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1 Introduction

The study of braid groups is an active topic in diverse areas of mathematics and theoretical

physics. In 1925, E. Artin [Art25] introduced the notion of braids in a geometric picture.

Fox and Neuwirth [FN62] showed that the configuration space of unordered n points in C

is a classifying space of the braid group Br(n). This led to extensive investigations of the

cohomology of braid groups by Arnol’d [Arn69], Fuks [Fuk70], Văınštĕın [Văı78] and many

others. It is remarkable to note that the braid group is closely related to the hyperplane

arrangement associated to the symmetric group, known as the braid arrangement. The

above mentioned configuration space is nothing but the orbit space of the complement to

the complexified braid arrangement with respect to the action of the symmetric group by

permutation of coordinates.

A generalization of the relation between braid groups and symmetric groups is that

of Artin groups and Coxeter groups. For a Coxeter graph Γ and the associated Coxeter

system (W (Γ), S), we associate an Artin group A(Γ) obtained by, informally speaking,

dropping the relations that each generator has order 2 from the standard presentation

of W (Γ). The braid group Br(n) is the Artin group associated to the Coxeter graph of

type An−1 and the symmetric group Sn is the Coxeter group associated to the Coxeter

graph of type An−1. When W (Γ) is a finite Coxeter group, we say that A(Γ) is of finite

type (or spherical type). Recall that a finite Coxeter group W (Γ) can be geometrically

realized as an orthogonal reflection group acting on Rn where n = #S is the rank of

W . Let A be the collection of the reflection hyperplanes (in Rn) determined by W ,

known as the Coxeter arrangement associated to W . Topologically, it is more interesting

to consider the complexified Coxeter arrangement AC = {H ⊗ C | H ∈ A} and its

complement M(Γ) = Cn\ ∪H∈A H ⊗ C. The Coxeter group W (Γ) acts freely on M(Γ).

Set N(Γ) = M(Γ)/W (Γ) to be the quotient space. Brieskorn [Bri71] proved that the

fundamental group of N(Γ) is isomorphic to the Artin group A(Γ). Furthermore, as a

consequence of a theorem of Deligne [Del72], N(Γ) is a K(A(Γ), 1) space. Hence the

(co)homology of N(Γ) is the (co)homology of the Artin group A(Γ) of finite type. There

are many computations of (co)homology of Artin groups of finite type in the literature.

Besides the above mentioned references for braid groups (type An), see [Gor78] for types
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Cn and Dn, and [Sal94] for exceptional types. Cohomology ring structure is computed in

[Lan00].

When W (Γ) is an infinite Coxeter group, we say that the associated Artin group A(Γ)

is of infinite type (or non-spherical type). In this case, the Coxeter group W (Γ) can be

realized as a (non-orthogonal) reflection group acting on a convex cone U (called Tits

cone, see Subsection 2.1) in Rn with n = #S the rank of W . Let A be the collection of

reflection hyperplanes. Consider the complement M(Γ) = (int(U)+
√
−1R)\∪H∈AH⊗C

and the W (Γ)-action on M(Γ), the resulting quotient space N(Γ) = M(Γ)/W (Γ) has

fundamental group isomorphic to A(Γ) ([vdL83]). The celebrated K(π, 1) conjecture asks

whether N(Γ) is a K(A(Γ), 1) space. See Subsection 2.3 for a list of Γ for which the

K(π, 1) conjecture is proved to hold.

The most effective tool in the computation of cohomology of Artin group is the so-

called Salvetti complex introduced by Salvetti in [Sal87]. In that paper, Salvetti associated

a CW-complex (known as Salvetti complex) to each real hyperplane arrangement which

has the homotopy type of the complement to the complexified arrangement. Later, Sal-

vetti [Sal94] and De Concini-Salvetti [DCS96] applied the construction of Salvetti complex

to reflection arrangements associated to (possibly infinite) Coxeter groups and obtained

a very useful algebraic complex that computes the (co)homology of the quotient space

N(Γ) of the complement M(Γ) with respect to the Coxeter group W (Γ). Whenever

N(Γ) is known to be a K(π, 1) space, this provides a standard method to compute the

(co)homology of the Artin group A(Γ) ∼= π1(N(Γ)) over both trivial and twisted coeffi-

cients. See Subsection 3.3 for a list of results using this method.

Existing results about (co)homology of Artin groups all rely on the affirmative solution

of the K(π, 1) conjecture, since the computations are actually the (co)homology of the

quotient space N(Γ). In Section 4, we compute the second mod 2 homology of arbitrary

Artin groups, without assuming an affirmative solution of the K(π, 1) conjecture. Our

main result is a formula for the second mod 2 homology of arbitrary Artin groups. Our

main tool is the classical Hopf’s formula on the second homology (or Schur multiplier)

of groups, together with Howlett’s theorem (Theorem 4.3) on the second homology of

Coxeter groups. We are primarily inspired by [Pit99] and [KS03], where the authors
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computed the second integral homology of the mapping class groups of oriented surfaces

using Hopf’s formula. Section 4 is based on joint work with Professor Toshiyuki Akita.

In fact, we shall prove that for any Artin group A(Γ), the second integral homology

fits into a commutative diagram

Zp(Γ)+q(Γ) H2(A(Γ);Z)

H2(W (Γ);Z) ∼= Zp(Γ)+q(Γ)
2

where all maps are surjective, p(Γ) and q(Γ) are nonnegative integers associated to the

Coxeter graph Γ defined in Theorem 3.8. By taking tensor product with Z2 for this

diagram, we derive that

H2(A(Γ);Z2) ∼= Zp(Γ)+q(Γ)
2 .

As a corollary, we obtain a sufficient condition of the triviality of the Hurewicz homomor-

phism

h2 : π2(N(Γ))→ H2(N(Γ);Z).

Furthermore, we conclude that the induced Hurewicz homomorphism

h2 ⊗ idZ2 : π2(N(Γ))⊗ Z2 → H2(N(Γ);Z)⊗ Z2

is always trivial. This provides affirmative evidence for the K(π, 1) conjecture.

In the last section, we present a computation of the cohomology ring structure of 2-

dimensional Artin groups. Our computation relies on a suitable ∆-complex structure of

the classifying space.
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2 Basic definitions

We collect relevant definitions and properties of Coxeter groups and Artin groups. We

refer to [Bou68], [Hum90] and [Par14] for details.

2.1 Coxeter groups

Let S be a finite set. A Coxeter matrix over S is a symmetric matrix M = (m(s, t))s,t∈S

such that m(s, s) = 1 for all s ∈ S and m(s, t) = m(t, s) ∈ {2, 3, · · · } ∪ {∞} for distinct

s, t ∈ S. It is convenient to represent M by a labeled graph Γ, called the Coxeter graph

of M defined as follows:

• The vertex set V (Γ) = S;

• The edge set E(Γ) = {{s, t} ⊂ S | m(s, t) ≥ 3};

• The edge {s, t} is labeled by m(s, t) if m(s, t) ≥ 4.

Let Γodd be the subgraph of Γ with V (Γodd) = V (Γ) = S and E(Γodd) = {{s, t} ∈ E(Γ) |

m(s, t) is odd} inheriting labels from Γ. By abuse of notations, we frequently regard Γ

(hence also Γodd) as its underlying 1-dimensional CW-complex with the set of 0-cells S

and the set of 1-cells {〈s, t〉 | {s, t} ∈ E(Γ)}.

For two letters s, t and an integer m ≥ 2, we shall use the following notation of the

word of length m consisting of s and t in an alternating order.

(st)m :=

m︷ ︸︸ ︷
sts · · · .

Definition 2.1. Let Γ be a Coxeter graph and S its vertex set. The Coxeter system

associated to Γ is by definition the pair (W (Γ), S), where W (Γ) is the group presented by

W (Γ) = 〈S | RW ∪QW 〉.

The sets of relations are RW = {R(s, t) | m(s, t) <∞} and QW = {Q(s) | s ∈ S}, where

R(s, t) := (st)m(s,t)(ts)
−1
m(s,t) and Q(s) := s2.

Note that since R(s, t) = R(t, s)−1, we may reduce the relation set RW by introducing

a total order on S and put RW := {R(s, t) | m(s, t) < ∞, s < t}. We have the following
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presentation with fewer relations

W (Γ) = 〈S | RW ∪QW 〉.

The group W = W (Γ) is called the Coxeter group of type Γ. We shall omit the reference

to Γ if there is no ambiguity. The rank of W is defined to be #S.

Remark 2.2. There is also a standard presentation of W (Γ) used in the literature

W (Γ) = 〈S | (st)m(s,t) = 1,∀s, t ∈ S with m(s, t) 6=∞〉.

Each generator s ∈ S of W has order 2. For distinct s, t ∈ S, the order of st is precisely

m(s, t) if m(s, t) 6=∞. In case m(s, t) =∞, the element st has infinite order. Therefore,

given a pair (W,S) with the above presentation, it uniquely determines a Coxeter matrix,

hence a Coxeter graph.

2.1.1 Parabolic subgroups and Poincaré series

Let (W,S) be a Coxeter system. For a subset T ⊂ S, let WT denote the subgroup

of W generated by T , called a parabolic subgroup of W . In particular, WS = W and

W∅ = {1}. It is known that (WT , T ) is the Coxeter system (cf. Théorème 2 in Chapter

IV of [Bou68]) associated to the Coxeter graph ΓT (the full subgraph of Γ spanned by

T inheriting labels). If T ⊂ S generates a finite parabolic subgroup, we say that T is a

spherical subset. Denote by Sf the collection of all spherical subsets.

Recall that the length `(w) of an element w ∈ W is the defined as the minimal number

k such that w can be written as a word w = s1s2 · · · sk with si ∈ S, and such a word is

called a reduced expression of w. We set `(w) = 0 if w = 1. The restriction of the length

function to any parabolic subgroup WT agrees with the length function of the Coxeter

system (WT , T ).

Define W T := {w ∈ W | `(wt) > `(w) for all t ∈ T}. Then for w ∈ W , there

is a unique element u ∈ W T and a unique element v ∈ WT such that w = uv and

`(w) = `(u) + `(v). Moreover, u is the unique element of minimal length in the coset

wWT . Hence the set W T is called the set of minimal coset representatives.
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For a subset X ⊂ W , we define the Poincaré series of X

X(q) =
∑
x∈X

q`(x).

A consequence of the last paragraph is that for a subset T ⊂ S,

W (q) = WT (q)W T (q).

2.1.2 Geometric representation

As mentioned in the introduction, each Coxeter group can be geometrically realized as a

reflection group acting on a Tits cone. In this subsection, we describe this construction.

Let (W,S) be a Coxeter system. Denote by V the real vector space with basis {αs |

s ∈ S}. We define a symmetric bilinear form B on V by setting

B(αs, αt) := − cos
π

m(s, t)
.

We agree that cos π
∞ = 1. For each s ∈ S, we define the reflection ρs on V by

ρs(x) = x− 2B(αs, x)

B(αs, αs)
αs,

for x ∈ V . Remark that ρs(αs) = −αs and ρs fixes pointwise the hyperplaneHs orthogonal

to αs with respect to B. The assignment s 7→ ρs defines a faithful representation of W ,

ρ : W → GL(V ).

Let us consider the contragradient representation

ρ∗ : W → GL(V ∗),

where V ∗ is the dual space of V . It is defined by the following

〈ρ∗(w)(f), α〉 = 〈f, ρ(w−1)(α)〉,

where f ∈ V ∗, α ∈ V and 〈•, •〉 is the natural pairing of V ∗ and V . Let C0 be the

fundamental chamber defined as C0 := {f ∈ V ∗ | 〈f, αs〉 > 0 for all s ∈ S}. Define the

Tits cone U := WC0 as the W -orbit of the closure of C0. It is a W -stable subset of V ∗.

Recall some important properties of U .
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Proposition 2.3 ([Vin71]). Let U be defined as above. Then

(i) U is a convex cone in V ∗ with vertex 0.

(ii) int(U) is open in V ∗.

(ii) The followings are equivalent.

(a) U = V ∗, (b) W is finite, (c) B is positive definite.

2.1.3 Finite and affine Coxeter groups

A Coxeter system (W,S) is said to be irreducible if the Coxeter graph Γ is connected.

The following proposition allows us to reduce the study of Coxeter systems to that of

irreducible ones.

Proposition 2.4. Let Γ1,Γ2, . . . ,Γm be the connected components of Γ, and Si ⊂ S be the

vertex set of Γi. Then the Coxeter group W is the direct product of its parabolic subgroups

WS1 ,WS2 , . . . ,WSm and the Coxeter system (WSi
, Si) is irreducible.

The classification of finite irreducible Coxeter groups is well known.

Theorem 2.5. Let (W,S) be a finite irreducible Coxeter system, then the Coxeter graph

Γ must be one of the listed graphs in Figure 1, where the subscript denotes the rank of the

corresponding Coxeter group.

Among infinite Coxeter groups, there is an important class called affine Coxeter

groups. They arise as affine reflection groups in the Euclidean space. Recall that a

finite Coxeter group W is called crystallographic if W stabilizes a lattice in V where the

action is given by the geometric representation ρ : W → GL(V ). Such a group is also

known as a Weyl group. They are characterized by the following proposition.

Proposition 2.6. W is crystallographic if and only if m(s, t) = 2, 3, 4 or 6 for each pair

of distinct s, t ∈ S.

We simply rule out H3, H4 and I2(m) for m = 5, 7, 8, 9, . . . from the list in Figure 1 to

get a list of irreducible Weyl groups.

Let Aff(V ) be the group of affine transformations of V , which is the semidirect product

of GL(V ) with the group of translations in V . We define the affine Weyl group Wa as the
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An(n ≥ 1)

Bn(n ≥ 2)
4

Dn(n ≥ 4)

E6

E7

E8

F4
4

H3
5

H4
5

I2(m)(m ≥ 5)
m

Figure 1: Classification of finite irreducible Coxeter groups
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subgroup of Aff(V ) generated by affine reflections along affine hyperplanes Hα,k = {v ∈

V | (v, α) = k} for α ∈ Φ and k ∈ Z, where Φ = {w(αs) | s ∈ S,w ∈ W} and (•, •) is the

scalar product on V induced by the positive definite form B.

We list the Coxeter graphs of irreducible affine Weyl groups in Figure 2. In each

graph, the number of vertices is equal to the subscript plus 1.

2.2 Artin groups

The Artin group A(Γ) associated to a Coxeter graph Γ is obtained from the presentation

of W (Γ) by dropping the relation set QW .

Definition 2.7. Given a Coxeter graph Γ (hence a Coxeter system (W,S)), we introduce

a set Σ = {as | s ∈ S} in one-to-one correspondence with S. Then the Artin system

associated to Γ is the pair (A(Γ),Σ), where A(Γ) is the Artin group of type Γ defined by

the following presentation:

A(Γ) = 〈Σ | RA〉,

where RA = {R(as, at) | m(s, t) <∞} and R(as, at) = (asat)m(s,t)(atas)
−1
m(s,t).

Note that since R(as, at) = R(at, as)
−1, we may reduce the relation set RA by intro-

ducing a total order on S and put RA := {R(as, at) | m(s, t) < ∞, s < t}. We have the

following presentation with fewer relations

A(Γ) = 〈Σ | RA〉.

There is a canonical projection p : A(Γ)→ W (Γ), as 7→ s(s ∈ S), the kernel is called

the pure Artin group of type Γ, denoted by PA(Γ). The three groups fit into the exact

sequence

1→ PA(Γ)→ A(Γ)
p−−→ W (Γ)→ 1.

The projection p has a canonical set-theoretic section ψ : W (Γ)→ A(Γ) given by

ψ(w) = ψ(s1s2 · · · sk) = as1as2 · · · ask ,

where s1s2 · · · sk (si ∈ S) is a reduced expression of w ∈ W (Γ), which is well-defined due

to a theorem of Matsumoto [Mat64].
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Ãn(n ≥ 2)

B̃n(n ≥ 3)
4

C̃n(n ≥ 3)
4 4

D̃n(n ≥ 4)

Ẽ6

Ẽ7

Ẽ8

F̃4

4

Ĩ2(6)
6

B̃2 = C̃2

4 4

Ã1

∞

Figure 2: Coxeter graphs for affine Coxeter groups
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We say that an Artin group A(Γ) is of finite type (or spherical type) if the associated

Coxeter group W (Γ) is finite. A(Γ) is of infinite type (or non-spherical type) if W (Γ) is

infinite.

2.3 K(π, 1) conjecture

Consider a Coxeter graph Γ and the associated Coxeter system (W,S) with W finite and

rank #S = n. Recall that W can be realized as a reflection group acting on Rn. Let A be

the collection of the reflection hyperplanes, known as the Coxeter arrangement associated

to W . Let

M(Γ) := Cn\
⋃
H∈A

H ⊗ C

be the complement to the complexified arrangement AC = {H ⊗C | H ∈ A} in Cn. The

Coxeter group W acts freely and properly discontinuously on M(Γ). Denote the orbit

space by N(Γ) = M(Γ)/W .

Theorem 2.8 ([Bri71]). For an Artin group A(Γ) of finite type, the fundamental group

of N(Γ) is isomorphic to A(Γ).

The classical case Γ = An is previously proved in [FN62].

The following theorem of Deligne shows that N(Γ) is a K(π, 1) space.

Theorem 2.9 ([Del72]). Let A be a finite real central simplicial arrangement, then the

complement M(A) to the complexification of A is a K(π, 1) space.

Here a real arrangement is called simplicial if any chamber (a connected component of

the complement) is a simplicial cone. Since Coxeter arrangements are simplicial ([Bou68]),

we have

Corollary 2.10. The complement M(Γ) is a K(π, 1) space and so is N(Γ).

An Artin group A(Γ) of finite type thus has a classifying space N(Γ). As for Artin

groups of infinite type, the above construction can be mildly modified. Suppose now the

Coxeter group W (Γ) is infinite of rank n, realized as a reflection group acting on a Tits

cone U ⊂ Rn. Let A be the collection of reflection hyperplanes. Set

M(Γ) :=
(
int(U) +

√
−1Rn

)
\
⋃
H∈A

H ⊗ C,

13



the complement to the union of complexified reflection hyperplanes in the complexified

space with real part the interior of the Tits cone. Then W acts on M(Γ) freely and

properly discontinuously. Denote the orbit space by

N(Γ) := M(Γ)/W.

It is known that

Theorem 2.11 ([vdL83]). The fundamental group of N(Γ) is isomorphic to the Artin

group A(Γ).

In general, N(Γ) is conjectured to be a classifying space of A(Γ).

Conjecture 2.12 (K(π, 1) conjecture). Let Γ be an arbitrary Coxeter graph, then the

orbit space N(Γ) is a K(π, 1) space, hence is a classifying space of the Artin group A(Γ).

This conjecture is proved for a few classes of Artin groups besides the finite types.

Here is a list of such classes.

• Artin groups of large type ([Hen85]).

• 2-dimensional Artin groups ([CD95]).

• Artin groups of FC type ([CD95]).

• Artin groups of affine types Ãn, C̃n ([Oko79]).

• Artin groups of affine type B̃n. [CMS10]
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3 Existing results about (co)homology of Artin groups

3.1 Salvetti complex

We briefly recall the central construction, the so-called Salvetti complex Sal(Γ) associated

to a Coxeter graph Γ. This complex will have the homotopy type of the complementM(Γ).

The Salvetti complex was first introduce by M. Salvetti in [Sal87] for real hyperplane

arrangements. However, we shall follow the construction used in [Par14].

Let Γ be a Coxeter graph and (W,S) the associated Coxeter system. Recall that

Sf = {T ⊂ S | WT is finite} is the set of spherical subsets. Define a partial order � on

the set W × Sf by declaring (w, T ) � (w′, T ′) if

T ⊂ T ′, (w′)−1w ∈ WT ′ , (w
′)−1w is (∅, T )-minimal,

where an element u ∈ W is called (∅, T )-minimal if u is of minimal length in the coset

uWT (such an element of minimal length is unique, see [Bou68] or [Hum90]). This � is

indeed a partial order (Lemma 3.2 of [Par14]).

Definition 3.1. For a Coxeter graph Γ, the associated Salvetti complex Sal(Γ) is defined

as the geometric realization of the derived complex of the poset (W × Sf ,�).

We shall not distinguish a complex with its geometric realization. Note that W acts

on Sal(Γ) by u(w, T ) := (uw, T ) for u,w ∈ W,T ∈ Sf . We denote the orbit space by

Z(Γ) := Sal(Γ)/W .

Theorem 3.2. There is a homotopy equivalence f : Sal(Γ) → M(Γ), which is W -

equivariant. Thus f induces a homotopy equivalence f̄ : Z(Γ)→ N(Γ).

3.2 Salvetti’s algebraic complex for Artin groups

In this subsection, we recall an algebraic complex introduced by Salvetti that is useful in

our computation. The contents here could be found in [MSV12], see also [Sal94, DCS96].

Consider a Coxeter system (W,S) with rank #S = n and its Coxeter graph Γ. The

cellular structure of Z(Γ) = Sal(Γ)/W can be described combinatorially (cf. [Sal94]).

Each k-cell of Z(Γ) is dual to a unique k-codimensional facet of the fundamental chamber
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of the arrangement A and such a facet corresponds to a unique intersection of k hyper-

planes of the fundamental chamber. Hence each k-cell of Z(Γ) is indexed by a unique

spherical subset of S of cardinality k. A total ordering of S then determines an orientation

of each cell. The cellular complex of Z(Γ) can be identified with an algebraic complex

(C̄∗, ∂̄∗) obtained from the Salvetti’s algebraic complex which we now describe.

Salvetti introduced an algebraic complex (C∗, ∂∗) for A(Γ) whose (co)homology groups

coincide with those of Z(Γ). Consider a representation of A(Γ)

λ : A(Γ)→ Aut(M)

where M is a Z-module. Let Lλ be the local system on Z(Γ) defined by λ. Define the

complex C∗ as follows

Ck =
⊕
J∈Sf
#J=k

M · eJ ,

and the boundary map could be written as

∂(a · eJ) =
∑
s∈J

(−1)#{t∈J |t≤s}
∑

β∈WJ−{s}
J

(−1)`(β)λ(ψ(β))(a)

 eJ−{s},

where W
J−{s}
J = {β ∈ WJ | `(βt) > `(β),∀t ∈ J − {s}} is the set of minimal coset

representatives of WJ/WJ−{s}, i.e. the collection of the unique element of minimal length

in each coset of WJ/WJ−{s} (see Subsection 2.1.1) and ψ : W → A(Γ) is the canonical

section (Subsection 2.2).

Theorem 3.3 ([Sal94]). In the above situation,

H∗(C∗) ∼= H∗(Z(Γ);Lλ).

Remark 3.4. The complex (C∗, δ∗) for cohomology is similar. Precisely, C∗ = C∗ and

δ(a.eJ) =
∑
s∈S\J

|WJ∪{s}|<∞

(−1)#{t∈J |t≤s}
∑

β∈WJ−{s}
J

(−1)`(β)λ(ψ(β))(a)

 eJ∪{s}.

Also, H∗(C∗) ∼= H∗(Z(Γ);Lλ).
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The complex will become much simpler if we restrict ourselves to the case M = Z and

λ is trivial. We shall denote this specific complex by (C̄∗, ∂̄∗)

C̄k =
⊕
J∈Sf
#J=k

Ze(J),

where we write the basis as e(J) in this specific case. Let X(q) be the Poincaré series of

a subset X ⊂ W (Subsection 2.1.1), then the boundary can be written as

∂̄e(J) =
∑
s∈J

(
(−1)#{t∈J |t≤s}W

J−{s}
J (−1)

)
e(J − {s}), (3.1)

where W
J−{s}
J (−1) is the value

W
J−{s}
J (q)|q=−1 =

WJ(q)

WJ−{s}(q)

∣∣∣∣
q=−1

.

From now on, we identify the cell of Z(Γ) indexed by J ∈ Sf with e(J) with orientation

compatible with the formula of ∂̄ given above.

3.3 Summary of existing results

The Salvetti’s algebraic complex provides a relatively simple model for computations.

Many computations using this complex for specific types Arin groups exist in the litera-

ture. Beside those listed in the introduction, see [DCPSS99, DCPS01] for the cohomology

of Artin groups of finite type with coefficient the Laurent polynomial ring Q[q±] on which

each standard generator acts as multiplication by −q, [CMS08] for type Bn with coeffi-

cient the 2-parameter Laurent polynomial ring Q[q±, t±] on which the first n−1 standard

generators act as multiplication by −q and the last acts as multiplication by −t, as well

as type Ãn with trivial Q coefficient, [CMS10] for type B̃n with coefficient Q[q±, t±] on

which the first n standard generators act as multiplication by −q and the last acts as mul-

tiplication by −t. See also [SV13] for twisted cohomology of Artin groups of exceptional

affine types using discrete Morse theory.

3.4 First and second homology of the quotient Salvetti complex

In this subsection, we perform computations of the first and the second homology of the

quotient Salvetti complex Z(Γ) = Sal(Γ)/W (Γ) associated to a Coxeter graph Γ using the
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algebraic Salvetti complex (C̄∗, ∂̄∗) described in Subsection 3.2. We shall remark that the

first homology of Z(Γ) is exactly the first homology of the Artin group A(Γ) ∼= π1(Z(Γ)).

The computation of the second homology of Z(Γ) was obtained by Clancy-Ellis ([CE10]).

Let Γ be a Coxeter graph with vertex set S = {s1, s2, . . . , sn} totally ordered by

s1 < s2 < · · · < sn. When we want to emphasize the order in a subset of S, we write, for

example, {si < sj} ⊂ S. For simplicity, we denote the cells ei := e({si}), 1 ≤ i ≤ n and

ei,j := e({si, sj}), ej,i := −e({si, sj}), 1 ≤ i < j ≤ n. Also mij := m(si, sj).

If {si < sj} ∈ Sf , then W{si,sj}
∼= D2mij

(the dihedral group of order 2mij). Using the

boundary formula in Subsection 3.2, one computes

∂̄2ei,j = (−1)2W
{si}
{si,sj}(−1)ei + (−1)1W

{sj}
{si,sj}(−1)ej

= (1 + q + q2 + · · ·+ qmij−1)|q=−1(ei − ej)

=

 0, mij : even;

ei − ej, mij : odd.

and ∂̄1 = 0.

To describe the homology, recall the definition of Γodd. Let {Γ1
odd, . . . ,Γ

c
odd} be the set

of connected components of Γodd. For 1 ≤ k ≤ c, put Ik as the index set of vertices of

Γkodd, or equivalently {sj | j ∈ Ik} = V (Γkodd). Now set Λ = {minI1, . . . ,minIc}. Hence

c = #Λ is the number of connected components of Γodd. We denote by αi the homology

class represented by ei. By the above computation, if si and sj are in the same connected

component of Γodd, then αi = αj. Therefore we have the following result.

Proposition 3.5. The first homology group H1(Z(Γ);Z) is free abelian of rank #Λ with

basis {αi | i ∈ Λ}, i.e.

H1(Z(Γ);Z) =
⊕
i∈Λ

Zαi.

Remark 3.6. For an arbitrary Artin group A(Γ) with the presentation in Definition 2.7,

its abelianization is

A(Γ)ab = 〈Σ | as = at, if m(s, t) is odd〉.

Clearly, this coincides with the result in the proposition.

Now let us continue to compute the second homology of Z(Γ) following Clancy-Ellis

([CE10]). Set Q(Γ) = {{si, sj} ⊂ S | mij is even}, then for {si < sj} ∈ Q(Γ), ei,j is a
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2-cycle. There may be another kind of 2-cycles. In order to present them explicitly, note

that the first homology H1(Γodd;Z) is precisely the finitely generated free abelian group

of 1-cycles of Γodd. Choose a basis Ω(Γodd) for H1(Γodd;Z).

We would like to introduce a 1-dimensional CW-complex (directed graph) Γ̃odd with

0-cells {ei | 1 ≤ i ≤ n} and 1-cells {ei,j | {si < sj} ∈ Sf − Q(Γ)} with incidence ∂ei,j =

ei− ej. It is immediate to observe that the graph homomorphism ι : Γodd → Γ̃odd, si 7→ ei

induces a cellular isomorphism. Note that ω is a 1-cycle of Γodd if and only if ι(ω) is a

1-cycle of Γ̃odd. Moreover, a 1-cycle ι(ω) of Γ̃odd is also a 2-cycle of Z(Γ). We have the

following proposition.

Proposition 3.7. The kernel Ker∂̄2 is free abelian of rank #Q(Γ) + #Ω(Γodd) with basis

{ei,j | {si < sj} ∈ Q(Γ)} ∪ {ι(ω) | ω ∈ Ω(Γodd)},

i.e.

Ker∂̄2 =

 ⊕
{si<sj}∈Q(Γ)

Zei,j

⊕
 ⊕
ω∈Ω(Γodd)

Zι(ω)

 .

Proof. Let σ be an arbitrary 2-cycle of Z(Γ), then σ has the form σ =
∑
{si<sj}∈Sf xi,jei,j,

where xi,j ∈ Z, such that ∂̄2σ = 0. The latter condition is equivalent to

∂̄2σ = ∂̄2

 ∑
{si<sj}∈Sf−Q(Γ)

xi,jei,j

 = 0.

This is to say that σ̃ =
∑
{si<sj}∈Sf−Q(Γ) xi,jei,j is a 1-cycle of Γ̃odd, thus uniquely expressed

by basis {ι(ω) | ω ∈ Ω(Γodd)} of H1(Γ̃odd;Z).

Next we state Clancy-Ellis’ theorem. Let us first fix some notations associated to

a Coxeter graph. Let Γ be a Coxeter graph with vertex set S. Denote by P (Γ) the

set of pairs of non-adjacent vertices of Γ, namely P (Γ) = {{s, t} ⊂ S | m(s, t) = 2}.

Write {s, t} ≡ {s′, t′} if two such pairs in P (Γ) satisfy s = s′ and m(t, t′) is odd. This

generates an equivalence relation on P (Γ), denoted by ∼. Denote by P (Γ)/ ∼ the set of

equivalence classes. An equivalence class is called a torsion class if it is represented by a

pair {s, t} ∈ P (Γ) such that there exists a vertex v ∈ S with m(s, v) = m(t, v) = 3. In

the above situation, we have the following theorem.
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Theorem 3.8 ([CE10]). The second integral homology of the quotient Salvetti complex

Z(Γ) = Sal(Γ)/W (Γ) associated to a Coxeter graph Γ is

H2(Z(Γ);Z) = Zp(Γ)
2 ⊕ Zq(Γ),

where

p(Γ) := number of torsion classes in P (Γ)/ ∼,

q1(Γ) := number of non-torsion classes in P (Γ)/ ∼,

q2(Γ) := #(Q(Γ)− P (Γ)) = #{{s, t} ⊂ S | m(s, t) ≥ 4 is even},

q3(Γ) := rankH1(Γodd;Z),

q(Γ) := q1(Γ) + q2(Γ) + q3(Γ).

Proof. It suffices to continue the argument in the proof of Proposition 3.7. There we have

computed the kernel of the differential ∂̄2 : C̄2 → C̄1 in the cellular chain complex of Z(Γ).

Ker∂̄2 =
⊕

{s,t}∈Q(Γ)

Ze({s, t})⊕
⊕

ω∈Ω(Γodd)

Zι(ω).

It remains to compute the image of ∂̄3. To do so, we first classify finite Coxeter groups

with rank 3 by their Coxeter graphs. There are 5 types of them: A3, B3, H3, A1×A1×A1

and A1 × I2(m) for m ≥ 3. Therefore the chain group C̄3 of Z(Γ) for any Γ has basis

{e(T )} where T ⊂ S spans a Coxeter subgraph ΓT of one of the above types. Using the

boundary formula 3.1, we derive ∂̄3e(T ) = 0 if ΓT is B3, H3, A1 × A1 × A1 or I2(m) for

even m.

As for ΓT = A1 × I2(m) with m odd, suppose T = {r, s, t} with r < s < t and

m(r, s) = m(r, t) = 2,m(s, t) = m, formula 3.1 shows that

∂̄3e(T ) = e({r, t})− e({s, t}).

This means that e({r, t}) and e({s, t}) are homologous if {r, t} ≡ {s, t} in P (Γ). Hence

taking quotient modulo ∂̄3e(T ) for type A1 × I2(m) decreases the number of direct sum-

mands Z in Ker∂̄2 by #P (Γ)−#P (Γ)/ ∼.

Now suppose ΓT = A3, that is T = {r, s, t} with r < s < t and m(r, s) = m(s, t) =

3,m(r, t) = 2, then formula 3.1 shows that

∂̄3e(T ) = 2e({r, t}).
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In other words, 2e({r, t}) is a boundary if {r, t} is a torsion class in P (Γ)/ ∼. Taking

quotient modulo ∂̄3e(T ) for type A3 then decreases the number of direct summands Z by

p(Γ) as well as generates Zp(Γ)
2 .

Remark 3.9. Whenever K(π, 1) conjecture holds for the Artin group A(Γ), Theorem 3.8

gives the second integral homology of A(Γ).
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4 Second mod 2 homology of Artin groups

As we see in the previous section, almost all existing results about (co)homology of Artin

groups are based on the affirmative solution of the K(π, 1) conjecture. In this section,

nevertheless, we shall work on low dimensional homology of arbitrary Artin groups, with-

out assuming that the K(π, 1) conjecture holds. The first homology is easily derived from

the standard presentation given in Definition 2.7, see Proposition 3.5 and Remark 3.6.

Our main results are the following theorems.

Theorem 4.1. The second integral homology of an arbitrary Artin group A(Γ) fits into

the following commutative diagram

Zp(Γ)+q(Γ) H2(A(Γ);Z)

H2(W (Γ);Z) ∼= Zp(Γ)+q(Γ)
2

(4.1)

where all maps are surjective and the numbers p(Γ) and q(Γ) are given in Theorem 3.8.

Theorem 4.2. Let Γ be an arbitrary Coxeter graph and A(Γ) the associated Artin group.

Then the second mod 2 homology of A(Γ) is

H2(A(Γ);Z2) ∼= Zp(Γ)+q(Γ)
2 .

The outline of our proof is as follows. In Subsection 4.1, we recall Howlett’s theorem on

the second integral homology group H2(W (Γ);Z) of the Coxeter group W (Γ) associated

to Γ. Next in Subsection 4.2, we recall the classical Hopf’s formula of the second homology

of a group. The key of the proof is that by virtue of Hopf’s formula, we are able to find

explicitly a minimal set of generators of H2(W (Γ);Z) ∼= Zp(Γ)+q(Γ)
2 (Section 4.3), as well

as a set of generators of H2(A(Γ);Z) (Section 4.4). Both sets of generators are images

of the basis of a common free abelian group Zp(Γ)+q(Γ) under the diagonal and horizontal

maps respectively. The commutativity of the diagram will follow from the constructions.

This section is based on joint work with Professor Toshiyuki Akita.
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4.1 Howlett’s theorem

The group epimorphism p : A(Γ) → W (Γ) induces H2(A(Γ);Z) → H2(W (Γ);Z). The

target H2(W (Γ);Z) turns out to be a finite group. We recall Howlett’s theorem ([How88])

on the second integral homology of Coxeter groups.

Theorem 4.3 ([How88]). The second integral homology of the Coxeter group W (Γ) as-

sociated to a Coxeter graph Γ is

H2(W (Γ);Z) = Z−n1(Γ)+n2(Γ)+n3(Γ)+n4(Γ)
2 ,

where

n1(Γ) := #S,

n2(Γ) := #{{s, t} ∈ E(Γ) | m(s, t) <∞},

n3(Γ) := #P (Γ)/ ∼,

n4(Γ) := rankH0(Γodd;Z).

Remark 4.4. For a Coxeter graph Γ, the above numbers are related to those used by

Clancy-Ellis as follows

−n1(Γ) + n2(Γ) + n3(Γ) + n4(Γ) = p(Γ) + q(Γ).

In fact, n1(Γ) = #V (Γodd), n2(Γ) = q2(Γ) + #E(Γodd) and n3(Γ) = p(Γ) + q1(Γ). The

above equation follows from the Euler-Poincaré theorem applied to Γodd,

#V (Γodd)−#E(Γodd) = rankH0(Γodd;Z)− rankH1(Γodd;Z).

Example 4.5. Let Γ = I2(m). Thus W (Γ) = D2m is the dihedral group of order 2m.

Theorem 4.3 shows that

H2(W (Γ);Z) ∼=

Z2, m is even;

0, m is odd.

See also Corollary 10.1.27 of [Kar93] for an alternative proof of the same result.
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4.2 Hopf’s formula

The classical Hopf’s formula gives a description of the second integral homology of a

group. We first recall some notations. For a group G, the commutator of x, y ∈ G is

the element [x, y] = xyx−1y−1. The commutator subgroup [G,G] of G is the subgroup of

G generated by all commutators. It is the smallest normal subgroup of G such that the

quotient group is abelian. In general, for subgroups H and K of G, we define [H,K] as

the subgroup of G generated by [h, k], h ∈ H, k ∈ K.

Theorem 4.6 (Hopf’s formula). If a group G has a finite presentation 〈S | R〉 and

G = F/N , then

H2(G;Z) ∼=
N ∩ [F, F ]

[F,N ]
,

where F = F (S) is the free group generated by S and N = N(R) is the normal closure of

R (subgroup of F normally generated by the relation set R).

See Section II.5 of [Bro82] for a topological proof. For simplicity we denote by 〈x〉G =

x[F,N ] ∈ F/[F,N ] the coset of [F,N ] represented by x ∈ F and 〈x, y〉G = [x, y][F,N ] ∈

[F, F ]/[N,F ] for x, y ∈ F . Thanks to Hopf’s formula, second homology classes of G can

be considered as 〈x〉G for x ∈ N ∩ [F, F ].

To see how the representatives look like, we make the following simple observations.

Lemma 4.7. The group N/[F,N ] is abelian.

Proof. Note that N/[F,N ] is a quotient group of N/[N,N ] and the latter is the abelian-

ization of N .

Thus we write the group N/[F,N ] additively. It is clear 〈n〉G = −〈n−1〉G for n ∈ N .

The next two lemmas are useful, their proofs can be found, for example, in [KS03].

Lemma 4.8. In the abelian group N/[F,N ], we have

〈n〉G = 〈fnf−1〉G

for n ∈ N and f ∈ F .

Proof. Since [f, n] ∈ [F,N ], 〈f, n〉G = 〈fnf−1n−1〉G = 〈fnf−1〉G − 〈n〉G = 0.
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Therefore a coset in N/[F,N ] is represented by an element of the form
∏

r∈R r
nr(nr ∈

Z). Hopf’s formula implies that a second homology class of G can be represented by an

element
∏

r∈R r
nr ∈ [F, F ].

Lemma 4.9. Let G = F/N as in Theorem 4.6. If x, y, z ∈ F such that [x, y], [x, z] ∈

N ∩ [F, F ], then

〈x, yz〉G = 〈x, y〉G + 〈x, z〉G, 〈x, y−1〉G = −〈x, y〉G,

Proof. Note that [x, yz] = [x, y]y[x, z]y−1. Then in the abelian group N/[F,N ],

〈x, yz〉G = 〈x, y〉G + 〈y[x, z]y−1〉G.

The term 〈y[x, z]y−1〉G = 〈x, z〉G since

[x, z]−1y[x, z]y−1 = [[x, z]−1, y] ∈ [N,F ].

Hence the first equality holds. The second follows immediately from the first.

4.3 Hopf’s formula applied to Coxeter groups

The aim of this subsection is to construct the diagonal map Zp(Γ)+q(Γ) → H2(W (Γ);Z) ∼=

Zp(Γ)+q(Γ)
2 in the diagram in Theorem 4.1. Let us first state our strategy used in the

rest of this section. Theorem 4.3 provides a relatively small group receiving a map

H2(A(Γ);Z) → H2(W (Γ);Z). By applying Hopf’s formula, we can write down the map

explicitly. More important is that Hopf’s formula enables us to find a minimal set of

generators of H2(W (Γ);Z). In fact, we construct a surjective group homomorphism ΦW

of the free abelian group with basis the relation set of W onto the abelian group of

cosets 〈x〉W with x expressed by a product of relations. By analyzing when x belongs

to the commutator subgroup of the free group F (S) on S, we derive a surjective group

homomorphism of Zp(Γ)+q(Γ) onto H2(W (Γ);Z) ∼= Zp(Γ)+q(Γ)
2 , which takes the basis of the

domain to a minimal set of generators of H2(W (Γ);Z). Similar construction applied to

Artin group A(Γ) yields the horizontal map Zp(Γ)+q(Γ) → H2(A(Γ);Z), which takes the

basis of the domain to a set of generators of H2(A(Γ);Z). Note that the set of generators

of H2(A(Γ);Z) is taken to that of H2(W (Γ);Z) by the vertical map.
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Let Γ be a Coxeter graph and (W,S) the associated Coxeter system with S to-

tally ordered. Then W = 〈S | RW ∪ QW 〉 is as in Definition 2.1. Let FW = F (S)

be the free group on S and NW = N(RW ∪ QW ) be the normal closure of RW ∪

QW . Therefore W = FW/NW . Using Hopf’s formula we obtain H2(W ;Z) ∼= (NW ∩

[FW , FW ])/[FW , NW ]. Hence a second homology class of W is of the form 〈x〉W with x

expressed by
∏

R(s,t)∈RW
R(s, t)ns,t

∏
Q(s)∈QW

Q(s)ns ∈ [FW , FW ].

Recall that the relation set RW decomposes into RW = Reven
W t Rodd

W , where Reven
W =

{R(s, t) | m(s, t) is even, s < t} and Rodd
W = {R(s, t) | m(s, t) is odd, s < t} with cardi-

nality #Reven
W = #P (Γ) + q2(Γ) (see Theorem 3.8 for notations) and #Rodd

W = #E(Γodd).

Now consider the surjective group homomorphism

ΦW : ZRW∪QW −→ NW

[FW , NW ]∑
R(s,t)∈RW

ns,tR(s, t) +
∑

Q(s)∈QW

nsQ(s) 7−→

〈 ∏
R(s,t)∈RW

R(s, t)ns,t
∏

Q(s)∈QW

Q(s)ns

〉
W

where ZRW∪QW is the free abelian group with basis RW ∪ QW . If R(s, t) ∈ Reven
W , then

R(s, t) is in [FW , FW ]. As a result, ΦW maps the subgroup ZReven
W of ZRW∪QW = ZReven

W ⊕

ZRodd
W ⊕ ZQW into (NW ∩ [FW , FW ])/[FW , NW ].

Define a subgroup of ZRodd
W ⊕ ZQW as follows

CW =

 ∑
R(s,t)∈Rodd

W

ns,tR(s, t) +
∑

Q(s)∈QW

nsQ(s)

∣∣∣∣∣∣
∏

R(s,t)∈Rodd
W

R(s, t)ns,t
∏

Q(s)∈QW

Q(s)ns ∈ [FW , FW ]

 .

Then ΦW maps CW into (NW ∩ [FW , FW ])/[FW , NW ]. In other words, ΦW restricts to a

surjective group homomorphism

ΦW | : ZR
even
W ⊕ CW →

NW ∩ [FW , FW ]

[FW , NW ]
.

Note that the element

2R(s, t)−Q(s) +Q(t)

lies in CW if R(s, t) ∈ Rodd
W since the word ((st)m(ts)−1

m )
2

(s2)−1t2 is mapped to the identity

under the abelianization map FW → FW/[FW , FW ] when m is odd. Let DW be the

subgroup of CW generated by elements 2R(s, t) − Q(s) + Q(t) for R(s, t) ∈ Rodd
W . The

following is a consequence of Example 4.5.
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Proposition 4.10. DW lies in the kernel of ΦW .

Proof. It suffices to show that the generator 2R(s, t) − Q(s) + Q(t) of DW is taken to

the identity of NW/[FW , NW ] by ΦW , or equivalently, the word ((st)m(ts)−1
m )

2
(s2)−1t2 lies

in [FW , NW ] when m is odd. Let s, t ∈ S with m := m(s, t) odd, consider the parabolic

subgroup W ′ := W{s,t} of W , which is the dihedral group D2m of order 2m. From Example

4.5, we know H2(W ′;Z) = 0. On the other hand, Hopf’s formula applied to W ′ shows that

H2(W ′;Z) ∼= (NW ′ ∩ [FW ′ , FW ′ ])/[FW ′ , NW ′ ]. Therefore the word ((st)m(ts)−1
m )

2
(s2)−1t2 ∈

NW ′ ∩ [FW ′ , FW ′ ] represents the trivial homology class. That is to say

(
(st)m(ts)−1

m

)2
(s2)−1t2 ∈ [FW ′ , NW ′ ] ⊂ [FW , NW ].

This proves the proposition.

The restriction ΦW | then factors through ZReven
W ⊕CW/DW → (NW∩[FW , FW ])/[FW , NW ].

In the next proposition, we show that the group CW/DW is isomorphic to Zq3(Γ)
2 .

Proposition 4.11. There is an isomorphism CW/DW → H1(Γodd;Z2).

Proof. First we identify ZRodd
W with the chain group C1(Γodd) by R(s, t) 7→ 〈s, t〉, and ZQW

with 2C0(Γodd), that is the image of the injective homomorphism ZQW → C0(Γodd) defined

by Q(s) 7→ 2s. Under these identifications, the definition of CW translates into

CW = {(α, β) ∈ C1(Γodd)⊕ 2C0(Γodd) | ∂α = β}

and DW is the subgroup of CW generated by elements (2〈s, t〉,−2s + 2t) for 1-cells 〈s, t〉

of Γodd. On the other hand, H1(Γodd;Z2) = Z1(Γodd;Z2) ∼= Zq3(Γ)
2 is the vector space of

1-cycles of Γodd over Z2.

Now define a homomorphism CW → H1(Γodd;Z2) by (α, ∂α) 7→ α, where α ∈ C1(Γodd)

is a 1-chain of Γodd such that ∂α ∈ 2C0(Γodd) and α ∈ C1(Γodd;Z2) is the 1-chain obtained

from α by reducing each integral coefficient modulo 2. The condition ∂α ∈ 2C0(Γodd)

asserts that α is indeed a 1-cycle of Γodd with coefficients in Z2. The proposition follows

from the obvious observation that this homomorphism is surjective with kernel exactly

DW .

27



Let R2
W := {R(s, t) ∈ Reven

W | m(s, t) = 2} and Reven≥4
W := {R(s, t) ∈ Reven

W | m(s, t) ≥

4}, hence Reven
W = R2

W t R
even≥4
W and #R2

W = #P (Γ),#Reven≥4
W = q2(Γ). We introduce

an equivalence relation in R2
W by setting R(s, t) ∼ R(s′, t′) if {s, t} ∼ {s′, t′} in P (Γ).

Denote the set of equivalence classes by R2
W/ ∼. Our last observation is the following.

Proposition 4.12. If s < t and s < u with {s, t} ≡ {s, u} in P (Γ), that is m(s, t) =

m(s, u) = 2 and m(t, u) is odd, then ΦW (R(s, t)) = ΦW (R(s, u)).

Proof. Suppose s < t and s < u with {s, t} ≡ {s, u} in P (Γ). In this case, R(s, t) = [s, t]

and R(s, u) = [s, u]. In NW/[FW , NW ], we have

ΦW (R(s, t))− ΦW (R(s, u)) = 〈s, t〉W − 〈s, u〉W

= 〈s, R(t, u)〉W

= 〈sR(t, u)s−1R(t, u)−1〉W

= 〈sR(t, u)s−1〉W + 〈R(t, u)−1〉W

= 〈R(t, u)〉W − 〈R(t, u)〉W = 0,

where the second and the fourth equalities follow from Lemma 4.9, the fifth from Lemma

4.8.

Finally the restriction ΦW | factors through a surjective group homomorphism which

we denote by Φ̃W :

ZR2
W /∼ ⊕ ZR

even≥4
W ⊕H1(Γodd;Z2)→ NW ∩ [FW , FW ]

[FW , NW ]
,

where we have identified CW/DW with H1(Γodd;Z2) ∼= Zq3(Γ)
2 in view of Proposition 4.11.

Composing with the natural surjective group homomorphism, we obtain the desired map

ZR2
W /∼ ⊕ ZR

even≥4
W ⊕H1(Γodd;Z) ∼= Zp(Γ)+q(Γ)

ZR2
W /∼ ⊕ ZR

even≥4
W ⊕H1(Γodd;Z2) NW∩[FW ,FW ]

[FW ,NW ]
∼= Zp(Γ)+q(Γ)

2
Φ̃W (4.2)

28



which takes a basis of the free abelian group on the top left corner to a minimal set of gen-

erators of NW∩[FW ,FW ]
[FW ,NW ]

∼= H2(W (Γ);Z) ∼= Zp(Γ)+q(Γ)
2 . More precisely, let us choose a basis

R2
W/ ∼ ∪R

even≥4
W ∪Ω(Γodd) for ZR2

W /∼⊕ZR
even≥4
W ⊕H1(Γodd;Z), where Ω(Γodd) is a basis for

the free abelian group H1(Γodd;Z) ∼= Zq3(Γ). An equivalence class in R2
W/ ∼ represented by

R(s, t) is mapped to 〈R(s, t)〉W = 〈s, t〉W ∈ NW∩[FW ,FW ]
[FW ,NW ]

. An element R(s, t) in Reven≥4
W is

mapped to 〈R(s, t)〉W ∈ NW∩[FW ,FW ]
[FW ,NW ]

. An element ω ∈ Ω(Γodd) is a 1-cycle of Γodd, it is first

mapped to ω ∈ H1(Γodd;Z2) by reducing each coefficient modulo 2. We may assume that

ω =
∑
〈s, t〉 is the sum of some 1-cells 〈s, t〉 of Γodd, each 〈s, t〉 corresponds to a relation

R(s, t) ∈ Rodd
W . Denote by I(ω) := {R(s, t) ∈ Rodd

W | 〈s, t〉 appears in ω}. Then Φ̃W (ω) =

〈
∏

R(s,t)∈I(ω)R(s, t)s−1t〉W ∈ NW∩[FW ,FW ]
[FW ,NW ]

. Note that the fact
∏

R(s,t)∈I(ω) R(s, t)s−1t is

indeed in NW ∩ [FW , FW ] is guaranteed by ω ∈ H1(Γodd;Z2).

4.4 Hopf’s formula applied to Artin groups

Now we construct the horizontal map Zp(Γ)+q(Γ) → H2(A(Γ);Z) in the diagram in Theorem

4.1. The arguments here are parallel to those in the Coxeter case.

Let Γ be a Coxeter graph with vertex set S totally ordered, A = A(Γ) be the Artin

group of type Γ with the presentation A = 〈Σ | RA〉 given in Definition 2.7. Let FA =

F (Σ) be the free group on Σ and NA be the normal closure of RA. Hopf’s formula yields

H2(A;Z) ∼= (NA ∩ [FA, FA])/[FA, NA]. For the same reason as before, a second homology

class of A is a coset 〈x〉A with x of the form
∏

R(as,at)∈RA
R(as, at)

ns,t ∈ [FA, FA].

Parallel arguments as in the previous subsection then follow. Similarly, RA = Rodd
A t

Reven
A . We have the following surjective group homomorphism

ΦA : ZRA −→ NA

[FA, NA]∑
R(as,at)∈RA

ns,tR(as, at) 7−→

〈 ∏
R(as,at)∈RA

R(as, at)
ns,t

〉
A

where ZRA is the free abelian group generated by RA. For the same reason, ΦA maps the

subgroup ZReven
A of ZRA = ZReven

A ⊕ ZRodd
A into (NA ∩ [FA, FA])/[FA, NA].
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Define a subgroup of ZRodd
A as follows

CA =

 ∑
R(as,at)∈Rodd

A

ns,tR(as, at)

∣∣∣∣∣∣
∏

R(as,at)∈Rodd
A

R(as, at)
ns,t ∈ [FA, FA]

 .

Then ΦA maps CA into (NA ∩ [FA, FA])/[FA, NA]. Now ΦA restricts to a surjective group

homomorphism ΦA| : ZR
even
A ⊕ CA → (NA ∩ [FA, FA])/[FA, NA].

Furthermore, we have the following

Proposition 4.13. There is an isomorphism CA → H1(Γodd;Z).

Proof. The assignment R(as, at) 7→ 〈s, t〉 defines an isomorphism ZRodd
A → C1(Γodd). The

condition ∏
R(as,at)∈Rodd

A

R(as, at)
ns,t ∈ [FA, FA]

is equivalent to that the image of
∑

R(as,at)∈Rodd
A
ns,tR(as, at) is a 1-cycle. Then the above

isomorphism maps CA isomorphically onto Z1(Γodd) ∼= H1(Γodd;Z).

By the exactly same proof as in Proposition 4.12, ΦA| factors through a surjective

group homomorphism which we denote by Φ̃A:

ZR2
A/∼ ⊕ ZR

even≥4
A ⊕H1(Γodd;Z)→ NA ∩ [FA, FA]

[FA, NA]
,

where R2
A := {R(as, at) ∈ Reven

A | m(s, t) = 2} and Reven≥4
A := {R(as, at) ∈ Reven

A |

m(s, t) ≥ 4}. Note that we have identified CA with H1(Γodd;Z). The set R2
A/ ∼ is defined

similarly as R2
W/ ∼. Hence we obtain the desired surjective group homomorphism

Zp(Γ)+q(Γ) ∼= ZR2
A/∼ ⊕ ZR

even≥4
A ⊕H1(Γodd;Z)→ NA ∩ [FA, FA]

[FA, NA]
∼= H2(A(Γ);Z),

which takes a basis of the free abelian group on the left to a set of generators ofH2(A(Γ);Z).

4.5 Proof of main results

Let us summarize the results obtained so far by the following commutative diagram

ZR2
A/∼ ⊕ ZR

even≥4
A ⊕H1(Γodd;Z) NA∩[FA,FA]

[FA,NA]

ZR2
W /∼ ⊕ ZR

even≥4
W ⊕H1(Γodd;Z2) NW∩[FW ,FW ]

[FW ,NW ]

∆

Φ̃A

Φ̃W

Ξ

(4.3)
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where we have identified ZR2
A/∼⊕ZR

even≥4
A ⊕H1(Γodd;Z) with ZR2

W /∼⊕ZR
even≥4
W ⊕H1(Γodd;Z)

via the obvious bijection between their bases. Therefore ∆ restricted to ZR2
A/∼⊕ZR

even≥4
A is

simply induced by R(as, at) 7→ R(s, t) and ∆ restricted to H1(Γodd;Z) is simply reduction

of coefficients modulo 2, the map Ξ is induced by as 7→ s. The commutativity follows from

the constructions of these maps. Furthermore, Ξ is surjective since the other three maps

are surjective by definition. Under identifications given by Hopf’s formula and Howlett’s

theorem, we derive the desired commutative diagram

Zp(Γ)+q(Γ) H2(A(Γ);Z)

H2(W (Γ);Z) ∼= Zp(Γ)+q(Γ)
2

and finish the proof of Theorem 4.1.

Taking tensor product with Z2 for terms in the diagram 4.3, we see that Φ̃W ◦ ∆

becomes an isomorphism Zp(Γ)+q(Γ)
2 → Zp(Γ)+q(Γ)

2 since tensoring with Z2 preserves surjec-

tivity. This forces H2(A(Γ);Z) ⊗ Z2
∼= Zp(Γ)+q(Γ)

2 . By universal coefficient theorem, we

have the exact sequence

0→ H2(A(Γ);Z)⊗ Z2 → H2(A(Γ);Z2)→ Tor(H1(A(Γ);Z),Z2)→ 0,

where Tor(H1(A(Γ);Z),Z2) = 0 since H1(A(Γ);Z) is torsion free (Proposition 3.5 and

Remark 3.6). Now we conclude H2(A(Γ);Z2) ∼= Zp(Γ)+q(Γ)
2 and finish the proof of Theorem

4.2.

As a byproduct of the proof, we have the following corollaries.

Corollary 4.14. The projection A(Γ) → W (Γ) induces a surjective homomorphism be-

tween the second integral homology

H2(A(Γ);Z) � H2(W (Γ);Z),

and an isomorphism between the second mod 2 homology

H2(A(Γ);Z2)
∼−−→ H2(W (Γ);Z2).
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Corollary 4.15. Let M(Γ) be the complement of the complexified arrangement of reflec-

tion hyperplanes associated to the Coxeter group W (Γ) and N(Γ) = M(Γ)/W (Γ). If Γ

satisfies the following conditions

• P (Γ)/ ∼ consists of torsion classes.

• Γ = Γodd.

• Γ is a tree.

Then H2(A(Γ);Z) ∼= Zp(Γ)
2 . Hence the Hurewicz homomorphism h2 : π2(N(Γ))→ H2(N(Γ);Z)

is trivial. Furthermore, for any Coxeter graph, the Hurewicz homomorphism becomes triv-

ial after taking tensor product with Z2.

Proof. Since N(Γ) is path-connected and has fundamental group π1(N(Γ)) = A(Γ), there

is an exact sequence

π2(N(Γ))
h2−−→ H2(N(Γ);Z)

f−−→ H2(A(Γ);Z)→ 0. (4.4)

Suppose that Γ satisfies the three conditions, then q1(Γ) = q2(Γ) = q3(Γ) = 0. Theorem

3.8 implies that H2(N(Γ);Z) = Zp(Γ)
2 . Then by Theorem 4.1, H2(A(Γ);Z) sits in the

following sequence

Zp(Γ)
2 � H2(A(Γ);Z) � Zp(Γ)

2

whose composition must be an isomorphism, hence H2(A(Γ);Z) ∼= Zp(Γ)
2 . As a result, f

must be an isomorphism and h2 must be trivial.

Now suppose Γ is arbitrary. By right-exactness of tensor functor, taking tensor product

with Z2 for 4.4 yields an exact sequence

π2(N(Γ))⊗ Z2

h2⊗idZ2−−−−−→ H2(N(Γ);Z)⊗ Z2

f⊗idZ2−−−−→ H2(A(Γ);Z)⊗ Z2 → 0.

Note that f ⊗ idZ2 is an isomorphism as a consequence of Theorem 4.2 and Clancy-Ellis’

Theorem 3.8. Hence h2 ⊗ idZ2 must be trivial.
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5 Cohomology ring of 2-dimensional Artin groups

In this last section, we restrict ourselves to 2-dimensional Artin groups.

Definition 5.1. Let Γ be a Coxeter graph and (W,S) the associated Coxeter system.

The Artin group A(Γ) is 2-dimensional if spherical subsets have at most cardinality 2.

It is known that the K(π, 1) conjecture holds for 2-dimensional Artin groups ([CD95]).

Hence Z(Γ) = Sal(Γ)/W defined in Subsection 3.1 is a classifying space of A(Γ) if A(Γ) is

2-dimensional. We shall not distinguish H∗(A(Γ)) and H∗(Z(Γ)). The integral homology

of Z(Γ) computed in Subsection 3.4 then gives the integral homology of a 2-dimensional

Artin group A(Γ). We repeat the result for convenience.

Theorem 5.2. Let A(Γ) be a 2-dimensional Artin group, then the first homology

H1(A(Γ);Z) =
⊕
i∈Λ

Zαi,

where αi is the homology class represented by the 1-cycle ei. The second homology

H2(A(Γ);Z) =

 ⊕
{si<sj}∈Q(Γ)

Zβi,j

⊕
 ⊕
ω∈Ω(Γodd)

Zγω

 ,

where βi,j is the homology class represented by the 2-cycle ei,j and γω is the homology class

represented by the 2-cycle ι(ω).

Our results of homology groups of 2-dimensional Artin group A(Γ) pass to cohomology

groups by universal coefficient theorem:

Hk(A(Γ);Z) ∼= Hom(Hk(A(Γ);Z),Z),

for k = 1, 2. To determine the ring structure, we shall compute the cup product of first

cohomology classes.

In what follows, we switch our settings to simplicial cohomology of ∆-complexes (cf.

[Hat02]). Our computation of cup products runs over a well-chosen ∆-complex structure

of Z(Γ). For i < j, the cell ei,j (a 2mij-gon with edges identified) is now endowed with

the ∆-complex structure as shown in Figure 3 for m := mij even (resp. odd), where each
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σ1

σ2

σ3

σm−1

σm

τ1

τ2

τ3

τm−1

τm

ei

ej

ei

ei(resp. ej)

ej(resp. ei)

ej

ei

ej

ej(resp. ei)

ei(resp. ej)

Figure 3: ∆-complex structure

triangle has orientation given by its directed edges, hence ei,j can be viewed as a simplicial

2-chain:

ei,j =
m∑
k=1

σk −
m∑
k=1

τk.

In this fashion, Z(Γ) has been given a ∆-complex structure. We preserve our notations

αi, βi,j and γω keeping in mind that they have been translated to simplicial sense. Denote

by α∗i , β
∗
i,j, γ

∗
ω the corresponding cohomology classes.

5.1 Dihedral type

The only interesting coholomogy ring of Artin groups with #S ≤ 2 is that of A(I2(2p))

(in this case, the Coxeter group is D4p). Although this result is well-known (cf. [Lan00]),

we present an alternative computation here as an illustration of our method for general

case.

Set the Coxeter graph Γ = I2(2p) for a positive integer p, that is, a graph of two

vertices connected by an edge labelled by 2p, unless in the case p = 1, Γ consists of two

vertices and no edges. We know the cohomology groups

H1(A(Γ);Z) = Zα∗1 ⊕ Zα∗2, H2(A(Γ);Z) = Zβ∗1,2.
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Figure 4: Cocycles ϕ1 (left) and ϕ2 (right)

In order to compute cup products, we need to find 1-cocyles ϕ1 and ϕ2 representing α∗1

and α∗2 respectively. They can be chosen as shown in Figure 4.

We explain the choice of ϕ1 in details. Since ϕ1 should represent α∗1, as a Z-valued

function of 1-simplices (edges), ϕ1 must take values 1 on e1 and 0 on e2. As for those

radius edges, if we assign the “north pointing” edge an arbitrary integer, say 0, then all

the other radius edges are assigned values according to the cocycle condition, that is, the

sum of (signed) values on edges of each triangle must be 0. Remark that different choices

of the assignment of values to radius edges differ by coboundaries hence will certainly not

change our result in cohomology level.

It is easy to compute the values that the resulting 2-cocycles take on the 2-cycle e1,2

(ϕ1 ^ ϕ2)(e1,2) = −(ϕ2 ^ ϕ1)(e1,2) = p.

In cohomology class level, this yields

α∗1 ^ α∗2 = −(α∗2 ^ α∗1) = pβ∗1,2.

Also α∗1 ^ α∗1 = α∗2 ^ α∗2 = 0 is trivially understood.

5.2 General case

Now we prove our theorem on the cohomology rings of 2-dimensional Artin groups.
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Let us first recall our notations. Let A(Γ) be a 2-dimensional Artin group with asso-

ciated Coxeter system (W,S) and Coxeter graph Γ. The generating set S = {s1, . . . , sn},

as well as the vertex set of Γ, has been given a total order s1 < · · · < sn. The subgraph

Γodd of Γ consists of edges labelled by odd numbers. Fix a set of representatives

Λ = {i | si is the minimum vertex in the connected components of Γodd containing it}.

For each i ∈ Λ, it is convenient to denote

∆i = {j | sj and si are in the same connected component of Γodd}.

Hence {∆i | i ∈ Λ} is a partition of {1, . . . , n}. Recall also Q(Γ) = {{si, sj} ⊂ S |

mij is even} and Ω(Γodd) is a fixed basis of the finitely generated free abelian group

H1(Γodd;Z).

Theorem 5.3. With the above notations, A(Γ) has cohomology groups:

H1(A(Γ);Z) =
⊕
i∈Λ

Zα∗i ,

H2(A(Γ);Z) =

 ⊕
{si<sj}∈Q(Γ)

Zβ∗i,j

⊕
 ⊕
ω∈Ω(Γodd)

Zγ∗ω

 .

The cohomology ring structure is given by the following relations:

α∗i ^ α∗i = 0,

for i ∈ Λ. As for distinct i, j ∈ Λ,

α∗i ^ α∗j =
∑

`∈∆i,k∈∆j

m`k

2
β∗`,k.

Proof. The cohomology group structure follows from the results of Section ?? and uni-

versal coefficient theorem. The relation α∗i ^ α∗i = 0 is trivial. It remains to compute

α∗i ^ α∗j .

For distinct i, j ∈ Λ, we choose 1-cocycles ϕi and ϕj representing α∗i and α∗j respec-

tively. They take values

ϕi(ei′) =

 1, i′ ∈ ∆i;

0, i′ /∈ ∆i.
ϕj(ej′) =

 1, j′ ∈ ∆j;

0, j′ /∈ ∆j.
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As for the values they take on the radius edges in the ∆ decomposition of each 2 cell,

we assign value 0 to the “north pointing” edges as we did in the previous subsection,

then all the other edges are assigned values accordingly. Now we are able to compute for

1 ≤ ` < k ≤ n the value

(ϕi ^ ϕj)(e`,k) =



m`k

2
, ` ∈ ∆i, k ∈ ∆j;

− m`k

2
, ` ∈ ∆j, k ∈ ∆i;

0, otherwise.

A few words should be mentioned about this result. The cases ` ∈ ∆i, k ∈ ∆j and

` ∈ ∆j, k ∈ ∆i reduce to the computation in Subsection 4.1. One should notice that

β∗`,k = −β∗k,`. Next suppose ` /∈ ∆i ∪ ∆j, then no matter where k lies, at least one of

ϕi and ϕj takes value 0 on all edges of e`,k. This yields (ϕi ^ ϕj)(e`,k) = 0. The same

result occurs for the case k /∈ ∆i ∪ ∆j. These exhaust all possible cases. By passing to

cohomology class level, we derive the desired result.
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