Curcumin Ameliorates Skeletal Muscle Atrophy in Type I Diabetic Mice via Inhibiting the Protein Ubiquitination

Taisuke Ono¹*, Shingo Takada¹*, Shintaro Kinugawa¹, Tadashi Suga², Mochamad A Sobirin³,
Kagami Hirabayashi¹, Masashige Takahashi¹, Arata Fukushima¹, Tsuneaki Homma¹, Takashi Yokota¹,
Shouji Matsushima¹, and Hiroyuki Tsutsui¹

¹ Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine,
Sapporo, Japan
² Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga,
Japan
³ Faculty of Medicine, Diponegoro University, Semarang, Indonesia
*These authors contributed equally to this work.

Running title: Curcumin and diabetic skeletal muscle atrophy

Address for Correspondence:
Shintaro Kinugawa, MD, PhD.
Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
Phone: +81-11-706-6973, Fax: +81-11-706-7874
E-mail: tuckahoe@med.hokudai.ac.jp

Total number of words, excluding references and figure legends: 3542
Total number of references: 57
New Findings

What is the central question on this study?
We sought to examine whether curcumin could ameliorate skeletal muscle atrophy in diabetic mice by inhibiting protein ubiquitination, inflammatory cytokines and oxidative stress.

What is the main finding and its importance?
We found that curcumin ameliorated skeletal muscle atrophy in streptozotocin-induced diabetic mice by inhibiting protein ubiquitination without affecting protein synthesis. This favorable effect of curcumin was possibly due to the inhibition of inflammatory cytokines and oxidative stress. Curcumin may be beneficial for the treatment of muscle atrophy in type 1 diabetes mellitus.
Abstract

Skeletal muscle atrophy develops in patients with diabetes mellitus (DM), especially in type 1 DM, which is associated with chronic inflammation. Curcumin, the active ingredient of turmeric, has various biological actions including anti-inflammatory and anti-oxidative properties. We thus hypothesized that curcumin could ameliorate skeletal muscle atrophy in streptozotocin (STZ)-induced type 1 DM mice. C57BL/6J mice were injected intraperitoneally with 200 mg/kg of STZ (DM) or vehicle (Control). Each group of mice was randomly divided into 2 groups of 10 mice each and fed a diet with or without curcumin (1500 mg/kg/day) for 2 weeks. There were significant decreases in body weight, skeletal muscle weight, and cellular cross-sectional area of the skeletal muscle in DM mice compared to Controls and they were significantly attenuated in DM+Curcumin without affecting plasma glucose and insulin levels. Ubiquitination of protein was increased in skeletal muscle from DM, and decreased in DM+Curcumin. Gene expressions of muscle-specific ubiquitin E3 ligase Atrogin-1/MAFbx and MuRF1 were increased in DM and inhibited in DM+Curcumin. Moreover, NFκB activation, levels of inflammatory cytokines TNF-α and IL-1β, and oxidative stress were increased in the skeletal muscle from DM and inhibited in DM+Curcumin. Curcumin ameliorated skeletal muscle atrophy in DM mice by inhibiting protein ubiquitination, inflammatory cytokines and oxidative stress. Curcumin may be beneficial for the treatment of muscle atrophy in type 1 DM.

Key words: curcumin, type 1 diabetes, skeletal muscle atrophy, ubiquitin, inflammatory cytokines, oxidative stress, streptozotocin
Introduction

The number of patients with diabetes mellitus (DM) has been increasing steadily in industrialized countries. DM is a major risk factor for atherosclerosis, which increases the incidence of cardiovascular diseases. In addition, various complications can adversely affect the quality of life.

Skeletal muscle atrophy has been reported to be associated with DM, especially type 1 diabetes (T1DM) (Nair et al., 1995; Wang et al., 2006; Frier et al., 2008). Skeletal muscle mass is maintained by the balance between protein synthesis and degradation. Various pathological conditions such as DM, heart failure, cancer, sepsis, acquired immunodeficiency syndrome, severe trauma, uremia and starvation have been reported to cause skeletal muscle atrophy by the disturbance of protein metabolism (Lecker et al., 1999; Hasselgren et al., 2002; Acharyya & Guttridge, 2007).

Weight loss associated with skeletal muscle atrophy is tightly associated with increased mortality and decreased exercise capacity, which are major clinical problems (Griffiths, 1996). Skeletal muscle atrophy in these conditions has been caused by protein degradation pathways, especially the ubiquitin-proteasome (UP) system (Lecker et al., 1999; Hasselgren et al., 2002; Acharyya & Guttridge, 2007).

Ubiquitin binds to the substrate of targeted proteins via the ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase enzymes (E3), which activate the proteolytic signaling pathway (Mitch & Goldberg, 1996). Among them, E3 ubiquitin ligases have substrate specificity, and gene expressions of Atrogin-1/MAFbx and MuRF1 in the skeletal muscle have been reported to be increased during the atrophy process (Bodine et al., 2001a; Gomes et al., 2001; Wray et al., 2003). Moreover, numerous studies have reported that activation of NFκB and FoxO increased Atrogin-1/MAFbx and MuRF1 in a muscle atrophy model (Kelleher et al., 2010; Hulmi et al., 2012; Lv et al., 2014). Elevations of inflammatory cytokines and oxidative stress have been suggested to be involved in the activation of protein degradation (Mastrocola et al., 2008). On the other hand, insulin and insulin-like growth factor (IGF)-1 promote the phosphorylation of the Akt/mammalian target of rapamycin (mTOR) and activate protein synthesis, which is known to be involved in suppression of the UP system. These deficiencies or reduced reactivity are thought to be involved in skeletal muscle atrophy (Dehoux et al., 2004).
Skeletal muscle atrophy has been found in streptozotocin (STZ)-induced T1DM mice
(Mastrocola et al., 2008; Chen et al., 2009), and was shown to be inhibited by insulin (Chen et al., 2009) or dehydroepiandrosterone (Mastrocola et al., 2008). Curcumin, a component of spice turmeric (Curcuma longa), is widely used in Asia as a traditional herbal medicine (Corson & Crews, 2007). It is used for the treatment of various diseases, such as respiratory and liver diseases, anorexia, and arthritis, and also has antitumor activity (Corson & Crews, 2007; Epstein et al., 2010). This compound can inhibit inflammatory cytokines and oxidative stress, and suppresses nuclear factor-kappa B (NFκB) (Jobin et al., 1999; Sharma et al., 2007; Poylin et al., 2008; Tikoo et al., 2008; Chiu et al., 2009). Therefore, curcumin has been expected to have an inhibitory effect on skeletal muscle atrophy (Busquets et al., 2001; Jin & Li, 2007). However, the effect of curcumin against diabetic skeletal muscle atrophy has never been explored. Thus, in this study we assessed the inhibitory effect of curcumin on skeletal muscle atrophy in T1DM mice.
Materials and Methods

Experimental animals

The study was approved by our institutional animal research committee and conformed to the animal care guidelines for the Care and Use of Laboratory Animals in Hokkaido University Graduate School of Medicine.

Male C57BL/6J mice (8–10 weeks of age, total n=40) were purchased from CLEA Japan (Tokyo, Japan), housed under pathogen-free conditions, and fed on a standard chow diet (CE-2, CLEA Japan). DM was induced in mice by intraperitoneal injection of STZ (Sigma-Aldrich, St. Louis, MO, USA; 200 mg/kg body weight) dissolved in citrate buffer (50 mM; pH 4.5) as previously described (Lu et al., 1998; Lesniewski et al., 2003). It has been shown that this protocol can effectively induce diabetic status and skeletal muscle atrophy in mice (Lesniewski et al., 2003; Chen et al., 2009; Whitman et al., 2013; Wang et al., 2015). It has also been reported that pancreatic islet transplantation reverses the diabetic effects of high-dose STZ in mice, which suggests that the pathology results from diabetes itself and not from secondary effects of the drug (Chen et al., 2009). As a control, only citrate buffer was injected. Blood glucose concentration was assessed using a glucometer (Glutest Ace R; Sanwa Kagaku Kenkyusho, Nagoya, Japan) from the tail vein after 3 days to confirm that glucose levels greater than 300 mg/dl were reached by STZ injection.

Each group of mice was randomly divided into two groups with or without curcumin (LKT laboratories, St. Paul, Minnesota; 1500 mg/kg body weight/day) in their chow. In previous reports using rodents, curcumin was administered over a wide range of doses, 10–2000 mg/kg/day (Anand et al., 2007). In our preliminary experiments, we used 3 different doses of curcumin, 150, 450, and 1500 mg/kg/day, and found an inhibitory effect of skeletal muscle atrophy only for 1500 mg/kg/day. Therefore, a dose of 1500 mg/kg/day was added to the chow of the Control+Curcumin and DM+Curcumin groups while the Control and DM groups received none. The quantities of chow consumed by each group of mice (Control: 3.3±0.3 vs. Control+Curcumin: 3.3±0.8 vs. DM: 3.1±0.2 vs. DM+Curcumin: 2.9±0.1 g/day/mouse) and body weight were monitored every 3 days, and the rate of curcumin in the chow was adjusted to ensure a consistent daily dose.
Plasma glucose and insulin

After animals fasted for 6 h, blood samples were collected from the inferior vena cava. The glucose concentration was measured using Glucose Assay kit (Bio Chain, Hayward, CA, USA) and insulin was measured using Insulin enzyme-linked immunosorbent assay (ELISA) kit (Morinaga Institute of Biochemical Science, Kanagawa, Japan) after 2 weeks of STZ injection.

NFκB activation assay

Muscle NFκB was measured using TransAM™ NFκB Transcription Factor Assay Kits (Active Motif®, CA, USA) according to the manufacturer’s instructions, as previously described (Du et al., 2013).

Tissue preparation and histology

Hindlimb skeletal muscle was excised and weighed under deep anesthesia with Avertin (250 mg/kg body weight). The total skeletal muscle (rectus femoris, gastrocnemius, and soleus) was isolated and weighed. Skeletal muscle tissues were fixed in 10% formaldehyde, and paraffin sections were stained with hematoxylin and eosin using standard techniques. Myocyte cross-sectional areas in the gastrocnemius muscle were determined for at least 150 fibers/animal. Image J software (NIH) was used for these analyses (Takada et al., 2013).

Immunoblotting in the skeletal muscle

Other skeletal muscle tissue samples were snap-frozen into liquid nitrogen immediately after harvesting and stored at -80 °C until further analysis. All immunoblotting was performed within 1 month after sampling from mice. Ubiquitinated protein was determined by performing immunoblotting using the ubiquitin antibody (Cell Signaling Technology, MA, USA) as described previously (Paul et al., 2012).

Immunoblotting was performed using antibodies against the following: phosphorylation of Akt at Ser473 and Thr308, phosphorylation of mTOR at Ser2448, phosphorylation of p70S6K at Thr389, phosphorylation of forkhead box O (FoxO)3a at Ser253, cleaved caspase-3, autophagy-related gene
(Atg)12-Atg5, LC3II (Cell Signaling) and phosphorylation of FoxO3a at Thr32, phosphorylation of Akt at Thr308 (Abcam, MA, USA), p70S6K, and myostatin (Santa Cruz Biotechnology, Santa Cruz, CA). Equal amounts of protein extracted from skeletal muscle tissues were used, as described previously (Takada et al., 2013; Fukushima et al., 2014; Takada et al., 2014; Kadoguchi et al., 2015). Values were expressed as the ratio of target band intensity to the internal control intensity. GAPDH (Cell Signaling) was used as an internal control to normalize results and to control for blot-to-blot variation.

Quantitative reverse transcriptase polymerase chain reaction
Total RNA was extracted from the skeletal muscle with QuickGene-810 (FujiFilm, Tokyo, Japan) according to the manufacturer’s instructions. Complementary DNA (cDNA) was synthesized with the high-capacity cDNA reverse transcription kit (Applied Biosystems, CA, USA). TaqMan quantitative polymerase chain reaction (PCR) was performed with the 7300 real-time PCR system (Applied Biosystems, CA, USA) to amplify samples for Atrogin-1/Muscle Atrophy F-box (MAFbx) (Mm00499523_m1), Muscle Ring Finger 1 (MuRF1) (Mm0118522_m1), tumor necrosis factor (TNF)-α (Mm0043258_m1), and interleukin (IL)-1β (Mm00434228_m1) cDNA in the skeletal muscle. These transcripts were normalized to GAPDH as an internal control. The primers were purchased from Applied Biosystems. Data were analyzed using the comparative $2^{-\Delta\Delta CT}$ method as described previously (Takada et al., 2013; Fukushima et al., 2014; Suga et al., 2014; Nishikawa et al., 2015).

O_2^* production and thiobarbituric acid reactive substances (TBARS)
The chemiluminescence elicited by O_2^* in the presence of lucigenin (5 µmol/L) was measured in hindlimb skeletal muscle using a luminometer (AccuFLEX Lumi 400; Aloka, Tokyo, Japan) as previously described (Takada et al., 2013; Fukushima et al., 2014; Suga et al., 2014; Takada et al., 2014; Kadoguchi et al., 2015; Nishikawa et al., 2015). To validate that the chemiluminescence signals were derived from O_2^*, measurements were also performed in the presence of Tiron (20 mmol/L), a cell-permeating, nonenzymatic scavenger of O_2^*. The degree of lipid peroxidation in the skeletal muscle was determined though a biochemical assay of malondialdehyde formation [thiobarbituric acid
reactive substances (TBARS) assay kit; Cayman Chemical, Ann Arbor, MI], according to the manufacturer’s protocol as previously described (Takada et al., 2013; Suga et al., 2014).

Circulating and muscle IGF-1

Circulating and muscle IGF-1 were measured using an IGF-1 ELISA kit (R&D system®, MN, USA) according to the manufacturer’s instructions.

Serum TNF-α and IL-1β

Serum TNF-α and IL-1β were measured using TNF-α and IL-1β ELISA kit (R&D system) according to the manufacturer’s instructions.

Statistical analysis

Statistical analyses were performed using PASW statistics software (IBM, Armonk, NY, USA). Data are expressed as means ± standard errors (SEM). For multiple-group comparisons, two-way analysis of variance (ANOVA) was performed, followed by Tukey’s test. \(P<0.05 \) was considered statistically significant.
Results

Plasma glucose, insulin and body weight

Blood glucose and body weight before STZ injection were comparable among the 4 groups (data not shown). There were no significant differences in blood glucose level at 3 days after STZ injection between DM and DM+Curcumin mice (480±17 vs. 480±22 mg/dl, p=NS). Plasma glucose level was significantly increased and insulin level was significantly decreased in DM mice compared to Control mice (Figure 1A and B). Change in body weight after 14 days was significantly larger in DM mice than Control mice (Figure 1C). The diet with curcumin in DM mice significantly attenuated changes in body weight without affecting plasma glucose and insulin level (Figure 1A-C).

Skeletal muscle weight and myocyte cross-sectional area

In parallel with the changes in body weight, the significant reductions in the rectus femoris and gastrocnemius muscle weights in DM mice were attenuated by the treatment with curcumin (Figure 1D, E). There was no significant difference in the soleus muscle weight among the groups (Figure 1F). The myocyte cross-sectional area of gastrocnemius muscle was significantly smaller in DM mice than Control mice, and was partially improved in DM+Curcumin (Figure 1G, H).

Ubiquitin-conjugated protein and ubiquitin E3 ligase in the skeletal muscle

Ubiquitin-conjugated proteins are shown as smears at their molecular weights (Figure 2A). They were significantly increased in DM mice compared to Control mice, and were significantly decreased in DM+Curcumin mice (Figure 2B).

Gene expressions of muscle-specific E3 ubiquitin ligases, Atrogin-1/MAFbx and MuRF1, were measured using real-time RT-PCR (Figure 2C, D). These mRNA expressions were significantly increased in DM mice compared to Control mice, and were significantly decreased in DM+Curcumin mice.

Inflammatory cytokines in the skeletal muscle and serum
Gene expressions of TNF-α and IL-1β were significantly increased in DM mice compared to Control mice, an effect that was significantly suppressed in DM+Curcumin mice (Figure 3A, B).

Likewise, serum TNF-α and IL-1β were significantly increased in DM mice compared to Control mice, but did not differ between DM and DM+Curcumin mice (Figure 3C, D).

Oxidative stress in the skeletal muscle

O$_2^-$ production and TBARS were significantly increased in DM mice compared to Control mice; these effect were significantly inhibited in DM+Curcumin mice (Figure 3E, F).

NFκB and FoxO3a activation in the skeletal muscle

NFκB p65 activation was significantly increased in DM mice compared to Control mice, but not in DM+Curcumin mice (Figure 4A). Phosphorylation of FoxO3a at serine 253 but not threonine 32 was significantly decreased in DM mice compared to Control mice, and did not differ between DM and DM+Curcumin mice (Figure 4B, C).

Apoptosis and autophagy-related protein in the skeletal muscle

The expressions of apoptosis-related molecules, cleaved caspase-3, autophagy-related molecules, Atg12-Atg5, and LC3II were significantly increased in DM mice, and did not differ between DM and DM+Curcumin mice (Figure 4D-F).

Protein synthesis in the skeletal muscle

Circulating and skeletal muscle IGF-1 levels were significantly decreased in DM mice compared to Control mice, and did not differ between DM and DM+Curcumin mice (Figure 5A, B). Figure 5C shows representative bands of protein synthesis-related protein. Similarly, phosphorylation of Akt at serine 473 and threonine 308, mTOR at serine 2448, p70S6K at threonine 389, total and p70S6K were decreased, and myostatin was increased in DM mice compared to Control mice (Figure 5D-I). These values did not differ between DM and DM+Curcumin mice (Figure 5D-I).
Discussion

The most important finding of this study was that curcumin prevented skeletal muscle atrophy in an STZ-induced T1DM model. Furthermore, curcumin inhibited the DM-related increase in gene expression of E3 ubiquitin ligases and the concomitant increase in ubiquitinated protein in the skeletal muscle, without affecting insulin level and protein synthesis signaling. Curcumin also inhibited NFκB activation, the gene expression of inflammatory cytokines, and oxidative stress in the skeletal muscle. Therefore, the inhibitory effect of curcumin on skeletal muscle atrophy was due to the inhibition of the UPS system via regulation of inflammation and oxidative stress.

Oxidative stress has been reported to be increased in STZ-induced DM, which is also associated with the development of muscle atrophy (Li et al., 2003; Bechara et al., 2014; Pal et al., 2014). Furthermore, oxidative stress was shown to induce increases in ubiquitin-conjugating activity and muscle-specific ubiquitin ligase Atrogin-1/MAFbx and MuRF1 in C2C12 murine myoblasts (Li et al., 2003). In the present study, O$_2^-$ production and TBRAS in the skeletal muscle were significantly increased in DM mice compared to Control mice, an effect that was significantly suppressed by curcumin (Figure 3E, F). Therefore, our data suggest that the favorable effects of curcumin may be due to an anti-oxidant property (Figure 3E, F). On the other hand, proinflammatory cytokines such as TNF-α and IL-1β have been reported to be major factors causing skeletal muscle atrophy (Argiles & Lopez-Soriano, 1999; Li et al., 2009). It has been reported that TNF-α and IL-1β are involved in skeletal muscle atrophy by activation of NFκB, which induces upregulation of ubiquitin ligase E3 (von Haehling et al., 2002; Cai et al., 2004). Li et al. reported that an increase in protein catabolism by TNF-α was suppressed by inhibition of NFκB in C2C12 mouse skeletal myotubes (Li & Reid, 2000). Moreover, inflammatory cytokines are known to express and accelerate O$_2^-$ production in the skeletal muscle ((Plomgaard et al., 2005; Liao et al., 2010; Zuo et al., 2014). In contrast, ROS is known to induce inflammation in the skeletal muscle (Allen & Tresini, 2000). In the present study, gene expressions of TNF-α and IL-1β, and NFκB activation as well as O$_2^-$ production and TBRAS in the skeletal muscle were significantly increased in DM mice compared to Control mice; this effect was significantly suppressed by curcumin (Figure 3C-F, and Figure 4A). These results support previous study that curcumin has anti-oxidant and anti-inflammatory properties in the skeletal muscle (Avci et
al., 2012). While, serum TNF-α and IL-1β levels were significantly increased in DM mice compared to Control mice, but did not improve by curcumin (Figure 3C, D). Therefore, curcumin may inhibits protein degradation through directly suppress ROS production and/or indirectly inhibits accelerated it by inhibiting cytokines expression in the skeletal muscle from DM mice (Figure 1, Figure 3 and Figure 4).

Apoptotic cell death and autophagy also play crucial roles in the development of skeletal muscle atrophy. Busquets et al. have reported increased apoptosis in the skeletal muscle of patients with cancer cachexia (Busquets et al., 2007). It has been reported that an apoptosis-inhibiting factor inhibited the increased proteolysis in the skeletal muscle in STZ-induced T1DM mice (Wang et al., 2007). Lv et al. reported that autophagy was increased in skeletal muscle in STZ-induced diabetic mice (Lv et al., 2014). Therefore, we also examined the involvement of apoptosis and autophagy in skeletal muscle atrophy. However, the apoptosis-related protein cleaved caspase-3, the autophagy-related protein Atg12-Atg5, and LC3II were increased in the skeletal muscle from both DM and DM+Curcumin mice, with no differences between groups (Figure 4). Therefore, there was almost no participation of apoptosis and autophagy in the protection of skeletal muscle atrophy by curcumin in the present study.

The balance between protein synthesis and protein degradation maintains skeletal muscle mass. The stimulation of muscle hypertrophy, such as weight load, increases muscle protein synthesis and induces muscle hypertrophy; in contrast, catabolic diseases increase protein degradation and cause muscle atrophy. Insulin and IGF-1 are involved in protein synthesis by stimulating Akt/mTOR and their downstream targets (Bodine et al., 2001b; Rommel et al., 2001). Blood insulin, IGF-I, and muscle IGF-1 levels were remarkably reduced in DM mice compared to Control mice and were not affected by curcumin (Figure 1B, Figure 5A, B). The changes in phosphorylated Akts, mTOR, p70S6K, total p70S6K and myostatin levels were consistent with the changes in insulin level (Figure 5C-I). Therefore, STZ-induced muscle atrophy was due to the deterioration of protein synthesis as well as the enhancement of protein degradation; however, the inhibitory effect of curcumin was mainly due to the inhibition of protein degradation.
There are several limitations that should be acknowledged in the present study. First, we could not verify whether the dose of curcumin used in the present study (1500 mg/kg/day) was appropriate for preventing muscle atrophy. In a previous study, curcumin was tested at various doses ranging from 10 to 2000 mg/kg/day (Anand et al., 2007). It is known that high doses of curcumin are well tolerated and safe (Lao et al., 2006). Second, we could not exclude the possibility that curcumin directly inhibited protein ubiquitination but not inflammation and oxidative stress. Finally, previous study has reported that curcumin has anti-oxidants properties (Avci et al., 2012), although detailed mechanisms has never been clarified. In the present study, we also could not define it. Further experiments are needed to clarify this issue.

Curcumin ameliorated skeletal muscle atrophy in STZ-induced T1DM mice via inhibiting protein ubiquitination, but not by affecting protein synthesis. Curcumin may be beneficial for the treatment of muscle atrophy in T1DM.

Author contributions

T.O. and S.T. designed experiments, performed experiments, analyzed data, and wrote the manuscript. K. S. conceived and designed experiments, and wrote the manuscript. T.S., A.F., T.H. performed experiments, and analyzed data. M.T., S.M.A., K.H., T.Y. and S.M. contributed to discussion. H.T. designed experiments, contributed to discussion, reviewed and edited the manuscript. All authors have read and approved the manuscript.

Fundings

This study was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology (24390192, 25893005, 26350879, 26750331), Banyu Life Science Foundation International, Suzuken Memorial Foundation, and Takeda Science Foundation.

Acknowledgments

We thank Kaoruko Kawai, Akiko Aita, Miwako Fujii, Yuki Kimura, and Noriko Ikeda for
technical assistance in the experiments.

Competing interest

None.
References

432 Jin B & Li YP (2007). Curcumin prevents lipopolysaccharide-induced atrogin-1/MAFbx upregulation
434
436 blocks cytokine-mediated NF-kappa B activation and proinflammatory gene expression by
438
439 Kadoguchi T, Kinugawa S, Takada S, Fukushima A, Furihata T, Homma T, Masaki Y, Mizushima W,
441 Angiotensin II can directly induce mitochondrial dysfunction, decrease oxidative fibre number
442 and induce atrophy in mouse hindlimb skeletal muscle. *Exp Physiol* 100, 312-322.
443
444 Kelleher AR, Fairchild TJ & Keslacy S (2010). STZ-induced skeletal muscle atrophy is associated
445 with increased p65 content and downregulation of insulin pathway without NF-kappaB
446 canonical cascade activation. *Acta Diabetol* 47, 315-323.
447
448 Lao CD, Ruffin MTt, Normolle D, Heath DD, Murray SI, Bailey JM, Boggs ME, Crowell J, Rock CL
450 Altern Med* 6, 10.
451
454

Figure Legends

Figure 1 *Skeletal Muscle Atrophy in DM mice.* (A) Blood glucose level, (B) insulin level, (C) change in body weight, (D) rectus femoris weight, (E) gastrocnemius weight, (F) soleus muscle weight, (G) representative myocyte cross section of skeletal muscle stained with hematoxylin and eosin, (H) the summary data of myocyte cross-sectional area from Control, Control+Curcumin, Diabetes mellitus (DM), and DM+Curcumin mice (n=10 each). Scale bar: 50 µm. Data are means ± SEM. *P*<0.05 vs. Control, †*P*<0.05 vs. DM.
Figure 2 Curcumin Ameliorates Ubiquitination of Skeletal Muscle in DM mice. (A)

Representative western blot analysis and (B) the summary data of ubiquitin-conjugated protein, and gene expression of muscle-specific E3 ubiquitin ligase, (C) Atrogin-1/MAFbx and (D) MuRF1 in skeletal muscle from Control, Control+Curcumin, DM and DM+Curcumin mice (n=6 each). Data are means ± SEM. *P<0.05 vs. Control, †P<0.05 vs. DM. MAFbx, Muscle Atrophy F-box; MuRF1, muscle ring finger 1.

Figure 2
Figure 3 Curcumin Suppresses Inflammatory Cytokines and Oxidative Stress in the Skeletal Muscle in DM mice. Gene expression of inflammatory cytokines, (A) TNF-α, and (B) IL-1β in skeletal muscle and (C) TNF-α and (D) IL-1β in serum and (E) O$_2^-$ production and (F) TBARS in skeletal muscle from Control, Control+Curcumin, DM, and DM+Curcumin (n=5-6 each). Data are means ± SEM. *P<0.05 vs. Control, †P<0.05 vs. DM. O$_2^-$, superoxide anion; TBARS, thiobarbituric acid reactive substances; TNF-α, tumor necrosis factor-alpha, IL-1β, interleukin-1 beta.
Figure 4 Curcumin Inhibits NFκB activation but not Apoptosis and Autophagy in Skeletal Muscle of DM mice. (A) The summary data of NFκB p65 activation, (B) Ser253 p-FoxO3a, (C) Thr32 p-FoxO3a, (D) cleaved caspase-3, (E) Atg12-Atg5, (F) LC3II in skeletal muscle from Control, Control+Curcumin, DM, and DM+Curcumin mice (n=6-10 each). Data are means ± SEM. *P<0.05 vs. Control, †P<0.05 vs. DM. NFκB, nuclear factor-kappa B; FoxO, forkhead box O; Atg, autophagy-related gene.
Figure 5 Curcumin does not Affect Protein Synthesis in Skeletal Muscle in DM mice. (A)

Circulating and (B) muscle IGF-1, (C) representative bands of western blot and (C) the summary data of (D), Ser473 p-Akt, (E), Thr308 p-Akt, (F), Ser2448 p-mTOR, (G) Thr389 p-p70S6K, (H) p70S6K, and (I) myostatin in skeletal muscle from Control, Control+Curcumin, DM and DM+Curcumin mice (n=8-10 each). Data are means ± SEM. *P<0.05 vs. Control. IGF, insulin-like growth factor; mTOR, mammalian target of rapamycin.