<table>
<thead>
<tr>
<th>Instructions for use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-translational mechanisms are associated with fertility restoration of cytoplasmic male sterility in sugar beet</td>
</tr>
<tr>
<td>Author(s)</td>
</tr>
<tr>
<td>Kitazaki, Kazuyoshi; Arakawa, Takumi; Matsunaga, Muneyuki; Yui-Kurino, Rika; Matsuhira, Hiroaki; Mikami, Tetsuo; Kubo, Tomohiko</td>
</tr>
<tr>
<td>Citation</td>
</tr>
<tr>
<td>The Plant Journal, 83(2): 290-299</td>
</tr>
<tr>
<td>Issue Date</td>
</tr>
<tr>
<td>2015-07-04</td>
</tr>
<tr>
<td>Doc URL</td>
</tr>
<tr>
<td>http://hdl.handle.net/2115/62599</td>
</tr>
<tr>
<td>Right</td>
</tr>
<tr>
<td>This is the peer reviewed version of the following article: "Post-translational mechanisms are associated with fertility restoration of cytoplasmic male sterility in sugar beet", The Plant Journal, 83(2)pp290-299, which has been published in final form at 10.1111/tpj.12888. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>article (author version)</td>
</tr>
<tr>
<td>Additional Information</td>
</tr>
<tr>
<td>There are other files related to this item in HUSCAP. Check the above URL.</td>
</tr>
<tr>
<td>File Information</td>
</tr>
<tr>
<td>text FigS1-7 tableS1.pdf</td>
</tr>
</tbody>
</table>
Title: Post-translational mechanisms are associated with fertility restoration of cytoplasmic male sterility in sugar beet

Authors: Kazuyoshi Kitazaki¹, Takumi Arakawa, Muneyuki Matsunaga, Rika Yui-Kurino, Hiroaki Matsuhira², Tetsuo Mikami and Tomohiko Kubo

Affiliations:
Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan

Corresponding author: Tomohiko Kubo, Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
tel/fax, +81-11-706-2484; e-mail, tomohiko@abs.agr.hokudai.ac.jp

Short title: Post-translational mechanisms in sugar beet CMS

Key words: cytoplasmic male sterility, fertility restoration, plant mitochondria, protein-protein interaction, Beta vulgaris ssp. vulgaris, Blue Native polyacrylamide gel electrophoresis

Word count: total, 7191; summary, 247; significant statement, 57; introduction, 813; results, 1923; discussion, 867; experimental procedures, 1317; acknowledgements, 74; short legends for supporting information, 90; references, 1073; figure legends, 717.

Present addresses:
¹Horticulture Research Division, Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Kurume, Fukuoka, 839-8503, Japan
²Crop Breeding Research Division, Hokkaido Agricultural Research Center, NARO, Sapporo, Hokkaido, 062-8555, Japan
SUMMARY
Genetic conflict between cytoplasmically inherited elements and nuclear genes due to their different transmission patterns can be seen in cytoplasmic male sterility (CMS), the mitochondrion-encoded inability to shed functional pollen. CMS is associated with a mitochondrial ORF absent from non sterility-inducing mitochondria (S-orf). Nuclear genes that suppress CMS are called restorer-of-fertility (Rf) genes. Post-transcriptional and translational repression of S-orf mediates the molecular action of Rf that encodes a class of RNA-binding proteins having pentatricopeptide repeat (PPR) motifs. Besides the PPR-type of Rfs, there are also non-PPR Rfs, but the molecular interactions between non-PPR Rf and S-orf have not been described. In this study, we investigated the interaction of sugar beet bvORF20, a non-PPR Rf, with preSatp6, the sugar beet S-orf. Anthers expressing bvORF20 contained a protein that interacted with preSATP6 protein. Analysis of anthers and transgenic calli expressing a FLAG-tagged bvORF20 suggested binding of preSATP6 to bvORF20. To see the effect of bvORF20 on preSATP6, which exists as a 250-kDa protein-complex in CMS plants, signal bands of preSATP6 in bvORF20-expressing and non-expressing anthers were compared by immunoblotting combined with Blue Native polyacrylamide gel electrophoresis. The signal intensity of the 250-kDa band decreased significantly and 200- and 150-kDa bands appeared in bvORF20-expressing anthers. Transgenic callus expressing bvORF20 also generated the 200- and 150-kDa bands. The 200-kDa complex likely includes both preSATP6 and bvORF20. Post-translational interaction between preSATP6 and bvORF20 appears to alter the higher order structure of preSATP6 that may lead to fertility restoration in sugar beet.

Significance Statement
Cytoplasmic male sterility (CMS) is expressed by the interaction of ORFs that are absent from non-male sterility-inducing mitochondria (S-orf) and nuclear genes called restorer-of-fertility (Rf) that suppress the CMS. In sugar beet, S-orf and Rf interact post-translationally, whereby a certain form of protein-complex consisting of S-orf translation products disappears in anthers where Rf is expressed.
INTRODUCTION

Heritable cytoplasmic elements are usually transmitted through only the female parent, whereas nuclear genes are transmitted through both the male and female parents. This difference in transmission pattern is thought to cause a genetic conflict in which certain cytoplasmic elements evolve to feminize the host organism to enhance their transmission, and the nuclear genome evolves suppressors against these selfish cytoplasmic elements (Werren, 2011). Evolution of cytoplasmic elements that feminize the hosts and nuclear genes that suppress the feminization are evident in cytoplasmic male sterility (CMS), a mitochondrially encoded trait that has been observed in more than 140 plant species (Laser and Lersten, 1972).

CMS has been associated with sterilizing mitochondria that express (often hydrophobic) proteins absent from nonsterilizing mitochondria (Hanson and Bentolila, 2004). Such proteins are encoded by ORFs unique to sterilizing mitochondrial genomes (Budar and Berthomé, 2007). The origin of these ORFs (hereafter termed S-orfs) is inferred to be recombination between (sometimes multiple) mitochondrial genes and/or unknown sequences, since S-orfs consist of parts of mitochondrial genes and/or origin-unknown sequences (Chase, 2007). Various S-orfs differing in their primary sequences have been reported (Budar and Berthomé, 2007). Some of these S-orfs probably impair mitochondrial respiratory chain complexes in a post-translational manner (Sabar et al., 2003; Luo et al., 2013). Other S-orfs are translated and form oligomers that are believed to exert deleterious effects on mitochondria (e.g. Duroc et al., 2009). However, the significance of such oligomers on CMS expression is still unknown.

Accumulation of an S-orf translation product (S-ORF) is often low when the plant has a nuclear restorer-of-fertility gene (Rf), a suppressor of male sterility (Hanson and Bentolila, 2004) that probably evolved in the presence of S-orf (Touzet, 2012). Some of the Rfs that decrease S-ORF accumulation encode a class of protein having arrays of a degenerate motif termed a pentatricopeptide repeat (PPR) (Chen and Liu, 2014). Because PPR proteins are capable of binding RNA in sequence-specific manner (Barkan and Small, 2014), PPR-type Rfs are thought to be associated with post-transcriptional or translational repression of S-orf via direct interaction with S-orf mRNA (e.g. Kazama et al.)
although indirect interaction has also been reported (Hu et al., 2012).

Post-transcriptional and translational mechanisms are not the only molecular means for Rf suppression of S-orf action. For example, maize Rf2 is a non-PPR type Rf encoding a mitochondrial aldehyde dehydrogenase (Cui et al., 1996). When a maize plant with Texas-type CMS (CMS-T) has Rf2, accumulation of its S-ORF protein was unchanged (Dewey et al., 1987). On the other hand, the molecular mechanism that links maize RF2 and S-ORF is unknown. This holds true for the other non-PPR-type Rfs because their molecular action on their cognate S-orfs is unknown.

Here, we show that a post-translational mechanism links a non-PPR-type Rf and S-orf in sugar beet. The S-orf in sugar beet is likely preSatp6, an N-terminal extension (387 amino acid residues) of genuine atp6, a subunit of ATP synthase (Yamamoto et al., 2005). The nucleotide sequence of preSatp6 has no significant homology to other S-orfs (Yamamoto et al., 2005). The translation product of preSatp6 (preSATP6) is a membrane protein that forms homo-oligomers (Yamamoto et al., 2005). When sugar beet plants with Rf were analyzed, transcription of preSatp6 or accumulation of preSATP6 proteins was unchanged (Yamamoto et al., 2005). Therefore, whether post-transcriptional or translational regulation was involved in the suppression of sugar beet CMS could not be determined.

The nucleotide sequence of the locus containing one of the sugar beet Rfs, Rf1, revealed a quadruplicated gene cluster, whose constituents are named bvORF18 through bvORF21 (Matsuhira et al., 2012). Only one of the constituents, bvORF20, was capable of restoring partial pollen fertility to CMS sugar beet when expressed as a transgene (Matsuhira et al., 2012). bvORF20 encodes a mitochondrial protein that resembles the OMA1 metallopeptidase present in yeast and other eukaryotes (Käser et al., 2003). Yeast OMA1 was first identified as a protease involved in the protein quality-control system in mitochondrial membranes, a process for coping with aberrant proteins (Leidhold and Voos, 2007). Thus, it is possible that the bvORF20-translation product (bvORF20) interacts with preSATP6. Although the peptidase activity of yeast and mammalian OMA1 is evident (Käser et al., 2003; McBride and Soubannier, 2010), no peptidase activity is
expected from bvORF20 because its Zn$^{2+}$-binding site in the predicted proteolytic center has a glutamate-to-glutamine substitution that abolishes peptidase activity (Käser et al., 2003; Matsuhiro et al., 2012). Thus, even if bvORF20 and preSATP6 interact with each other, degradation of preSATP6 appears to be unlikely.

In the present study, we first show protein-protein interaction between preSATP6 and bvORF20. We next show that the accumulation of a protein complex containing preSATP6 (probably the oligomeric form of preSATP6) is lower in fertility-restored anthers without a significant reduction in preSATP6 accumulation. Our data support the notion that certain conformations of S-ORF protein have functional significance in CMS expression.

RESULTS

The translation product of bvORF20 is a membrane protein

An antiserum against bvORF20 (αbvORF20) was raised for protein analyses. The antigen corresponds to an internal region of bvORF20 and was expressed in E. coli as a recombinant protein. Note that the amino-acid sequences of bvORF18 through bvORF21 are so similar (88 to 100% identity) (Matsuhiro et al., 2012) that raising an antiserum that specifically reacts with bvORF20 is infeasible. Thus, αbvORF20 could react with bvORF18 through bvORF21 (OMA1-like proteins).

Total cellular proteins from anthers (collected before anthesis), taproots, and leaves of sugar beet line NK-198, from which bvORF20 was cloned, were subjected to immunoblot analysis. We observed 41-kDa signal bands from immature anthers (Fig. 1a). The signal intensity was stronger in smaller anthers than larger ones. A very faint signal band was seen from the taproots but was barely visible in leaves. In a previous study, abundant transcripts of bvORF18-bvORF21 were detected in flower buds by RNA gel blot analysis (Matsuhiro et al., 2012). Accumulation of bvORF20 mRNA in immature anthers was confirmed by cDNA sequencing (Matsuhiro et al., 2012). We detected transcripts of bvORF18-bvORF21 from roots by reverse transcription (RT) PCR analysis (Fig. S1), suggesting a low level of transcription of these genes in roots. Alternatively, a cross-reactable protein may exist in taproots. Altogether, the results of the immunoblot
analysis are consistent with the transcript analyses.

We expected membrane localization of the OMA1-like proteins, as is the case for yeast OMA1 (Käser et al., 2003). The soluble fraction of total cellular proteins from immature anthers was subjected to immunoblot analysis using αbvORF20. Antisera against preSATP6 (αpreSATP6) and MnSOD (αMnSOD) (Yamamoto et al., 2005; Bowler et al., 1991), whose antigens are membrane and soluble proteins, respectively, were used as controls. We used two sugar beet lines, NK-198 and TK-81mm-CMS, the latter of which is a CMS line (i.e. having sterilizing mitochondria and being devoid of Rf).

As shown in Fig. 1b, αMnSOD reacted with both soluble and total proteins, and αpreSATP6 reacted with total proteins but not with soluble proteins, indicating the integrity of our sample preparation. The signal intensity of αpreSATP6 was indistinguishable between NK-198 and TK-81mm-CMS, a result consistent with the result of Yamamoto et al. (2005) who showed that accumulation of preSATP6 was unchanged in the presence of Rf. The αbvORF20 reacted with a total lysate from NK-198 but not with the other samples (Fig. 1b). In a previous study by Matsuhira et al. (2012), a chimeric green fluorescent protein having 55 N-terminal amino acid residues of bvORF20 was localized to mitochondria. Taken together, these results indicate that bvORF20 is a mitochondrial membrane protein.

Protein-protein interaction between preSATP6 and bvORF20

Because both preSATP6 and bvORF20 are membrane proteins, we expected that their protein-protein interaction could be detected by immunoprecipitation (IP) analysis. Immature anthers of NK-198 and TK-81mm-CMS were subjected to IP analysis using αpreSATP6. Because preSATP6 is a highly hydrophobic protein, IP analysis was done in the presence of a non-ionic detergent, digitonin (Eubel et al., 2003). The precipitates were resolved by SDS-polyacrylamide gel electrophoresis (PAGE) and visualized by gel staining. As shown in Fig. 2a, 52-, 39-, and 28-kDa signal bands appeared when TK-81mm-CMS was used. These bands correspond to the heavy chain of antibody (52 kDa), preSATP6 (39 kDa), and the light chain of antibody (28 kDa), respectively. On the other hand, an additional 41-kDa signal band appeared in the lane for NK-198 (Fig. 2a).
We next examined whether the 41-kDa protein is an OMA1-like protein. Immunoprecipitates obtained using αpreSATP6 were subjected to immunoblot analysis. From the precipitate of NK-198 immature anthers, αbvORF20 reacted with a 41-kDa protein that was missing from the precipitate of TK-81mm-CMS (Fig. 2b). Anti-preSATP6 antiserum detected a 39-kDa signal band from NK-198 and TK-81mm-CMS, indicating that the sample was appropriately prepared (Fig. 2b). On the other hand, the reciprocal analysis in which immunoblots of αbvORF20 precipitates were probed with αpreSATP6 failed to detect any signal band (Fig. 2b). Considering the absence of αbvORF20 signal from αbvORF20 precipitates, a likely explanation is that there was insufficient exposure of the αbvORF20 epitope in the digitonin-lysed protein sample. In addition, difficulty in obtaining a sufficient amount of sugar beet anthers was an obstacle for further analysis of protein-protein interactions.

In order to confirm protein-protein interactions between preSATP6 and bvORF20, we generated transgenic callus that constitutively expressed bvORF20 tagged with FLAG at the 3'-terminus (bvORF20::flag). Expression of the transgene was driven by the cauliflower mosaic virus (CaMV) 35S promoter. Sugar beet line NK-219mm-CMS, a CMS line, was used in these analyses because it is the only sugar beet line available to us that can be used for transgenic analyses (Kagami et al., 2015).

The bvORF20::flag transgenic callus expressed the transgene as judged by the detection of 42-kDa signal band with anti-FLAG antiserum (αFLAG) (Fig S2). Considering the molecular mass of FLAG (~1 kDa), the size of the detected band is consistent with that of a fusion protein. Total cellular proteins from transgenic calli were lysed in digitonin. We prepared immunoprecipitates from this lysate using αFLAG, and the precipitates were electrophoresed and blotted. The blot was then probed with αpreSATP6. As shown in Fig. 3, a 39-kDa signal band appeared on the blot.

Our analysis included another transgene made from bvORF20L, the bvORF20 counterpart of rf1rf1 sugar beet lines (Matsuhira et al., 2012; Moritani et al., 2013). Although levels of transcripts and the translation products of bvORF20L were below the limits of detection by RNA gel blot analysis or immunoblot analysis (Matsuhira et al. [2012] and this study), transcription of bvORF20L was indicated by RT-PCR analysis.
bvORF20L encodes a protein of 434 amino acid residues that are 83% identical to bvORF20 (Matsuhira et al., 2012). The protein products of the bvORF20L::flag transgene were detected in callus as shown in Fig. S2. We prepared αFLAG precipitates from the bvORF20L::flag callus; however, αpreSATP6 did not produce a 39-kDa signal band (Fig. 3). Therefore, although bvORF20 can bind to preSATP6, such an ability is likely absent from bvORF20L.

Decreased accumulation of the 250-kDa complex in fertility-restored anthers

Although bvORF20 resembles Oma1, the activity of bvORF20 on preSATP6 is not protein degradation as seen in Fig. 1. We tested another possibility that the consequence of bvORF20-preSATP6 interaction is a conformational alteration of preSATP6. In the previous study, preSATP6 was detected as a homo-oligomer on Blue Native (BN) polyacrylamide gels of proteins prepared with the detergent n-dodecyl D-maltoside (DDM) (Yamamoto et al., 2005). Although digitonin, instead of DDM, was used in this study, preSATP6 was detected as a stable complex in the presence of digitonin (Fig. S3). No other polypeptides co-immunoprecipitated with preSATP6 in TK-81mm-CMS (Fig. 2). Therefore, the 250-kDa complex that was detected in the presence of digitonin may be a homo-oligomer.

We examined the oligomer status of preSATP6 in the immature anthers of NK-198. As shown in Fig. 4, a 200-kDa signal band appeared that is missing in TK-81mm-CMS. We also observed another signal band (150-kDa) in the NK-198 lane, but its signal intensity was fairly faint compared to that of the 200-kDa band. Furthermore, the signal intensity of the 250-kDa band in NK-198 was slightly reduced. The mobility of COXI-containing complexes was unchanged among TK-81mm-O, TK-81mm-CMS and NK-198 (Fig. 4). The electrophoretic mobility of a complex can be changed under different detergent/protein ratios (Eubel et al., 2003); therefore, we tested whether the mobility of the 250-kDa complex was sensitive to the concentration of digitonin. Under our experimental conditions, the 250-kDa complex was stable (Fig. S4).

It is possible that the appearance of the 200- and 150-kDa complexes in NK-198 anthers was associated with bvORF20. If so, a correlation between expression of
bvORF20 and the appearance of these two complexes would be expected. As seen in Fig. 1a, the expression of bvORF20 decreased in accordance with anther development. If the temporal expression pattern of bvORF20 in anthers is more carefully measured, a correlation between the expression of bvORF20 and the appearance of these two complexes can be tested using NK-198 anthers by sorting anthers by their developmental stages.

Using a light microscope, we could distinguish seven developmental stages in NK-198 anthers (Fig. S5) and confirmed that all five stamens in a flower developed synchronously. As such, anther samples of each developmental stage were obtained by the following procedure: for each flower, we determined the developmental stage of one of the five anthers in the flower by light microscopy and the remaining four anthers were sorted to the pool for the respective stage. Total cellular proteins of these pooled samples were separated by SDS-PAGE. Immunoblot analysis using αbvORF20 revealed signal bands from the meiosis, tetrad, and microspore stages, but the signal band was quite faint from the mature stage (Fig. 5), indicating that bvORF20 expression was very low in anthers with mature pollen.

Next, protein samples of anthers at meiosis, tetrad (super pool of Ta, Tb and Tc of Fig. 5), microspore (super pool of Sa and Sb), and mature stages were lysed in digitonin and electrophoresed in BN-polyacrylamide gels. Immunoblot analysis using αpreSATP6 revealed 200-kDa and (less intense) 150-kDa signal bands from meiosis, tetrad and microspore anthers (Fig. 6). Such bands were faint in the mature anther sample. In this blot, the signal intensity of the 250-kDa signal band was very low in the lanes containing the 200- and 150-kDa bands. On the same blot, two complexes were detected with αCOXI. The higher molecular mass complex consistently appeared in all the samples. The lower molecular mass complex was missing from some lanes but this absence was not correlated with the 200- and 150-kDa bands. Hence, the samples were appropriately prepared. Therefore, bvORF20 expression is probably associated with the appearance of 200- and 150-kDa complexes in NK-198 anthers. Whereas the signal patterns detected with αpreSATP6 on BN-polyacrylamide gels differed among lanes of NK-198 proteins (Fig. 6), the accumulation of preSATP6 was nearly constant during NK-198 anther
development, with a slight decrease at the early microspore stage (Fig. 5).

We expected that transgenic callus expressing \textit{bvORF20} would have the 200- and 150-kDa complexes and that bvORF20 could be detected from at least one of these complexes. To test this hypothesis, total mitochondrial proteins from the \textit{bvORF20::flag} transgenic callus were lysed in digitonin and subjected to two dimensional (2D) electrophoresis consisting of BN-PAGE for the first dimension and SDS-PAGE for the second dimension. Immunoblot analysis was carried out using αpreSATP6 and αFLAG. The antiserum αpreSATP6 cross-reacted with three spots (colored orange in Fig. 7a): spots corresponding to 250 kDa for the first dimension and 39 kDa for the second dimension (hereafter abbreviated as 250/39 kDa), 200/39 kDa, and 150/39 kDa. The mitochondrial protein from \textit{bvORF20L::flag} transgenic callus, in which no interaction between preSATP6 and bvORF20L was detected (Fig. 3), had a 250/39-kDa spot but did not have 200/39-kDa or 150/39-kDa spots (Fig. 7b).

When the \textit{bvORF20::flag} mitochondrial proteins on the blot were probed with αFLAG, we detected two spots, 200/42 kDa and 90/42 kDa (colored blue in Fig. 7a). The mobility of the 200/42-kDa spot in the first dimension appeared to be the same as that of the 200/39-kDa spot that was detected with αpreSATP6 (Fig. 7a), suggesting that bvORF20 and preSATP6 are components of the same 200-kDa complex. The 90/42-kDa signal spot suggested that bvORF20 forms another complex whose second constituent is unknown. The mitochondrial protein from \textit{bvORF20L::flag} callus had only a 90/42-kDa signal spot when αFLAG was used (Fig. 7b). Therefore, bvORF20 is associated with the appearance of the 200- and 150-kDa complexes. Such ability is missing from bvORF20L.

DISCUSSION

We detected a protein-protein interaction between preSATP6 and bvORF20; the former is encoded by an \textit{S-orf} and a gene in the sugar beet \textit{Rf} locus encodes the latter. Because bvORF20L, a recessive allele (i.e. incapable of CMS suppression), does not bind with preSATP6 nor affect the 250-kDa preSATP6 oligomer, the preSATP6-bvORF20 interaction may be associated with fertility restoration of sugar beet CMS.

Compared to other plant CMS systems involving PPR-type \textit{Rf}s, the sugar beet system
is unique in terms of two points: (i) protein-protein interaction between bvORF20 and preSATP6, whereas PPR-type Rf gene products are thought to bind to mitochondrial mRNA (Chen and Liu, 2014); and (ii) preSATP6 accumulation is nearly unchanged in fertility-restored anthers even in the presence of bvORF20, whereas accumulation of S-ORF is reduced in fertility restored plants with PPR-type Rf (Hanson and Bentolila, 2004). These two distinguishing features could be expected given that bvORF20 resembles Oma1, a member of the peptidase M48 family genes that has no RNA-binding activity as far as we know. In addition, whereas yeast and mammalian OMA1 can act as peptidases, no peptidase activity is expected from bvORF20 because of a crucial amino acid substitution in its Zn$^{2+}$-binding motif (Käser et al., 2003; Matsuhira et al., 2012).

The unique features of sugar beet CMS and fertility restoration may be implicated in the gene organization of preSatp6, which is an N-terminal extension of genuine atp6 (Yamamoto et al., 2005). The N-terminal extension of atp6 plays an important role in the assembly of ATP6 with the mitochondrial ATPase complex in yeast (Zeng et al., 2007). As the N-terminus of mature ATP6 has a serine-proline-leucine sequence, precursors of yeast ATP6 are likely proteolytically cleaved before the first serine (Michon et al., 1988). N-terminal extension is ubiquitous in plant atp6, and the serine-proline-leucine motif is conserved in sugar beet and other plant atp6 proteins (Krishnasamy et al., 1994; Onodera et al., 1999). Hence, plants may operate a post-translational system for ATP6 maturation similar to the yeast system. As for preSatp6, because no ATG codon is seen near the serine-proline-leucine motif, translation of preSatp6 appears to be a prerequisite for expressing the downstream atp6. If translation of preSatp6 were repressed by a post-transcriptional or translational mechanism, translation of the atp6 would be simultaneously repressed.

Lack of an apparent decrease in preSATP6 accumulation in the fertility-restored plants is puzzling. In NK-198 plants, preSATP6 is detected from three different complexes, 250 kDa, 200 kDa and 150 kDa. The first complex is largely found in bvORF20-non-expressing tissues, and the latter two are from bvORF20-expressing tissues. The 250-kDa complex may be a homo-oligomer of preSATP6. Oligomer formation of S-ORF is often seen in other plant CMS systems, such as in radish (Duroc et
The functional significance of such an oligomer in disease susceptibility, and perhaps in male sterility, was proposed in maize CMS-T (Rhoads et al., 1998). In NK-198, the 250-kDa complexes nearly disappear in meiotic and tetrad anthers. This temporal pattern is interesting if one considers that the first morphological abnormality of CMS anthers in sugar beet appears at the meiosis- or tetrad stages (Halldén et al., 1991; Majewska-Sawka et al., 1993). Perhaps the 250-kDa complex is harmful for anthers in these developmental stages; hence, reduction of the 250-kDa complex restores pollen fertility. This hypothesis may imply that preSATP6 protein per se is not directly responsible for CMS but its 250-kDa complex form is; however, further study is necessary to examine this possibility.

Meiotic and tetrad anthers of NK-198 were characterized by the appearance of 200-kDa and 150-kDa complexes containing preSATP6. The two complexes simultaneously appeared in the anther where bvORF20 was expressed. The appearance of these two complexes was reproduced in transgenic calli expressing bvORF20, and whose translation products bound preSATP6. Collectively, these results suggest that bvORF20 plays a principal role in this phenomenon. Possibly bvORF20 traps nascent preSATP6 before it assembles into a 250-kDa complex and/or bvORF20 intrudes into the 250 kDa complex to dissociate the complex. In calli expressing bvORF20, the 250-kDa complex remained visible on the blot in spite of the strong expression of bvORF20::flag. Therefore, the efficiency of bvORF20 on the 250-kDa complex may be influenced by physiological condition (i.e. callus vs. anther). For example, the rate of preSatp6 expression may be affected by a physiological condition, and/or an additional supporting factor that is absent from calli may exist in meiotic and tetrad-stage anthers.

The precise relationship between the 200-kDa and the 150-kDa complexes is unknown. One possibility is that initially bvORF20 binds to preSATP6 (at an unknown molar ratio) to form the 200-kDa complex, then the 150-kDa complex is formed by releasing bvORF20. It is also possible that the 150-kDa complex, and/or the 200-kDa complex, is further converted into indiscriminate-sized complexes, a possible explanation for the rather smeared image in the lanes of NK-198 anthers (Figs. 4 and 6). Although the molecular chaperone-like activity of bvORF20 is necessary for this scenario, it can be
invoked by comparison with that of yeast OMA1, which is suggested to have the ability to dislocate its substrate proteins from membranes (Käser et al., 2003). In support of this hypothesis, functional and evolutionary relationships between bvORF20 and genuine OMA1 should be examined.

EXPERIMENTAL PROCEDURES

Plant materials

All the sugar beet lines used in this study were developed at the Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro, Japan. NK-198 is a fertility-restored line that has CMS mitochondria but is fully male fertile due to Rf (Matsuhira et al., 2012). TK-81mm-CMS is a male sterile (MS) line having CMS mitochondria but no Rf (Satoh et al., 2004). TK-81mm-O has the same nuclear genotype as TK-81mm-CMS but is male fertile due to nonsterilizing mitochondria (Satoh et al., 2004). NK-219mm-CMS is another MS line with CMS mitochondria, but its genotype is known to be suitable for generating transgenic sugar beet plants (Kagami et al., 2015).

Transgene construction

The backbone of the binary vectors was pMDCΩ that was constructed as follows: a region containing the 35S promoter of cauliflower mosaic virus (CaMV) and the omega prime translation leader of tobacco mosaic virus was PCR amplified from pFGC5941 (Kerschen et al., 2004) with primer 1 (see Table S1 for all oligo nucleotide primer sequences) and primer 2. The resulting PCR products were digested with HindIII and Ascl (Takara Bio, Ohtsu, Japan) to generate cohesive ends. Plasmid DNAs of pMDC32 (Curtis and Grossniklaus, 2003), a binary vector equipped with the Gateway system (Invitrogen, Carlsbad, CA), were digested with HindIII and Ascl to remove the original 2 x CaMV35S promoter region and to generate cohesive ends. Plasmid DNA and the restriction-digested PCR products were ligated to yield pMDCΩ.

The binary vector containing bvORF20::flag was constructed as follows: Matsuhira et al. (2012) constructed a plasmid containing the genomic bvORF20 region, from which the open reading frame (ORF) of bvORF20 including its 5'- and 3'-untranslated regions
(UTRs) was amplified with primers 3 and 4. The resulting PCR fragment was inserted into pDONRzeo, a donor vector for the Gateway system (Invitrogen), using the BP Clonase Enzyme mix (Invitrogen) according to the manufacturer's instructions. Plasmid DNA was subjected to PCR amplification with primers 5 and 6, two overlapping primers that correspond to the junction between bvORF20 ORF and its 3'-UTR; thirty-two base pairs of the two primers are complementary to each other, and the two primers are designed to fuse the flag tag to the 3'-end of bvORF20. The PCR products (i.e. linear plasmid DNA with 32-bp complementary ends) were digested with DpnI, a restriction enzyme that requires methylated adenine at its recognition site for cleavage, to destroy residual plasmid DNA. The constructs were then introduced into E. coli by electroporation. Circular plasmid DNA is restored in transformed E. coli via DNA recombination (DpnI mediated site-directed mutagenesis). After confirming the nucleotide sequence of the recovered plasmid DNA from a colony selected from a selective plate, the insert DNA was transferred to pMDCΩ using the LR Clonase Enzyme mix (Invitrogen).

The binary vector containing bvORF20L::flag was constructed as follows: the bvORF20L ORF as well as its 5'- and 3'-UTRs was PCR amplified with primers 7 and 8 from genomic DNA of TK-81mm-O. PCR products were cloned into pDONRzero using BP Clonase Enzyme mix. After confirming the nucleotide sequence, the plasmid DNA was subjected to PCR amplification with primers 5 and 6, and the PCR products were subjected to the DpnI mediated site-directed mutagenesis to recover bvORF20L::flag plasmid DNA. After nucleotide sequence confirmation, the insert DNA was transferred to pMDCΩ by LR Clonase Enzyme mix.

Generation of transgenic callus

Procedures to obtain transgenic callus were as described in Kagami *et al.* (2015). Briefly, callus was induced from leaf explants that were harvested from in vitro germinated plantlets of NK-219mm-CMS. Suspension cells were established from the callus and infected with *Agrobacterium tumefaciens* strain LBA4404 containing the transgene. After infection, the suspension cells were placed on a selective medium that contained
hygromycin. Resistant colonies were transferred onto new selective medium. Transgenic calli were grown until they reached a fresh weight of ~200mg for protein preparation.

Preparation of antisera

For antigen preparation, a DNA fragment corresponding to E191 to E270 of bvORF20 was PCR amplified by primers 13 and 14 from bvORF20 cDNA using LA Taq (Takara Bio, Ohtsu, Japan). The PCR fragment was subjected to the second PCR using primers 15 and 16 to add the attB site for Gateway cloning and cloned into donor vector pDONR201 (Invitrogen) using BP Clonase Enzyme Mix. After verifying the sequence integrity, the inserted DNA fragments were transferred to binary vector pDEST17 (Invitrogen) using LR Clonase Enzyme Mix, and the resulting plasmid was introduced into E. coli strain BL21 (SI). The fusion protein tagged with 6 x His was purified using Pro Bond Resin (Invitrogen) and separated by SDS-PAGE. The fusion protein was electrophoretically eluted from gel slices using an Electro Eluter Model 422 (Bio-Rad Laboratories, Hercules, CA). Immunization of rabbits and preparation of antisera were performed according to standard methods (Sambrook et al., 1989). The antiserum was purified by HiTrap rProtein A FF Columns (GE Healthcare UK, Amersham Place, England) according to the manufacturer’s instructions. αMnSOD and αFLAG were purchased from Sigma-Aldrich (St Louis, MO) and Medical and Biological Laboratories (Nagoya, Japan), respectively. Details about the preparation of αpreSATP6 and αCOXI were described previously (Yamamoto et al., 2005).

Protein preparation

Root mitochondria were isolated according to the methods of Lind et al. (1991) and stored at -80°C until use. Crude mitochondria from transgenic calli were isolated as follows: callus (~200mg) was ground in an Eppendorf tube with a plastic pestle in the presence of isolation buffer [50mM Tris-HCl (pH8.0), 0.5M mannitol, 1mM Na2, EDTA, 0.1% bovine serum albumin, 1.0% L-Na·ascorbate, and 0.5% polyclay AT] at 4°C. The ground products were centrifuged twice (5500g, 10min, 4°C and 6500g, 15min, 4°C) to obtain the supernatant. The supernatant was centrifuged (11500g, 15min, 4°C), and the
pellet was resuspended in wash buffer [50mM Tris-HCl (pH 8.0), 0.5M mannitol, 1mM Na₂-EDTA]. This step was repeated once. The final pellet was resuspended in the wash buffer and used as crude mitochondria. Materials for total-cellular-protein extraction were flower buds, anthers, leaves and root tissues that were powdered in liquid nitrogen. For SDS-PAGE, mitochondria or powdered tissues were boiled in SDS extraction buffer [2%(w/v) SDS, 10%(v/v) glycerol, 1%(v/v) 2-mercaptoethanol, 0.001% (w/v) bromophenol blue, 50mM Tris-HCl (pH 6.8)] for 5 min, centrifuged at 13000g for 5min, and the supernatants were used for experiments. The soluble fraction was extracted by mixing powdered tissue with a buffer containing 25mM Tris-HCl (pH 6.8) and 5% glycerol followed by centrifuging at 13000g for 5min. The supernatant was boiled for 5 min after the addition of 2x SDS-PAGE buffer [4%(w/v) SDS, 20%(v/v) glycerol, 2%(v/v) 2-mercaptoethanol, 0.002% (w/v) bromophenol blue, 100mM Tris-HCl (pH 6.8)]. For BN-PAGE and immunoprecipitation assays, powdered tissues were incubated on ice for 30 min in 1 x Native–PAGE sample buffer (Invitrogen) (or PBS) containing digitonin and Protein Inhibitor Cocktail for plant cell and tissue extracts (Sigma). Unless otherwise mentioned, the digitonin/sample protein ratio (w/w) was 5.0. After adding Benzonase Nuclease (Takara Bio or Merck Millipore, Billerica, MI) and MgCl₂ (2 mM final concentration), the samples were incubated at room temperature for 30 min, then centrifuged at 33000g for 30min, and the supernatants were used for experiments. When root mitochondrial protein was used for BN-PAGE, the Benzonase Nuclease treatment was omitted. Protein concentrations were determined by a modified Lowry method using a DC protein assay kit (Bio-Rad Laboratories) with BSA as the reference.

Immunoprecipitation assay

Dynabeads Protein G (Invitrogen) were used according to the manufacturer’s instructions.

Electrophoresis and immunoblot analysis

SDS-PAGE was performed according to the method of Schägger and von Jagow (1987). BN–PAGE and 2D electrophoresis were performed using the Native PAGE Novex
BisTris Gel system (Invitrogen) according to the manufacturer’s instructions. Gels were stained using Rapid CBB KANTO (Kanto Chemical, Tokyo, Japan) or Deep Purple Total Protein Stain (GE Healthcare) according to the manufacturer’s instructions, respectively. Separated proteins were electroblotted onto Hybond-P (GE Healthcare) using a Mini TransBlot Cell (Bio-Rad Laboratories). Chemiluminescent signals were detected using ECL-Plus or ECL-Advance (GE Healthcare) according to the manufacturer’s instructions.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

ACKNOWLEDGMENTS

We thank Dr. Kazunori Taguchi and Dr. Yosuke Kuroda for providing seeds and Dr. Francoise Budar for her invaluable comments. This work was supported in part by MEXT/JSPS KAKENHI Grant Number to 18075001, 22580001, and 25292001; Grants-in-Aid for Scientific Research from the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (BRAIN); and Grants-in-Aid for Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries and Food Industry, Japan.

SUPPORTING INFORMATION

Figure S1. Reverse transcription PCR of Oma1-like genes encoded by the sugar beet Rf1 locus. Figure S2. Immunoblot analysis of sugar beet calli that were resistant to hygromycin. Figure S3. Detection of a complex containing preSATP6. Figure S4. Immunoblot analysis of immature anthers collected from TK-81mm-CMS. Figure S5. Light microscopic images of anther contents stained with Alexander's dye. Figure S6. Immunoblot analysis of mitochondrial proteins from NK-219mm-CMS callus expressing bvORF20::flag. Figure S7. Immunoblot analysis of mitochondrial proteins from NK-219mm-CMS callus
expressing bvORF20L::flag.

Table S1. Nucleotide sequences of primers.

REFERENCES

share the same complement of genes of known function but differ in the content of expressed ORFs. *Mol. Gen. Genomics* 272, 247-256.

Figure legends

Fig. 1. Immunoblot analysis of sugar beet organs. **a.** Total cellular proteins of immature anthers (lanes 1 and 2), taproots (3) and leaves (4) from sugar beet line NK-198 were electrophoresed in a 12% SDS polyacrylamide gel and probed with αbvORF20. Immature anthers were sampled from anthers before anthesis. The proteins of lane 1 were prepared from smaller and greenish anthers, and the proteins of lane 2 were from larger and yellowish (i.e. further developed) anthers. The 41-kDa signal band is indicated by an arrow. Size markers are shown on the left (in kDa). The same proteins as shown in lanes 1 to 4 were electrophoresed and stained with Coomassie brilliant blue (CBB). **b.** Total (T) and soluble (S) fractions of total cellular proteins of immature anthers (both greenish and yellowish ones) from TK-81mm-CMS (CMS) and NK-198 (Rf1) were electrophoresed in a 12% SDS polyacrylamide gel and probed with αbvORF20, αpreSATP6, or αMnSOD. The apparent molecular mass is shown on the right (kDa).

Fig. 2. Detection of protein-protein interactions between preSATP6 and bvORF20. **a.** Immunoprecipitation analysis of immature anther proteins lysed in digitonin using αpreSATP6 (12% SDS-PAGE). Signal bands were visualized by fluorescent staining. Immature anthers were collected from TK-81mm-CMS (lane 1) and NK-198 (lane 2). Signal band of a 41-kDa protein is indicated by an arrow. Size markers are shown on the left. **b.** Immunoblot analysis against immunoprecipitates (IP) of immature anthers lysed in digitonin. Immature anthers were collected from TK-81mm-CMS and NK-198. Precipitates were obtained using αbvORF20 or αpreSATP6 as indicated on the top of the images. The positive control was total lysate (Input). The negative control was prepared using the same procedure as for the immunoprecipitates without antiserum (-). Antisera used for signal band detection (IB) were αpreSATP6, αbvORF20, and αCOXI. Apparent molecular masses are shown on the right (kDa).

Fig. 3. Detection of protein-protein interactions between preSATP6 and transgenic bvORF20 tagged with FLAG. Anti-FLAG antiserum precipitated proteins (IP) were
Fig. 4. Immunoblot analysis of immature anthers collected from TK-81mm-O (lane 1), TK-81mm-CMS (2), and NK-198 (3). Total cellular proteins were lysed in digitonin and electrophoresed in a Blue Native-polyacrylamide gel (3-12%). Gel blots were probed with αpreSATP6 or αCOXI. Open and filled arrows indicate the 200 kDa and 150-kDa signal bands, respectively. Size markers are shown on the left (kDa).

Fig. 5. Immunoblot analysis of immature anthers collected from TK-81mm-O (indicated by label 1), TK-81mm-CMS (label 2), and NK-198 (label 3). Abbreviations of samples are: Ig, small, greenish immature anthers; Iy, large, yellowish immature anthers; M, meiosis stage; Ta, early tetrad stage; Tb, middle tetrad stage; Tc, late tetrad stage; Sa, early microspore stage; Sb, late microspore stage; P, mature stage. For details about anther developmental stages, see Fig. S5. Total cellular proteins were electrophoresed in SDS-polyacrylamide gels (12%), and probed with αbvORF20, αpreSATP6, or αCOXI. Apparent molecular masses of the signal bands are shown on the right (kDa).

Fig. 6. Immunoblot analysis of immature anthers collected from TK-81mm-O (indicated by label 1), TK-81mm-CMS (label 2), and NK-198 (label 3). Abbreviations of samples are: I, pooled immature anthers of various developmental stages; M, meiosis stage; T, super pool of Ta, Tb, and Tc identified in Fig. 5; S, super pool of Sa and Sb identified in Fig. 5; P, mature stage. Total cellular proteins were lysed in digitonin and electrophoresed in a Blue Native-polyacrylamide gel (3-12%). Gel blots were probed with αpreSATP6 or αCOXI. Size markers are shown on the left (kDa).

Fig. 7. Merged images of immunoblot analyses. Signal spots detected by αpreSATP6 and αFLAG are colored orange and blue, respectively. The samples were lysed in digitonin.
and subjected to 2D electrophoresis consisting of BN-PAGE (3-12%) for the first dimension (from left to right) and SDS-PAGE (4-12%) for the second dimension (from top to bottom). Size markers are shown on the top and left (kDa). For the original images, see Figs. S6 and S7. **a.** Total mitochondrial proteins isolated from NK-219mm-CMS callus expressing the *bvORF20::flag* transgene. **b.** Total mitochondrial proteins isolated from NK-219mm-CMS callus expressing the *bvORF20L::flag* transgene.
Fig. S1. Reverse transcription PCR of Oma1-like genes encoded by the sugar beet Rf1 locus. NK-198 (fertility restored line) and TK-81mm-O (maintainer line which is devoid of any Rf but male fertile due to lack of S-orf from mitochondria) were used in this experiment. Anthers, leaves, and roots of NK-198, and anthers of TK-81mm-O were the tissues used in this analysis. Total cellular RNA was extracted with an RNeasy Plant Mini Kit (Qiagen, Valencia, CA), and treated with RNase-free DNase I (Takara Bio, Ohtsu, Japan). Complementary DNA was obtained using SuperScript III First-Strand Synthesis System (Invitrogen, Carlsbad, CA). Nucleotide sequences of primers are 5' - TTTGGAAGGGATGAATTGGG - 3' and 5' - CATAACATCAGCTCGAGCTAA - 3', which correspond to the first intron and the third intron, respectively. A size marker is shown on the right (kbp). The target sequences of these primers are conserved between NK-198 and TK-81mm-O copies. The PCR protocol was 30 cycles of 94˚C, 30 sec, 58˚C, 30 sec, and 72˚C, 2 min. PCR products were electrophoresed in a 2% agarose gel. Integrity of the TK-81mm-O amplicon was confirmed by nucleotide sequencing. No 0.6-kbp signal band was seen when genomic DNA of TK-81mm-O was used as the template.
Fig. S2. Immunoblot analysis of sugar beet calli that were resistant to hygromycin. Sugar beet suspension cells were infected with Agrobacterium transformed with the bvORF20::flag transgene or the bvORF20L::flag transgene, then grown on a medium containing hygromycin. Total cellular proteins from ten (lanes 1-10) and two (11-12) calli, candidates having bvORF20::flag and bvORF20L::flag, respectively, were electrophoresed in a 12% SDS-polyacrylamide gel. The blot was probed with anti-FLAG antiserum (αFLAG). A size marker is shown on the left (kDa). B and N denote blank and non-transgenic callus, respectively.
Fig. S3. Detection of a complex containing preSATP6. Size markers are shown to the left of each image (kDa). A. Blue Native (BN) polyacrylamide gel electrophoresis (PAGE) (3-12%) of mitochondrial proteins prepared from TK-81mm-O and TK-81mm-CMS taproots. Proteins were prepared in the presence of digitonin (the digitonin/protein ratio was 5.0 [w/w]). The gel was stained with Coomassie brilliant blue (CBB). The obtained electrophoretic patterns were very similar between the two sugar beet lines except for the 250 kDa signal band that was specific to TK-81mm-CMS. A filled triangle indicates the 250 kDa signal band specific to TK-81mm-CMS. B. Gel blot analysis of proteins separated in panel A. Anti-preSATP6 (αpreSATP6) antiserum was used. A filled triangle indicates the 250 kDa signal band. C. Gel blot analysis of proteins separated in panel A. Anti COXI antiserum (αCOXI) was used. Open and shaded triangles indicate the 420 and 340 kDa signal bands (the two supercomplexes containing mitochondrial Complex IV), respectively.
Fig. S4. Immunoblot analysis of immature anthers collected from TK-81mm-CMS. Total cellular proteins were lysed in the presence of digitonin at a digitonin/protein (w/w) ratio of 1.0, 2.5, 5.0, and 7.5. Gel blots were probed with αpreSATP6 or αCOXI. Size markers are shown on the left (kDa). The 250 kDa complex detected with αpreSATP6 is stable in the digitonin/protein ratio range of 2.5 to 7.5. Note that the digitonin/protein ratio employed for Figs. 2, 4, 6, 7, S3, S6 and S7 was 5.0.
Fig. S5. Light microscopic images of anther contents stained with Alexander’s dye (Alexander, 1969). Anthers were collected from NK-198. Collected anthers were immediately squashed in a droplet of Alexander’s dye to stain their contents. The preparations were not incubated prior to observation. **A,** meiosis stage in which the microspore mother cell undergoes meiosis (depicted as M in Fig. 5); **B,** early tetrad stage in which meiosis is completed and four microspores firmly adhere to each other (Ta); **C,** middle tetrad stage in which the four microspores begin to separate (Tb); **D,** late tetrad stage in which the four microspores are clearly distinguished and the callose wall becomes thinner (Tc); **E,** early microspore stage in which the callose wall disappears, thereby releasing the microspores and a dense-stained globular structure is apparent inside of the microspore (Sa); **F,** late microspore stage in which the outer surface pattern becomes visible but the interior of the microspore is less stained than at the mature stage (Sb); **G,** mature stage in which the pollen grain is round, its surface exhibits a clear pattern, and interior of the pollen grain is deeply stained (P).
Fig. S6. Immunoblot analysis of mitochondrial proteins from NK-219mm-CMS callus expressing bvORF20::flag. Total mitochondrial proteins were lysed in the presence of digitonin, and then subjected to 2D-PAGE consisting of BN-PAGE (3-12%) for the first dimension (from left to right) and SDS-PAGE (4-12%) (from top to bottom). Gel blots were probed with αpreSATP6 or αFLAG. Size markers are shown in the top and left (kDa).
Fig. S7. Immunoblot analysis of mitochondrial proteins from NK-219mm-CMS callus expressing *bvORF20L::flag*. Total mitochondrial proteins were lysed in the presence of digitonin, and then subjected to 2D-PAGE consisting of BN-PAGE (3-12%) for the first dimension (from left to right) and SDS-PAGE (4-12%) (from top to bottom). Gel blots were probed with αpreSATP6 or αFLAG. Size markers are shown in the top and left (kDa).
<table>
<thead>
<tr>
<th>Names of primers</th>
<th>Nucleotide sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer 1</td>
<td>5'-AAAAGCTTTCAATCCACAAAAATCTG-3'</td>
</tr>
<tr>
<td>Primer 2</td>
<td>5'-ATTGGGCGGCCCCATGGTAATTCTAAA-3'</td>
</tr>
<tr>
<td>Primer 3</td>
<td>5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTAGGAATATCATAC.GACCATT-3'</td>
</tr>
<tr>
<td>Primer 4</td>
<td>5'-GGGGACCACCTTTGTACAAAAAAGCAGGCTAGGAATATCATAC.CACCATT-3'</td>
</tr>
<tr>
<td>Primer 5</td>
<td>5'-TCAGGATTATAAGGATGATGATGATGATGATGATGACCATTTCACCAACCAGCATCTTCTTTTAGCAGCTT-3'</td>
</tr>
<tr>
<td>Primer 6</td>
<td>5'-GTCACTTTATCATATCTCCTCATCTCAATCTGAGACCTTAATTGCACGGTCTGCACCAA-3'</td>
</tr>
<tr>
<td>Primer 7</td>
<td>5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTAGGAATATCATAC.CACCATT-3'</td>
</tr>
<tr>
<td>Primer 8</td>
<td>5'-GGGGACCACCTTTGTACAAAAAAGCAGGCTAGGAATATCATAC.CACCATT-3'</td>
</tr>
<tr>
<td>Primer 13</td>
<td>5'-AAAAAGCAGGGCTCCGAGGACAGGTGGATG-3'</td>
</tr>
<tr>
<td>Primer 14</td>
<td>5'-AGAAAGCTGGGTACAGTGTCAGGACACAG-3'</td>
</tr>
<tr>
<td>Primer 15</td>
<td>5'-GGGGAACAGTTTAGTACAAAAAAGCAGGCT-3'</td>
</tr>
<tr>
<td>Primer 16</td>
<td>5'-GGGACCACCTTTGTACAAAAAAGCAGGCT-3'</td>
</tr>
</tbody>
</table>