Sulfurihus variabilis gen. nov., sp. nov., a novel sulfur oxidizer isolated from a lake, and proposal of Acidiferrobacteraceae fam. nov. and Acidiferrobacterales ord. nov.

Hisaya Kojima*, Arisa Shinohara, and Manabu Fukui

The Institute of Low Temperature Science, Hokkaido University. Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan

*Corresponding author.

E-mail: kojimah@pop.lowtem.hokudai.ac.jp

Phone: +81-11-706-5460 Fax: +81-11-706-5460

Running head: Sulfurihus variabilis gen. nov., sp. nov.

Subject category: New taxa: Proteobacteria

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain is LC062790. The accession numbers for aprA and cbbL genes are LC062791 and LC062959, respectively.
Summary

A novel autotrophic bacterium, strain skN76T was isolated from sediment of a lake in Japan. As sole electron donor to support chemolithoautotrophic growth, the strain oxidized thiosulfate, tetrathionate, and elemental sulfur. For growth, the optimum temperature was 42–45°C and the optimum pH was 6.8–8.2. The cells were Gram-stain-negative, catalase-positive and oxidase-positive. The strain exhibited changes in morphology depending on growing temperature. Cells grown at the optimum temperature were rod-shaped (0.9–3.0 µm long and 0.3–0.5 µm wide), whereas filamentous form was observed when the strain was cultured at the lowest growth temperatures. The G+C content of genomic DNA was 69 mol%. The major components in the fatty acid profile were $\text{C}_{16}:0$, summed feature 3 ($\text{C}_{16}:1\omega7c$ and/or $\text{C}_{16}:1\omega6c$) and summed feature 9 (iso$\text{C}_{17}:1\omega9c$ and/or $\text{C}_{16}:0$ 10-methyl). Phylogenetic analysis based on 16S rRNA gene indicated that the closest cultivated relative of strain skN76T was Acidiferrobacter thiooxydans m-1T, with the sequence similarity of 93%. On the basis of its phylogenetic and phenotypic properties, the strain skN76T (= DSM 100313T = NBRC 110942T) is proposed as type strain of a new species of a novel genus, Sulfurifustis variabilis gen. nov., sp. nov. Novel taxa, Acidiferrobacteraceae fam. nov., and Acidiferrobacterales ord. nov. are also proposed to accommodate the genera
38 Acidiferrobacter and Sulfurifustis gen. nov.

39
There are phylogenetically diverse sulfur-oxidizing bacteria which were referred to as “Thiobacillus” in the past. After successive reclassifications, they are now distributed in 4 classes in the phylum Proteobacteria (Kelly & Wood, 2000; Kelly & Wood, 2013; Watanabe et al., 2015). One of them, Acidiferrobacter thiooxydans m-1T corresponds to the organism known as “Thiobacillus ferrooxidans m-1” (Hallberg et al., 2011). A. thiooxydans has been classified into the family Ectothiorhodospiraceae in the class Gammaproteobacteria, but detailed analysis of 16S rRNA gene sequences indicated that this bacterium is phylogenetically distinct from other members of the family (Oren, 2014). In the present study, a novel chemolithoautotrophic sulfur oxidizer related to this bacterium was isolated and characterized.

A sulfur-oxidizing enrichment culture was established from a freshwater sediment as described previously (Watanabe et al., 2014). The basal medium used for enrichment and isolation was bicarbonate-buffered low-salt defined medium previously described (Kojima and Fukui, 2011). As electron donor and acceptor, elemental sulfur (ca. 0.5 g l⁻¹) and nitrate (20 mM) were added to the medium just before inoculation. From the enrichment culture, isolate was obtained by agar shake dilution (Widdel & Bak, 1992), using the basal medium supplemented with 20 mM thiosulfate and 20 mM nitrate. Head space of the agar tubes were filled with mixture gas of N₂/CO₂ (80 : 20, v/v), but no
reductant was added to the medium and thus dissolved oxygen was not eliminated.

Well-separated colonies were picked up in a slightly modified medium supplemented with 20 mM sodium thiosulfate. Composition of the modified medium was almost identical to the original medium, but vitamin solutions were replaced with a single vitamin mixture (1 ml l⁻¹) which contained following constituents (l⁻¹); 2 mg biotin, 2 mg folic acid, 10 mg pyridoxine-HCl, 5 mg thiamine-HCl·2H₂O, 5 mg riboflavin, 5 mg nicotinic acid, 5 mg calcium D(+) pantothenate, 5 mg 4-aminobenzoic acid, 5 mg lipoic acid, and 0.1 mg cyanocobalamine. The picked up colonies were cultivated under oxic conditions in closed bottles, and one of the resulting pure cultures was designated as strain skN76ᵀ. All cultivation for enrichment and isolation was carried at 45°C. Purity of the isolate was checked by microscopy and sequencing of the 16S rRNA gene fragments amplified with several universal PCR primer pairs.

For the characterization of the strain, the modified medium (altered vitamin composition as described above) supplemented with 20 mM sodium thiosulfate was used unless otherwise specified. All culturing experiments were performed in bottles closed with rubber stoppers, and the bottles were incubated without shaking.

The Gram-stain test was conducted with a kit (Fluka). Catalase activity was assessed by pouring 3% H₂O₂ solution onto a pellet obtained by centrifugation of culture.
Oxidase activity was tested with the pellet of cells, by using an oxidase test reagent (bioMérieux). The genomic G+C content of the DNA was determined with the HPLC methods (Katayama-Fujimura et al., 1984). Fatty acids were extracted from cells grown with thiosulfate at 45°C. The fatty acid profile of the strain was analyzed at the Techno Suruga Co. Ltd (Shizuoka, Japan), by using the Sherlock Microbial Identification System (Version 6.0; database, TSBA6; MIDI).

The utilization of electron acceptor was tested at in the medium amended with 20 mM sodium thiosulfate under anoxic conditions (headspace of the bottles was filled with N₂/CO₂). Utilization of growth substrate was tested in the medium with lowered thiosulfate concentration (0.4 mM), supplemented with one of the substrates listed later. Aerobic growth in ordinary complex liquid media was tested for R2A, NB, LB, and TSB at 45°C.

Effects of the temperature on growth were examined by culturing the isolate at various temperatures (25, 28, 30, 32, 37, 42, 45, 46, 47, 48, and 50°C). Effect of salt concentration was tested by culturing the strain in medium supplemented with varying concentrations of NaCl (0–500 mM, 50 mM intervals). The effect of pH on the growth was tested at 42°C, with media of various pH prepared as below. The basal composition of the media was as follows (l⁻¹): 5 g Na₂S₂O₃·5H₂O, 1 g NaHCO₃, 0.2 g MgCl₂.
6H₂O, 0.1 g CaCl₂, 0.1 g NH₄Cl, 0.1 g KH₂PO₄, 0.1 g KCl, 1 ml trace element solution, 1 ml selenite-tungstate solution, and 1 ml vitamin mixture described above. Depending on the final pH, one of the buffering reagents listed below was added to each medium at the final concentration of 20 mM. All ingredients were mixed and then sterilized by filtration after pH adjustment. To adjust pH, NaOH solution was used except media of the lowest pH (5.4–5.8) prepared with HCl. The tested pH and buffering reagents were as follows: pH 5.4, 5.7, 5.8, 6.1, 6.2, 6.3, 6.4, 6.7 with MES; pH 6.8 and 7.0 with PIPES; pH 7.0, 7.1, 7.2, and 7.5 with MOPS; pH 7.7, 7.9, 8.1, 8.2, 8.5 and 8.7 with Tricine; pH 8.7, 8.9, 9.1, 9.4, and 9.6 with CHES.

Fragment of 16S rRNA gene was amplified with the primer pair 27F and 1492R (Lane, 1991), and the resulting PCR product was directly sequenced. Phylogenetic analysis was performed with the program MEGA version 5.05 (Tamura et al., 2011). Fragments of the aprA gene (encoding adenosine-5'-phosphosulfate reductase) were amplified and sequenced with the primers Apr-1-FW and Apr-5-RV (Meyer & Kuever, 2007a). The cbbL gene encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase was amplified with primers cbbLG1F (Selesi et al., 2005) and 898E (Boschker et al, 2014), and then directly sequenced.
Cells of strain skN76T grown at 45°C were motile Gram-stain-negative rods (0.9–3.0 μm long and 0.3–0.5 μm wide). As shown in Fig 1, strain skN76T exhibited filamentous morphology when it was grown at 28°C or 30°C. The tests of catalase and oxidase both resulted in positive (cells grown at 45°C). The G+C content of the genomic DNA of was 69 mol%. Major components in the fatty acid profile of strain skN76T grown at 45°C were C\textsubscript{16}:0 (43.6%), summed feature 9 (isoC\textsubscript{17}:109c and/or C\textsubscript{16}:0 10-methyl; 21.1 %), and summed feature 3 (C\textsubscript{16}:107c and/or C\textsubscript{16}:106c; 17.2 %). The other fatty acids detected were C\textsubscript{10}:0 (9.2%), summed feature 8 (C\textsubscript{18}:107c and/or C\textsubscript{18}:106c; 3.8 %), C\textsubscript{18}:0 (1.8%), isoC\textsubscript{17}:0 (0.8%), C\textsubscript{12}:0 3-OH (0.6%), C\textsubscript{17}:0 (0.5%), C\textsubscript{14}:0 (0.4%), isoC\textsubscript{10}:0 (0.4%).

The growth of the strain skN76T was observed over a temperature range between 28°C and 46°C, with an optimum at 42–45°C. The range of pH for growth was 6.3–8.9, and the optimum pH was 6.8–8.2. Optimum growth was observed in medium containing 0–50 mM NaCl. Very slow growth was observed in the medium containing 450 mM NaCl, but not in the medium of 500 mM NaCl.

The isolate grew chemolithoautotrophically on thiosulfate (10, 20 mM), tetrathionate (20 mM), and elemental sulfur (0.5 g l-1). The following substrates did not support
aerobic growth: pyruvate (5 mM), lactate (5 mM), acetate (5 mM), methanol (5 mM), succinate (2.5 mM), fumarate (2.5 mM), butyrate (2.5 mM), isobutyrate (2.5 mM), ethanol (2.5 mM), formate (5 mM), lactose (2.5 mM), glucose (2.5 mM), xylose (2.5 mM). The strain exhibited no growth on R2A, NB, LB, or TSB. Although strain skN76T was obtained from a nitrate-reducing enrichment culture, anaerobic growth was not observed under the tested conditions. Nitrite (5 mM), nitrate (20 mM), or poorly crystalline Fe(III) oxide (10 mM) did not support growth of the strain as sole electron acceptor for thiosulfate oxidation. The strain might have been growing with trace amounts of oxygen in the enrichment culture, but this possibility needs to be experimentally tested.

The 16S rRNA gene sequence analysis revealed that the closest cultivated relative of strain skN76T was \textit{A. thiooxydans} m-1T, with sequence similarity of 93%. These two strains and related environmental clones formed a distinct cluster outside of the order \textit{Chromatiales} encompassing the family \textit{Ectothiorhodospiraceae}, in phylogenetic trees constructed with different methods (Fig. 2, Fig. S1). The PCR products of \textit{aprA} and \textit{cbbL} genes were also sequenced. Phylogenetic analysis revealed that protein coded by \textit{aprA} gene of skN76T belonged to a phylogenetic lineage referred to as “Apr lineage I” (Meyer & Kuever, 2007b), which is one of two major lineages of sulfur oxidizers (Fig.
3). The nucleotide sequence of cbbL gene has been deposited in the public database (accession number, LC062959).

The novel strain skN76T exhibited low similarity (93%) of the 16S rRNA gene to the closest relative, A. thiooxydans m-1T. The strain is known as extremely acidophilic bacterium (optimum pH for growth is around 2) which requires an external osmotic potential for growth (Hallberg et al., 2011). On the other hand, strain skN76T grew under neutral to moderately alkaline conditions and optimum growth was observed in the medium of lowest salt concentration. On the basis of these phylogenetic and phenotypic properties, strain skN76T is proposed to be assigned to a new species of a novel genus, with the name Sulfuri fistis variabilis gen. nov., sp. nov. As shown in phylogenetic trees previously constructed (Oren, 2014, Rua & Thompson 2014), A. thiooxydans is phylogenetically isolated from the other cultivated gammaproteobacteria belonging to existing orders. In the phylogenetic analysis including the novel bacterium obtained in this study, the genera Acidiferro bacter and Sulfuri fistis formed a distinct cluster apart from the clade of the class Chromatiales, irrespective of tree construction methods (Fig. 2, Fig. S1). Therefore, a novel family and a novel order are proposed to accommodate these genera, with the names Acidiferro bacteraceae fam. nov. and
Acidiferrobacterales ord. nov., respectively.

Description of Sulfurifustis gen. nov.

Sulfurifustis (Sul.fu.ri.fus’tis. L. neut. n. sulfur sulfur; L. masc. n. justis, stick; N.L. masc. n. *Sulfurifustis* sulfur-oxidizing stick).

Grow chemolithoautotrophically by the oxidation of inorganic sulfur compounds. Based on 16S rRNA gene sequence analysis, affiliated to the family *Acidiferrobacteraceae* in the class *Gammaproteobacteria*. The type species is *Sulfurifustis variabilis*.

Description of Sulfurifustis variabilis sp. nov.

Sulfurifustis variabilis (va.ri.a’bi.lis. L. masc. adj. variabilis, changeable, referring to variation of the morphology depending on growth temperatures).

Cells are Gram-stain-negative, rod-shaped or filamentous, 0.4–0.6 µm in width. Major components in the fatty acid profile are C$_{16:0}$, summed feature 3, and summed feature 9.

Autotrophic growth occurs with oxidation of thiosulfate, tetrathionate, and elemental sulfur. Catalase-positive and oxidase-positive. The temperature range for growth is 28–46°C, with an optimum of 42–45°C. The pH range for growth is 6.3–8.8, and optimum growth occurs at pH 6.8–8.2. The G+C content of genomic DNA is 69 mol%.
The type strain skN76^T (= DSM 100313^T = NBRC 110942^T) was isolated from sediment of a freshwater lake in Japan (Lake Mizugaki).

Description of Acidiferrobacteraceae fam. nov.

Acidiferrobacteraceae (A.ci.di.fer.ro.bac.te.ra'ae. N.L. n. Acidiferrobacter type genus of the family; -aceae ending to denote family; N.L. fem. pl. n. Acidiferrobacteraceae the family of the genus Acidiferrobacter).

Encompasses Gram-stain-negative chemolithoautotrophic bacteria. Based on the 16S rRNA gene sequence analysis, phylogenetically affiliated to the order Acidiferrobacterales ord. nov. The type genus is Acidiferrobacter.

Description of Acidiferrobacterales ord. nov.

Acidiferrobacterales (A.ci.di.fer.ro.bac.te.ra.les. N.L. n. Acidiferrobacter type genus of the order; -ales ending to denote order; N.L. fem. pl. n. Acidiferrobacterales the order of the genus Acidiferrobacter).

Encompasses the family Acidiferrobacteraceae fam. nov. Based on the 16S rRNA gene sequence analysis, phylogenetically affiliated to the class Gammaproteobacteria. The type genus is Acidiferrobacter.
ACKNOWLEDGMENTS

We thank T. Watanabe for his assistance. This work was supported by a grant from the Institute for fermentation, Osaka, to H.K.

REFERENCES

Watanabe, M., Kojima, H. & Fukui, M. (2014). Proposal of *Effusibacillus lacus* gen. nov. sp. nov., and reclassification of *Alicyclobacillus pohliae* as *Effusibacillus pohliae* comb. nov. and *Alicyclobacillus consociatus* as *Effusibacillus consociatus* comb. nov.
Figure legends

Fig. 1 Phase-contrast micrographs of strain skN76T, grown at 45°C (upper panel) and 28°C (upper panel). Bars, 5 μm.

Fig. 2 Minimum-evolution tree showing the phylogenetic position of skN76T within the class Gammaproteobacteria based on the 16S rRNA gene sequence analysis. This tree was constructed using 1415 sites, and identical tree was obtained with the neighbor-joining method. A tree constructed with the maximum-likelihood method is shown in Fig. S1. Desulfatitalea tepidiphila is included as an outgroup. Numbers on nodes represent percentage values of 1000 bootstrap resampling (values larger than 50 are shown).

Fig. 3 Phylogenetic position of AprA amino acid sequence of strain skN76T within “Apr lineage I”. Tree was constructed with the neighbor-joining method (117 amino acid positions were used) with 1000 bootstrap resamplings (bootstrap values are shown at the nodes). Bar, 0.01 substitutions per amino acid position.