Title:
Development of a time-resolved fluoroimmunoassay for salmon insulin-like growth factor binding protein-1b

Authors:
Miki Fukuda¹, Nobuto Kaneko¹, Kohei Kawaguchi¹, Ernst M Hevrøy², Akihiko Hara¹, and Munetaka Shimizu¹*

Affiliations:
¹Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
²National Institute of Nutrition and Seafood Research, PO Box 2029, Nordnes, N-5817 Bergen, Norway

*Corresponding author: e-mail: mune@fish.hokudai.ac.jp; Office/Fax: +81-138-40-8897
Abstract

In salmon plasma/serum, three major insulin-like growth factor binding proteins (IGFBPs) are consistently detected at 22-, 28- and 41-kDa. The 22-kDa form has been identified as IGFBP-1b and shown to increase under catabolic conditions. We developed a competitive time-resolved fluoroimmunoassay (TR-FIA) for salmon IGFBP-1b. Purified salmon IGFBP-1b was used for biotin-labeling, assay standard and antiserum production. The TR-FIA did not cross-react with the 41-kDa form (IGFBP-2b) but showed 3% cross-reactivity with the 28-kDa form (IGFBP-1a). It measured IGFBP-1b levels as low as 0.4 ng/ml, and ED_{80} and ED_{20} were 0.9 and 24.6 ng/ml, respectively. There appears to be little interference by IGF-I. Using the TR-FIA, serum IGFBP-1b levels were measured in individually-tagged underyearling masu salmon fed or fasted for 5 weeks, or fasted for 3 weeks followed by refeeding for 2 weeks. Fasting for 3 weeks significantly increased circulating IGFBP-1b levels, while it returned to the basal levels after prolonged fasting for additional 2 weeks. Serum IGFBP-1b level negatively correlated with condition factor, specific growth rate in weight and serum IGF-I level. During parr-smolt transformation of masu salmon, average circulating IGFBP-1b levels were highest in May. There was a positive correlation between serum IGFBP-1b and IGF-I, which is in contrast to that in the fasting/feeding experiment. IGFBP-1b also showed a positive relationship with gill Na^+K^+-ATPase activity. These results suggest that the relationship between circulating IGFBP-1b and IGF-I during smoltification differs from that during fasting and IGFBP-1b may play a role in the development of hypoosmoregulatory ability.

Keywords: fasting, growth, immunoassay, insulin-like growth factor binding protein, salmon, smoltification
Insulin-like growth factor binding proteins (IGFBPs) are a family of cysteine-rich proteins that are not structurally related to receptors for IGFs (Hwa et al., 1999). Despite the lack of sequence homology with the receptor, IGFBPs have high affinity for IGFs and are capable of regulating availability of IGF to target tissues (Hwa et al., 1999; Forbes et al., 2012). IGFBPs prolong the half-life of IGFs in the circulation, target them to certain tissues and either potentiate or inhibit action of IGFs depending on the type, physiological conditions and/or cellular environment (Rajaram et al., 1997; Firth and Baxter, 2002). They can also influence cell growth independent of IGFs through interacting on the cell surface receptors or translocating into the nucleus (Forbes et al., 2012; Wheatcroft and Kearney, 2009).

There are six members of the IGFBP family (IGFBP-1 to -6). They arose from local and whole genome duplications throughout the vertebrate evolution. A possible scenario is that an ancestral IGFBP gene was first duplicated locally followed by two rounds of whole-genome duplication (WGD) creating eight genes and two of them were lost (Daza et al., 2011). Supporting this, pairs of IGFBP-1 and -3, and IGFBP-2 and -5 are located on the same chromosomes, respectively, and IGFBP-4 and -6 are found on separate chromosomes (Daza et al., 2011). In teleosts, because of the 3rd round of WGD, there are two paralogs of each member of IGFBPs except IGFBP-4 (Daza et al., 2011). In addition, salmonids underwent an extra round of WGD and thus have four paralogs (Macqueen et al., 2013). Fate of duplicated genes depends on how selective pressure acts on them. One of duplicated gene is often lost (nonfunctionalization) but in rare case, gains new function(s) (neofunctionalization) (Postlethwait et al., 2004). Beside these fates, certain portion of duplicated genes undergo partitioning of their original functions (subfunctionalization) (Postlethwait et al., 2004). Subfunction partitioning can be spatial and temporal. Duan and colleagues conducted a series of functional studies using developing zebrafish (Danio rerio) embryos and proved subfunctional partitioning of duplicated IGFBPs (Kamei et al., 2008; Zhou et al., 2008; Wang et al., 2009; Dai et al., 2010). Moreover, expression patterns of duplicated IGFBPs in response to changes in feeding status have been investigated in Atlantic salmon (Bower et al., 2008), Arctic charr (Salvelinus alpinus; Macqueen et al., 2011), adult zebrafish (Amaral and Johnston, 2011, 2012) and Mozambique tilapia (Oreochromis mossambicus; Breves et al., 2014). These studies suggest that responses of duplicated IGFBPs are generally similar but differ under certain tissues and physiological conditions.

IGFBP-1 is the first member to be identified in humans and is one of major
circulating IGFBPs (Lee et al., 1988; Lee et al., 1993,1997). It shows diurnal fluctuation often reflective of meal and insulin status (Lee et al., 1993,1997). Insulin is a potent inhibitor of IGFBP-1. Fasting induces IGFBP-1 in the circulation probably due to relaxation of the suppressive effect of insulin. An amino acid deficiency also leads to an induction of IGFBP-1 in the hepatocytes through affecting mRNA stability (Jousse et al., 1998, Averous et al., 2005).

IGFBP-1 is unsaturated in circulation and usually inhibits IGF actions by sequestering free IGFs from the circulation (Lee et al., 1997; Wheatcroft and Kearney, 2009). This response is believed to be protective from energy expenditure by the actions of IGFs during shift from anabolism to catabolism. Cortisol, on the other hand, induces IGFBP-1 while its effect is not as strong as insulin (Unterman et al., 1991). IGFBP-1 is thus a fine tuner of energy partitioning and growth velocity under fluctuating metabolic status (Kajimura and Duan, 2007).

Candidates of IGFBP-1 in fish circulation have been detected by ligand blotting using labeled human IGF-I (Kelley et al., 1992, 2001). In fish blood, three major IGFBPs are consistently detected at 20-25 kDa, 28-32 kDa and 40-50 kDa and the two low-molecular-weight forms have been thought to be IGFBP-1, -2 or -4 (Kelley et al., 1992, 2001). Analyses of these fish IGFBPs using ligand blotting revealed that they are up-regulated under catabolic conditions such as fasting, stress and cortisol treatment as seen in mammals (Siharath et al., 1996; Park et al., 2000; Kelley et al., 2001, 2006; Kajimura et al., 2003; Peterson and Small, 2004, 2005; Hevrøy et al., 2011). We have identified 22- and 28-kDa IGFBPs in salmon plasma as co-orthologs of IGFBP-1 through protein purification and cDNA cloning (Shimizu et al., 2011a). Our finding suggests that other fish IGFBPs with similar molecular weights and physiological responses are also IGFBP-1s.

We previously developed a radioimmunoassay (RIA) for salmon IGFBP-1b (22-kDa form) and reported that it was increased by fasting or restricted ration of feed and negatively correlated with individual growth rate (Shimizu et al., 2006). Plasma IGFBP-1b also showed a consistent negative relationship with condition factor and quick response to a single meal (Shimizu et al., 2009). Availability of RIA has thus provided important information on physiological regulation and possible roles of IGFBP-1b in salmon. However, there is a trend to switch from RIA to non-radiosotopic (RI) immunoassay because of safety, stableness and ease of use. Indeed, RIA for fish IGF-I is being replaced by time-resolved fluoroimmunoassay (TR-FIA) (Ando 2005; Small and Peterson, 2005). In contrast, there is no non-RI immunoassay available for fish IGFBP. The present study reports development of a competitive TR-FIA for salmon IGFBP-1b.
Materials and methods

Fish and blood collection

Yearling masu salmon (*Oncorhynchus masou*, Shiribetsu River strain) were reared in freshwater at Nanae Freshwater Laboratory, Field Science Center for Northern Biosphere, Hokkaido University, Japan. Blood was withdrawn by a syringe from the caudal vein, allowed to clot overnight at 4°C and centrifuged at 8,050g for 10 min. Serum was collected and stored at -30°C until use.

Underyearling Atlantic salmon (*Salmo salar*, NLA strain) and rainbow trout (*O. mykiss*, NLA strain) were reared in seawater at Matre Research Station, Institute of Marine Research, Matredal, Norway. Blood was collected from the caudal vein with the use of a heparinised syringe. Plasma was collected after centrifugation at 1,250g for 10 min. Plasma was stored at -80°C until use.

Assay components

IGFBP-1b was purified from serum of spawning Chinook salmon (*O. tshawytscha*; Shimizu et al., 2005). Briefly, salmon serum was first fractionated by ammonium sulfate precipitation and loaded onto an IGF-affinity column. IGFBP-1b was eluted from the column with 0.5M acetic acid and further purified by reversed-phase high pressure liquid chromatography (HPLC) on a Vydac C-4 column (Separation Group, Hesperia, CA). Purified IGFBP-1 was aliquoted into prelubricated microcentrifuge tubes (PGC Scientifics, Frederick, MD) and stored at -80°C until use. Chinook salmon IGFBP-1a and -2b were also purified as described in Shimizu et al. (2011a) and Shimizu et al. (2003b), respectively. Polyclonal antiserum against purified IGFBP-1b (anti-IGFBP-1b) was raised in a rabbit as described in Shimizu et al. (2006).

Ligand blotting and western blotting

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) with a 3% stacking gel and 12.5% separating gel was carried. Purified salmon IGFBPs (50 ng) were treated with an equal volume of a sample buffer containing 2% SDS, 10% glycerol at 85°C for 5 min. Gels were run in a solution of 50 mM Tris, 400 mM glycine and 0.1% SDS at 50V in the stacking gel and at 100V in the separating gel until the bromophenol blue dye front reached the bottom of the gel. For western blotting, an electroblotted nitrocellulose membrane was incubated with anti-IGFBP-1b serum at a dilution of 1:200 for 2 hr at room temperature. The membrane was
then incubated with goat anti-rabbit IgG-HRP conjugate (Bio-Rad, Hercules, CA) at a dilution of 1:2,000 for 1 hr at room temperature. Immunoreactive bands were visualized on an X-ray film by use of ECL western blotting reagents.

The result of western ligand blotting using digoxigenin-labeled human IGF-I (DIG-hIGF-I) of purified salmon IGFBPs was reproduced from Shimizu et al., (2003a) with permission.

Biotinylation of IGFBP-1b

Purified IGFBP-1b was labeled with a biotin (EZ-link sulfo-NHS-LC-biotin, Thermo Scientific, Rockford, IL). Two micrograms of purified protein were mixed with 15 µl 0.5 M phosphate buffer, pH7.4 and reacted with 2 µl 1mM NHS-LC-biotin at a molar ratio of 1:25. A low-adsorption 0.5 ml tube (PGC Scientifics) containing the mixture was incubated at room temperature under dark with occasional flipping. Reaction was stopped by adding 32 µl 0.1 M Tris-HCl, pH8.0 for 15 min and 64 µl 0.05 M Tris-HCl, 0.15 M NaCl, 0.2% BSA (Nacalai tesque, Kyoto, Japan) were added to the tube. The biotinylated IGFBP-1b was dialyzed against 0.05 M Tris-HCl, 0.15 M NaCl, pH7.5 using Slyde-A-Lyzer 3.5K dialysis cassette (Thermo Scientific). After dialysis, aliquots of the biotinylated IGFBP-1b were stored at -80°C until use.

TR-FIA for IGFBP-1b

A competitive method was employed in the assay. A 96-well assay plate coated with goat anti-rabbit IgG (DELFIA® Yellow Plate; Perkin Elmer, Turku, Finland) was first washed with 200 µl DELFIA® Wash Buffer (Perkin Elmer) and each well received 40 µl DELFIA® Assay Buffer (Perkin Elmer), 40 µl anti-IGFBP-1b (1:1,250-5,000) and 40 µl standard (purified IGFBP-1b) or serum diluted with Assay Buffer. The plate was sealed by Thermal Seal RT™ (Excel Scientific, Victorville, CA) and incubated at 4°C overnight with shaking at 150 rpm on a shaker. The plate was flash centrifuged, and each well received 40 µl biotinylated IGFBP-1b (1.3-10 ng/ml) and incubated at 4°C overnight at 150 rpm or at room temperature for 3 hr at 600 rpm. After plate was washed three times, each well received 100 µl europium-avidin conjugated with HRP (Perkin Elmer) and incubated at room temperature for 1 hr with shaking at 600 rpm. The plate was washed six times and room-temperature acclimated 200 µl DELFIA® Enhancement Solution (Perkin Elmer) was added to each plate. The plate was shook without sealing for 10 min at room temperature. Time-resolved fluorescence was measured by a fluorometer (Victor3; Perkin Elmer) with emission and read wavelengths at 340 nm and 615 nm,
respectively.

TR-FIA for IGF-I

Prior to the assay, serum IGF-I was extracted with an acid-ethanol as described in Shimizu et al. (2000). IGF-I was quantified by TR-FIA based on the method described in Small and Peterson (2005) using recombinant salmon/trout IGF-I (GroPep, Adelaide, SA, Australia) for standard and labeling with europium, and anti-barramundi IGF-I (GroPep) as a primary antiserum.

Effect of fasting and refeeding

A captive brood stock of masu salmon from the Shiribetsu River held at Nanae Freshwater Laboratory, Field Science Center for Northern Biosphere, Hokkaido University, Japan was used in the present study. In May 2010, underyearling masu salmon were lightly anesthetized in water containing 2-phenoxy ethanol (Kanto Chemical, Tokyo, Japan) and individually marked with PIT tags (Biomark, Boise, ID). They were randomly placed into one of three 300L outdoor tanks, and allowed to recover and acclimate for 1 week with feeding. One week after tagging, their initial fork length and body weight were measured. During the experiment, one group was fed daily on a commercial diet (Marubeni Nisshin Feed Co. Ltd., Tokyo, Japan) to satiety for 5 weeks (Fed). Second group (Fasted) was fasted throughout the experimental period (5 weeks). Third group (Re-fed) was fasted for first 3 weeks and re-fed for following 2 weeks. They were reared using flow-through river water that ranged from 10.3°C to 18.0°C during the experiment. The experiment was carried out in accordance with the guidelines of Hokkaido University Field Science Center Animal Care and Use Committee.

Fork length (FL) and body weight (BW) of all fish were measured 3, 4 and 5 weeks after the beginning of the experiment. Condition factor (K) was calculated as follows: (body weight (g)) x 1000/(fork length (cm))³. Specific growth rate (SGR) was calculated as follows: SGR (%/day) = ln (s₂ – s₁) x (d₂ – d₁)⁻¹ x 100, where s₂ is length or weight on day₂, s₁ is length or weight on day₁ and d₂ – d₁ is the number of days between measurements. At each time point, seven fish per treatment were sampled for blood. Blood was withdrawn by a syringe from the caudal vein, allowed to clot overnight at 4°C and centrifuged at 8,050g for 10 min. Serum was collected and stored at -30°C until use.

Changes during parr-smolt transformation

Yearling masu salmon reared in freshwater at the South Branch of Salmon and Freshwater
Fisheries Institute, Hokkaido Research Organization (42°N, 140°E) (Nikai-gun, Hokkaido, Japan) were sampled from February to June as described in Shimomura et al. (2012). These fish were for stock enhancement and released to the river in May 2010. Some fish were kept in the same pond and reared until June in freshwater. Seven fish were sampled monthly. Fish were anesthetized by 3.3% 2-phenoxyethanol and measured for FL and BW. K was calculated as described above. Blood was withdrawn by a syringe from the caudal vein, allowed to clot overnight at 4°C and centrifuged at 8,050g for 10 min. Serum was collected and stored at -30°C until use.

Statistical analysis
Results of the fasting/refeeding experiment were first analyzed by two-way ANOVA (time x treatment) using the JMP program (SAS Institute Inc., Cary, NC, USA). When significant effects were found, differences were further identified by one-way ANOVA followed by the Fisher’s protected least significant difference (PLSD) test. Differences among groups were considered to be significant at p < 0.05. Simple linear regression analysis was used to assess the relationships between endocrine parameters and morphological/growth parameters.

For the seasonal samples, data from the June samples were not included in the analysis because fish held in freshwater in June were under quite different physiological state and disturbed the IGF-I-gill NKA relationship (Shimomura et al., 2012). Data from February through May were analyzed by one-way ANOVA with time as a factor followed by the PLSD test as described above.

Results
In ligand blotting using digoxigenin-labeled human IGF-I, purified salmon IGFBP-2b, -1a and -1b were detected at corresponding molecular weights of 41, 28 and 22 kDa, respectively (Fig. 1). Other minor bands were also visualized. Western blotting using anti-IGFBP-1b visualized the 22-kDa band in the purified IGFBP-1b fraction as well as a band at 42 kDa (Fig. 1). The 42-kDa band was not immunostained by antiserum against IGFBP-2b (Shimizu et al., 2003a), suggesting it is homodimer of IGFBP-1b. No band was detected in the purified IGFBP-2b faction whereas the 28-kDa IGFBP was also visualized but weakly in ligand blotting.

Specific binding of the biotinylated IGFBP-1 was displaced by increasing amounts of cold IGFBP-1b (Fig. 2). Serial dilutions of serum/plasma from masu salmon, rainbow trout and Atlantic salmon were parallel with that of the standard (Fig. 2). The half-maximal displacement
(ED$_{50}$) occurred at 3.8 ± 0.2 ng/ml ($n = 8$). The ED$_{80}$ and ED$_{20}$ were 0.9 ± 0.1 ng/ml ($n = 8$) and 24.6 ± 2.7 ng/ml ($n = 8$), respectively. The minimum detection limit of the assay, defined as the mean count of the zero standard minus two standard deviations, was 0.4 ng/ml. The intra- and inter-assay coefficients of variation estimated using a control serum were 9.7% ($n = 4$) and 12.5% ($n = 3$), respectively. The recovery of purified IGFBP-1 (10 ng/ml) added to masu salmon serum was 114.6% ($n = 8$).

Cross-reactivity of other salmon IGFBPs in the TR-FIA was examined (Fig. 3). The 41-kDa form (IGFBP-2b) had no effect on displacing the binding. The 28-kDa form (IGFBP-1a) showed some displacement at higher concentrations and its cross-reactivity was calculated as 3.1%. Adding salmon IGF-I at 1:1 or 1:10 molar ratio to masu salmon serum did not considerably alter its displacement curve (Fig. 4).

Using the TR-FIA, responses of circulating IGF-I and IGFBP-1b to fasting/refeeding were examined in underyearling masu salmon (Fig. 5). Serum IGF-I levels were similar between fed and fasted groups 3 weeks after fasting but became significantly lower in fasted fish in week 4 (Fig. 5a). Refeeding for 1 week partly restored reduced IGF-I levels. However, IGF-I levels in all groups were not significantly different in week 5. There was an overall effect of fasting on IGFBP-1b (Fig. 5b). Serum IGFBP-1b levels were significantly higher in fasted fish than in fed fish, while its levels became not significantly different among groups in weeks 4 and 5. Serum IGF-I level positively correlated with SGRs both in length and weight (Table 1, Supplementary Fig. 1). On one hand, log-transformed serum IGFBP-1b level negatively correlated with K and SGRs both in length and weight (Table 1, Fig. 6). There was a negative correlation between serum IGFBP-1b and IGF-I ($r = -0.51$, $p = 0.0325$) in the fasting/feeding experiment. IGF-I:ln IGFBP-1b ratio was calculated and plotted against SGRs (Supplementary Fig. 1). Albeit not significant, IGF-I:ln IGFBP-1b ratio had a higher regression coefficient value against SGRs than IGF-I alone (Supplementary Fig. 1).

Changes in circulating IGF-I and IGFBP-1b levels during smoltification in masu salmon were measured by TR-FIA (Fig. 7). Serum IGF-I levels were steadily increased from March to May and continued to increase even during the desmolification period (June) (Fig. 7a). Serum IGFBP-1 levels were relatively stable from February to April, sharply increased in May and were kept high in June (Fig. 7b). During February and May, serum IGF-I showed positive relationships with FL, BW and gill Na$^+$,K$^+$-ATPase (NKA) activity (Table 2). Serum IGFBP-1 levels were also positively correlated with FL, BW and gill NKA activity (Table 2, Fig. 8). A negative correlation between serum IGFBP-1b and K was seen (Table 2). There was a
positive correlation between serum IGFBP-1b and IGF-I ($r = 0.52, p = 0.0067$).

Discussion

The present study developed a TR-FIA for salmon IGFBP-1b which can be used as an alternative to the RIA. The assay components employed for the TR-FIA were the same as used in the RIA (Shimizu et al., 2006) and showed the similar specificity. In the present study, purified IGFBP-1b was biotinylated and used as tracer. This labeling appeared to have little effects on the binding to the antiserum and the interference by IGFs in the assay. In salmon blood, there are three major IGFBPs and two of them have been identified as IGFBP-1a (28-kDa form) and -1b (22-kDa form) whereas the other as IGFBP-2b (41-kDa form) (Shimizu et al., 2005, 2011a,b). Since IGFBP-1a and -1b share 61% sequence homology (Shimizu et al., 2011a), the antiserum against IGFBP-1b could cross-react with IGFBP-1a. Indeed, the antiserum visualized the IGFBP-1a band in western blotting and showed cross-reactivity to IGFBP-1a in the TR-FIA. However, since its cross-reactivity is low (3.1%), it should not severely affect the quantification of IGFBP-1b in TR-FIA. The assay components of the TR-FIA were originally from Chinook salmon but serial dilutions of serum/plasma from masu and Atlantic salmon and rainbow trout showed parallelism to the standard, indicating that this assay can be used for salmonids as is the case for the RIA (Shimizu et al., 2006).

The establishment of the TR-FIA enabled us to investigate an effect of fasting/refeeding on masu salmon IGFBP-1b (Kawaguchi et al., 2013) and an effect of increased rearing temperature on Atlantic salmon and rainbow trout IGFBP-1b (Hevrøy et al., unpublished data). In the latter study, a high temperature (19°C) significantly affected IGFBP-1b levels in both species but different timing and direction, suggesting that species-difference in catabolic response to elevated temperature exists between Atlantic salmon and rainbow trout (Hevrøy et al., unpublished data). At present, availability of immunoassay for quantifying fish IGFBPs is limited to salmon IGFBP-1b and -2b (Shimizu et al., 2003a, 2006).

One of the challenges in establishing immunoassay for fish IGFBP is to prepare enough amount of IGFBP for antigen since circulating levels of IGFBPs are approximately 300 ng/ml at the highest (Shimizu et al., 2003a, 2006). The present study used IGFBP-1b purified from Chinook salmon but the final yield was very low (22 µg from 600 ml serum; Shimizu et al., 2005), making protein purification not a practical method for antigen preparation. In order to facilitate studies on physiological regulation of fish IGFBPs, production of recombinant IGFBP and its use as antigen is desired.
Induction of circulating IGFBP-1 by fasting is a well-known response in mammals and fish (Lee et al., 1993, 1997; Siharath et al., 1996; Kelley et al., 2001; Peterson and Small, 2004; Shimizu et al., 2006, 2009). In post-smolt coho salmon, plasma IGFBP-1b was graded by the period of fasting (1, 2 or 3 weeks) and a single meal after fasting for 3 weeks restored increased IGFBP-1 to the basal level (Shimizu et al., 2009). The present study subjected underyearling masu salmon to 5-week fasting or 3-week fasting followed by refeeding for 2 weeks. Fasting for 3 weeks significantly increased serum IGFBP-1b levels. However, after week 3 serum IGFBP-1b levels in fasted fish decreased and became insignificant from those in fed and refed groups. The same trend of the decrease in IGFBP-1b levels during prolonged fasting was observed in post-smolt masu salmon (Kawaguchi et al., 2013). In contrast, IGFBP-1 levels continued to increase for 60 days in striped bass (Morone saxatilis; Siharath et al., 1996) or kept high until 45 days in channel catfish (Ictalurus punctatus; Peterson and Small, 2004). These differences may be species-dependent but the presence of IGFBP-1a needs to be considered since there is a possibility that IGFBP-1a could take over the IGFBP-1b role under certain conditions. Kamei et al. (2008) reported subfunction partitioning of duplicated IGFBP-1s in developing zebrafish embryos. In their study, both igfbp-1a and -1b were induced by hypoxia but their timing and responsiveness to hypoxia were different, which was termed as inducible or regulation subfunctioning partitioning (Kamei et al., 2008). On the other hand, only igfbp-1b was induced by chronic low oxygen stress in the liver of Atlantic salmon (Olsvik et al., 2013). However, in the same species hepatic igfbp-1a and -1b were increased when rearing temperature was increased from 13°C to 17°C (Hevrøy et al., 2013; Olsvik et al., 2013). Quantifying IGFBP-1a and comparing its response with that of IGFBP-1b will be useful to understand how the inducible/regulation subfunction partitioning of these paralogs is operated in fish.

IGFBP-1 is believed to be an inhibitor of IGF-I actions in fish (Kajimura and Duan, 2007). There are attempts to utilize its circulating protein levels or hepatic mRNA levels as an index of negative growth and/or stress (Kelley et al., 2001, 2006; Picha et al., 2008; Kawaguchi et al., 2013). However, few studies correlated igfbp-1b/IGFBP-1b levels with SGR. In post-smolt masu salmon, serum IGFBP-1b and its hepatic mRNA levels were negatively correlated with SGRs in both FL and BW (Kawaguchi et al., 2013). In the present study, serum IGFBP-1b was negatively correlated with SGR in both FL and BW. However, its relationships with SGRs were as not high as those in post-smolt masu salmon (Kawaguchi et al., 2013). The reason for the weaker correlation with SGRs in underyearling masu salmon is not known but
care should be taken to use IGFBP-1b as a negative growth index in fish at different age, or/and physiological conditions.

Simple correlation analyses on the relationships between circulating IGFBP-1b and other growth-related traits and endocrine factors suggest possible negative effects of IGFBP-1b in growth (Shimizu et al., 2006, 2009). In coho salmon (O. kisutch), IGFBP-1b was consistently, negatively correlated with K (Shimizu et al., 2006, 2009). A negative correlation between IGFBP-1 and body mass index is also evident in humans, which is likely explained by the effect of body fatness on insulin sensitivity (Travers et al., 1998). In the present study, the same negative relationship with K was found in the fasting/feeding experiment and during smoltification. Whether insulin sensitivity is involved in the link between IGFBP-1b with K in salmon is not known at present, but it is of note that insulin had little effect on hepatic expression of igfbp-1b in coho salmon (Pierce et al., 2006), suggesting another physiological mechanism. A direct effect of circulating IGFBP-1b on adipose tissue might be a possible pathway. Weil et al. (2011) characterized expression patterns of the IGF/IGFBP system including the IGF-receptor in adipose tissue in rainbow trout and suggested its involvement in adipose tissue growth. How circulating IGFBP-1b affects availability of circulating IGFs to the adipose tissue in fish is a subject to future study.

Our analysis also revealed that there was a negative correlation between circulating IGFBP-1b and IGF-I in the feeding/fasting experiment using underyearling masu salmon. This is in accordance with the result from the similar experiment using post-smolt masu salmon (Kawaguchi et al., 2013) but differs from the result in coho salmon where IGFBP-1b levels show no correlation with IGF-I under different feeding status (Shimizu et al., 2006, 2009). These findings suggest a species-difference between coho and masu salmon. In humans, a weak negative correlation between serum IGFBP-1 and IGF-I has been reported (Travers et al., 1998). Given that salmon IGFBP-1b is potentially an inhibitor of IGF-I action, a ratio of IGF-I to IGFBP-1b may reflect a fraction of circulating IGF-I available for promoting growth. In order to test this hypothesis, we calculated the ratio and correlated it with SGR in the present study. As a result, although IGF-I:ln IGFBP-1b ratio did not statistically improve the regression coefficient of variation but was higher than that of IGF-I alone. This kind of analysis may be worthy trying when more data points are available.

Parr-smolt transformation (smoltification) is a series of changes pre-adaptive for salmon to ocean life (Stefansson et al., 2008; McCormick et al., 2013). Acquisition of hypoosmoregulatory ability (seawater adaptability) mainly through activation of gill NKA is
one of the characteristic changes occurring during smoltification. A rapid lean growth, generally
reflected by a reduction of K, is also seen during this period. Circulating IGF-I levels have
shown to change during smoltification in several salmonid species (Aas-Hansen et al., 2003;
Áugustsson et al., 2001; Shimizu et al., 2003a), which could improve seawater adaptability
and/or promote body growth (McCormick et al., 2013). In masu salmon, IGF-I typically shows
a peak or high values when gill NKA was activated, suggesting that circulating IGF-I is
involved in the NKA activation (Shimomura et al., 2012; Kaneko et al., in press). On one hand,
there is only one study reporting changes in circulating IGFBP-1b during smoltification in coho
salmon (Shimizu et al., 2006). In that study, plasma IGFBP-1b sharply increased from the end
of March through late April. IGF-I levels in the same study increased prior to that of IGFBP-1b
and there was no significant relation between IGFBP-1b and IGF-I. In contrast, there was a
positive correlation between them in the present study. In yellowtail kingfish (Seriola lalandi),
albeit at the mRNA level, a strong positive correlation was seen between liver igf-1 and igfbp-1,
which might buffer the hypoglycemic action of circulating IGF-I (Collins et al., 2014). Thus,
IGFBP-1b might have a role in preventing IGF-I from interacting with the insulin receptor
during smoltification. Alternatively, IGFBP-1b may target IGF-I to certain tissues. In the
present study, IGFBP-1b positively correlated with gill NKA activity. Given that circulating
IGF-I is believed to be important for activating branchial NKA (Reinecke, 2010; Shimomura et
al., 2012), IGFBP-1b could have a positive effect on the IGF-I action by delivering IGF-I to the
gill or protecting it from degradation. Although this is totally a speculation at present but the
present study is the first to report a positive correlation between circulating IGFBP-1b and gill
NKA, and suggests a possible involvement of IGFBP-1b in the regulation of gill NKA activity.

In summary, the present study established a TR-FIA for salmon IGFBP-1b.
IGFBP-1b levels were increased by fasting but it might be transient in underyearling masu
salmon. During smoltification of yearling masu salmon, circulating IGFBP-1b was positively
correlated with circulating IGF-I and gill NKA activity, suggesting its possible involvement in
the development of hypoosmoregulatory ability in salmon.

Acknowledgments
We thank Etsuro Yamaha and Shizuo Kimura, Nanae Freshwater Laboratory, Field Science
Center for Northern Biosphere, Hokkaido University, for providing masu salmon and allowing
us to use the rearing facility. This work was supported by Grant-in-Aids for Scientific Research
from Japan Society for the Promotion of Science (#21580214), and grant from Research
Council of Norway for “Outstanding Young Investigator Programme”.

References

of masu salmon reared under different conditions. Fish. Sci. (in press).

Figure legends

Fig. 1. Ligand blotting (LB) and western blotting (WB) of purified salmon IGFBPs. Samples were run on 12.5% gel under non-reducing conditions, transferred to nitrocellulose membranes. The membranes were probed by either digoxigenin-labeled human IGF-I for ligand blotting or anti-salmon IGFBP-1b for western blotting. Arrowheads indicate molecular weights of IGFBPs.

Fig. 2. Displacement of biotinylated-salmon IGFBP-1b with purified IGFBP-1b and sera from masu salmon and rainbow trout (a) and Atlantic salmon (b).

Fig. 3. Cross-reactivity of salmon IGFBPs in the TR-FIA. Displacement of tracer was assessed by adding increasing amounts of purified salmon IGFBP-1a, -1b and -2b to the assay.

Fig. 4. Effect of exogenous salmon IGF-I on the displacement of masu salmon serum in TR-FIA. Salmon IGF-I was added to masu salmon serum at molar ratio of 1:1 or 1:10.

Fig. 5. Effects of fasting and re-feeding on circulating IGF-I (a) and IGFBP-1b (b). Values are expressed as means ± SE (n = 6-7). An asterisk indicates an overall effect. Symbols sharing the same letters are not significantly different from each other.

Fig. 6. Correlations between natural-log transformed IGFBP-1b level and condition factor (a), specific growth rate (SGR) in fork length (FL) (b) and SGR in body weight (BW) (c).

Fig. 7. Changes in serum IGF-I (a) and IGFBP-1b (b) levels during smoltification of masu salmon. Values are expressed as means ± SE (n = 6-7). Data on serum IGF-I were from Shimomura et al. (2012) with permission. Symbols sharing the same letters are not significantly different from each other.

Fig. 8. Correlation between natural-log transformed IGFBP-1b level and gill Na+,K+-ATPase (NKA) activity during smoltification of masu salmon (March to May, n = 19). Data on gill NKA activity were from Shimomura et al. (2012) with permission.
Fukuda et al., Fig. 1
Fukuda et al., Fig. 2

(a) Serum dilution

Standard (ng/ml)

- Standard
- Masu salmon
- Rainbow trout

(b) Standard (ng/ml)

- Standard
- Atlantic salmon
Fukuda et al., Fig. 6

\[r^2 = 0.41 \]
\[p = 0.0024 \]

\[r^2 = 0.27 \]
\[p = 0.0186 \]

\[r^2 = 0.25 \]
\[p = 0.024 \]
$r^2 = 0.41$

$p = 0.0032$

Gill NKA activity (μmol P/h/mg) vs. ln IGFBP-1b

Fukuda et al., Fig. 8
Table 1
Correlation coefficients (r) between endocrine parameters and morphological/growth parameters.

<table>
<thead>
<tr>
<th></th>
<th>FL</th>
<th>BW</th>
<th>K</th>
<th>SGR-FL</th>
<th>SGR-BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGF-I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.56</td>
<td>0.48</td>
</tr>
<tr>
<td>ln IGFBP-1b</td>
<td>-</td>
<td>0.48</td>
<td>-0.64</td>
<td>-0.52</td>
<td>-0.50</td>
</tr>
</tbody>
</table>

(\(\cdot\)): not significant. Analysis was used in 5\(^{th}\) week.
Table 2
Correlation coefficients (r) between endocrine parameters and morphological parameters and gill NKA activity during February to May.

<table>
<thead>
<tr>
<th></th>
<th>FL</th>
<th>BW</th>
<th>K</th>
<th>Gill NKA activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGF-I</td>
<td>0.77</td>
<td>0.76</td>
<td>-</td>
<td>0.86</td>
</tr>
<tr>
<td>ln IGFBP-1b</td>
<td>0.61</td>
<td>0.55</td>
<td>-0.42</td>
<td>-0.64</td>
</tr>
</tbody>
</table>

(-): not significant. Data on serum IGF-I were from Shimomura et al. (2012) with permission.
Supplementary Fig. 1. Correlations between IGF-I level and specific growth rate (SGR) in fork length (FL) (a) and body weight (BW) (c), and between IGF-I/ln IGFBP-1b and SGR-FL (b) and -BW (d). Regression coefficients were statistically not different between IGF-I and IGF-I/ln IGFBP-1b for both SGR-FL and -BW. Note that data points ($n = 18$) are not identical to those in Fig. 6 ($n = 19$) due to a small serum volume in one sample.
Table
Comparison of morphological parameters among treatments.

<table>
<thead>
<tr>
<th></th>
<th>0 wk</th>
<th>3 wk</th>
<th>4 wk</th>
<th>5 wk</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL</td>
<td>Fed</td>
<td>9.6 ± 0.18</td>
<td>Data lost</td>
<td>9.9 ± 0.17</td>
</tr>
<tr>
<td></td>
<td>Fasted</td>
<td>10.0 ± 0.26</td>
<td>10.0 ± 0.19</td>
<td>9.9 ± 0.18</td>
</tr>
<tr>
<td></td>
<td>Re-fed</td>
<td>9.9 ± 0.28</td>
<td>9.8 ± 0.22</td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>Fed</td>
<td>10.1 ± 0.54</td>
<td>Data lost</td>
<td>9.8 ± 0.52</td>
</tr>
<tr>
<td></td>
<td>Fasted</td>
<td>9.7 ± 0.83b</td>
<td>9.6 ± 0.53b</td>
<td>11.4 ± 0.55b</td>
</tr>
<tr>
<td></td>
<td>Re-fed</td>
<td>10.8 ± 1.03ab</td>
<td>10.4 ± 0.78ab</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Fed</td>
<td>1.14 ± 0.02a</td>
<td>Data lost</td>
<td>1.02 ± 0.02b</td>
</tr>
<tr>
<td></td>
<td>Fasted</td>
<td>0.97 ± 0.02b</td>
<td>0.97 ± 0.02b</td>
<td>1.18 ± 0.04b</td>
</tr>
<tr>
<td></td>
<td>Re-fed</td>
<td>1.09 ± 0.02a</td>
<td>1.11 ± 0.02a</td>
<td></td>
</tr>
<tr>
<td>HSI</td>
<td>Fed</td>
<td>2.21 ± 0.22a</td>
<td>Data lost</td>
<td>1.56 ± 0.24b</td>
</tr>
<tr>
<td></td>
<td>Fasted</td>
<td>1.19 ± 0.07b</td>
<td>1.22 ± 0.17b</td>
<td>0.89 ± 0.04b</td>
</tr>
<tr>
<td></td>
<td>Re-fed</td>
<td>1.30 ± 0.24b</td>
<td>1.41 ± 0.21b</td>
<td></td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SE (n = 6-7). Symbols sharing the same letters are not significantly different from each other.