激を行った。0, 24, 48 時間における Bhlhe40 mRNA の発現量を示す。定量 real-time PCR により、0 時間における未刺激の iNKT 細胞 = 1 とした比較 Ct 法により検討したものを作示。3 回の独立した実験結果のうち代表的なデータを作示。
4.3 Bhlhe40−マウスではiNKT細胞は正常に分化・成熟する

Bhlhe40がiNKT細胞に与える影響を検討するために、Bhlhe40−マウスを導入してその性質を検討することとした21。このマウスにおいてiNKT細胞がどのような異常を示すかについては検討がなく、本研究を通じてそれを明らかにすることとした。これまでの検討により、IFN-γ産生能が高いiNKT細胞においてBhlhe40mRNAの発現量が高いことから、まずBhlhe40のノックアウトによるiNKT細胞の分化・成熟への影響を検討した。

まず、野生型マウスとBhlhe40−マウスにおいて、iNKT細胞の存在頻度に差があるかを検討した。iNKT細胞の主要な存在臓器である胸腺・肝臓・脾臓においてiNKT細胞の頻度を比較したが、野生型とBhlhe40−マウス間に明らかな違いは認められなかった(図10)。また、CD4およびIL-17RBによるiNKT細胞サブセットの解析も行ったが、野生型とBhlhe40−マウス間に明らかな違いは認められなかった(図11)。さらに、胸腺iNKT細胞における、NK1.1およびCD44の発現パターンによるdevelopmental stageに関しても、野生型とBhlhe40−マウス間に明らかな違いは認められなかった(図12)。ここまでの検討の結果から胸腺・肝臓・脾臓におけるiNKT細胞の割合には野生型とBhlhe40−マウス間に明らかな差がないことが示された。

次にiNKT細胞の成熟状態を検討するために、成熟iNKT細胞のマーカーとされるLy49ファミリー(Ly49A, Ly49C, Ly49G2)37の発現を評価した。野生型およびBhlhe40−マウスの胸腺iNKT細胞においてLy49ファミリーの発現に違いは認められなかった(図13)。また、胸腺DP細胞上に発現するCD1dとsignaling lymphocytic activation molecule family member 1(SLAMF1)は、NKT前駆細胞に作用してiNKT細胞の成熟に関与するとされる15,38。胸腺DP細胞のCD1dとSLAMF1発現を評価したが、これらの分子の発現も野生型およびBhlhe40−マウス間に相違はなかった(図14)。これらのことから、Bhlhe40欠損によるiNKT細胞の分化・成熟への明らかな異常は認められないと考えられた。
図10 野生型およびBhlhe40⁺マウスの胸腺・脾臓・肝臓の\textit{iNKT}細胞

野生型およびBhlhe40⁺マウスの胸腺・脾臓・肝臓の\textit{iNKT}細胞の割合を示す。Psudocolor plotはCD19をゲートアウトしたのちに、TCRβおよびCD1d-\alpha-GC dimerで展開したものを示す。楕円で囲まれたTCRβ⁺CD1d-\alpha-GC dimer⁺の領域が\textit{iNKT}細胞を示す。領域内の数字は表示ゲート内の全細胞における領域内細胞の占める割合(%)を示す。3回の独立した実験結果のうち代表的なデータを示す。
図11 野生型およびBhlhe40⁻/⁻マウスの胸腺・脾臓・肝臓のiNKT細胞サブセットの割合を示す。Psudocolor plotはTCRβ⁺CD1d-α-GC⁺でゲートしたのに、CD4およびIL-17RBで展開したものを示す。四分割領域は各アイソタイプコントロールを用いて設定し、領域内の数字は表示ゲート内の全細胞における領域内細胞の占める割合(%)を示す。3回の独立した実験結果のうち代表的なデータを示す。
図 12 野生型および Bhlhe40⁻⁻マウスの胸腺 iNKT 細胞 developmental stage

野生型および Bhlhe40⁻⁻マウスにおける胸腺 iNKT 細胞における、NK1.1 よび CD44 の発現パターンによる developmental stage を示す。Psudocolor plot は TCRβ⁺CD1d-α-GC dimer⁺でゲートしたのちに NK1.1 よび CD44 で展開したものを示す。四分割領域は各アイソタイプコントロールを用いて設定し、領域内の数字は表示ゲート内の全細胞における領域内細胞の占める割合（%）を示す。3 回の独立した実験結果のうち代表的なデータを示す。
図 13 野生型および Bhlhe40⁻⁻マウスの胸腺 iNKT 細胞における Ly49 ファミリーの発現

野生型および Bhlhe40⁻⁻マウスにおける胸腺 iNKT 細胞の Ly49A、Ly49C、Ly49G2 の発現パターンを示す。ヒストグラムは TCRβ⁺CD1d-α-GC dimer⁺でゲートしたのにアイソタイプコントロールと重ねたものを示す。数字はアイソタイプコントロールから求められる Target 陽性細胞のゲート内に占める割合（％）を示す。3 回の独立した実験結果のうち代表的なデータを示す。
図 14 野生型および Bhlhe40⁻⁻マウスの胸腺 DP 細胞における CD1d および SLAMF1 の発現

野生型および Bhlhe40⁻⁻マウスにおける胸腺 DP 細胞の CD1d および SLAMF1 の発現パターンを示す。ヒストグラムは胸腺細胞を CD4⁺CD8⁺でゲートしたのにアイソタイプコントロールと重ねたものを示す。数字はアイソタイプコントロールから求められる Target 陽性細胞のゲート内に占める割合 (%) を示す。3 回の独立した実験結果のうち代表的なデータを示す。

Gated on CD4⁺ CD8⁺ population
4-4 Bhlhe40はiNKT細胞のIFN-γ産生を制御する

これまでの検討で、Bhlhe40はIFN-γ産生能の高いiNKT細胞（iNKT1および胸腺iNKT細胞developmental stage 3）での発現量が多いことが明らかとなり、Bhlhe40欠損はiNKT細胞の分化・成熟には明らかな影響を与えないと示された。そこで、Bhlhe40は実際にiNKT細胞のIFN-γの産生を制御するかについて検討した。

iNKT細胞は外来刺激にすみやかに応答し、IFN-γを産生することが特徴とされる。迅速なIFN-γの産生機序にはpre-formed Ifng mRNAの存在が関与しているとされて39。そこで、未刺激のiNKT細胞の各サブセットにおけるpre-formed cytokine mRNAについて検討した。野生型およびBhlhe40⁻/-マウスのiNKT細胞間において、pre-formed Ifng、Il4、Il17a mRNAの発現量に差は認められなかった（図15）。これまでの結果を合わせると、Bhlhe40は休止状態のiNKT細胞に対して明らかな影響を与えないと考えられた。

次に、in vitroでα-GCによるTCR刺激を行いiNKT細胞によるサイトカイン産生をELISAで評価した。すると、Bhlhe40⁻/-マウスiNKT細胞では野生型iNKT細胞と比較して、IFN-γの産生が低下し、IL-4の産生は変化がなかった（図16）。

これらのサイトカイン産生能の違いが生じた原因として、まずiNKT細胞のα-GC刺激による細胞増殖反応に野生型およびBhlhe40⁻/-マウスiNKT細胞の間で差がある可能性を考え、3Hチミジン取り込み能を利用した細胞増殖アッセイを行った。このアッセイ系において、α-GC刺激48時間後までに、野生型およびBhlhe40⁻/-マウスのiNKT細胞の細胞増殖に差はないことがわかった（図17）。

さらに、TCR刺激をα-CD3/CD28 Absによる刺激に変えて、時間経過に伴うiNKT細胞のIfng mRNAの産生能を評価した。この実験においても、Bhlhe40⁻/-マウスiNKT細胞でIfng mRNAの産生が低下する傾向にあった（図18）。

これらのことから、Bhlhe40⁻/-マウスiNKT細胞におけるIFN-γの産生能の低下の原因として、iNKT細胞におけるTCR刺激を介したIFN-γ産生機構にBhlhe40が関与していることが推定された。

さらに、in vivoにおいてもIFN-γの産生異常が生じるかどうかについて検討した。まず、野生型およびBhlhe40⁻/-マウスにα-GCを投与し、1時間後の脾臓iNKT細胞におけるIFN-γおよびIL-4の細胞内染色を行った。IFN-γの細胞内発現はBhlhe40⁻/-マウスiNKT細胞のほうが野生型iNKT細胞よりも低下しており、IL-4の細胞内発現には差が認められなかった（図19）。また、野生型およびBhlhe40⁻/-マウスにα-GCに投与し、血清IFN-γおよびIL-4の時間経過による変化を評価した。血清IFN-γはα-GC投与12時間後において、Bhlhe40⁻/-マウスにおいて低下していたが、IL-4は野生型およびBhlhe40⁻/-マウスにおいて差がなかった（図20）。

血清サイトカイン濃度はiNKT細胞以外のサイトカイン産生の影響も受けうること
から、上記結果のみでは iNKt 細胞における Bhlhe40 欠損による影響で血清サイトカイン濃度が変化したのか、その他の細胞における Bhlhe40 欠損が影響したことによっておこったものかを判断することはできない。そこで、これらの血清サイトカイン濃度の差が iNKt 細胞における Bhlhe40 欠損によるものであることを示すために、iNKt 細胞欠損マウスである Ja18⁻マウスに対して、野生型および Bhlhe40⁻マウスの iNKt 細胞を add-back してから、α-GC 刺激を行って血清 IFN-γ および IL-4 の時間経過による変化を評価した。Add-back 実験においても、血清 IFN-γ 濃度が Bhlhe40⁻マウスにおいて低くなる傾向があり、IL-4 は野生型および Bhlhe40⁻マウスにおいて差がなかった（図 21）。

これらのことから、iNKt 細胞における Bhlhe40 欠損は TCR 刺激による IFN-γ の産生能を低下させるが、IL-4 の産生能には影響を与えない、α-GC 投与によって引き起こされる初期免疫応答による血中 IFN-γ 産生を低下させることができた。
図 15 野生型およびBhlhe40−マウスiNKT細胞サブセットにおけるpre-formedIFNγ,IL4,IL17a mRNAの発現量の比較

野生型およびBhlhe40−マウスの脾臓iNKT(TCRβ⁺CD1d-α-GC dimer⁺)細胞のサブセットにおけるpre-formedIFNγ,IL4,IL17a mRNAの発現量を示す。定量real-timePCRの結果を野生型CD4⁺IL-17RB⁺=1とした比較Ct法により検討したものを示す。3回の独立した実験結果のうち代表的なデータを示す。
図16 野生型およびBhlhe40⁻/⁻マウスiNKT細胞のα-GC刺激によるIFN-γおよびIL-4の産生

野生型およびBhlhe40⁻/⁻マウスの脾臓iNKT（TCRβ⁺CD1d-α-GC dimer⁺）細胞をin vitro培養条件下においてα-GC刺激（0, 0.1, 1, 10, 100 ng/ml）を行い、48時間後の培養上清内のサイトカイン濃度をELISAで測定したものを示す。野生型マウスiNKT細胞の結果をWT、Bhlhe40⁻/⁻マウスiNKT細胞の結果をBhlhe40⁻/⁻として示す。グラフは平均値と標準誤差を示す。*は同一条件における野生型およびBhlhe40⁻/⁻マウスのデータをT検定で比較した際、p値が0.01未満のものを示す。
図17 野生型およびBhlhe40⁻/⁻マウスiNKT細胞のα-GC刺激による³Hチミジン取り込み能

野生型およびBhlhe40⁻/⁻マウスの脾臓iNKT (TCRβ⁺CD1d-α-GC dimer⁺)細胞をin vitro培養条件下においてα-GC刺激 (0, 0.1, 1, 10, 100 ng/ml)を行い、40時間から48時間における³Hチミジン取り込み能を測定したものを示す。野生型マウスiNKT細胞の結果をWT, Bhlhe40⁻/⁻マウスiNKT細胞の結果をBhlhe40⁻/⁻として示す。グラフは平均値と標準誤差を示す。
図 18 野生型および Bhlhe40−/−マウス iNKT 細胞の α-CD3/CD28 Abs 刺激による Ifng mRNA の産生の時間経過による変化

野生型および Bhlhe40−/−マウスの脾臓の iNKT (TCRβ+ CD1d-α-GC dimer+) 細胞を in vitro 培養条件下において α-CD3/CD28 Abs (3, 1 μg/ml) で刺激し、0, 6, 24, 48 時間における Ifng mRNA の産生量を示す。野生型マウス iNKT 細胞の結果を WT, Bhlhe40−/−マウス iNKT 細胞の結果を Bhlhe40−/−として示す。定量 real-time PCR の結果を野生型 iNKT 細胞の 0 時間 = 1 とした比較 Ct 法により検討したものを示す。3 回の独立した実験結果のうち代表的なデータを示す。
図19 野生型およびBhlhe40⁻⁻マウスにin vivo α-GC刺激した際の脾臓iNKT細胞におけるIFN-γおよびIL-4の細胞内染色

野生型およびBhlhe40⁻⁻マウスにα-GC刺激（1.5μg）を尾静脈投与し、1時間後に脾臓iNKT（TCRβ⁺CD1d-α-GC dimer⁺）細胞のIFN-γおよびIL-4の細胞内染色を示す。ヒストグラムはTCRβ⁺CD1d-α-GC dimer⁺でゲートしたのちにアイソタイプコントロールと重ねたものを示す。3回の独立した実験結果のうち代表的なデータを示す。
図20 野生型およびBhlhe40⁻⁻マウスにin vivo α-GC 刺激した際の血清IFN-γおよびIL-4濃度の時間経過による変化

野生型およびBhlhe40⁻⁻マウス（各3匹）にα-GC 刺激（2μg）を尾静脈投与し、0, 1, 6, 12, 24, 36, 48時間後における血清IFN-γおよびIL-4の濃度をELISAで測定したものを示す。野生型マウスの結果をWT、Bhlhe40⁻⁻マウスの結果をBhlhe40⁻⁻として示す。グラフは平均値と標準誤差を示す。
図21 Ja18⁻マウスに野生型および Bhlhe40⁻iNKT 細胞を add-back し，α-GC 刺激した際の血清 IFN-γ および IL-4 濃度の時間経過による変化

iNKT ノックアウトマウス (Ja18⁻マウス)に野生型および Bhlhe40⁻iNKT (TCRβ⁺CD1d-α-GC dimer⁺)細胞を 2×10⁶個 add-back し，1時間後に α-GC (2 μg) を尾静脈投与し，add-back から 0, 1, 6, 12, 24, 36, 48 時間後における血清 IFN-γ および IL-4 の濃度を ELISA で測定したものを示す。野生型マウス iNKT 細胞を add-back した Ja18⁻マウスの結果を WT，Bhlhe40⁻マウス iNKT 細胞を add-back した Ja18⁻マウスの結果の結果を Bhlhe40⁻として示す。3回の独立した実験結果のうち代表的なデータを示す。
4-5 Bhlhe40 欠損はiNKT 細胞の抗腫瘍活性を低下させる

これまでの検討で、Bhlhe40 欠損はiNKT 細胞におけるIFN-γ産生能を低下させることが示されたが、この異常の生理学的意義に関してはまだ明らかにされていない。iNKT 細胞の IFN-γ産生は腫瘍の転移抑制において重要な働きを担っていることが報告されている40-42。そこで、メラノーマの転移モデルを用いて、iNKT 細胞における Bhlhe40 欠損が起こす生理学的異常を検討した。

まず、野生型および Bhlhe40−/マウスに B16 メラノーマ細胞を投与し、α-GC あるいは PBS の投与を行い、7日後の肺表面に認められる転移結節数を検討した。野生型では α-GC 投与により、肺表面の転移結節数は著明に減少するが、Bhlhe40−/マウスでは、α-GC 投与を行っても、肺表面の転移結節数の減少は認められなかった（図22, 23）。本研究で用いている Bhlhe40−マウスはすべての細胞で Bhlhe40 が欠損していることから、先のサイトカイン産生能の実験と同様に、iNKT 細胞以外の細胞における Bhlhe40 欠損が結果に影響している可能性が否定できない。そこで、add-back 実験を行った。Ja18−マウスに B16 メラノーマ細胞を脾臓に投与し、野生型および Bhlhe40−マウス iNKT 細胞あるいは生理食塩水を投与してから、α-GC 投与した。処置後10日目に肝表面におけるメラノーマの肝表面の占拠面積を評価した。Bhlhe40−マウス iNKT 細胞を add-back した群で、野生型 iNKT 細胞を add-back した群よりも、肝転移したメラノーマ細胞の占拠面積の増加が認められ、腫瘍転移の抑制能が低下していた（図24, 25, 26）。

これらの結果から、Bhlhe40 欠損は iNKT 細胞における IFN-γ産生能を低下させ、抗腫瘍活性が低下することが示された。
肺転移モデルの実験系

野生型および Bhlhe40⁻/⁻ マウス（各 3 匹）に B16 メラノーマ細胞を 5x10⁵ 個ずつ尾静脈投与により接種し、α-GC（4 μg）あるいは同体積の PBS を腹腔内投与した。7 日後の肺表面に認められる転移結節数を実体顕微鏡下に評価した。
図 23 B16 メラノーマ細胞肺転移モデルにおける肺転移結節数

図 22 の方法で評価した、7 日目の肺表面に認められた転移結節数を示す。野生型マウスに α-GC を投与した群を WT + α-GC、野生型マウスに PBS を投与した群を WT + vehicle、Bhlhe40−/−マウスに α-GC を投与した群を Bhlhe40−/− + α-GC、Bhlhe40−/−マウスに PBS を投与した群（各群 3 匹）を Bhlhe40−/− + vehicle とし、グラフは平均値と標準誤差を示す。**は T 検定で比較した際の p 値が 0.05 未満のものを示す。
肝転移モデルの実験系

野生型およびJa18⁻/⁻マウスにB16メラノーマ細胞を1×10⁶個ずつ脾投与し、野生型およびBhlhe40⁻/⁻iNKT細胞1×10⁶個あるいは同体積の生理食塩水をadd-backし、1時間後にα-GC（2μg）を腹腔内投与した。10日後の肝表面に占めるメラノーマの面積を評価した。
図 25 B16 メラノーマ細胞肝転移モデルにおける 10 日後の肝表面

図 24 の方法で評価した肝表面の写真を示す。野生型マウスに B16 メラノーマ細胞を投与したものを WT control, Ja18−/−マウスに B16 メラノーマ細胞と野生型 iNKT 細胞を add-back したものを Add-back of WT iNKT, Ja18−/−マウスに B16 メラノーマ細胞と Bhlhe40−/−iNKT 細胞を add-back したものを Add-back of Bhlhe40−/−iNKT, Ja18−/−マウスに生理食塩水を投与したものを Vehicle とし示す。
図 26 B16 メラノーマ細胞肝転移モデルにおける 10 日後の B16 メラノーマ
転移巣の肝表面占有面積

図 25 の結果を数値化したもので示す。野生型マウス B16 メラノーマ細胞を
投与したものを WT, Ja18⁻⁺ マウスに B16 メラノーマ細胞と野生型 iNKT 細胞
を add-back したものを Ja18⁻⁺ mice + WT iNKT, Ja18⁻⁺ マウスに B16 メラノー
マ細胞と Blhhe40⁻⁺ iNKT 細胞を add-back したものを Ja18⁻⁺ mice + Blhhe40⁻⁺ iNKT,
Ja18⁻⁺ マウスに生理食塩水を投与したものを Ja18⁻⁺ mice + vehicle として示す。
グラフは平均値と標準誤差を示す。** は T 検定で比較した際 p 値が 0.05 未満
のものを示す。
4-6 Bhlhe40 自身は Ifng プロモーター活性を増強しない

これまでの検討から、Bhlhe40 は iNKT 細胞において TCR 刺激による IFN-γ 産生を増強し、IFN-γ 産生に伴う iNKT 細胞が障害されていることが示された。しかしなが ら、どのような分子機構で Bhlhe40 が IFN-γ 産生に関与するのかは、まだ明らかとなっていない。そこで、この点を明らかにするために、まず Bhlhe40 が Ifng プロモーター 活性に与える影響について検討した。Bhlhe40 細胞系に対して、コントロールベクタ ーあるいは Bhlhe40 発現ベクターをトランスフェクションして、Ifng プロモーター活性の変化を検討した。Bhlhe40 細胞系に Bhlhe40 を強制発現しても、Ifng プロモーター活性に明らかな変化は認められなかった（図 27）。この結果から Bhlhe40 が直接 Ifng プロモーターに作用する可能性は否定的であった。

TCR 刺激による IFN-γ の産生機序には TCR の下流に関与する転写因子として、 nuclear factor-kappa B kinase (NF-κB) や nuclear factor of activated T cells (NFAT) が知られている。そこで、次に Bhlhe40 がこれらの転写因子の働きを増強する可能性を考えた。Bhlhe40 細胞系に、コントロールベクターあるいは Bhlhe40 発現ベクターをトランスフェクションし、PMA による刺激を行い、NF-κB レポーターをルシフェラーゼアッセイで検討した。Bhlhe40 の強制発現による PMA 刺激下における NF-κB 活性に明らかな変化はなかった（図 28）。このことから、Bhlhe40 が NF-κB 経路に関与する可能性も否定的となった。

さらに、マウス T 細胞リンパ腫細胞株である EL-4 において、Bhlhe40 と NFAT 経路 の関与について検討した。EL-4 は Bhlhe40 を発現していることから、まず、この細胞 に Bhlhe40 shRNA を恒常発現させた。そこに、knockdown-resistant Bhlhe40 (Bhlhe40 shRNA') を発現させ、Bhlhe40 の発現のレスキューキューをおこなった。これにより Bhlhe40 の発現を制御した EL-4 に対して ionomycin による NFAT 経路の刺激を行い、NFAT レ ポーターをルシフェラーゼアッセイで検討した。これらにより EL-4 において Bhlhe40 の発現を操作しても、NFAT 活性の変化は認められなかった（図 29）。このことから、Bhlhe40 が NFAT 経路に関与する可能性も否定的となった。

これらの結果から、Bhlhe40 は直接 Ifng プロモーターを制御する可能性や、TCR シ グナルの下流に関与する NF-κB や NFAT のシグナルを増強することで、IFN-γ 産生を 増強している可能性は否定的であった。
図27 Bhlhe40Δ MEFにおけるBhlhe40の強制発現によるIfngプロモーター活性の変化

Bhlhe40Δ MEFにコントロールベクターあるいは,Bhlhe40発現ベクターとIfngプロモーター・ルシフェラーゼ・レポーターベクターをトランスフェクションして, 48時間後のIfngプロモーター活性をルシフェラーゼ・アッセイで検討した。ルシフェラーゼ活性は β ガラクトシターゼで補正したものを利用し, Bhlhe40Δ MEFにコントロールベクターをトランスフェクションしたもの＝1とした。

Bhlhe40Δ MEFにコントロールベクターをトランスフェクションしたものをBhlhe40Δとして示し, Bhlhe40Δ MEFにBhlhe40発現ベクターをトランスフェクションしたものをBhlhe40 overexpressionとして示している。グラフはルシフェラーゼ活性の平均値と標準誤差を表す。
図 28 Bhlhe40−/− MEF における Bhlhe40 の強制発現による NF-κB 活性の変化

Bhlhe40−/− MEF にコントロールベクターあるいは Bhlhe40 発現ベクターと NF-κB レポーターベクターをトランスフェクションし、トランスフェクション直後あるいは 16 時間後に PMA (5 ng/ml あるいは 50 ng/ml) による刺激を行い、トランスフェクションから 24 時間後の NF-κB 活性をルシフェラーゼアッセイで検討した。ルシフェラーゼ活性は β ガラクトシダーゼで補正したものを用い、Bhlhe40−/− MEF にコントロールベクターをトランスフェクションし刺激せずに測定したもの = 1 とした。Bhlhe40−/− MEF にコントロールベクターをトランスフェクションしたものを Bhlhe40−/− として示し、Bhlhe40−/− MEF に Bhlhe40 発現ベクターをトランスフェクションしたものを Bhlhe40 overexpression として示している。(-) は PMA による刺激を行わなかったことを示す。グラフはルシフェラーゼ活性の平均値と標準誤差を表す。
図 29 EL-4 における Bhlhe40 KD による NFAT 活性の変化

EL-4 の Bhlhe40 shRNA を恒常発現させた EL-4 に knockdown-resistant Bhlhe40 (Bhlhe40 shRNA') と NFAT レポーターベクターをトランスフェクションして、ionomycin (500 nM) による刺激を行った。刺激から 24 時間後の NFAT 活性をルシフェラーゼアッセイで検討した。ルシフェラーゼ活性は β ガラクトシターゼで補正したものを用いた。EL-4 の Bhlhe40 shRNA 恒常発現株で未刺激のものを 1 とした。グラフはルシフェラーゼ活性の平均値と標準誤差を表す。NS は統計学的有意差なしを示す。
4-7 Bhlhe40 は T-bet の存在下において IFN-γ 産生に関与する

これまでの検討から Bhlhe40 は単独では Ifng プロモーター活性に影響を与えないことがわかった。このことから、他の転写因子の補因子として働き、IFN-γ 産生に関与すると仮定した。そこで、T 細胞における TCR 刺激の下流因子として働き IFN-γ 産生に重要な働きをする T-bet という転写因子に注目した。

まず、野生型および Bhlhe40−/−マウスの iNKT 細胞における T-bet の発現量を評価するために、T-bet の細胞内染色を行った。これにより野生型および Bhlhe40−/−マウスの iNKT 細胞における T-bet の発現量に差がないことを確認した（図 30）。

次に、Lenti-X™ 293T に HA タグ付けた Bhlhe40 と Myc タグ付けた T-bet をトランスフェクションし、Myc タグで T-bet を免疫沈降し、T-bet に Bhlhe40 が結合するかどうかを検証した。すると、T-bet に対する免疫沈降により Bhlhe40 が検出されたことから、T-bet と Bhlhe40 が結合する可能性が示唆された（図 31）。さらに、生理的条件下での T-bet と Bhlhe40 の結合の有無を確認するために、iNKT 細胞における内在性の T-bet による共免疫沈降を行った。その結果、生理的条件下においても軽度の T-bet と Bhlhe40 の结合が認められ、さらに、α-CD3/CD28 Abs による TCR 刺激により Bhlhe40/T-bet の結合が増強されることが示唆された（図 32）。

次に、Bhlhe40/T-bet 相互作用が Ifng プロモーター制御に関与するかについて検証した。Bhlhe40−/− MEF は元来 Bhlhe40 も T-bet していないことから、Bhlhe40 と Tbet をともに強制発現した際の Ifng プロモーター活性を評価した。Bhlhe40−/− MEF に T-bet や Bhlhe40 を单独で強制発現しても、Ifng プロモーター活性は変化しなかったが、T-bet と Bhlhe40 の共に強制発現すると Ifng プロモーター活性が上昇した（図 33）。また、EL-4 は、元来 Bhlhe40 は発現しているが T-bet は発現していない。そこで、Bhlhe40 shRNA あるいは control shRNA を恒常発現させた EL-4 に対して、T-bet あるいは knockdown-resistant Bhlhe40 を強制発現させることで Ifng プロモーター活性への影響を検証した。これにより、Tbet と Bhlhe40 が共に発現することで Ifng プロモーター活性が上昇し、Bhlhe40 KD により Ifng プロモーター活性が低下し、Bhlhe40 shRNA により Ifng プロモーター活性の低下がレスキューされた（図 34）。

これらの結果から、Bhlhe40 は T-bet を介して IFN-γ 産生を増強すると考えられた。
図 30 野生型および Bhlhe40⁻⁻マウスの iNKT 細胞における T-bet の発現

野生型および Bhlhe40⁻⁻マウスの脾臓 iNKT (TCRβ⁺CD1d-α-GC dimer⁺) 細胞の T-bet の細胞内染色を示す。ヒストグラムは脾臓細胞を TCRβ⁺CD1d-α-GC dimer⁺でゲートしたのちにアイソタイプコントロールと重ねたものを示す。数字はアイソタイプコントロールから求められる Target 陽性細胞のゲート内に占める割合（%）を示す。3 回の独立した実験結果のうち代表的なデータを示す。
図 31 Lenti-X™ 293T における Bhlhe40 と T-bet 強制発現を用いた T-bet による共免疫沈降

Lenti-X™ 293T に HA タグを付けた Bhlhe40 あるいはコントロールベクターと，Myc タグを付けた T-bet をトランスフェクションし，Myc タグで T-bet を免疫沈降し，α-HA Ab あるいは α-Myc Ab でイムノプロットした結果を示す。右図は免疫沈降を行う前の細胞溶解液 (whole cell lysate; WCL) で行った total Bhlhe40 および T-bet を示す。Bhlhe40-HA(-) は実験系とは無関係と考える HA タグのついたタンパクがクローニングされたコントロールベクターのトランスフェクションを指す。3 回の独立した実験結果のうち代表的なデータを示す。
図 32 iNKT 細胞における T-bet による Bhlhe40 の共免疫沈降
iNKT 細胞を未刺激あるいは α-CD3/CD28 Abs による 60 分間の刺激後における T-bet による共免疫沈降の結果を示す。3 回の独立した実験結果のうち代表的なデータを示す。
図33 Bhlhe40/MEFにおけるBhlhe40とT-bet強制発現によるIfngプロモーター活性の変化

Bhlhe40/MEFにBhlhe40あるいはTbet発現ベクターとIfngプロモーターレポーターベクターをトランスフェクションして、48時間後のIfngプロモーター活性をルシフェラーゼアッセイで検討した。ルシフェラーーゼ活性はβガラクトシターゼで補正したものを用い、Bhlhe40/MEFにコントロールベクターをトランスフェクションしたもの=1とした。グラフはルシフェラーゼ活性の平均値と標準誤差を表す。Bhlhe40/MEFにコントロールベクターをトランスフェクションしたものを(-)として示している。**はT検定で比較した際p値が0.01未満のものを示す
図 34 EL-4 における T-bet 強制発現と Bhlhe40 KD による Ifng プロモーター活性の変化

Bhlhe40 shRNA あるいは control shRNA の恒常発現株とした EL-4 に knockdown-resistant Bhlhe40 (Bhlhe40 shRNA')あるいは T-bet 強制発現ベクターを一過性トランスフェクションし、トランスフェクション 48 時間後の Ifng プロモーター活性をルシフェラーゼアッセイで検討した。ルシフェラーゼ活性は β ガラクトシターゼで補正したものを用いた。EL-4 に control shRNA のみをトランスフェクションしたもの = 1 とした。グラフはルシフェラーゼ活性の平均値と標準誤差を表す。**は T 検定で比較した際 p 値が 0.01 未満のものを示す。
4-8 Bhlhe40 は IL-12 刺激による Ifng 産生も制御する

iNKT 細胞は、TCR 刺激以外でも活性化されサイトカインを産生することが知られており、そのような働きを持つもののひとつに IL-12 がある。そこで、IL-12 刺激による IFN-γ 産生は、Bhlhe40 の影響を受けるかどうかについて検討した。

まず、野生型および Bhlhe40−/−マウスの iNKT 細胞を IL-12 で刺激した際の Ifng mRNA の産生について検討したところ、IL-12 刺激においても、TCR 刺激時と同様に Bhlhe40−/−マウスの iNKT 細胞における Ifng mRNA の発現が低下していることがわかった (図 35)。IL-12 は IL-12 受容体に結合し、Jak2/Stat4 経路を介して、IFN-γ 産生に関与するとされている。そこで、Bhlhe40−/−MEF に Stat4 と Bhlhe40 を強制発現させて、Ifng プロモーター活性を検討した。Stat4 と Bhlhe40 を共に強制発現させても、Ifng プロモーター活性に変化は認められなかった (図 36)。さらに、Stat4 においても、T-bet と同様に Bhlhe40 が補因子として働く可能性を考え、Lenti-X™ 293T において Stat4 および Bhlhe40 強制発現による共免疫沈降を行ったが、Stat4 に対する Bhlhe40 の結合は確認できなかった (図 37)。さらに iNKT 細胞における IL-12 刺激下における内在性 Bhlhe40 と Stat4 の結合についても評価したが、結合は確認できなかった (図 38)。

これらのことから IL-12 刺激においては、Bhlhe40 は Ifng mRNA の発現に影響を与えるが、下流のシグナル系に影響を与えないことがわかった。さらにこの事実から、今度は、Bhlhe40/T-bet 相互作用が Ifng プロモーターのクロマチンリモデリング関与している可能性を考えた。
野生型および Bhlhe40−/− マウス iNKT 細胞の IL-12 刺激による Ifng mRNA の発現の時間経過による変化

野生型および Bhlhe40−/− マウスの脾臓 iNKT (TCRβ+ CD1d-α-GC dimer+) 細胞を in vitro 培養条件下において IL-12 で刺激し、0, 6, 12, 36, 60 時間における Ifng mRNA の産生量を示す。野生型マウス iNKT 細胞の結果を WT iNKT、Bhlhe40−/− マウス iNKT 細胞の結果を Bhlhe40−/− iNKT として示す。定量 real-time PCR の結果を野生型 iNKT 細胞の 0 時間 = 1 とした比較 Ct 法により検討したものを示す。3 回の独立した実験結果のうち代表的なデータを示す。
図 36 Bhlhe40⁺/⁻ MEF における Bhlhe40 と Stat4 強制発現による Ifng プロモーター活性の変化

Bhlhe40⁺/⁻ MEF に Bhlhe40 あるいは Stat4 発現ベクターと Ifng プロモータールシフェラーゼレポーターベクターをトランスフェクションして、48 時間後の Ifng プロモーター活性をルシフェラーゼアッセイで検討した。ルシフェラーゼ活性は β ガラクトシターゼで補正したもので用い、Bhlhe40⁺/⁻ MEF にコントロールベクターをトランスフェクションしたもの = 1 とした。グラフはルシフェラーゼ活性の平均値と標準誤差を表す。Bhlhe40⁺/⁻ MEF にコントロールベクターをトランスフェクションしたものを(+)として示している。
図 37 Lenti-X™ 293T における Bhlhe40 と Stat4 強制発現を用いた、Bhlhe40 による共免疫沈降

上図は Lenti-X™ 293T に HA タグを付けた Bhlhe40 あるいはコントロールベクターと Stat4 をトランスフエクションし、HA タグで Bhlhe40 を免疫沈降し、α-HA Ab あるいは α-Stat4 Ab でイムノブロットした結果を示す。下図は免疫沈降を行う前の WCL で行った total Bhlhe40 および Stat4 を示す。Stat4 (-) はコントロールベクターのトランスフェクションを指す。3 回の独立した実験結果のうち代表的なデータを示す。
図 38 iNKT 細胞における Bhlhe40 による Stat4 の共免疫沈降
iNKT 細胞を未刺激あるいは IL-12 刺激後における、Bhlhe40 による免疫沈降の結果を示す。左側は Bhlhe40 による免疫沈降後のサンプルを Stat4 でイムノブロットしたものを示す。右側は免疫沈降を行う前の WCL で行った total Stat4 を示す。3 回の独立した実験結果のうち代表的なデータを示す。
49. Bhlhe40 iNKT細胞では、Ifng 領域のヒストン H3-lysine (K9)アセチル化が低下する

Bhlhe40/T-bet 相互作用が、Ifng 領域のクロマチンリモデリングへ関与するかを検証するために、野生型あるいは Bhlhe40 iNKT細胞において ChIP をおこなった。Ifng 領域の評価に用いたプライマーの増幅領域を図39、プライマーを表5に示す。Ifng 領域には T-bet 結合領域 (T-box)が複数存在することが知られている47 (図39)。野生型あるいは Bhlhe40 iNKT細胞において、Bhlhe40 ChIP をおこなったところ、Bhlhe40 は Ifng 領域の T-box に結合していることが示された (図40)。

さらに、Bhlhe40 のクロマチン構造に与える影響を検証するために、iNKT 細胞の Ifng 領域におけるヒストン H3-K9 アセチル化、ヒストン H3-K4 ジメチル化、ヒストン H3-K4 トリメチル化について検討した。iNKT 細胞における、Ifng 領域のヒストン H3-K4 ジメチル化 (図41)、ヒストン H3-K4 トリメチル化 (図42) は Bhlhe40 欠損によって変化しなかった。一方で、ヒストン H3-K9 アセチル化が Ifng 領域の T-box で低下していた (図43)。

一方で、Il4 領域には T-bet が結合しないことが知られている47,48。そこで、iNKT 細胞における、Il4 領域におけるクロマチン構造に対する Bhlhe40 の影響を調べることとした。Il4 領域の評価に用いたプライマーの増幅領域を図44、プライマーを表6に示す。iNKT 細胞の Il4 領域では、ヒストン H3-K4 ジメチル化 (図45)、ヒストン H3-K4 トリメチル化 (図46)、ヒストン H3-K9 アセチル化 (図47) のいずれにおいても、Bhlhe40 欠損の影響は認められなかった。これらの結果から、Bhlhe40/T-bet 複合体が Ifng 領域の T-box におけるクロマチン構造に重要な働きを担っていることが推定された。

さらに、Bhlhe40/T-bet の相互作用の重要性を確認するために、T-bet 陽性あるいは陰性 iNKT 細胞において ChIP をおこなった。マウス生体材料において、iNKT1 は T-bet 陽性、iNKT2 は T-bet 陰性であることが知られている。当初はこれらの細胞において ChIP を検討したが、iNKT2 は図6、図11における CD4⁺IL17RB⁺を指すが、同図に示すように、TCRβ⁺CD1d-α-GC dimer⁺CD4⁺IL17RB⁺は生体における細胞数が極めて少なく、ChIP を行うことは困難である。そこで、T-bet 陽性あるいは陰性 iNKT 細胞を in vitro で増やす独自の培養法を確立した。具体的には、野生型マウスの脾臓から T-bet 陽性細胞サブセット (TCRβ⁺CD1d-α-GC dimer⁺CD4⁺IL17RB⁺) と T-bet 陰性細胞サブセット (TCRβ⁺CD1d-α-GC dimer⁺CD4⁺IL17RB⁺) に分離し、それぞれを BMDC と共培養したものを用いた。およそ 3 週間の培養後のこれらの細胞における T-bet の発現を示す (図48)。このことから TCRβ⁺CD1d-α-GC dimer⁺CD4⁺IL17RB⁺サブセットから増やした iNKT 細胞を T-bet positive iNKT、TCRβ⁺CD1d-α-GC dimer⁺CD4⁺IL17RB⁺サブセットから増やした iNKT 細胞を T-bet negative iNKT とし、さらにこれらの細胞の性質を検討するために、T-bet、Bhlhe40、Ifng mRNA の発現量を評価した (図49)。これら
の結果から二つの細胞における T-bet の発現に差があることがわかったことから、これらの細胞を用いて ChIPを行った。まず、Ifng 領域における Bhlhe40 の結合を調べたところ、T-bet negative iNKT において T-box の Bhlhe40 の結合が低下していた（図 50）。さらに、Ifng 領域のヒストン H3-K9 アセチル化、ヒストン H3-K4 ジメチル化、ヒストン H3-K4 トリメチル化についても検討した。T-bet negative iNKT の Ifng 領域におけるヒストン H3-K9 アセチル化は Bhlhe40/ iNKT 細胞のもの（図 40）と類似の傾向を示した（図 51）。また、Ifng 領域のヒストン H3-K4 ジメチル化、ヒストン H3-K4 トリメチル化に関しても T-bet negative iNKT において低下が認められた（図 52, 53）。この違いは過去の報告で、T-bet が Ifng 領域のメチル化に影響を与えることが報告されており、この違いは、T-bet 陰性の影響によって生じたものと考えられた 49。

さらに、T-bet positive あるいは T-bet negative iNKT において、Il4 領域のヒストン H3-K9 アセチル化、ヒストン H3-K4 ジメチル化、ヒストン H3-K4 トリメチル化について検討したが、いずれも明らかな差は認められなかった（図 54, 55, 56）。

これらの結果から、Bhlhe40/T-bet 複合体は Ifng 領域における T-box のヒストン H3-K9 アセチル化を変化させ、IFN-γ の産生を増強させていることが示唆された。
図 39 Ifng 領域のプライマー増幅領域と T-bet 結合領域 (T-box)

マウス Ifng 領域における表 5 に示したプライマーの Target 領域および T-bet 結合領域 (T-box)を示す。横軸は Ifng の転写開始点を 0 とした時の距離を示す。CNS は conserved non-coding sequence を示す。
図 40 野生型および Bhlhe40−/−マウス iNKT 細胞における Ifng 領域の Bhlhe40 ChIP PCR

野生型および Bhlhe40−/−マウス iNKT 細胞における anti-Bhlhe40 Ab および, control Ig による ChIP サンプルを用いた Ifng 領域の PCR の結果を%Input として示す. 野生型マウス iNKT 細胞によるものを WT iNKT, Bhlhe40−/−マウス iNKT 細胞によるものを Bhlhe40−/− iNKT として示す. 2 回の独立した実験結果のうち代表的なデータを示す.
野生型およびBhlhe40⁻⁻マウスiNKT細胞におけるIfng領域のヒストンH3-K4ジメチル化ChIP PCR

野生型およびBhlhe40⁻⁻マウスiNKT細胞におけるanti-dimethylated H3-K4 Abおよびcontrol IgによるChIPサンプルを用いたIfng領域のPCRの結果を%Inputとして示す。野生型マウスiNKT細胞によるものをWT iNKT，Bhlhe40⁻⁻マウスiNKT細胞によるものをBhlhe40⁻⁻iNKTとして示す。#1は異なるサンプルを用いて測定したため，別のグラフとして示す。2回の独立した実験結果のうち代表的なデータを示す。
野生型および Bhlhe40⁻⁻ マウス iNKT 細胞における Ifng 領域のヒストン H3-K4 トリメチル化 ChIP PCR

野生型および Bhlhe40⁻⁻ マウス iNKT 細胞における anti-trimethylated H3-K4 Ab および, control Ig による ChIP サンプルを用いた Ifng 領域の PCR の結果を %Input として示す。野生型マウス iNKT 細胞によるものを WT iNKT, Bhlhe40⁻⁻ マウス iNKT 細胞によるものを Bhlhe40⁻⁻ iNKT として示す。#1 は異なるサンプルを用いて測定したため、別のグラフとして示す。2 回の独立した実験結果のうち代表的なデータを示す。
図43 野生型およびBhlhe40⁻/⁻マウスiNKT細胞におけるIfng領域のヒストンH3-K9アセチル化ChIP PCR

野生型およびBhlhe40⁻/⁻マウスiNKT細胞におけるanti-acetylated H3-K9 Abおよびcontrol IgによるChIPサンプルを用いたIfng領域のPCRの結果を%Inputとして示す。野生型マウスiNKT細胞によるものをWT iNKT，Bhlhe40⁻/⁻マウスiNKT細胞によるものをBhlhe40⁻/⁻iNKTとして示す。#1は異なるサンプルを用いて測定したため，別のグラフとして示す。2回の独立した実験結果のうち代表的なデータを示す。
図 44 *Il4* 領域のプライマー増幅領域

マウス *Il4* 領域における表 6 に示したプライマーの Target 領域を示す。横軸は *Il4* の転写開始点を 0 とした時の距離を示す。
図45 野生型およびBhlhe40⁻/⁻マウスiNKT細胞におけるIl4領域のヒストンH3-K4ジメチル化ChIP PCR

野生型およびBhlhe40⁻/⁻マウスiNKT細胞におけるanti-dimethylated H3-K4 Abおよびcontrol IgによるChIPサンプルを用いたIl4領域のPCRの結果を%Inputとして示す。野生型マウスiNKT細胞によるものをWT iNKT, Bhlhe40⁻/⁻マウスiNKT細胞によるものをBhlhe40⁻/⁻iNKTとして示す。
図46 野生型およびBhlhe40⁻/⁻マウスiNKT細胞におけるIl4領域のヒストンH3-K4トリメチル化ChIP PCR

野生型およびBhlhe40⁻/⁻マウスiNKT細胞におけるanti-trimethylated H3-K4 Abおよび、control IgによるChIPサンプルを用いたIl4領域のPCRの結果を%Inputとして示す。野生型マウスiNKT細胞によるものをWT iNKT、Bhlhe40⁻/⁻マウスiNKT細胞によるものをBhlhe40⁻/⁻iNKTとして示す。
図 47 野生型および Bhlhe40−/−マウス iNKT 細胞における Il4 領域のヒストン H3-K9 アセチル化 ChIP PCR

野生型および Bhlhe40−/−マウス iNKT 細胞における anti-acetylated H3-K4 Ab および、control Ig による ChIP サンプルを用いた Il4 領域の PCR の結果を%Input として示す。野生型マウス iNKT 細胞によるものを WT iNKT、Bhlhe40−/− マウス iNKT 細胞によるものを Bhlhe40−/− iNKT として示す。
図 48 T-bet positive および negative iNKT における T-bet の発現

in vitro で 3 週間培養した T-bet positive および T-bet negative iNKT の T-bet の細胞内染色を示す。ヒストグラムは培養細胞を TCRβ⁺CD1d-α-GC dimer⁺でゲートしたのちにアイソタイプコントロールと重ねたものを示す。数字はアイソタイプコントロールから求められる Target 陽性細胞のゲート内に占める割合（%）を示す。3 回の独立した実験結果のうち代表的なデータを示す。
図 49 T-bet positive および negative iNKT における Bhlhe40, Ifng, Tbet mRNA の発現量の比較

T-bet positive および negative iNKT における Bhlhe40, Ifng, Tbet の mRNA の発現量を示す。T-bet positive は T-bet positive iNKT を指し、T-bet negative は T-bet negative iNKT を指す。定量 real-time PCR の結果を T-bet positive iNKT = 1 とした比較 Ct 法により検討したものを示す。ND は un-determined を示す。3 回の独立した実験結果のうち代表的なデータを示す。
図 50 T-bet positive および negative iNKT における Ifnγ 領域の Bhlhe40 ChIP PCR

T-bet positive および T-bet negative iNKT における anti-Bhlhe40 Ab および、
control Ig による ChIP サンプルを用いた Ifnγ 領域の PCR の結果を%Input とし
て示す。2 回の独立した実験結果のうち代表的なデータを示す。
図 51 T-bet positive および negative iNKT における Ifng 領域のヒストン H3-K9 アセチル化 ChIP PCR

T-bet positive および T-bet negative iNKT における anti-acetylated H3-K4 Ab および, control Ig による ChIP サンプルを用いた Ifng 領域の PCR の結果を%Input として示す。2 回の独立した実験結果のうち代表的なデータを示す。
図 52 T-bet positive および negative iNKT における Ifng 領域のヒストン H3-K4 ジメチル化 ChIP PCR

T-bet positive および T-bet negative iNKT における anti-dimethylated H3-K4 Ab および, control Ig による ChIP サンプルを用いた Ifng 領域の PCR の結果を%Input として示す. 2 回の独立した実験結果のうち代表的なデータを示す.
図 53 T-bet positive および negative iNKT における Ifng 領域のヒストン H3-K4 トリメチル化 ChIP PCR

T-bet positive および T-bet negative iNKT における anti-trimethylated H3-K4 Ab および, control Ig による ChIP サンプルを用いた Ifng 領域の PCR の結果を%Input として示す。2 回の独立した実験結果のうち代表的なデータを示す。
図 54 T-bet positive および negative iNKT における Il4 領域のヒストン H3-K9 アセチル化 ChIP PCR

T-bet positive および T-bet negative iNKT における anti-acetylated H3-K4 Ab および, control Ig による ChIP サンプルを用いた Il4 領域の PCR の結果を%Input として示す。
図 55 T-bet positive および negative iNKT における Il4 領域のヒストン H3-K4 デメチル化 ChIP PCR

T-bet positive および T-bet negative iNKT における anti-dimethylated H3-K4 Ab および，control Ig による ChIP サンプルを用いた Il4 領域の PCR の結果を%Input として示す。
図 56 T-bet positive および negative iNKT における Il4 領域のヒストン H3-K4 トリメチル化 ChIP PCR

T-bet positive および T-bet negative iNKT における anti-trimethylated H3-K4 Ab および control Ig による ChIP サンプルを用いた Il4 領域の PCR の結果を % Input として示す。
5. 考察

免疫応答は様々な細胞やさまざまな分子の働きが組み合わさることで起こるものであり、異物の侵入に対する免疫応答は、まず自然免疫による急速な初期応答から始まる。自然免疫は獲得免疫を活性化させ、異物を排除し、最終的に免疫応答が終息する。これらの過程のいずれかが障害されることがで様々な異常が起こるとされている。

異物の侵入に正しく反応するためには、初期免疫応答を担う自然免疫の働きが極めて重要である。免疫応答の一つである NK T細胞は、生体内に占める割合は低いにも関わらず、糖脂質を認識することにより、すみやかに大量のサイトカインを産生することで、獲得免疫を活性化することによって、異物を排除し、最終的に免疫応答が終息する。これらの過程のいずれかが障害されることで様々な異常が起こるとされている。

異物の侵入に正しく反応するためには、初期免疫応答を担う自然免疫の働きが極めて重要である。自然免疫担当細胞の一つである NKT細胞は、生体内に占める割合は低いにも関わらず、糖脂質を認識することにより、すみやかに大量のサイトカインを産生することで、獲得免疫の活性化を誘導する重要な働きを担っている。NKT細胞の機能は、腫瘍免疫や異物感染において重要なだけでなく、喘息などのアレルギー疾患や自己免疫疾患などのさまざまな疾患の発症に関与するとされている。

NKT細胞の主なサブセットの一つである、iNKT細胞の特徴的な機能の一つが、刺激にすばやく応答して大量の IFN-γ を産生することであるが、この機能が障害されることは様々な疾患の原因になるとされている。Diabetes-prone non-obese diabetic (NOD)マウスはⅠ型糖尿病のモデルマウスとして知られるが、このマウスでは NK T細胞が減少し、サイトカインの産生能が低下している。このマウスに NK T細胞を移植するあるいは、iNKT細胞のもつ特徴的な TCR を強制発現させることで、糖尿病の発症を抑制することができる。また、Ⅰ型糖尿病患者の末梢血における NK T細胞の頻度や IFN-γ の産生能の低下が起こっているとされ、これらの異常が認められる場合に、Ⅰ型糖尿病のリスクになりうることも言われている。

本研究では、Bhlhe40 がこの iNKT 細胞の持つ特徴的な IFN-γ 産生において重要な働きを担うことを示した。Bhlhe40 はもともと様々な細胞に発現しており、細胞によって細胞増殖・免疫応答・日内リズムなどのさまざまな生理学的機能を担うことが報告されている。Immunological Genome Project というマウスの免疫担当細胞における遺伝子発現を解析した研究においても、Bhlhe40 は iNKT 細胞で高発現を示すことが示されているが、iNKT 細胞における Bhlhe40 の機能は明らかにされていなかった。

本研究ではそれらについての解析を行い、Bhlhe40 欠損が iNKT 細胞の TCR 刺激および IL-12 刺激に伴う IFN-γ 産生に影響を与えることを示した。しかししながら、Bhlhe40 は直接 Ifng プロモーター活性には作用せず、さらに TCR の下流シグナルの NFκB や NFAT、IL-12 受容体の下流の Stat4 シグナル経路には影響を与えないことを示した。
Bhlhe40 が T-bet の補因子として働き、Ifng プロモーターの活性にかかわることを示した。

Bhlhe40 は元来 class B E-box 配列に結合し、転写抑制因子として働くことが知られていた 19。しかしながら、最近 Bhlhe40 は transcription factor II B、TATA-binding protein、transcription factor II D などの他の転写因子の補因子として転写制御を行うという報告や 20,21, Spt1 結合領域と作用して survivin の発現を亢進させることから、転写活性化作用も有することが報告されている 22。また、T-bet は元来 Ifng プロモーターのクロマチンリモデリングに関与することが報告されている 49。過去の報告では、T-bet は CBP/P300 と結合して、ヒストン H3-K9 アセチル化に関与すると報告されている 57。Bhlhe40 も T-bet-CBP/P300 複合体に関与するの可能性も示唆されるが、それについては今後のさらなる検討が必要である。

他の報告において、Bhlhe40 が Th1 細胞において IFN-γ 産生に関与することが言及されており、Th1 および Th17 細胞の働きを介して、Bhlhe40−/− マウスは実験的自己免疫脳炎の発症を抑制するとされている 58。一方で、T-bet 発現 NK 細胞や γδ T 細胞などの刺激に伴い大量の IFN-γ を産生する細胞の影響については調べられていない。これらの細胞における、Ifng 領域のヒストン H3-K9 アセチル化に重要であることを示した。一方で、クロマチン構造の変化はしばしば基底状態における転写レベルを変化させることが知られているが、我々の実験系においては Bhlhe40 欠損における iNKT 細胞の pre-formed Ifng mRNA の産生には影響はなかった。また、強制発現株を用いた検討では、レポーターベクターにはクロマチン構造が存在しないことには注意が必要である。これらに関しては今後の検討で明らかにしていきたい。

既報告では、Bhlhe40 の発現には日内リズムがあるといわれていた 18。しかしながら、本研究においては、明暗周期変化による iNKT 細胞や CD4+T 細胞の Bhlhe40 の発現の日内リズムは認められなかった。このことから、iNKT 細胞の働きが日内リズムの影響を受けないことを示していると考えられる。また、Bhlhe40 は T 細胞の様々な機能に関わることが言われており、naïve CD8+ T 細胞をメモリー T 細胞に変化させるのにも関わるとされている。この働きは日内リズムの影響を受けないとされている 58-60。このことからも、本研究で示した iNKT 細胞における Bhlhe40 の IFN-γ 産生に関わる機構も日内リズムの影響を受けないことが示唆される。

本研究では iNKT 細胞における Bhlhe40/T-bet 複合体による IFN-γ 産生の分子メカ
ニズムを明らかにした。iNKT 細胞における Bhlhe40 の働きを明らかにすることで、今後自己免疫疾患をふくむさまざまな疾患の病態解明の一助になると考える。
6. 総括及び結論

- IFN-γ産生能を持つiNKT細胞(iNKT1および胸腺Stage 3 iNKT)におけるBhlhe40の発現量が高いこと
- Bhlhe40欠損はiNKT細胞の分化・成熟に影響を与えないこと
- Bhlhe40はiNKT細胞のIFN-γ産生を制御し、抗腫瘍活性を担うこと
- Bhlhe40はT-bet結びし、Ifng領域のヒストンH3-K9アセチル化を制御することによりIFN-γ産生に関与すること

本研究では、まずIFN-γ産生能を持つiNKT細胞(iNKT1および胸腺Stage 3 iNKT)におけるBhlhe40の発現量が高いことを確認した。そこで、Bhlhe40 knockoutマウスを用いて、Bhlhe40欠損はiNKT細胞の分化・成熟に影響を与えないことおよびBhlhe40はiNKT細胞のIFN-γ産生を制御し、抗腫瘍活性を担うことを示した。さらに、in vitroの実験を組み合わせて、Bhlhe40がT-bet結合し、Ifng領域のヒストンH3-K9アセチル化を制御することによりIFN-γ産生に関与することを示した。これらの検討から、iNKT細胞におけるBhlhe40によるIFN-γ産生メカニズムを明らかにした。今後は、このメカニズムと自己免疫疾患の発症機序に関連など、ヒトの疾患病態の解明の一助となるような研究進展を行っていきたい。
7. 謝辞

稿を終えるにあたり、本研究の機会を与えて頂いた北海道大学大学院医学研究科内科学講座免疫・代謝内科学分野、渥美達也教授に謝意を表します。

本研究全般にわたり直接ご指導ご鞭撻賜りました北海道大学遺伝子病制御研究所免疫生物分野教授・清野研一郎先生に深く感謝いたします。また、基礎的な部分から直接のご指導頂きました北海道大学遺伝子病制御研究所免疫生物分野講師（現：理化学研究所統合生命医科学研究センター）、香城諭先生、北海道大学遺伝子病制御研究所免疫生物分野（現：聖マリアンナ医科大学産婦人科学講座助教）、山中弘之先生に心から感謝いたします。さらに、各種研究材料を提供して頂きました広島大学原爆放射線医科学研究所疾患モデル解析研究分野教授・本田浩章先生、広島大学自然科学研究支援センター生命科学研究部門教授、外丸祐介先生、理化学研究所総合生命医科学研究センター免疫制御戦術研究グループディレクター、谷口克先生に感謝いたします。

最後に本研究を遂行するにあたり、ご助言・ご協力・ご支援頂きました北海道大学大学院医学研究科内科学講座免疫・代謝内科学分野および遺伝子病制御研究所免疫生物分野の全ての皆様に心より御礼申し上げます。
8. 引用文献

9, 4-14 (2009).

19 Li, Y. *et al.* DEC1 negatively regulates the expression of DEC2 through binding to the E-box in the proximal promoter. *J. Biol. Chem.* 278, 16899-16907 (2003).

22 Li, Y. *et al.* The expression of antiapoptotic protein survivin is transcriptionally upregulated by DEC1 primarily through multiple sp1 binding sites in the proximal promoter. *Oncogene* 25, 3296-3306 (2006).

Liu, Y. et al. DEC1 is positively associated with the malignant phenotype of invasive breast cancers and negatively correlated with the expression of claudin-1. Int. J. Mol. Med. 31, 855-860 (2013).