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Abstract: Dry eye is a problem in tearing quality and/or quantity and it afflicts millions of persons
worldwide. An autologous serum eye-drop is a good candidate for dry eye treatment; however,
the eye-drop preparation procedures take a long time and are relatively troublesome. Here we use
spiral microchannels to demonstrate a strategy for the preparation of autologous serum eye-drops,
which provide benefits for all dry eye patients; 100% and 90% removal efficiencies are achieved for
10 µm microbeads and whole human blood cells, respectively. Since our strategy allows researchers
to integrate other functional microchannels into one device, such a microfluidic device will be able to
offer a new one-step preparation system for autologous serum eye-drops.

Keywords: dry eye; autologous serum eye-drops; spiral microchannel

Dry eye is a problem in tearing quality and/or quantity, mainly due to overusing personal
computers, tablets, and smartphones, air-drying, and wearing contact lenses. Nowadays, the number
of persons suffering from dry eyes may well be over a hundred million worldwide and it increases
daily. Dry eyes may be seen as a lack of tears on the corneal epithelial layer induced by corneal damage,
and it is also a symptom of problems such as meibomian gland dysfunction and Sjögren’s syndrome.
Since the reasons for dry eyes are not straightforward, commercially available eye-drops are generally
insufficient to treat dry eyes completely; they only can lubricate the front surface of the eye.

Autologous serum eye-drops are a good candidate for dry eye treatment since they contain
epidermal growth factor (EGF), vitamin A, and so on, which is essential for cell differentiation and
division [1–3]. Treatment using the autologous serum eye-drops is based on the concept that dry
eye worsening is not due to drying out the front surface of the eye, but rather to poorly supplying
essential components to the cornea; therefore, the autologous serum eye-drops can treat dry eyes
comprehensively, by not only lubricating the front surface of the eye but also promoting cornea
regrowth by the EGF [4]. Autologous serum eye-drops have two features. One is that users can reduce
the chance of infection because the person’s own blood is utilized, and the other is that the eye-drops
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can be stored for up to three months at ´80 ˝C. The autologous serum eye-drops are prepared as
follows: first, a patient’s blood is collected in a heparin-unmodified blood collection tube; secondly,
the collected blood is centrifuged at 3000 rpm for 10 min; thirdly, the supernatant is filtered through
a 0.45-µm-pore-size filter; and finally, the filtered serum is diluted to reach a target concentration
using saline. However, the preparation is relatively troublesome and takes a long time due to the
centrifugation, filtration, and dilution steps.

Here we demonstrated a strategy for the preparation of autologous serum eye-drops using a
microfluidic technique. Microfluidics has shown great promise for significantly improving diagnostics,
as well as biological and medical research studies [5]. Microfluidics has been variously used for passive
blood cells separation approaches [6], such as hydrodynamic separation [7–17], sedimentation-based
separation [18–21], and filtration-based separation [22–33]. Considering the desire for high throughput
and the need for a further dilution process, we fabricated a spiral microchannel (Figure 1a) to realize
inertial migration, one of the hydrodynamic separation techniques [34]. In curving microchannels,
particles experience a combination of inertial lift force and Dean drag force; inertial lift force acts to
focus microbeads at an equilibrium position between the channel wall and centerline [35,36], and
Dean drag force acts to entrain microbeads as two counter-rotating vortices with flow directed toward
the outer bend at the midline of the channel and inwards at the channel edges [37,38]. A ratio of
these forces (inertial lift, FL/Dean drag, FD) would be a key parameter to determining the equilibrium
positions of the microbeads [39,40]. An inertial force ratio, R = FL/FD « a3 « 1/H3, where a is the
particle diameter and H is the channel height, is obtained by dividing the dimensional scaling of the
inertial lift force with the scaling of the Dean drag force [13,40,41]. This force ratio shows that particles
with a larger diameter migrate to inertial equilibrium positions, and particles in a channel of larger
height do not migrate to inertial equilibrium positions but remain entrained in the channel vortices.
We demonstrated the focusing of 10-µm-diameter microbeads (2.65%, Polyscience, Inc., Warrington,
UK) at the equilibrium position close to the inner wall of the spiral microchannel (Figure 1b). Using
the spiral microchannel, we performed blood cell removal for the microfluidic autologous serum
eye-drops preparation as a potential dry eye treatment.
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techniques from an SU-8 mold (SU-8 3050, Nippon Kayaku Co., Ltd., Tokyo, Japan). First, 
photo-curable SU-8 resin was spin-coated on Si substrates (Silicon Technology Co., Ltd., Tokyo, 
Japan) and pre-baked at 95 °C for 20 min. The thickness of the SU-8 resin was controlled by spinner 
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MicroTec AG., Munich, Germany) through emulsion photomasks (Topic Co., Ltd., Kawaguchi, 

Figure 1. A spiral microfluidic device. (a) Photograph of a spiral microfluidic device; scale bar, 10 mm.
Microchannels are highlighted by Trypan blue dye solution. Channel width and height are 707 and
70.7 µm, respectively. Distance between two adjacent microchannels is 303 µm; (b) A magnified
micrograph of part of a spiral microchannel, enclosed by the red dotted box in Figure 1a; scale bar,
100 µm. Ten-fold diluted microbeads (10 µm diameter) in phosphate buffered saline were focused at an
equilibrium position close to the inner wall of the microchannel.

For the fabrication of microfluidic devices with a spiral microchannel, we used
poly(dimethylsiloxane) (PDMS; silpot 184, Dow Corning Toray Co., Ltd., Tokyo, Japan) replication
techniques from an SU-8 mold (SU-8 3050, Nippon Kayaku Co., Ltd., Tokyo, Japan). First, photo-curable
SU-8 resin was spin-coated on Si substrates (Silicon Technology Co., Ltd., Tokyo, Japan) and pre-baked
at 95 ˝C for 20 min. The thickness of the SU-8 resin was controlled by spinner rotation speed and time.
The SU-8 microchannel was patterned by a mask aligner (MJB4, SÜSS MicroTec AG., Munich, Germany)
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through emulsion photomasks (Topic Co., Ltd., Kawaguchi, Japan). In addition, the patterned SU-8
resin was post-baked at 95 ˝C for more than 4 min and developed using a SU-8 developer (Nippon
Kayaku Co., Ltd.). The developed SU-8 mold was finished by putting it into a vacuum chamber
under a trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane atmosphere for 3 h. PDMS was poured into
the silanized SU-8 mold and cured at 80 ˝C for 2 h. After peeling off the cured PDMS, via holes were
made for one inlet and two outlets. The PDMS with the via holes and glass slides were bonded to
each other after plasma treatment (SDP-1012, Meiwafosis Co., Ltd., Tokyo, Japan). Removal efficiency
(collection efficiency) was calculated by dividing the number of introduced microbeads or blood cells
by collected ones. In addition, the number of microbeads or blood cells was calculated using collected
sample volume and concentrations, which are estimated from a calibration curve (optical density
vs. concentrations).

The spiral microchannels showed 100% removal efficiency for 10-µm-diameter microbeads, which
is a model material for blood cells (Figure 2). The features of the spiral microchannels, such as the aspect
ratio, the number of microchannel spirals, and flow rates, should be candidate parameters governing
removal efficiency. Since maximum channel velocity, which is determined by the cross-sectional area of
the microchannel, is known to affect removal efficiency [34,40–42], we supposed that the cross-sectional
area should be 50,000 µm2. By changing the aspect ratio from 0.1 to 1.0 under other fixed conditions,
we concluded that the aspect ratio from 0.1 to 0.2 was suitable for 10 µm particle removal; in particular,
the 0.1 ratio gave a 99% removal efficiency (1% collection efficiency) at the outer outlet (Figure 2a). This
meant that a smaller aspect ratio had higher removal efficiency, which was in good agreement with the
behavior predicted by the inertial force ratio: particles in a smaller height channel migrated to inertial
equilibrium positions. Next, we considered the effect of the number of microchannel spirals, ranging
from 0.5 to 7.5 spirals, on removal efficiency (Figure 2b). Figure 2c showed that the removal efficiency
increased with an increase of the number of microchannel spirals, leading to 99% removal efficiency
(1% collection efficiency) at one outer outlet in 7.5 spirals. From the above results, we used the spiral
microchannel with a 0.1 aspect ratio and 7.5 spirals to examine influence of flow rates on removal
efficiency (Figure 2d). As we increased the flow rate from 100 to 5000 µL/min, the removal efficiency
drastically improved, and finally we achieved 100% removal efficiency (0% collection efficiency) at the
flow rate of 5000 µL/min.

Finally, we introduced whole human blood into the spiral microchannels and achieved 90%
removal efficiency of blood cells at the outer outlet (10% collection efficiency) (Figure 3). After
sampling and centrifugation of whole human blood, we mixed blood cells and blood plasma to be
50% hematocrit, and then we diluted the blood sample using phosphate buffered saline to reach target
hematocrit values. As for the 10 µm microbeads, the removal efficiency of blood cells increased as the
flow rate increased; however, we could not attain 100% efficiency due to the disc shape of the red blood
cells which had an 8 µm diameter and 2.5 µm thickness (Figure 3a). Considering the inertial force ratio,
it made sense that removal efficiency was degraded for the smaller particle diameter. It is well known
that the inertial lift force drops with a decrease in the Reynolds number [34–36], and as we expected,
the viscosity of the blood samples affected removal efficiency, and the removal efficiency at the outer
outlet increased to 90% (10% collection efficiency) as the concentration decreased (Figure 3b). Figure 3c
shows photographs of collected blood samples at the inner and outer outlets; hemolyzed blood was
not observed. We confirmed that hemolyzed blood was not observed at any of the concentrations
used (Figure 3b). From these results, we concluded that inertial force in the spiral microchannels at the
concentrations used had no hemolyzing property.
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Figure 2. Collection efficiency of 10 µm particles. Cross-sectional area was 50,000 µm2. Ten-fold diluted
microbeads (10 µm diameter) in phosphate buffered saline were used. Error bars are the standard
deviation for a series of measurements (N = 3). (a) Collection efficiency vs. aspect ratio of spiral
microchannels. The aspect ratio is the ratio of channel height to width. The number of microchannel
spirals was 7.5, and flow rate was 1000 µL/min; (b) Photographs of fabricated spiral microchannels
with 0.5 to 7.5 circles. One circle is one spiral. The microchannels are highlighted by Trypan blue
dye solution; (c) Collection efficiency vs. number of microchannel spirals. The aspect ratio of the
microchannels was 0.1, and flow rate was 1000 µL/min; (d) Collection efficiency vs. flow rate. The
aspect ratio of the microchannels was 0.1, and the number of microchannel spirals was 7.5.

To achieve the 100% removal efficiency of blood cells, we can propose two methods: increasing
the inertial lift force and decreasing the Dean drag force. Both ways lead to increasing the inertial
force ratio. For increasing the inertial lift force, we should increase the Reynolds number by increasing
the flow rates [36,43,44]. In this approach, we could apply 10,000 µL/min for a maximum flow rate
due to a deformability issue of PDMS. Since Si, glass or polymethyl methacrylate (PMMA) are much
harder materials than PDMS, these microchannels can be good candidates for applying more than
10,000 µL/min. Note that we should confirm the hemolysis issue of blood cells when we apply more
than 10,000 µL/min. For decreasing the Dean drag force, we should decrease the Dean number by
reducing the channel height or increasing the curvature ratio [38–40]. In this approach, we used the
microchannels with a 0.1 aspect ratio and 7.5 spirals due to a roof collapse issue of PDMS and a
size issue of glass slides. Si, glass or polymethyl methacrylate (PMMA) microchannels would also
help researchers to avoid the roof collapse issue and reduce the aspect ratio, and a larger size of the
glass slides would allow researchers to avoid the size issue and increase the number of microchannel
spirals. Note that we should confirm a clogging issue of blood cells when we use lower aspect
ratio microchannels.
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Figure 3. Collection efficiency of whole human blood cells. Cross-sectional area was 50,000 µm2, the
aspect ratio was 0.1, and the number of microchannel spirals was 7.5. (a) Collection efficiency vs.
flow rate. Initial hematocrit of blood samples was 0.25%; (b) Collection efficiency vs. whole blood
concentration. Flow rate was 5000 µm/min; (c) Photographs of collected samples from inner and outer
outlets after centrifugation. Flow rate was 5000 µm/min, and initial hematocrit of blood samples was
0.25%. Hemolyzed blood was not observed.

In summary, we have demonstrated a strategy for the preparation of autologous serum eye-drops
based on spiral microchannels, which enables passive blood cell removal. The spiral microchannels
achieved complete removal of 10 µm microbeads as a model sample, and 90% removal of whole human
blood cells. While the current removal efficiency is not yet enough to make autologous serum eye drops,
flow rates with more than 10,000 µL/min (up to a flow rate without hemolysis), which can increase the
inertial lift force, and lower aspect ratio microchannels (down to an aspect ratio without clogging) over
eight spirals, which can decrease the Dean drag force, have the potential for application in preparation
devices for blood cell removal, with the eventual goal of realizing the dry eye treatment. Since the
present strategy allows researchers to make a further integration with a separation microchannel for
platelets and clotting factors and a dilution microchannel, such microfluidic devices can offer a new
path for the development of a one-step preparation system for autologous serum eye-drops.
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