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Abstract

We study the gauge-gravity duality between supersymmetric N = (8, 8) super Yang-
Mills theory in two dimensions and the supergravity solution of D1-brane in IIB string
theory. Through lattice simulations, we estimate physical quantities of the gauge theory
and compare them with the dual quantity from black string thermodynamics. In this
study, we use Sugino’s formulation for N = (8, 8) super Yang-Mills in two dimensions. It
is the first simulations performed using this formulation so we first test its validity. We
confirm that the lattice artifacts of the model disappear in the continuum limit, then we
observe restoration of the full supersymmetry using the supersymmetric Ward-Takahashi
identity. We also verify the simulation results using perturbative calculations in the low
coupling region. Lastly we compare the thermodynamic quantity E−PV obtained from
the lattice simulations of super Yang-Mills theory with the calculation done in the gravity
side. We find a good agreement at low temperature where the duality is expected to hold.
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Overview

In physics, connections between different theories often take surprising forms. Some
of such connections form the core of our present understanding of the world, such as
the particle/wave duality of quantum physics. Some other connect seemingly unrelated
sciences, such as the electrodynamics being applied to economic models[1]. But in present
theoretical physics, the collection of gauge-gravity dualities probably attracts the most
attention due to the unexpected connections.

These gauge-gravity duality started with the discovery of the correspondence between
Anti-de Sitter space and Conformal field theory proposed by Malcadena[2]. Through
the study of D-brane in string theory, it was suggested that string IIB on AdS5 × S5 is
equivalent to N = 4 supersymmetric Yang-Mills theory in four dimensions. This first
AdS/CFT duality was quickly followed by others, such as the correspondence between
AdS4 × S7 and ABJM superconformal field theory[3]. It was also understood that the
duality could be generalized to non-conformal case. It was argued that p-brane solution of
supergravity is dual to the maximally supersymmetric super Yang-Mills(SYM) in (p+ 1)
dimensions [4].

This last series of dualities, the black p-brane/D = (p + 1) SYM, is particularly in-
teresting from the gauge theory point of view. The means to study the large coupling
region of the SYM has been greatly improved in the last decade. Developments in super-
symmetric lattice model make it possible to test the duality conjecture with numerical
simulation.

In section 1, we first present a simple argument to explain the dualities. This is
followed by a review of the confirmations of the duality using numerical methods. Lastly
we examine the development of lattice supersymmetry.

The thesis is organized as follows. In section 2, we explain the lattice formulation of
the N = 16, D = 2 SYM, with it’s diverse concerns. In section 3, we present compelling
results of simulations that show the validity of the lattice model. This include verifying
the disappearance of the lattice artifact in the continuum limit and the restoration of the
full supersymmetry. This is followed with comparison with calculation from perturbation
theory. In section 4, the dual theory in the gravity side is introduced. After preparing a
physical quantity that can be obtained from both side of the duality we make the explicit
comparison of the theories in section 4.3.

1 Introduction

1.1 The ADS/CFT duality

The duality conjecture was discovered in the study of superstring theory. String theory
started as a tool to understand QCD. Quarks would be connected by strings, whose
energies depend on their length, causing confinement. But it was soon realized that
instead of QCD, a gravity theory naturally emerged: propagating closed strings behaved
like gravitons. The string, being a 1+1 dimensional object instead of a point object, is free
of divergence, the extended nature of the string would serve as a natural regularization.
Thus string theory became a popular candidate for quantum gravity. But a gravity
theory should couple with matter and simple strings are bosonic. However, with the
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insertion of supersymmetry, the fermions could also be inserted in the theory. Another
interesting fact of string theory is that the number of dimensions is not imposed, but
derived. Superstring need a ten dimensional spacetime in order to be mathematically
consistent. The extra dimensions are usually compactified and depending on the exact
compactification, a wide range of elementary particles can emerge.

Around 1990, it was recognized that type II string theory could not be made only of
string. In addiction to the 1+1 dimensional string, the theory needed p+1 dimensional
objects called Dp-brane[5]. These branes served as an anchor for the open strings to
attach themselves to. The branes can interact by emitting and receiving closed strings,
which propagate freely in the whole space. Branes can also be connected by open strings.

It was realized that, at large string coupling, Dp-branes are equivalent to Extremal
Black p-brane in supergravity [6][7]. The equivalence was established on the realization
that both are p-dimensional object with the same R-R charge. The D-brane and black
p-brane are two limits of the same object. By varying the string coupling adiabatically,
it is possible to connect both description[8]. From those two approach, the AdS/CFT
duality was constructed.

When studying the Dp-branes with a perturbation approach, we consider N coinciding
D3-brane in a 10 dimensional spacetime. The branes are connected to each by open string
and interact with the closed string propagating in the bulk (the spacetime around the
brane). The model is studied using worldsheet expansion, each worldsheet is responsible
for a gN contribution, g being the string coupling constant. Thus this model can be
understood with perturbation theory when gN is small. In the low energy limit, string
exited states disappear and the string length gets shorter (α′ → 0). The remaining open
string behave like gauge particle on the 3+1 dimensional brane. They form the N = 4,
D = 4, U(N) SYM. The closed string mode in the bulk decouple from the brane’s physics
at low energy and can be ignored.

In the black 3-brane side, the open strings are hidden while closed string still fill the
bulk. The physics of the black brane is contained in its black-hole nature: it has an
horizon, an entropy and deform the spacetime. The metric is given by

ds2 = H−1/2(r)(−dt2 + dx2
‖) +H1/2(r)dx2

⊥, (1)

H = 1 +
L4

r4
L4 = 4πgNα′2

where the x‖ are dimensions on the brane and x⊥ are the dimensions of the bulk. This
theory is well understood when the typical scale of the space is greater than the string
scale (L2 � α′) and quantum effect can be ignored. Therefore this model is studied at
large gN which corresponds to the classical limit. Looking at the low energy limit, we
have massless closed string in the bulk and the r → 0 physics. Here again, the close
strings in the bulk decouple from the brane and can be ignored. Close to the brane
(r → 0), the function H−1/2(r) goes to zero suppressing the energies. In this limit, the
spacetime take a Anti-de Sitter form

ds2 =
r2

L2
(−dt2 + dx2

‖) +
L2

r2
dr2 + L2dΩ5. (2)

The three dimensions on the brane with the time t and the radius r form the AdS5 space
and the remaining five dimensions form a five dimensional sphere S5 of radius L.
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Connecting the parts together, we have Maldacenna’s ADS/CFT conjecture. The low
energy limit of D3-brane is the N = 4, D = 4, U(N) SYM theory. However the D3-
brane can be seen as black 3-brane which low energy limit is a supergravity theory with
a AdS5 × S5 spacetime. Therefore, the SYM theory should be dual to the supergravity
theory. This should be true as long as taking the low energy limit commutes with the
transition from both point of view.

The validity of the dualities is strongly supported. Both side have the same symme-
tries, and a matching spectra of supersymmetric states[9]. Both side have the important
conformal symmetry. With this symmetry, some calculations can be done at any coupling,
including the strongly coupled gauge theory which cannot be treated using perturbation
theory, allowing many verifications. Also, based on the conformal theory, a dictionary
connecting physical quantities on both side of the duality was created [10][11].

The AdS/CFT conjecture connects a gravity theory in its weak coupling regime with
a gauge theory with strong coupling. This opens the door to studing strongly coupled
gauge theories on the easier gravity side[12], [13]. Moreover, it could potentially allow the
solving of quantum gravity model using understood gauge model. The understanding of
some questions, such as the black hole information loss paradox, could be improved by
using the duality[14].

0

5

10

15

20

25

30

0.0 1.0 2.0 3.0 4.0 5.0

E
/N

2

T

N=8, Λ=2
N=12,Λ=4
N=14, Λ=4
black hole

HTE

0.8

1.0

1.2

0.45 0.50
0.8

1.0

1.2

0.45 0.50

Figure 1: Internal energy of N = 16 SYM in one dimension computed using the matrix
model obtained by Nishimura et al.[15]. The lines are the theoretical predictions from
black 0-brane solution (full line) and high temperature expansion (dashed line). The
gauge-gravity conjecture indicate that at low temperature, where the supergravity cal-
culation can be trusted, the results from the gauge theory should be consistent with the
gravity calculation. At low temperature, the simulation results did match the gravity
curve.
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1.2 Gauge gravity duality in lower dimension

From the study of D3-brane, the AdS/CFT duality conjecture came out, which is strongly
supported. However, this duality give a hint of a bigger duality; we can do the demon-
stration using a general Dp-brane instead of a D3-brane. In the gauge theory side, with
a similar line of reasoning, we obtain the D = p + 1 maximally supersymmetric SYM.
In the supergravity side, we get the r → 0 limit of Black p-brane. The resulting duality
between gauge and gravity was first suggested by Maldacena et al. in 1998. When p 6= 3,
the gauge field theory is not conformal and the resulting spacetime is not anti-de Sitter.
The conformal symmetry is replaced by another set of symmetries that are equivalent
both side of the duality. However without conformal symmetry, the duality conjecture is
a lot harder to verify, exact calculations being very complex, if not impossible. Therefore
a lot less evidence has been accumulated to back it up. For the low dimensions case, the
few verifications that were obtained used numerical simulations.

The first successful test was performed by Nishimura et al.[15] in 2007. Using a matrix
model with a simple ultraviolet cut-off as regularization, they compared the energy of
the N = 16 SYM in one dimension at finite temperature with the internal energy of the
dual black-hole. They observed a good agreement between gauge theory simulations and
supergravity calculation, (figure 1). Their study included the effect of string length (α′

corrections) and string loop effect (finite N expansion). The weakness of their method is
the use of matrix model which is only valid in 1D.
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Figure 2: Internal energy of N = 16 SYM in one dimension computed using Sugino’s
lattice model obtained by Kadoh and Kamata [16]. The blue ‘Gravity’ line is the theo-
retical prediction from black 0-brane solution at the leading order. The dashed curve is
the next to leading order obtained with a fit. The fit is consistent with the expectations.
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Following the success of Nishimura et al. came Kadoh and Kamata reproduction of
the result using lattice theory. With lattice theory, attention is made to keep gauge
symmetry and partial supersymmetry exact. Because of this extra difficulty the results
came a few years after the matrix model resutl, in 2015[16]. They also were able to see
agreement between the supergravity theory and N = 16 SYM,(figure 2). The advantage
of lattice theory is that it can be also be extended two dimensions with reasonable ease.
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Figure 3: Boundary of the phase transition between the IIA and IIB string theory regime
obtained by Catterall et al.[17] using lattice simulation of N = (8, 8), D = 2 SYM. The
y unit is the unitless temporal direction volume and the x unit is the unitless spacial
volume. The blue zone correspond to a black 0-brane regime or non null spatial Polyakov
line Px ≈ 1, the other zone correspond to a black 1-brane phase, Px ≈ 0. The black
lines are the measured locations of the phase transition, called Gregory-Laflamme phase
transition, obtained using different group size N = 3, 4. The blue line is the numerical
fit with the expected shape obtained supergravity r2

x = crτ , with a fitted c ≈ 3.5, well
within the constraint from gravity c > 2.29.

Up to now, only indirect test of the duality were made for N = (8, 8), D = 2
SYM with D1-brane in IIB string theory. In 2010 Catterall, Joseph, Wiseman used
lattice SYM simulations to observe a phase transition predicted in supergravity (figure
3)[17]. The Gregory-Laflamme phase transition is a phenomenon that occur in D1-brane.
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When the length of the D1-brane is small compared to the theory coupling constant
(temperature), the physics of the brane become to those of a D0-brane. In the gauge
side, the phase transition can be observed by calculating the Polyakov line in the spacial
direction, the D0-brane corresponds to Px ≈ 1 while the D1-brane corresponds to Px = 0.
Using simulation of two dimensional SYM, they were able to observe the phase transition
conditions and found them in accordance with the prediction from the string model. This
indirect test support the validity of the correspondence in two dimension. However the
authors did not do any direct verification such as the comparisons of the energy both side
of the duality. 1

In the present study, we want to fill this gap by making a direct comparison between
N = (8, 8), D = 2 SYM and extremal black 1-brane to obtain direct evidence of the
duality.

1.3 Supersymmetry and lattice theory

Calculations in quantum fields theory are not trivial. Interactions between the different
component of the model give rise to the dynamic and interesting physics. However, rarely
such model can be exactly solved. Moreover, the theory contains divergences which must
be regularized to obtain meaningful physical quantities. In a theory with low coupling
constant, perturbation theory can be used to incorporate the physics of the interactions.
With perturbation theory, the divergence can be regularized order by order using one of
many known method, such as dimensional regularization. However, for theories with a
strong coupling, this method cannot be applied since higher terms of the approximation
do not become insignificant.

Lattice theory was developed to tackle these cases. The discretization of the space time
introduced by the lattice serve as a regularization of the UV divergence of the system.
Lattice theory also define the field theory with a finite number of degree of freedom,
making the problem solvable at any coupling, providing that sufficient computing power
is available. However going to the lattice break the Lorentz symmetry and infinitesimal
translation symmetry which are only restored in the continuous limit. On the other hand,
gauge symmetry and other internal symmetries are usually kept exact on the lattice.
Lattice was first used to study QCD, explaining the confinement of quark[18]. It is also
used to calculate the hadron spectrum and gives excellent agreement with experimental
results.

While lattice is mainly used for QCD-like model, the increasing popularity of super-
symmetry and the importance of understanding it in the non-perturbative regime created
the need for a lattice formulation of supersymmetric model. This is not a simple mat-
ter as two problems arise when putting supersymmetry on the lattice: the presence of
fermion doublers and the breaking of the Leibniz rule for the difference operator.

On the lattice, derivatives do not exist and are replaced by difference operator. This

1The lattice model used by Catterall et al. breaks supersymmetry on the lattice. This is probably
the reason they were unable to find an agreement of the duality in 1D when they attempted a direct
test[?], therefore went for an indirect test in 2D.
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has the effect of changing the momentum of the fermion in the action to a sine form

S =

∫
dpd

(2π)d
iΨ̄(−p)pµγµΨ(p)→

∫ π

−π

dpd

(2π)d
iΨ̄(−p)sin(pµ)γµΨ(p) (3)

Inside of the lattice Brillouin zone, there are 2 solutions, pµ = 0 and pµ = π, that cor-
respond to on-shell fermions. Each modes survive in the continuum limit and posses a
different chirality. Since the fermion described are massless particle, Lorentz transforma-
tion cannot change chirality, leading to the realization that these solutions correspond
to different particles. Therefore, when trying to put one fermions on the lattice, it is
doubled for each spacetime directions, resulting in 2d particles. It was shown that the
doublers cannot be removed without breaking some important property[19]:

• Locality

• Translation invariance

• Chirality

• Hermiticity of the fermion action

This is particularly problematic for supersymmetric models since the theory need the
same number of fermions and bosons, therefore the extra degrees of freedom break the
supersymmetry.

The other problem facing lattice supersymmetry is the breaking of Leibniz rule. The
supersymmetry algebra contain derivative, however infinitesimal translations do not ex-
ist on the lattice. The problem arises when applying supertransformation to a lattice
elements. The superalgebra is distributive

Q(φψ) = Q(φ)ψ ± φQ(ψ), (4)

where Q is the fermionic supercharge and φ and ψ are either bosonic or fermionic fields.
However the difference operator is not distributive, for example in the symmetric differ-
ence operator case we have

∇(φ(x)ψ(x)) = ∇(φ(x))ψ(x+ a) + φ(x− a)∇(ψ(x)), (5)

where ∇(φ(x)) = φ(x + a) + φ(x − a), with a being the lattice spacing. Because the
superalgebra is connected to the derivative byQ2 = i∂, supersymmetry cannot be trivially
constructed on the lattice. This also gave rise to a no-go theorem stating that it is
impossible to have translation invariance, locality and Leibniz rule at the same time on
the lattice[20].

From these no-go theorems, it is easy to see that simple lattice theory breaks super-
symmetry. In recent years, many methods to manage these issues leaded to a multitude
of lattice supersymmetric models[21], [22], [23], [24], [25], [26], [27], [28], [29], [30] . These
models splits in three main approaches.

First, give up on supersymmetry at the lattice level and expect that, similarly to
Lorentz symmetry, the supersymmetry is recovered in the continuous limit. These meth-
ods usually use fine-tuning of some parameters to obtain the desired continuum theory[31].
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Secondly, there is the opposite approach of forcing full supersymmetry on the lat-
tice. This is usually done by giving up on the locality of the action, but other method
exist. One of such model use a non-local derivative (SLAC derivative) that force the
same momentum spectrum on the lattice than in the continuum[32]. This remove the
doublers and restore Leibniz rule. Other similar method is to use a non-local product
instead[33]. This model use the fermion doublers in the super-algebra, but result in an
non-associative product. Both of the methods are successful for simple models, such as
Wess-Zumino, however they are not successful for gauge theory yet. Lastly, a lattice gauge
theory with full supersymmetry on the lattice have been realized by non-commutative
formulation[28]. The problem of this last model is that it cannot be used for numerical
simulations. Therefore while putting full supersymmetry on the lattice is very interesting
from a theoretical point of view, but it has yet to create models usable for simulating
supersymmetric Yang-Mills theories.

The last method is to preserve only partial supersymmetry on the lattice. With the
use of topological twisting, it is possible to create nilpotent supercharges (Q2 = 0). This
allows us to keep a portion of the supersymmetry exact while giving up on the rest.
It was shown that the presence the partial symmetry allows the restoration of the full
supersymmetry in the continuum without any fine-tunning in low dimension 2[24]. The
earliest use of this method to create a supersymmetric gauge theory was done by Kaplan
[21]. The method was then refined by Sugino, who used link variables and topological
twisting together to create his lattice supersymmetric Yang-Mills models.

2 Lattice simulation of N = (8, 8) SYM in two dimen-

sions

The method developed by Sugino at al.[24][25] allows to create lattice SYM models keep-
ing some of its supercharges intact. It was shown by perturbation theory that keeping
only a few supercharges intact on the lattice is sufficient to assure the restoration of the
full supersymmetry in the continuum limit in low dimension.

There are 2 main problems arising when putting SUSY on the lattice: the breaking
of the Leibniz rule and the emergence of fermions doublers. Those issues brought foward
many possible solutions, from giving up SUSY on the lattice to modifying the basic
properties of the theory (locality, associativity,...) in order to make SUSY fit exactly on
the lattice.

The approach used for the model in this study is to keep only partial SUSY on the
lattice. Using a topological twist, 2 of the supercharges are made nilpotent and thus can
be put on the lattice even if the Leibniz rule is broken. By a smart definition of the
field and divergence operator it is possible to kill the fermion doublers (but hermiticity
is broken in the fermionic sector).

In this section we present the gauge model used for our simulations. First, we present
the continuum action and rewrite it in a Q±-exact form. Next, we build the lattice action
followed by some considerations about the formulation to make it useful for simulations.

2No fine tunning is needed for super Yang-Mills in one or two dimensions, starting in 3 dimensions
one or more parameters are needed depending on the number of supersymmetries[24].
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Some issues and properties that could limit the simulations are discussed in section 2.3.
Lastly we state the simulations details.

2.1 Continuum theory

The Euclidean action of N = (8, 8) super Yang-Mills theory in 2 dimensions is given by

S =
N

λ

∫
d2x tr

{1

4
F 2
µν +

1

2
(DµXi)

2 − 1

4
[Xi, Xj]

2

+
1

2
ΨαD0Ψα −

i

2
Ψα(γ1)αβD1Ψβ +

1

2
Ψα(γi)αβ[Xi,Ψβ]

}
. (6)

It contain two gauge fields Xµ(µ = 0, 1), eight scalar fields Xi(i = 2, 3 · · · , 9), and six-
teen fermions Ψα(α = 1, 2, · · · , 16). Every fields are written as matrices belonging to
the SU(N) group and can be decomposed as ϕ =

∑
a ϕ

aT a where T a are the SU(N)
group generators, tr(T aT b) = δab. The field strength is F01 = ∂0X1 − ∂1X0 + i[X0, X1]
and the covariant derivatives are defined by Dµϕ = ∂µϕ + i[Xµ, ϕ]. The gamma ma-
trices γa(a = 1, · · · , 9) are chosen real and symmetric and satisfy the nine-dimensional
Euclidean Clifford algebra, {γa, γb} = 2δab.

This action can be obtained from dimensional reduction of the D = 10, N = 1 SYM
theory. In ten dimension, the Majonara-Weyl condition reduce the fermionic degrees of
freedom from 32 to 16, thus the usage of the nine-dimensional gamma matrices.

This action have only one free parameter, the ”‘t Hooft coupling λ as an overall
constant, the symmetries of the theory forbid any other parameter. As symmetry, we
have the 2D euclidean group, the SO(8) rotation between the scalar fields, the gauge
symmetry and supersymmetry on shell. The SO(8) rotation symmetry is the left-over
from the rotation in the reduced eight dimension from the ten dimensions theory. This
rotation do not only affect the boson scalars but also the fermion fields. The SU(N)
gauge group is considered instead of the U(N) group since the U(1) part decouple from
the theory and it is simpler to treat it independently. The supersymmetry of the action
consist in the following 16 transformations,

QαXµ = −i(γµ)αβΨβ, (7)

QαXi = −i(γi)αβΨβ, (8)

QαΨβ = i(γ1)αβF01 + (γµγi)αβDµXi +
i

2
(γiγj)αβ[Xi, Xj], (9)

where γ0 = i. The gauge transformations are defined as

δωAµ = −Dµω, δωϕ = −i[ϕ, ω], (10)

where Xµ are the gauge fields and ϕ represent a scalar or a fermion field.
In order to obtain the Sugino lattice formulation we rewrite the action in an Q±-exact

form constructed with nilpotent supercharge using a topological twist. Both notation are
equivalent and differ only by a renaming of the fields 3. The action in Q±-exact form is

3See appendix A.1 for the relation between both notations.
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given by

S = Q+Q−
N

2λ

∫
d2x tr

{
− 4iBiF

+
i3 −

2

3
εijkBiBjBk

− ψ+µψ−µ − χ+iχ−i −
1

4
η+η−

}
. (11)

where µ runs from 0 to 3, i, j, k from 0 to 2. εijk is a totally antisymmetric tensor
satisfying ε012 = 1. The two gauge fields are renamed to Aµ(µ = 0, 1), the scalar fields
are separated into six real scalar fields A2, A3, Bi, C, and two complex scalar fields φ±.
The fermions are given by ψ±µ, χ±i, η±. The F+

i3 are extended field strength

F+
i3 =

1

2

(
Fi3 +

1

2
εijkFjk

)
, (12)

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ], (13)

with ∂µ = 0 for µ = 2, 3. This action is a dimensional reduced form of the four dimensional
N = 4 SYM which has a well known topological twist[34].

The supercharges Q± are obtained with the following twist of the original supercharges

Q+ =
1√
2

(Q5 + iQ13), (14)

Q− =
1√
2

(Q1 + iQ9). (15)

The Q±-transformations are nilpotent up to gauge transformations: Q2
± = iδφ± and

{Q+, Q−} = −iδC . The associated Q±-transformations are

Q±Aµ = ψ±µ Q±ψ±µ = −iDµφ±, Q±ψ∓µ = i
2
DµC ± H̃µ,

Q±Bi = χ±i, Q±χ±i = [Bi, φ±], Q±χ∓i = 1
2
[C,Bi]±Hi,

Q±C = η±, Q±η± = [C, φ±], Q±η∓ = [φ∓, φ±],

Q±φ± = 0, Q±φ∓ = η∓,

Q±Hi = ±
(

[χ∓i, φ±] +
1

2
[χ±i, C] +

1

2
[Bi, η±]

)
,

Q±H̃µ = ±
(

[ψ∓µ, φ±] +
1

2
[ψ±µ, C]− i

2
Dµη±

)
. (16)

H̃µ and Hi are auxiliary field introduced to define Q± as closed transformations.

2.2 Lattice theory

For the lattice version of this theory, we prepare a 2D lattice of Nt sites in the temporal
direction and Nx sites in the spacial one. The lattice spacing is a and, for simplicity, we
set (a = 1) when the lattice spacing is not explicitly needed. The lattice sites are labeled
by integers

~x = (t, x) t = 1, · · · , Nt, x = 1, · · · , Nx. (17)
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The fields of the theory are all placed on the sites with the exception of the gauge
fields. The gauges fields are represented by link variables on the lattice

Uµ(~x) = eiAµ(~x). (18)

Periodic boundary conditions are imposed on the boson fields. The fermions satisfy peri-
odic boundary conditions in the spacial direction and anti-periodic boundary conditions
in the temporal direction in order to account for the effect of finite temperature in the
simulations.

The lattice gauge transformations for an infinitesimal transformation with the param-
eter ω(~x) defined on the sites, are given by

δωUµ(~x) = iω(~x)Uµ(~x)− iUµ(~x)ω(~x+ µ̂), δϕ(~x) = −i[ϕ(~x), ω(~x)], (19)

where ϕ represent any field placed on a site. µ̂ is a unit vector in µ-direction.The forward
and backward covariant difference operators are given by

∇+
µϕ(~x) = Uµ(~x)ϕ(~x+ µ̂)U †µ(~x)− ϕ(~x), (20)

∇−µϕ(~x) = ϕ(~x)− U †µ(~x− µ̂)ϕ(~x− µ̂)Uµ(~x− µ̂), (21)

respectively.
Some modifications are needed for the lattice counterparts of the Q±-transformations

in order to keep the supercharges nilpotent on the lattice. The cause of this effect is the
use of link variable, thus the modifications are only needed for the field associated with
the directions µ = 0, 1. The modified Q±-transformations for them are

Q±Uµ = iψ±µUµ,

Q±ψ±µ = −i∇+
µφ± + iψ±µψ±µ,

Q±ψ∓µ =
i

2
∇+
µC ± H̃µ +

i

2
{ψ+µ, ψ−µ},

Q±H̃µ = ±
( [
ψ∓µ, φ± + 1

2
∇+
µφ±

]
+

1

2

[
ψ±µ, C + 1

2
∇+
µC
]

− i

2
∇+
µ η± +

1

4
[ψ±µ, {ψ+µ, ψ−µ} ± 2iH̃µ]

)
.

(22)

With the definitions above, we have Q2
± = iδφ± and {Q+, Q−} = −iδC even on the

lattice[24].
From the Q±-exact action (11), we need to replace the integral with a summation

over the sites and modify the field strengths in order to get the lattice formulation

S = Q+Q−
N

2λ0

∑
t,x

tr
{
− 4iBiF

+
i3 −

2

3
εijkBiBjBk

− ψ+µψ−µ − χ+iχ−i −
1

4
η+η−

}
. (23)

The extended field strengths include both forward and backward covariant derivative,

F+
03 = 1

2
(∇+

0 A3 +∇+
1 A2), (24)

F+
13 = 1

2
(∇−1 A3 −∇−0 A2), (25)

F+
23 = 1

2
(i[A2, A3] + F01), (26)
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so that the fermion doubler are killed.
On the lattice, the field strength F01 is written using plaquette (P01), a closed loop of

four link fields

F01(~x) = − i
2

(
P01(~x)− P †01(~x)− 1

N
tr(P01(~x)− P †01(~x))

)
, (27)

P01(~x) = U0(~x)U1(~x+ 0̂)U †0(~x+ 1̂)U †1(~x). (28)

See section 2.3 and [24] for more details. This choice of field strength give a traceless
hermitian F01 to the first power which we need in the Q±-exact form.

The free parameters of the lattice action are the ’t Hooft coupling λ, the gauge group
used and lattice size. For our simulation, we choose the ’t Hooft coupling in function of
the desired dimensionless temperature. The lattice coupling is

λ0 = a2λ =
1

(T0Nt)2
. (29)

By performing the Q±-transformations of (23) we get the full lattice action. It is
useful to define shifted fields notation

ϕ+µ(~x) = Uµ(~x)ϕ(~x+ µ̂)U †µ(~x), (µ = 0, 1), (30)

ϕ−µ(~x) = U †µ(~x− µ̂)ϕ(~x− µ̂)Uµ(~x− µ̂), (µ = 0, 1), (31)

ϕ±µ(~x) = ϕ(~x), (µ = 2, 3) (32)

and the covariant derivative are defined in dimension 0 to 3

∇±µϕ = ±(ϕ±µ − ϕ), (µ = 0, 1), (33)

∇±µϕ = i[Aµ, ϕ], (µ = 2, 3). (34)

The lattice action has two complex covariant difference operators,

∇+ν
µ ϕ =

1

2
(ϕ+µPµν + Pνµϕ

+µ − ϕPνµ − Pµνϕ), (35)

∇−νµ ϕ =
1

2
(Pνµϕ+ ϕPµν − P−µµν ϕ−µ − ϕ−µP−µνµ ), (36)

for µ, ν = 0, 1, µ 6= ν.
The boson part of the lattice action is

SB =
N

2λ0

∑
t,x

tr

{
1

4
[φ+, φ−]2 +

1

4
[C, φ+][C, φ−]− 1

4
[C,Bi]

2

−∇+
µφ+∇+

µφ− + [Bi, φ+][Bi, φ−] +
1

4
(∇+

µC)2 (37)

+(Hi + iϕi)
2 + ϕ2

i + (H̃µ + iGµ)2 +G2
µ

}
,

14



where ϕi and Gµ are given by

ϕ0 = ∇+
0 A3 +∇+

1 A2 − i[B1, B2], (38)

ϕ1 = ∇−1 A3 −∇−0 A2 − i[B2, B0], (39)

ϕ2 = i[A2, A3] + F01 − i[B0, B1], (40)

G0 = i[A+0
3 , B0]− i[A2, B

+0
1 ] +∇−0

1 B2, (41)

G1 = i[A+1
2 , B0] + i[A3, B

+1
1 ]−∇−1

0 B2, (42)

G2 = −∇−1 B0 +∇+
0 B1 + i[A3, B2], (43)

G3 = −∇−0 B0 −∇+
1 B1 − i[A2, B2]. (44)

The boson action is semi positive definite. The auxiliary fields H̃µ and Hi can be inte-
grated using a Gaussian integral. The action is similar to the continuum action with the
exception of the shift in the fields composing ϕi and Gµ.

The fermion part of the action is given by

SF =
N

2λ0

∑
t,x

tr

{
1

4
η+[φ−, η+] + χ+i[φ−, χ+i] + ψ+µ[1

2
(φ− + φ+µ

− ), ψ+µ]

+
1

4
η−[φ+, η−] + χ−i[φ+, χ−i] + ψ−µ[1

2
(φ+ + φ+µ

+ ), ψ−µ]

− 1

4
η+[C, η−] + χ+i[C, χ−i] + ψ+µ[1

2
(C + C+µ), ψ−µ]

− η−[Bi, χ+i]− η+[Bi, χ−i] + 2εijkχ−i[Bj, χ+k]

− i∇µη+ψ−µ − i∇µη−ψ+µ + [Aµ, η+]ψ−µ + [Aµ, η−]ψ+µ

− 2χ+0(+i∇+
0 ψ−3 + i∇+

1 ψ−2 + [A+1
2 , ψ−1] + [A+0

3 , ψ−0])

+ 2χ−0(+i∇+
0 ψ+3 + i∇+

1 ψ+2 + [A+1
2 , ψ+1] + [A+0

3 , ψ+0])

− 2χ+1(−i∇−0 ψ−2 + i∇−1 ψ−3 − [A−0
2 , ψ−0

−0] + [A−1
3 , ψ−1

−1])

+ 2χ−1(−i∇−0 ψ+2 + i∇−1 ψ+3 − [A−0
2 , ψ−0

+0] + [A−1
3 , ψ−1

+1])

− 2χ+2(+i∇+1
0 ψ−1 − i∇+0

1 ψ−0 − [A2, ψ−3] + [A3, ψ−2])

+ 2χ−2(+i∇+1
0 ψ+1 − i∇+0

1 ψ+0 − [A2, ψ+3] + [A3, ψ+2])

− 2ψ−3[B−0
0 , ψ−0

+0]− 2ψ−3[B+1
1 , ψ+1]− 2ψ−3[B2, ψ+2]

+ 2ψ+3[B−0
0 , ψ−0

−0] + 2ψ+3[B+1
1 , ψ−1] + 2ψ+3[B2, ψ−2]

− 2ψ−2[B−1
0 , ψ−1

+1] + 2ψ−2[B+0
1 , ψ+0]

+ 2ψ+2[B−1
0 , ψ−1

−1]− 2ψ+2[B+0
1 , ψ−0]

− iψ−0[A+0
3 , [B0, ψ+0]]− iψ−0[B0, [A

+0
3 , ψ+0]]

− iψ−0[A2, [B
+0
1 , ψ+0]]− iψ−0[B+0

1 , [A2, ψ+0]]

+ iψ−1[A3, [B
+1
1 , ψ+1]] + iψ−1[B+1

1 , [A3, ψ+1]]

− iψ−1[A+1
2 , [B0, ψ+1]]− iψ−1[B0, [A

+1
2 , ψ+1]]

+ LP −
1

4

∑
ρ=0,1

{ψ+ρ, ψ−ρ}2

}
,

(45)
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with

LP =
1

2
ψ−0

{
(P10B2 −B2P01)−1 +B2P10 − P01B2, ψ+0

}
+ ψ−0P01ψ

+1
+0B2 − ψ−0B2ψ

+1
+0P10 + ψ+1

−0B2ψ+0P01 − ψ+1
−0P10ψ+0B2

− 1

2
ψ−1

{
(P01B2 −B2P10)−1 +B2P01 − P10B2, ψ+1

}
− ψ−1P10ψ

+0
+1B2 + ψ−1B2ψ

+0
+1P01 − ψ+0

−1B2ψ+1P10 + ψ+0
−1P01ψ+1B2

+ ψ−0P01ψ+1B2 − ψ−0B2ψ+1P10 + ψ+1
−0P10B2ψ+1 − ψ+1

−0ψ+1B2P01

− ψ−0ψ
+0
+1P01B2 + ψ−0B2P10ψ

+0
+1 + ψ+1

−0B2ψ
+0
+1P01 − ψ+1

−0P10ψ
+0
+1B2

− ψ−1P10ψ+0B2 + ψ−1B2ψ+0P01 − ψ+0
−1P01B2ψ+0 + ψ+0

−1ψ+0B2P10

+ ψ−1ψ
+1
+0P10B2 − ψ−1B2P01ψ

+1
+0 − ψ+0

−1B2ψ
+1
+0P10 + ψ+0

−1P01ψ
+1
+0B2.

(46)

In the naive continuum limit, the complicated term LP becomes two simple terms,

LP = −2ψ−1[B2, ψ+0] + 2ψ−0[B2, ψ+1], (47)

while the shifts of fields in (45) disappears. Thus the fermionic part of the lattice action
is equivalent to the continuum version.

This lattice action have four-fermions interaction terms

S4f =
N

2λ0

∑
t,x

∑
ρ=0,1

tr

(
−1

4
{ψ+ρ, ψ−ρ}2

)
. (48)

While these terms disappear in the continuum limit, they are needed to keep that super-
symmetry exact at finite lattice spacing. It is not possible to treat four-fermi interaction
directly in the simulation, therefore we insert auxiliary fields

S4f =
N

2λ0

∑
t,x

∑
ρ=0,1

tr
(
σ2
ρ + ψ+ρ[σρ, ψ−ρ]

)
. (49)

In this form, these interactions can be treated with the other fermion terms.

Fermion doublers

Fermions on the lattice normally have extra degrees of freedom from the fact that their
action contain only a first derivative. Since SUSY requires the same number of degree of
freedom between the bosons and fermions, this issue must be addressed. The action used
is written using a mixture of backward and forward different operator arranged in a way
to create a non hermitian Dirac operator D. This formulation is equivalent to adding a
Wilson mass to the fermions

∇+
µ =

∇+
µ +∇−µ

2
+
a

2
∇+
µ∇−µ (50)

This breaks chirality but allows us to evade the lattice No-Go that shows that the doublers
are needed on the lattice. To do the numerical simulation, a hermitian Dirac operator
is needed so D†D is used. The present arrangement of backward and forward operator
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is chosen such that the kinetic part of D†D if composed of second derivative, killing the
fermion doublers.

The fermionic part of the action can be written as

SF ∝ ΨTDΨ (51)

Looking at the kinetic part of the Dirac operator, we have 4

D =

[
0 −iKT

iK 0

]
(52)

with

K =



0 0 0 0 0 0 ∇−1 ∇0

0 0 0 0 0 0 −∇−0 ∇1

0 0 0 0 −∇−1 ∇0 0 0
0 0 0 0 −∇−0 −∇1 0 0
0 0 ∇1 ∇0 0 0 0 0
0 0 −∇−0 ∇−1 0 0 0 0
−∇1 ∇0 0 0 0 0 0 0
∇−0 ∇−1 0 0 0 0 0 0


. (53)

The hermitian form of the fermion operator (D†D) is diagonal and composed of a second
derivative

D†D ∝ −∇0∇−0 −∇−1∇1. (54)

This way, the Dirac operator does not create fermion doublers.

2.3 Validity of the lattice action

In this section, we examine a few concerns about the action. We begin by commenting
on the flat direction present in the action. Then we discuss about the continuum limit
of the lattice action. With the present action, there is two issues arising when taking the
continuous limit. First the lattice action have a degenerate vacua issue from the fields
strength term. Also, there is some cross-terms that are not cancelling each other properly
at finite lattice spacing.

Flat direction The bosonic action (6) has a known flat direction. This case arise when
the scalar fields are non-zero but commute to each other, that way they do not contribute
to the action. This correspond to every scalar field being diagonal and constant, up to a
gauge transformation,

Aµ = 0, Xi = constant and diagonal matrices. (55)

In this case, the fields can take arbitrarily big values. The size of the fields, given by
R2 =

∑
tr(X2

i ), is unbounded. This is problematic for simulations because the fields

4This exact notation depends on the ordering of the fermion fields. Here we use the twisted field in
the order ψ+µ, χ+iη+/2, ψ−µ, χi−η−/2 with the µ and i in ascending order.
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do not stays around one vacuum and move freely, making it hard to measure anything
with a reasonable accuracy. There is also the question if these configurations have any
physical meaning. To remove the instability, we can add a mass term[39] to the action

Smass =
N

2λ0

∑
t,x

9∑
i=2

m2
0 tr(X2

i ), (56)

where m0 = ma is the dimensionless mass. However, this mass breaks supersymmetry.
A controllable SUSY breaking term can be useful in some situations but in most cases
we want to keep the symmetry.

The flat direction is naturally suppressed in some parameter range such as at high
temperature or with a high N . A simple explanation of this suppression is that the flat
direction take the form of a valley in the configuration space. When the boson coefficient
N/λ0 = NN2

t T
2 increase, the valley get thinner and the configurations are less likely to

stay inside. Thus at high temperature, big group SU(N) or close to the continuum (high
Nt) the flat direction are suppressed. A suppression also arises at high lattice volume (Nt

or Nx) because in this situations, constant configurations are less probable.

Continuous limit When taking the naive continuous limit a→ 0, we expect that the
fields and constants scale in accord with their unit. The ’t Hooft coupling λ, which is the
scale of the model, has a mass dimension of two. Thus, the continuum limit is realized
by taking λ0(= λa2) → 0 with fixed λ. For the scalar, fermions and auxiliary fields we
have

X lat.
i = aXcont.

i , Ψlat. = a3/2Ψcont., H lat.
a = a2Hcont.

a . (57)

Here, we have the Xi representing the eight scalar fields, Ψ the fermion fields and Ha the
seven auxiliary fields. The lat. symbol indicate the lattice version of the fields which are
dimensionless, while cont. indicate the continuum one with proper units. For the gauge
related fields, we expect

U lat.
µ = eiaA

cont.
µ ≈ 1 + iaAcont.µ , P lat.

01 = eia
2F cont.01 ≈ 1 + ia2F cont.

01 , (58)

Using these relations, we can show that the lattice action is equivalent to continuum one.
This said, the action posses lattice artifact that might not disappear in simulations.

Plaquette artifacts The first issue when taking the continuum limit is a degenerate
vacua issue that arise from the choice of F01 (27). It is known that this simple choice of
constructing the field strength could be problematic[22]. Keeping only the gauge fields
and setting every other fields to zero, the action becomes

SB|Xi=0 =
N

2λ0

∑
t,x

tr

{
−1

4

(
P01 − P †01 −

1

N
tr(P01 − P †01)

)2
}
. (59)

This action have the expected 1
N

trP01 ≈ 1 + i 1
N

trF01 solution, but it also has solution in
the form of 1

N
trP01 ≈ −1 + i 1

N
trF01. In the SU(2) case, this is obtained by P01 = −1, but

is has more varied solutions for bigger group. When the field configuration is around an
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extra vacuum, our expected relation between lattice and continuum field (58) is invalid.
Thus we cannot trust our simulation to give valid results. To remove these extra vacua,
one can use a tan(θ/2)-type field tensor[26] or an admissibility-type field tensor[23]

F01(~x) = − i
2

(
P01(~x)− P †01(~x)− 1

N
tr(P01(~x)− P †01(~x))

)
1− 1

ε2
tr(2− P01 − P10)

. (60)

Here, an admissibility condition limit the size of the variation of P01 to the order of the
parameter ε. While this definition of the field strength is an effective way to assure the
correspondence of the lattice action with the continuum one, they are hard to use in
numerical simulations.

Here, we argue that it is simpler and more efficient to use the simplest form (27)
when doing numerical simulation for our purpose. Even with a lattice action that allow
the extra vacua, if we keep the plaquette around 1 (1/NtrP01 = 1) during the simu-
lation, we have the proper continuum limit. In order to have the good minimum, we
start our simulation from a cold configuration (Uµ = 1) which corresponds to the de-
sired minimum. Between this minimum and the artifacial minima, there is a potential
barrier corresponding to the halfway point between the 2 minima, as shown in figure 4.

 0
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 2

 0  1  2  3  4  5

|F
01

|

N
2
/2 λ

0

Continuous
Lattice

Figure 4: Action of the gauge field as a
function of the magnitude of the gauge field
(|F01| =

√
1/NtrF 2

01). The lattice action
is consistent with the continuous one when
the fields are small, but shows other minima.
A ”potential” wall with a height of N2/2λ0

suppress the transition between the minima.

At this point, the action (59) as a value of
N2/2λ0 or N2TN2

t /2 in simulation param-
eter If this barrier is strong enough, tran-
sition between the minima is suppressed.
Thus we can choose our simulation param-
eters so that we don’t observe any transi-
tion in the simulation. While this seems to
limit the range of parameters that can be
simulated, it happens to be the same con-
ditions in which the flat direction is sup-
pressed. We already need to do the simu-
lations under those conditions in the mass-
less case. Therefore our choice of plaque-
tte, without any admissibility condition to
kill the extra vacua, is more efficient in
this case. If someone desired to do the
simulation at low temperature and small
N, killing the flat direction with a mass
that keep SUSY invariance[35], then the
more complex field strength definition (60)
might be preferable to the usage of very big
lattice Nt ≈ 1/(T ∗N2).

Artifacts flat direction The second issue is the higher derivative terms. When looking
at the lattice action (38), the main difference with the continuum action is inside the Gµ

and ϕi terms. In the continuum action, the cross-terms from the square of Gµ and ϕi
cancel each other, but on the lattice, because of the shifts, the cancellation is not exact.
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The corresponding part of the action is

S =
N

2λ

∑
~x

(ϕ2
i +G2

µ). (61)

Taking the continuum limit means that ϕi, Gµ → 0, but the cross-terms of Gµ and ϕi,

∆ =
N

λ0

∑
t,x

tr {iF01[A2, A3]−∇−0 A2∇−1 A3 +∇+
0 A3∇+

1 A2

−iF01[B0, B1] +∇−0 B0∇+
1 B1 −∇+

0 B1∇−1 B0

−i∇−0 A2[B0, B2] + i∇−0 B0[A2, B2]− i∇−1
0 B2[A+1

2 , B0]

−i∇+
0 A3[B1, B2] + i∇+

0 B1[A3, B2]− i∇−1
0 B2[A3, B

+1
1 ]

−i∇+
1 A2[B1, B2] + i∇+

1 B1[A2, B2]− i∇−0
1 B2[A2, B

+0
1 ]

+i∇−1 A3[B0, B2]− i∇−1 B0[A3, B2] + i∇−0
1 B2[A+0

3 , B0]

+ [A2, A3][B0, B1]− [A+1
2 , B0][A3, B

+1
1 ] + [A2, B

+0
1 ][A+0

3 , B0]
}
,

(62)

are not positive definite by themselves. This means that there could possibly be config-
urations of the fields in which the cross-terms are big and negative, effectively canceling
the main part of the boson action. This would create extra flat directions in the lattice
formulation. The simulations are made in a way to suppress the flat directions of the
continuum theory. Therefore we expect that the same suppression comes into play here.
Thus we do not try to repair this possible problem, we simply measure the term ∆ to
verify that it is well behaved.

2.4 Simulation details

We did our simulations using the rational Hybrid Monte Carlo method[44]. This is a
method used to obtain random boson field configurations whose probabilities are consis-
tent with the simulation action, P (C) ∝ e−S(C). In this method the field configuration
move in the configurations space using Hamiltonian dynamics in a virtual time. The
momentum of the field is randomized every 0.5 step in the virtual time, this represent
one trajectory. Each trajectory is furthermore separated into smaller time step in which
the dynamics are computed. At the end of each trajectory, a Metropolis step is done
to correct the effect of the discretization of the Hamiltonian dynamics. The time steps
are chosen to keep the acceptance rate over 80%. Moreover, the dynamical effects of the
fermions are treated using the pseudo-fermion method. This only take into account the
norm of the pfaffian, the phase can be reweighed in the result, but the numerical cost is
great. Thus we only use the phase reweighing method for the smaller simulations.

The pseudo fermion method consist in integrating the fermion to get the pfaffian,

pf(D) =

∫
DΨ e−ΨTDΨ. (63)

The matrix D is not hermitian and the pfaffian is complex. This is caused by the
Majorana-Weyl nature of the fermion in N = 1, D = 10 SYM. To include the effects
of the absolute value of the pfaffian we change it to a determinant by det(D) = pf(D)2,
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then we include pseudo fermions φ as

|pf(D)| = det(D†D)1/4, (64)

=

∫
Dφ†Dφ exp

{
−φ†(D†D)−

1
4φ
}
. (65)

The pseudo fermions are randomly generated at the beginning of each trajectory and
kept constant until the next. The roots of the matrices are obtained with the rational
approximation method

(D†D)−1/4 ' α0 +
Nr∑
i=1

(
αi

D†D + βi

)
. (66)

The inversions of D†D + βi is computed using the multiple shift conjugate gradient
solver[36]. The parameters of the approximation (Nr, αi and βi) determine the range of
the eigenvalues of D†D in which the approximation is valid [37]. During the thermaliza-
tion step of the simulation, we compute the maximum and minimum of the eigenvalues.
From those results, we fix the parameters Nr, αi, βi of the main part of the simulation in
a way to keep the accuracy of the approximation over 10−13. When the calculation cost
of the full pfaffian is not too great, we obtain the pfaffian directly in order to include the
effect of the phase.

3 Confirmation of the validity of the simulation

In this work we use of Sugino’s model for the two dimensional N = (8, 8) SYM theory.
We need to confirm by the simulations that the model has the expected behavior. To do
so, we first look at the issues discussed in section 2.3. Then we use the supersymmetric
Ward-Takahashi identities to observe the restoration of the full supersymmetry in the
continuum limit. Lastly, we compare our results with perturbative calculations in the
high temperature limit.

3.1 Validity of the simulation

As explained in section 2.3, the lattice action has extra vacua and flat directions. The
flat directions issue is expected to occur in a certain parameter region, and simulations
presenting such behavior are simply considered invalid. As shown in figure 5, it is evident
when a simulation enters into a flat direction. Without a mass term, for N = 12, we can
only do simulation with a temperature higher than T = 1 using a small lattice of Nt = 8,
Nx = 8. Doubling the size of the lattice to Nt = 8, Nx = 16 allows us to lower the
temperature to T = 0.3, where we are limited by the computation of the fermions. This
is actually a great advantage of simulations in two dimensions over simulations in one
dimensions. In one dimensions, the group size (N) is usually increased to suppress the flat
direction, whereas, in two dimensions, we have the choice to increase the space volume
(Nx) instead. Increasing the group size leads to slower computation than increasing the
lattice size 5.

5The increase of work load for a larger group size mostly treated in one processor, but the burden of
an increase in the lattice size is easily shared between multiple processors.
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Figure 5: Size of the scalar fields R2 = tr(X2
i ) as a function of the trajectory. The gauge

group is N = 12 in both case. On the left, we have a smaller lattice Nt = 8, Nx = 8 at
T = 0.8. On the right, the parameters are Nt = 8, Nx = 16 at T = 0.3. The simulation
on the left have a flat direction problem.

Figure 6 and 7 shows the contributions of the higher derivative terms ∆ (62). By
removing the simulation with a flat direction problem, we should have removed case
where those terms are problematic. As expected, for all parameters used, ∆ is relatively
small, only a few percent of the action. It does approaches zero as a → 0 showing that
this artifact do disappear in the continuum limit. From figure 6 we see that the presence
of the mass is an efficient way to suppress ∆. Figure 7 shows that these term get larger
at large coupling. At over 15% of the bosonic action, there may have some effects on the
simulations. Contrary to the flat direction, a wider lattice does not reduce these terms.

Lastly, we look at the extra minima in the gauge fields sector. Every minima corre-
spond to tr(P01)/N = 1 or −1. By observing tr(P01)/N to make sure that it never goes
negative, we can confirm that no transitions between minima occur. As can be seen in the
histogram of tr(P01)/N (figure 8), the plaquettes value stay close to one. We can see that
field strength approximation is improved in the coutinous limit as the plaquette are more
concentrated around tr(P01)/N = 1. Figure 9 shows the temperature dependence. At
low temperature, the plaquette spread wider therefore bigger group or simulation closer
to the continuum are needed when going to lower temperature. We never observed any
negative values in any simulations used in this study 6. Thus, we can conclude that the
extra vacua do not affect our main results.

6We only observed such transition in very small lattice size such as Nt = 4, Nx = 4 with small group
N = 2, 3.
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Figure 6: Higher derivative terms in the bosonic sector (∆) against the lattice spacing.
The vertical axis denotes ∆/S ′B where S ′B is the bosonic part of the action without the
auxiliary fields σρ. These terms are suppressed in the continuum limit.
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a function of the temperature. These simulation are massless, the group size is N =
12. Contraly to the original flat directions, the space volume (Nx) do not suppress the
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Figure 9: Average value of tr(P01)/N as a function of the temperature. The group size
is N = 12 and there is no mass term in these simulations. At low temperature, the
plaquettes take a wider range of values. At very low temperature transitions might occur
limiting the temperature range of the present method. Increasing the volume in the space
direction (Nx) do not affect the plaquettes value.
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3.2 Recovery of the full supersymmetry

Looking at the restoration of SUSY in the continuum limit is needed To confirm the
validity of the lattice formulation of the 2D, N = (8, 8) super Yang-Mills, we verify that
the full supersymmetry is restored in the continuum limit. The finite lattice spacing break
14 of the 16 supersymmetries. It is not trivial that in the continuum limit all symmetries
are present. supersymmetry is also broken by finite temperature effects. To isolate
the lattice effect, we did our simulation at low temperature. We mesure the symmetry
breaking using the supersymmetric Ward-Takahashi Identities(SWTI). These identities
are valid regardless of the anti-periodic boundary condition imposed on the fermions.
Therefore the symmetry breaking effect caused by the finite temperature can be ignored.
Still, at high temperature, effective supersymmetry breaking terms dynamically appear,
motivating the use of a low temperature for this part of the simulations.

We also include a mass term in those simulations. This mass stabilize the simulation
by removing the flat direction problem arising at low temperature. The SUSY breaking
effect of the mass is not a nuisance when looking at the restoration of the SUSY breaking,
but is actually quite useful. Since this source of breaking is controllable, it is easily
identified and can be isolated. Also, it allows a easier quantification of the breaking from
the other source.

For these simulations we used a small group SU(2). The dimensionless temperature
is set at Teff = T/λ1/2 = 0.3.

3.2.1 SUSY Ward-Takahashi identity

To observe the symmetry restoration, we use the Ward-Takahashi identity which include
the breaking effect of the mass term (partially conserved supercurrent)[39]. To each
symmetry of the action, there is an associated current that is conserved. The Ward-
Takahashi identities represent the conservation law of this current. The current associated
with supersymmetry is, in the continuum theory,

Jµ = −N
λ

{
γ0γ1γµtr(ΨF01) + γνγiγµtr(ΨDνXi) +

i

2
γiγjγµtr(Ψ[Xi, Xj])

}
. (67)

With the SWTI being the conservation of the currents taking the form of

∂µJµ(~x) = 0, (68)

where µ = 0, 1. When a mass is included in the model, the supercurrent conservation is
broken by a term proportional to that mass

∂µJµ(~x) =
m2

λ
Y (~x), (69)

with

Y = Nγitr(XiΨ), (70)

Both the supercurrents Jµ and the breaking term Y are fermionic operators. We can
not use the SWTI directly, since the one point function of any fermionic operator vanish
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〈J〉 = 〈Y 〉 = 0. Therefore, we consider the correlation function of the supercurrent with
a source operator. For simplicity, we choose Yβ(y) as our source operator. Then, the
resulting SWTI is

∂µ〈Jµ,α(~x)Yβ(~y)〉 =
m2

λ
〈Yα(~x)Yβ(~y)〉 − δ2(~x− ~y)〈QαYβ(~y)〉, (71)

where Qα are the supercharges. On the lattice, the Dirac delta function (δ2(~x− ~y)) tend
to spread, thus we expect a better agreement far from the origin where |~x − ~y| is big.
There, we can obtain the effective mass from the ratios

∂µ〈Jµ,α(~x)Yβ(~y)〉
〈Yα(~x)Yβ(~y)〉

=
m2

λ
. (72)

Therefore, by investigating lattice counterparts of the ratios, we can observe the super-
symmetry breaking.

For most of the α β combinations, the correlation function are disappearing (∂〈JY 〉 =
〈Y Y 〉 = 0). With the present notation of the gamma matrices (see appendix A.1), only
the in cases where α = β and γ1,αβ 6= 0, the correlation functions are not null. 7 Thus
only in those case useful ratios (72) can be obtained. We thus have two set of sixteen
ratios, where all the ratios of a set should be equivalent, up to the sign, under the O(8)
internal symmetry in the continuum limit.

The lattice supercurrent is prepared using only the forward-type covariant derivative
(20). The field strength F01 of the supercurrent(67) is obtained with (27). This means
that we do not use the lattice counterpart of Fij that includes shift in the fields and
backward covariant derivative. We use the naive symmetric difference operator when
calculating the divergence of the supercurrent,

∂sµJµ(~x) =
∑
µ=0,1

Jµ(~x+ µ̂)− Jµ(~x− µ̂)

2
. (73)

For our computation, we used LAPACK[38] and calculated the inversion of the Dirac
operator for all points-to-all points. The correlation functions are averaged over the
coordinates to reduce the statistical errors.

3.2.2 Numerical results

To investigate the restoration of SUSY we did simulations with four different physical
masses and three different lattice spacings. We used took one configuration every 20
trajectories and used 2000 configurations to obtain our results. The first 6000-10000
trajectories were discarded for thermalization. Table 1 summarizes the simulation pa-
rameters.

Figure 10 and 11 show an overview of the 〈Y Y 〉 term of the SWTI for both the α = β
and γ1,αβ 6= 0 case respectively. We can see a clear signal in both case. In the α = β,

7This is observed numerically and can easily be seen with tree level calculations. It seems to hold
at any other of the perturbation theory so even in the strong coupling case this should hold. What is
not accounted for are the quantum effect that appear dynamically. Such effect should not appear in our
temperature range.
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Nt Nx m2/λ Nconf
12 6 1.00 2000
12 6 0.75 2000
12 6 0.50 2000
12 6 0.25 2000
16 8 1.00 2000
16 8 0.75 2000
16 8 0.50 2000
16 8 0.25 2000
20 10 1.00 2000
20 10 0.75 2000
20 10 0.50 2000
20 10 0.25 2000

Table 1: Simulation parameters and the number of configurations (Nconf) simulated
in each case. The dimensionless temperature is Teff = 0.3 and the lattice spacing is
determined by aλ1/2 = 1/(NtTeff).
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Figure 10: Correlation functions 〈Y Y 〉 for α = β = 1. The corresponding parameters are
Nt = 20, m2/λ = 0.75.

the signal is strong far from the origin whereas in the γ1,αβ 6= 0 case, because of a sign
change, it is small in absolute value. Since this is the region where the influence of the
contact term (δ2(~x− ~y)) is the weakest, we will get our results from the α = β case only.
For comparison, a combinations of (α, β) outside of our studied case is shown in figure
12. In absolute value it is 100 times smaller than our previous case, it is mostly noise
within the statistical error. Figure 13 gives a closer look of the shape of the correlation
functions.
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Figure 11: Correlation functions 〈Y Y 〉 for α = 1, β = 10. The corresponding parameters
are Nt = 20, m2/λ = 0.75. The sign change is the middle of the range makes it difficult
to use for the estimation of the SWTI.
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Figure 12: Correlation functions 〈Y Y 〉 for α = 1, β = 2. The corresponding parameters
are Nt = 20, m2/λ = 0.75. We observe only noise.

To determine to what degree the SWTI holds, we compare the ratios (72) obtained in
our simulation with the expected value m2/λ. Figure 14 shows the ratio for α = β = 1
with m2/λ = 0.25 against t at fixed x = Nx/2. We use jackknife analysis to obtain
an estimation of the error. The middle of the range of the plot correspond to the point
where the supercurrent and source operator are the farthest. In this zone, we have a good
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Figure 13: Correlation functions used in our study of the SWTI. The corresponding
parameters are Nt = 20, m2/λ = 0.5. All the correlators are presented as a function of
t/Nt at fixed x = Nx/2 for α = β = 1. The other correlators for α = β = 2, · · · , 16
behave in the same way.

agreement with the expected value of m2/λ. Toward the side of the figure (t = 0, Nt),
the effect of the contact term can be seen in the form of a derivation with the expected
value.

The zone far from the contact term is thereafter called the plateau. We estimate the
value of the plateau for each α = β by performing a constant fit. We use a rectangular
zone centered on the point farthest from the origin (t = Nt/2, x = Nx/2) where the
plateau is visible. The area of the plateau is thus somewhat open to interpretation, but
the choice of the fit area have an effect smaller than the statistical error on the fit value.
Therefore the choice is irreverent to our results.

Table 2 shows the values of the plateau, the fit ranges and χ2. We find a good
agreement between the value of the plateau and m2/λ. Figure 15 shows the results as
a figure. All the values are on a straight line passing through the origin with a slope of
one. Thus we can expect that the SUSY hold in some plateau even in the massless limit.

Figure 16 show the result of the continuous limit for all 16 ratios. The continuous
limit is taken using a constant fit because of no dependence on the lattice size is observed
for the plateau value and linear fit tend to increase the numerical noise badly. The
16 SWTI are visibly equivalent within the statistical error, this shows that we observe
the supersymmetry for all 16 supercharges, even if 14 of them are broken by the lattice
formulation.

However, these results tell us that the SUSY WTI holds if we ignore the contact term
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lattice size m2/λ fit value χ2/Ndof fit range
12× 6 1.00 1.007 ± 0.043 0.51 3× 5
12× 6 0.75 0.750 ± 0.029 0.59 3× 5
12× 6 0.50 0.502 ± 0.013 1.42 5× 5
12× 6 0.25 0.254 ± 0.006 1.10 5× 5
16× 8 1.00 0.990 ± 0.044 0.59 5× 5
16× 8 0.75 0.714 ± 0.029 0.48 5× 5
16× 8 0.50 0.513 ± 0.015 0.60 5× 7
16× 8 0.25 0.249 ± 0.005 0.93 7× 7
20× 10 1.00 1.001 ± 0.043 0.48 9× 5
20× 10 0.75 0.745 ± 0.026 0.69 9× 7
20× 10 0.50 0.482 ± 0.012 1.03 11× 7
20× 10 0.25 0.247 ± 0.005 0.93 11× 7

Table 2: Result of the fit of the plateau. The results are averaged over the 16 combinations
(α = β).

lattice size m2/λ N/V

12× 6 1.00 0.50 ± 0.03 +0.07
−0.06

12× 6 0.75 0.49 ± 0.05 +0.05
−0.03

12× 6 0.50 0.49 ± 0.06 +0.05
−0.06

12× 6 0.25 0.47 ± 0.07 +0.05
−0.06

16× 8 1.00 0.57 ± 0.05 +0.03
−0.06

16× 8 0.75 0.56 ± 0.07 +0.05
−0.04

16× 8 0.50 0.56 ± 0.05 +0.05
−0.05

16× 8 0.25 0.53 ± 0.05 +0.05
−0.04

20× 10 1.00 0.64 ± 0.04 +0.04
−0.05

20× 10 0.75 0.65 ± 0.04 +0.03
−0.03

20× 10 0.50 0.65 ± 0.04 +0.03
−0.02

20× 10 0.25 0.63 ± 0.03 +0.04
−0.03

Table 3: Nα/(LtLx) for each parameters set. The first and the second column in
Nα/(LtLx) denote Nα/(LtLx) averaged over α and their statistical errors, respectively.
While the third column denotes differences among spinors. The upper and lower values in
the third column represent the maximum and minimum values of the differences between
each Nα/(LtLx) and the averages, respectively.
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Figure 14: 〈∂µJµ1(0)Y1(t,x)〉
〈Y1(0)Y1(t,x)〉 as a function of t/Nt at fixed x = Nx/2 for m2/λ = 0.25 (denoted

by the dashed line).

and consider only the plateau region. In the continuum, the SWTI holds everywhere,
therefore, in the coutinuum limit of the lattice, the ratios (72) should hold everywhere
except at the origin. However on the lattice there is a smearing of the contact term
and the SWTI hold only in a smaller area. Thus, to confirm the restoration of the
supersymmetry, we need to obserse the reduction of the smearing. By estimating the
area of the plateau for different lattice size, we verify that the plateau area tend toward
the full area in the continuum limit.

To examine this behavior in a quantifiable way, let us count the numbers of sites on
which the ratios are m2/λ within the errors. We define a subset of the lattice points Γα,
in which

χ2
α(Γα) =

∑
~x∈Γα

R2
α(~x)

(error of Rα(~x))2
, (74)

where

Rα(~x) =
∂µ〈Jµ,α(0)Yα(~x)〉
〈Yα(0)Yα(~x)〉

− m2

λ
. (75)

Keeping χ2
α(Γα)/Nα ≤ 1 we took that largest possible Γα. This roughly corresponds to

the area of the plateau where the SWTI really holds. In the continuous we should have
Nα/(LtLx) = 1. If we do have a restoration of the full symmetry in the continuous limit,
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Nα/(LtLx) = 1 should increase at smaller a. Table 3 shows the Nα/(LtLx) ratios. We do
observe an increase of the plateau area when approaching to the continuum. This lead
to the conclusion that the smearing of the contact term do disappear and the SWTI hold
fully in the continuum limit. Moreover, as seen in table 3, the variation of Nα/(LtLx)
between the spinor is relatively small, the same order than the statistical error. This
suggest that all SWTI are degenerated and full SUSY is restored in the continuum limit.
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3.3 High temperature expansion

In the high temperature limit, it is possible to study the theory using a perturbation
model. In one dimension, such studies were done by Nishimura et al.[41] Here we use
their method and applies it to the 2 dimensional case.

We start with the continuum non-twisted action (6) and make a few modifications.
First we include the effect of the temperature to the theory by defining the model in a
finite volume Lt×Lx = β× kβ with β = 1/T . The boson fields follow periodic boundary
conditions as do the fermionic fields in the space direction, in the time direction the
fermions are anti-periodic. In this calculation we consider that the action have D boson
fields in which d are scalar and p fermions. This cover the theories possessing 4, 8 or 16
supersymmetries.

Model D d p
N = (2, 2) SYM 4 2 4
N = (4, 4) SYM 6 4 8
N = (8, 8) SYM 10 8 16

The first step in the calculation is to add a gauge fixing terms in the form

Sgf =
N

2λ

∫ β

0

dt

∫ kβ

0

dx tr

{
(∂µXµ)2

ξ
+ ∂µc̄Dµc

}
. (76)

The fields c̄ and c are the Faddeev-Popov ghosts. The gauge fixing parameter ξ is set to
1 thereafter for simplicity. The action with this fixing term included is

S =
N

2λ

∫ β

0

dt

∫ kβ

0

dx tr
{

(∂µXa)
2 + 2i∂µXa[Xµ, Xa]−

1

2
[Xa, Xb]

2

+ Ψ∂0Ψ− iΨγ1∂1Ψ + Ψγa[Xa,Ψ] (77)

+ ∂µc̄∂µc+ i∂µc̄[Xµ, c]
}
.

Here µ is running from 0 to 1 and a, b from 0 to d+ 1.
We do a Fourier transformation of the action then renormalize the fields in order to

make the temperature contribution evident. The Fourier transformations of the fields are

Xa(t, x) =
∑

(nt,nx)∈Z

X̃a(nt, nx)e
i 2π
β
ntt+i

2π
kβ
nxx, (78)

Ψ(t, x)α =
∑

(nt,nx)∈Z

Ψ̃α(nt + 1
2
, nx)e

i 2π
β

(nt+
1
2

)t+i 2π
kβ
nxx, (79)

c(t, x) =
∑

(nt,nx)∈Z

c̃(nt, nx)e
i 2π
β
ntt+i

2π
kβ
nxx, (80)

c̄(t, x) =
∑

(nt,nx)∈Z

˜̄c(nt, nx)e
−i 2π

β
ntt−i 2πkβnxx. (81)

The rescaling is done in order to make the fields unitless and bring their strongest term
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to the order of one. Here we rescale the fields considering k to be of the order one

λ1/4β−1/2k1/4Âa = X̃a(0, 0), (82)

λ1/2X̂a(nt, nx) = X̃a(nt, nx), (nt, nx) 6= (0, 0) (83)

λ1/2β−1/2Ψ̂α(nt + 1
2
, nx) = Ψ̃α(nt + 1

2
, nx), (84)

λ1/2ĉ(nt, nx) = c̃(nt, nx), (85)

λ1/2ˆ̄c(nt, nx) = ˜̄c(nt, nx). (86)

Here we consider that the field c̄, c do not have a zero mode. Also we use the gauge
group U(N). The U(1) contribution can easily removed to obtain the SU(N) models.
The boson zero modes Âa do not have the U(1) since these modes do not contribute to
the action in any way. After the rescaling, the action can then be written in power of
the parameter γ = λ1/4β1/2, which is small at high temperature, therefore used as our
expansion parameter. The action become

S = Skin + S0 + Sint. (87)

The two first terms are of the order one and constitute the main part of the action

Skin =
∑
nt,nx

tr

{
2π2N

(
kn2

t +
n2
x

k

)
X̂a(nt, nx)X̂a(−nt,−nx)

+πNΨ̂(−nt − 1
2
,−nx)α(ik(nt + 1

2
)δαβ + nx(γ1)αβ)Ψ̂(nt + 1

2
, nx)β

+2π2N
(
kn2

t +
n2
x

k

)
ˆ̄c(nt, nx)ĉ(nt, nx)

}
,

(88)

S0 = −N
4

tr[Âa, Âb][Âa, Âb]. (89)

The last term is a perturbation

Sint = γS1 + γ2S2 + γ3S3 + γ4S4, (90)

with

S1 =
∑
nt,nx

tr

{
− 2Nπk3/4ntX̂a(nt, nx)[Â0, X̂a]− 2Nπk−1/4nxX̂a(nt, nx)[Â1, X̂a]

− 2Nπk3/4ntX̂a(nt, nx)[X̂0, Âa]− 2Nπk−1/4nxX̂a(nt, nx)[X̂1, Âa]

+
Nk3/4

2
Ψ̂γa[Âa, Ψ̂]−Nπk3/4ntˆ̄c(nt, nx)[Â0, ĉ]−Nπk−1/4nxˆ̄c(nt, nx)[Â1, ĉ]

}
,

(91)

S2 =
∑
nt,nx

tr

{
− 2NπkntX̂a(nt, nx)[X̂0, X̂a]− 2NπnxX̂a(nt, nx)[X̂1, X̂a]

+
kN

2
Ψ̂γa[X̂a, Ψ̂]−Nπkntˆ̄c(nt, nx)[X̂0, ĉ]−Nπnxˆ̄c(nt, nx)[X̂1, ĉ]

− k1/2N

2
[X̂a, Âb][X̂a, Âb]−

k1/2N

2
[Âa, Âb][X̂a, X̂b]−

k1/2N

2
[X̂a, Âb][Âa, X̂b]

}
,

(92)
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S3 =
∑
nt,nx

tr
{
− k3/4N [X̂a, X̂b][X̂a, Âb]

}
, (93)

S4 =
∑
nt,nx

tr

{
− kN

4
[X̂a, X̂b][X̂a, X̂b]

}
. (94)

The momentum conservation is implicit.
This allows us to calculate an observable using the following relations

〈O〉 =
〈
∑∞

n=0
1
n!
〈〈O(−Sint)n〉〉 〉0

〈
∑∞

n=0
1
n!
〈〈(−Sint)n〉〉 〉0

. (95)

The kinetic part of the correlation function

〈〈O〉〉 =

∫
DX̂Dˆ̄cDĉDΨ̂Oe−Skin∫
DX̂Dˆ̄cDĉDΨ̂e−Skin

(96)

can be calculated analytically. The propagators are

〈〈X̂ ij
a (~n)X̂kl

b (~m)〉〉 =
δabδilδjkδ~n+~m

(2π)2N(kn2
t +N2

x/k)
, (97)

〈〈ˆ̄cij(~n)ĉkl(~m)〉〉 =
−δilδjkδ~n−~m

(2π)2N(kn2
t +N2

x/k)
, (98)

〈〈Ψ̂ij
α (~n)Ψ̂kl

β (~m)〉〉 =
(ik(nt + 1/2)δαβ − nxγ1,αβ)δilδjkδ~n+~m

(2π)N(k2(nt + 1/2)2 + n2
x)

. (99)

The other sub-correlation function that we use is

〈O〉0 =

∫
DÂOe−S0∫
DÂe−S0

. (100)

This corresponds to the boson zero-modes. It takes the form of a matrix model and is
approximated using numerical simulations. The used observables from this part are

θ1 =〈 1

N
tr(Â2

a)〉0, (101)

θ2 =〈tr(Â2
a)tr(Â

2
a)〉0, (102)

θ3 =〈tr(Â2
a)tr(Â

2
b)〉0, (103)

θ4 =
〈∑

a,b

1

N
tr(−[Âa, Âb]

2)tr(Â2
c)
〉

0
, (104)

θ5 =〈 1

N
tr(Â4

a)〉0, (105)

θ6 =〈−N
4

tr[Âa, Âb][Âa, Âb]〉0. (106)

Here, there is no summation over the indices if not explicitly indicated, also different
indices can not be equal (a 6= b). The results of this simulation have been calculated by
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Nishimura et al.[41] and can be found in the appendix A.2. Thus the leading part of any
observable is calculated with

〈O〉 ≈ 〈 〈〈O〉〉 〉0, (107)

and the following terms in the perturbation are

〈O〉O(γ2) =− γ〈 〈〈OS1〉〉 〉0 + γ2〈 〈〈O(1
2
S2

1 − S2)〉〉 〉0
−γ2〈 〈〈O〉〉 〉0〈 〈〈(1

2
S2

1 − S2)〉〉 〉0
=γ〈OS1〉c + γ2〈O(1

2
S2

1 − S2)〉c (108)

where 〈O〉c is the connected part of 〈 〈〈O〉〉 〉0. We keep term up to the order of γ2

because for most observables, it is the next to leading order contribution. The terms
proportional to γ are forbidden by symmetry.

We first calculate the scale of the scalar fields

R2 =
γ2

Nβ2
tr(A2

i ) +
∑
~n6=0

γ4

Nβ2
tr(X2

i ). (109)

The leading term is given by

γ2

Nβ2
〈tr(A2

i )〉0 =
γ2

β2
dθ1 (110)

This only includes the bosonic zero-mode effect, the fermion contribution and the non-
zero mode effect appears in the next-to-leading order. The kinetic part needs only to be
calculated to the first order

γ4

Nβ2
〈tr(X2

i )〉=
γ4

β2
dσ (111)

The zero-mode with the first non disappearing perturbation term is

γ2

Nβ2
〈tr(A2

i )(
1
2
S2

1 − S2)〉c =
γ4k

β2
(θ2 + (d− 1)θ3)(pd/2σ1/2 − d2σ). (112)

where the σ corresponds to the summation over the modes.

σ =
∑
~n6=0

1

(2π)2(kn2
t + n2

x/k)
, (113)

σ1/2 =
∑
~n

1

(2π)2(k(nt + 1/2)2 + n2
x/k)

. (114)

Both σ1/2 and σ are divergent, however the difference (σ1/2− σ) is finite. For the various
2D super Yang-Mills models, we have (d, p) = (2, 4), (4, 8), (8, 16), therefore pd/2 = d2 in
every cases. Many divergences are canceled this way. The value of the summation is in
table 4 in appendix A.2. The resulting scalar magnitude is

〈R2〉 ≈ γ2

β2
dθ1 +

γ4

β2
dσ +

γ4k

β2
d2(θ2 + (d− 1)θ3)(σ1/2 − σ) +O(γ6/β2) (115)
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This value diverges, there is a σ factor that is not canceled. This was to be expected since
this observable is not invariant under supersymmetry. The cancellation of the divergences
present in the model are mostly based on supersymmetry. Moreover R2 is written using
both γ and β, this is to represent the units of R2. γ is unitless whereas β has a mass
dimension of -1.

Next, we will be interested in the value of the action. As will be shown later in 4.1,
the action can be connected to the internal energy and pressure of the model. The action
is decomposed in power of γ, and up to the next to leading order we have

〈S〉 =〈 〈〈Skin〉〉 〉0 + 〈 〈〈S0〉〉 〉0 + 〈 〈〈SH〉〉 〉0 (116)

+γ2(〈 〈〈S2〉〉 〉0 − 〈S2
1〉c + 〈(Skin + S0)(1

2
S2

1 − S2)〉c) +O(γ4) (117)

where the SH is the auxiliary field part of the action. There are d − 1 auxiliary fields.
The leading order is given by

〈S〉 =N2

(
−
∑
H

p

2
+
∑
I

(d+ 1) + (d− 1)

2
+

(d− 1)

2

)
+ θ6. (118)

Here in the first term we have a sum over the fermion modes
∑

H , which corresponds
to a sum over the mode with a half-integer time direction momentum and integer space
momentum. The

∑
I represent the sum over bosonic mode represented by integer mo-

mentum in both directions and with the zero mode removed. Both summations diverge
in the continuum theory and to resolve the divergence we put a cut-off to the summation.
When the summation is done inside a Lt per Lx periodic box, like one that would be
obtained if space was discretized in a lattice, the summations always result in one extra
mode for the fermion. This corresponds to the lacking zero-mode in the boson mode
summation. The boson zero mode can also be done analytically, the θ6 correspond to
the gauge and scalar bosons zero part. The auxiliary fields zero modes give an extra
N2(d− 1)/2 contribution. The resulting leading order of the action is

〈S〉 = (N2 − 1)
d+ 2

4
−N2d+ 1

2
. (119)

The next to leading order(NLO) term is given by

〈S〉NLO =− γ2N2d2

4k1/2
θ4(σ1/2 − σ). (120)

As expected, this value, being supersymmetric, do not diverge.
Figure 17 shows the measured value of the action at high temperature with the ex-

pected results from the high temperature expansion. We see that the action tends toward
the leading order expectation at high temperature. In the highest temperature range the
data fit with the calculation up to the NLO. However, there are big statistical errors and
no simulations were performed at higher temperature, the data appears imperfect.
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Figure 17: Expectation value of the action as a function of the temperature. The black
dotted line is the first order calculation. The dashed lines are the high temperature
expansion up to the NLO. At high temperature (T > 3) the data fit relatively well.

Next we calculate the Polyakov lines. The Polyakov lines are given by

〈P0〉 =
1

N
tr〈Pexp

(
i

∫ β

0

dtX0(t, x)
)
〉

≈ 1− γ2

2Nk1/2
〈trÂ2

0〉+
γ4

4!Nk
〈trÂ4

0〉+O(γ6), (121)

〈P1〉 =
1

N
tr〈Pexp

(
i

∫ kβ

0

dtX1(t, x)
)
〉

≈ 1− γ2k3/2

2N
〈trÂ2

1〉+
γ4k3

4!N
〈trÂ4

1〉+O(γ6). (122)

Up to the next to leading order, the Polyakov lines can be determined using the zero
mode only. For the spacial line, the expansion parameter is not γ2 but γ2k3/2, this means
that at high k this expansion is invalid. In this case, the Polyakov line takes a value
around 0, not around 1. The resulting expansion is

〈P0〉 = 1− γ2

2k1/2
θ1 −

γ4d

2

(
σd(θ3 − θ2) + d(σ1/2 − σ)θ3

)
+

γ4

24k
θ6, (123)

〈P1〉 = 1− k3/2γ2

2
θ1 −

γ4k2d

2

(
σd(θ3 − θ2) + d(σ1/2 − σ)θ3

)
+
γ4k3

24
θ6, (124)
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with

σd =
∑
~n

(k(nt + 1/2)2 − n2
x/k)

(2π)2(k(nt + 1/2)2 + n2
x/k)2

−
∑
~n6=0

(kn2
t − n2

x/k)

(2π)2(kn2
t + n2

x/k)2
. (125)

The summation is tabulated in appendix A.2.
Figure 18 shows the measured value of the temporal Polyakov line (Pt) at high tem-

perature with the expected results from the high temperature expansion up to the NLO.
Only at high temperature (T > 4), the simulations results seem to fit the expectations.
At low temperature the NLO term dominates the leading order term, predicting value
over one, which outside the range of the Polyakov line. Unless higher temperature simu-
lations are made it is difficult to confirm agreement with the high temperature expansion
results.
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Figure 18: Expectation value of the temporal Polyakov line as a function of the tem-
perature. The dashed lines are the high temperature expansion up to the NLO. At high
temperature (T > 4) the data is consistent with the expansion.

From our simulation results at high temperature, we can say that our simulations are
giving results consistent with the perturbative calculations. However, due to the lack of
very high temperature simulations and the large statistical error, we cannot confirm the
validity of the lattice simulations using the perturbative calculations.
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4 Duality

4.1 Choice of physical quantity

To test the gauge-gravity duality, we need to observe a physical quantity that can be
obtained both with the lattice simulations of the gauge theory and the black p-brane cal-
culations. In the gravity side, we can calculate the black-hole thermodynamics, therefore
we have access to the energy and entropy and related quantities. In the gauge side, the
equation of the energy is also simple to obtain either using a Legendre transformation or
the partition function. The partition function is related to the Hamiltonian by

Z =

∫
DΨDADXe−S(A,X,Ψ) = e−βH . (126)

Therefore the energy can be obtained by

〈E〉 = − ∂

∂β
ln(Z)

=
1

Z

∫
Dϕ

∂S

∂β
e−S. (127)

Here the measure (Dϕ) is considered independent of β.
The continuum not-twisted action of the gauge theory (6) at finite temperature is

S =
N

λ

∫ β

0

dt

∫ L

0

dx tr
{1

4
F 2
µν +

1

2
(DµXi)

2 − 1

4
[Xi, Xj]

2

+
1

2
ΨαD0Ψα −

i

2
Ψα(γ1)αβD1Ψβ +

1

2
Ψα(γi)αβ[Xi,Ψβ]

}
. (128)

The field are dependent on β in their (anti-)periodicity ϕ(t + β, x) = ±ϕ(t, x). In order
to isolate the dependence, we rescale the fields by

Aµ = A′µβ
−1 Xi = X ′iβ

−1 Ψα = Ψ′αβ
−1.5 (129)

d0 = d′0β
−1 dt = dt′β. (130)

This choice comes from the unit of the fields, the renormalization makes the fields unit-
less. It does not affect the measure of the integral because of the supersymmetry. When
the seven auxiliary fields (H) are included the measure becomes DADXDΨDH =
(β−1·2DA)(β−1·8DX)(β1.5·16DΨ)(β−2·7DH). This cancellation also arise in other SYM
model. Now applying the derivative we get

〈E〉 =
−3

β
〈S〉+

1

β
〈∆〉. (131)

with

∆ =
N

λ

∫ β

0

dt

∫ L

0

dxd1A0F01 + d1XiD1Xi −
i

2
Ψα(γ1)αβd1Ψβ

=
N

16λ

∫ β

0

dt

∫ L

0

dxQαtr (γ1γa)αβΨβd1Xa (132)
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This expression is a supersymmetric invariant quantity, thus the zero of the energy is
well defined. A different, but equally valid, expression can be obtained from a Legendre
transformation.

However, this quantity is somewhat problematic when understood as a lattice quantity.
Part of the problem is of computational nature, the fermions 2-points functions in ∆
are costly numeriacally to obtain with simulations, making it hard to obtain a lot of
configurations.8 Also, the fermions two points functions are also associated with big
statistical error, as a results a good amount of configuration is needed to get satisfying
results. Lastly, while the ∆ is Q-exact in the continuous model, it is not on the lattice
since all 16 supercharges are needed. This means that the zero-point energy is not well
defined on the lattice. Having observed that the full supersymmetry is restored in the
continuum limits, it would be possible to measure the energy as a function of the lattice
spacing E(T, a), then taking the continuum limit. This would also increase the amount
of calculations and the statistical error on the final results. Therefore using the energy is
slow and coslty, and we avoided it.

To get a practical quantity on the lattice, we can redo the calculation using the lattice
definition of β. The lattice sizes are

β = aNt L = aNx (133)

with a being the lattice spacing. If we change the derivative in 127 for

∂

∂β
→ 1

Nt

∂

∂a
. (134)

Then, using the same procedure as before, renormalizing by a this time then applying
the derivative, we get

1

Nt

∂S

∂a
=
−2

β
S. (135)

This is easily obtained with lattice simulation. The fermionic part of the action can
be analytically calculated and the bosonic part is already calculated at every trajectory.
However, this quantity is not the energy since the lattice spacing apply both to the time
and space directions. We have

−1

Nt

∂

∂a
ln(Z(β, L)) =

−1

Nt

∂β

∂a

∂

∂β
ln(Z(β, L))− 1

Nt

∂L

∂a

∂

∂L
ln(Z(β, L)) (136)

=〈E〉 − L〈P 〉. (137)

P is the pressure. As will be shown in the next section, this quantity can be evaluated
from the thermodynamics of the black-hole. We therefore choose

Z ≡ E − PL (138)

as the physical quantity that we use to observe the duality.

8The computation of an inverse matrix scale to the third power of the size of the matrix, thus to the
sixth power of the gauge group ∝ N6. A computation that took 20 min in SU(2) (calculation of SWTI
with a lattice size of Nt = 16, Nx = 8) will take over 650 days for SU(6), if calculated directly. The
main problem being the matrix inversion calculations cannot be efficiently run in parallel computations.
Approximative methods, which allow for parallelization, can bring the computation time to a reasonable
amount.
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4.2 Black p-brane thermodynamics

In this section, we calculate E−PL in the gravity side of the duality. The two dimensional
SYM model correspond to a D1-brane in the gravity side[4], whose classical solution is an
extremal black p-brane. The supergravity metric associated with black p-brane similar
to a black-hole metric with electric charge, therefore it is a simple task to apply black
hole thermodynamics to it. The extremal black 1-brane entropy disappear, thus we look
at the near extremal case for the thermodynamics.

The supergravity action with a black 1-brane as it’s source is given by[40],

S = − 1

2κ2

∫
d10x
√
g[R− 1

2
(∂φ)2 − 1

2 7!
eφF 2

7 ]. (139)

Here κ corresponds to the gravitational constant, g is the metric and R the space curva-
ture. φ is the dilation field and F7 is the field strength for a purely magnetic solution.
Whether we use a magnetic or dyonic charge does not affect the metric and therefore the
associated black-hole thermodynamics.

From the equations of motion of the action, the metric can be obtained. In Einstein
frame, we have

ds2 = H1/4(r)

(
H−1(r)[f(r)dt2 + dx2] + f−1(r)dr2 + r2dΩ2

7

)
(140)

with

H(r) =1 + sinh2γ
r6

0

r6
(141)

f(r) =1− r6
0

r6
. (142)

r0 is the radius of the horizon. In the extremal limit, this solution correspond to the
classical solutions of a D1-brane. The near-extremal limit is obtained by taking r0 → 0,
γ → ∞ while keeping sinh2γr6

0 fixed. The classical solution is a good approximation of
the full physics of the D-brane when the black-hole radius is large compared to the string
lenght α′. This is fullfilled at large N and large coupling or low temperature. The black
string is considered periodic with a period L.

The charge density is given by

q =
3ω7√

2κ
r6

0sinh2γ (143)

and keep constant when taking the near-extremal limit. It is obtained from the equation
of motion of the gauge field in the supergravity action.

The thermodynamics are directly obtained form the metric. From the surface gravity

gsurf =
1

2

√(
∂

∂r
(−gtt)

)
(r0)

(
∂

∂r
grr

)
(r0), (144)
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we obtain the temperature of the black string

T =
gsurf
2π,

(145)

=
3

2πr0

H−1/2(r0), (146)

∝ r2
0√
q

(γ →∞) (147)

We observe, from the last line, extremal black-hole is null.
The Bekenstein-Hawking entropy is proportional to area of the black hole

A = ω7Lg
1/2
xx (r0)g

7/2
ΩΩ (148)

which gives

S =
2πA

κ2
, (149)

=
2π

κ2
ω7Lr

7
0H

1/2(r0), (150)

∝ Lr4
0

√
q. (γ →∞) (151)

The entropy disappear in the extremal limit. The entropy is better expressed as a function
of the temperature, for the near-extremal limit

S =
(2π)3

9κ2
ω7q

3/2LT 2. (152)

Lastly, the internal energy of the black-brane is calculated using the first law of thermo-
dynamics dE = TdS. The energy is

E =
2

3

(2π)3

9κ2
ω7q

3/2LT 3 (153)

up to a constant which we set to zero for our purpose.
We must now give a value to the charge of the brane q and to the gravitational constant

κ. The charge, gravitational constant and yang-mills coupling constant in string unit for
a D1-string are given by

2κ2 = (2π)7α′4gs, (154)

q = N(2π)5/2α′, (155)

gYM =
N1/2

λ1/2
=

2πα′

gs
, (156)

where N is the gauge group size, α′ the string length and gs the string coupling constant.
The definition of the gravitational constant in string unit (154) is calculated from graviton
scattering calculations. The charge density (155) is proportional to the number of D-
brane. By comparing the gauge sector of the string action with a gauge action, the
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Yang-Mills coupling (g2
YM = λ/N) can be written in string units. The resulting energy

and entropy are

e(t) =
2C1

3
lN2t3, (157)

S(t) = C1lN
2t2. (158)

where

C1 =
24π5/2

33
≈ 10.37 (159)

e, l and t are the unitless energy, brane length and temperature respectively.

e =
E√
λ

l =
√
λL t =

T√
λ

(160)

From the internal energy, we derive the free energy (F = E − TS) and pressure. The
equivalent of the space volume is the string length. The pressure is

−p = −P
λ

=
∂(e− tS)

∂l
= (−1/3)C1N

2T 3. (161)

Therefore the desired physical quantity is

e− pl = (1/3)C1N
2lt3 ≈ 3.46N2lt3. (162)

We will compare this value with the results of our simulation in the next section.

4.3 Observation of Gauge-Gravity Duality

The simulations computed in order to observe the duality were done with a reasonably
large group of N = 12. The temperature range goes to temperature as low as T = 0.3.
with the present group size, smaller temperature is not possible. For most simulations,
5000 ∼ 8000 trajectories were obtained, with the first few hundreds removed for ther-
malization purpose. We did simulation with 3 different lattice size, (Nt = 8, Nx = 8),
(Nt = 8, Nx = 16), (Nt = 8, Nx = 32). At low temperature (under T = 1), we observed
a change of phase and a flat direction problem in the smallest lattice size. Therefore
this parameter set is only used at high temperature. In all case, the statistical error is
obtained with jackknife analysis.

Figure 19 and 20 show the normalized energy minus pressure as a function of the
dimensionless temperature. Figure 19 shows the results at high temperature. The depen-
dence on the space volume L = aNx is different in the low and high temperature regime
resulting in the observed spreading of the data at high temperature. The dashed lines
correspond to the prediction from the high temperature expansion.

Figure 20 focuses on the results at low temperature. The dotted line is the theoretical
prediction on the gravity side at the leading order. The red and green points correspond
to a lattice size of Nt = 8, Nx = 16 and Nt = 8, Nx = 32 respectively. The agreement
between T = 0.300 and T = 0.4 is quite good. At higher temperature the contribution
of the scale of the string length (α′ correction) is important.
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In two dimensions we can do the simulation at temperature low enough to observe
the leading term on the gravity side. In one dimension, the lattice simulations which is
not restrictively slow[16] were only possible down to T = 0.375 . At this present point in
time, we do not know the power of the next to leading order contribution on the gravity
side for D1-branes, therefore the few points at low temperature really help to observe the
duality quantitatively.
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Figure 19: Normalized ”energy” (E − PL)/(N2L). The line named gravity indicate the
expected curve obtained from black p-brane model. The data named Ib correspond to
N = 8, Nt = 8, Nx = 16, IIa correspond to N = 12, Nt = 8, Nx = 8 and IIc N = 12,
Nt = 8, Nx = 32.
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Figure 20: (E − PL)/(N2L) at low temperature. The line named gravity indicate the
expected curve obtained from black p-brane model: 3.46T 3. The group size is fixed at
N = 12.

49



5 Summary

After confirming the validity of Sugino’s lattice formulation, we compared the thermo-
dynamics of D = 2 N = (8, 8) SYM model with those of a D1-brane and found good
agreement. From our tests and simulations we found that Sugino’s lattice formulation
work as expected with the lattice artifact disappearing in the continuous limit. In two
dimensions, the flat directions can be suppressed by increasing the space volume, allowing
simulations to reach a lower temperature with a smaller gauge group than in one dimen-
sion. From the estimation of the supersymmetric Ward-Takahashi identities we confirmed
the full supersymmetry is restored in the continuous limit. Therefore the model reach the
correct continuum theory in the continuous limit. The action density 〈S〉 is proportional
to the thermodynamic quantity E − PV in two dimensions. This quantity, being a lot
more efficient than the energy to obtain during the simulation, was compared with its
dual from the gravity side. We observed a good agreement between the theories.

In this study, we do not have enough data yet to observe the correspondence to the
next to leading order, which should be visible between T = 0.4 and T = 0.5. With our
simulation, we did manage to get to temperature low enough to clearly see the agreement
to the leading order, which was not possible in one dimension. While our statistical error
is still quite high, around 10% under T = 0.4 where the theories coincide, the overall
result is quite convincing: the duality conjecture is true for D1-brane/2D SYM. Further
simulation are in progress in order to lower the statistical error and predict the next to
leading order contribution.

A Appendix

A.1 Definition of twisted fields

We use two different notations of the fields in this paper. The action (6) is written in
the original variables Aµ, Xi,Ψα for µ = 0, 1, i = 2, · · · , 9, α = 1, · · · , 16, while the
twisted action (11) is written in the twisted variables, Aµ, Bi, C, φ± and η±, ψ±µ, χ±i for
µ = 0, 1, 2, 3 and i = 0, 1, 2. In this appendix, we give the relation between the two
notations.

Let us express the action (6) written in Aµ, Xi,Ψα as the Q±-exact action (11) written
in the twisted variables Aµ, Bi, C, φ±. The gauge fields are unchanged, and the other
bosonic twisted fields A2, A3, Bi, C, φ± are given as follows:

Aµ = Xµ, (µ = 2, 3),

B0 = −X6,

B1 = X5,

B2 = −X4, (163)

C = 2X7,

φ+ = X8 − iX9,

φ− = −X8 − iX9.
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The fermionic twisted variables η±, ψ±µ, χ±i and Ψα can be related to each other by

Ψ1

Ψ2

Ψ3

Ψ4

Ψ5

Ψ6

Ψ7

Ψ8

Ψ9

Ψ10

Ψ11

Ψ12

Ψ13

Ψ14

Ψ15

Ψ16



=
1√
2



ψ−0 + i
2
η+

ψ−1 − iχ+2

ψ−2 + iχ+1

ψ−3 − iχ+0

ψ+0 + i
2
η−

ψ+1 + iχ−2

ψ+2 − iχ−1

ψ+3 + iχ−0

−i(ψ−0 − i
2
η+)

−i(ψ−1 + iχ+2)
−i(ψ−2 − iχ+1)
−i(ψ−3 + iχ+0)

−i(ψ+0 − i
2
η−)

−i(ψ+1 − iχ−2)
−i(ψ+2 + iχ−1)
−i(ψ+3 − iχ−0)



, (164)

with the following representation of gamma matrices,

γ1 = σ2 ⊗ 1 ⊗ σ3 ⊗ σ2,

γ2 = σ2 ⊗ 1 ⊗ σ2 ⊗ 1 ,

γ3 = σ2 ⊗ 1 ⊗ σ1 ⊗ σ2,

γ4 = σ3 ⊗ σ2 ⊗ 1 ⊗ σ2,

γ5 = σ3 ⊗ σ2 ⊗ σ2 ⊗ σ3, (165)

γ6 = σ3 ⊗ σ2 ⊗ σ2 ⊗ σ1,

γ7 = σ3 ⊗ σ1 ⊗ 1 ⊗ 1 ,

γ8 = σ3 ⊗ σ3 ⊗ 1 ⊗ 1 ,

γ9 = σ1 ⊗ 1 ⊗ 1 ⊗ 1,

where σi are the Pauli matrices. 9

The two scalar supercharges Q± are defined as

Q+ =
1√
2

(Q5 − iQ13), (167)

Q− =
1√
2

(Q1 − iQ9). (168)

The Q±-transformations of the fields come from those of Qα given in (7), (8) and (9).

9The gamma matrices act on the fermions ψα as (γ1)α1α2Ψα2 where the spinor index α corresponds
to the indices of the Pauli matrices as follows:

(γ1)α1α2
= (σ2)i1i2 ⊗ 1j1j2 ⊗ (σ3)k1k2 ⊗ (σ2)l1l2 , (166)

with α = 8(i− 1) + 4(j − 1) + 2(k − 1) + l.
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Using the definitions of the twisted fields above and the Q±-transformations (16), and
adding the Gaussian integrals of the auxiliary fields H̃µ and Hi to the action (6), we can
rewrite the action (6) as the Q±-exact form (11).

A.2 Tabulated constant for the high temperature expansion

In the high temperature expansions, many constants are numerically determined.
The first constants are the summations over the modes

σ1/2 − σ =
∑
~n

1

(2π)2(k(nt + 1/2)2 + n2
x/k)

−
∑
~n6=0

1

(2π)2(kn2
t + n2

x/k)
, (169)

σd =
∑
~n

(k(nt + 1/2)2 − n2
x/k)

(2π)2(k(nt + 1/2)2 + n2
x/k)2

−
∑
~n6=0

(kn2
t − n2

x/k)

(2π)2(kn2
t + n2

x/k)2
. (170)

(171)

These factors appear in the next to leading order contribution of many quantities. The
summations were numerically done to a precision of at 1 to 10000 (absolute). At the
extremum of the k spectrum, k � 1 and k � 1, the main contributions were calculated
analytically. The results are displayed in the table 4.

The HTE model also require numerical simulation for the boson zero modes, repre-
sented by the θi in our calculation. The form of the S0 action do not depend on the
number of dimension, therefore the value obtained by Nishimura et al. in the one dimen-
sional case can be used. The relation between their results and our notation is

θ1 =〈 1

N
tr(Â2

a)〉0 =
χ1

D − 1
, (172)

θ2 =〈tr(Â2
a)tr(Â

2
a)〉0 = χ7, (173)

θ3 =〈tr(Â2
a)tr(Â

2
b)〉0 =

χ4

D − 1
, (174)

θ4 =
〈∑

a,b

1

N
tr(−[Âa, Âb]

2)tr(Â2
c)
〉

0
=
χ5 + χ6

D − 1
, (175)

θ5 =〈tr(Â4
a)〉0 = χ8. (176)

D is the total number of boson fields, which is constant in both notation. The θ6 can be
analytically calculated,

θ6 =〈−N
4

tr[Âa, Âb][Âa, Âb]〉0 =
D

4
(N2 − 1). (177)

Table 5 contains the part of the original table which contains the constant that we used
in the present study.
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k σ1/2 − σ σd
k � 1 1/6k −1/6k

0.3 0.5556(1) -0.5556(1)
0.5 0.3334(1) -0.3334(1)
0.6 0.2778(1) -0.2780(1)
0.7 0.2381(1) -0.2388(1)
0.8 0.2082(1) -0.2103(1)
0.9 0.1847(1) -0.1893(1)
1.0 0.1655(1) -0.1742(1)
1.1 0.1495(1) -0.1636(1)
1.2 0.1356(1) -0.1567(1)
1.3 0.1232(1) -0.1529(1)
1.4 0.1119(1) -0.1515(1)
1.5 0.1014(1) -0.1522(1)
1.6 0.0915(1) -0.1545(1)
1.7 0.0821(1) -0.1580(1)
1.8 0.0729(1) -0.1626(1)
1.9 0.0640(1) -0.1681(1)
2.0 0.0552(1) -0.1742(1)
2.1 0.0466(1) -0.1807(1)
2.2 0.0380(1) -0.1877(1)
2.3 0.0295(1) -0.1950(1)
2.4 0.0210(1) -0.2026(1)
2.5 0.0126(1) -0.2103(1)
2.6 0.0042(1) -0.2181(1)
2.7 -0.0042(1) -0.2261(1)
2.8 -0.0126(1) -0.2342(1)
2.9 -0.0209(1) -0.2423(1)
3.0 -0.0293(1) -0.2505(1)
3.1 -0.0376(1) -0.2587(1)
3.2 -0.0460(1) -0.2669(1)
3.3 -0.0543(1) -0.2752(1)
3.4 -0.0626(1) -0.2835(1)
3.5 -0.0710(1) -0.2918(1)
3.6 -0.0793(1) -0.3001(1)
3.7 -0.0877(1) -0.3084(1)
3.8 -0.0960(1) -0.3167(1)
3.9 -0.1043(1) -0.3250(1)
4.0 -0.1127(1) -0.3334(1)
4.2 -0.1293(1) -0.3500(1)
4.4 -0.1460(1) -0.3667(1)
4.6 -0.1627(1) -0.3833(1)
4.8 -0.1793(1) -0.4000(1)
5.0 -0.1960(1) -0.4167(1)

k � 1 0.2207(1)− k/12 −k/12

Table 4: Tabulated value of the momentum summation contribution for the HTE.
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N χ1 χ3 χ4 χ5 χ6 χ7 χ8

4 2.191(1) 0.769(5) -0.0925(5) 3.99(1) -0.558(2) 0.1681(6) 0.1199(1)
8 2.2700(2) 0.746(1) -0.0861(3) 4.34(1) -0.510(1) 0.1595(2) 0.12894(3)
10 2.2810(5) 0.766(3) -0.0859(6) 4.44(2) -0.506(3) 0.1615(5) 0.13045(7)
12 2.2854(3) 0.751(4) -0.0863(6) 4.44(2) -0.510(1) 0.1602(2) 0.13114(3)
16 2.2901(1) 0.746(2) -0.0886(5) 4.43(1) -0.525(3) 0.1617(2) 0.13163(2)
20 2.2932(3) 0.734(3) -0.0912(9) 4.40(2) -0.55(1) 0.1631(6) 0.13204(3)
32 2.29566(7) 0.730(6) -0.082(1) 4.38(2) -0.59(1) 0.1399(1) 0.13234(1)
∞ 2.2975(1) 0.719(6) -0.082(6) 4.36(2) -0.61(2) 0.14(2) 0.13257(5)

Table 5: The values of χi as obtained by Nishimura et al. in [41] obtained by Monte Carlo
simulation. Only the value corresponding to the 16 supersymmetry case are included, for
the full table see the original publication.
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