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ABSTRACT 

 

Traffic congestion in winter is affected not only by travel speed, traffic volume and density, but also by 

external factors such as weather conditions, road works, road surface conditions and snow removal 

operations. To explain traffic conditions, transportation engineers need to identify and analyze these factors. 

Previous researchers have addressed the relationship between traffic performance and non-traffic factors, 

including weather conditions, using data collected by various sensors. And many researchers have 

developed traffic condition prediction models. However, they have not considered the effects of snow 

removal operations in microscopic approaches on travel time or traffic conditions for forecasting winter 

traffic congestion, which means that they did not evaluate traffic performance according to snow removal 

for each road. Therefore, the purpose of the present study is to develop the methodology for travel speed 

prediction model that consider weather conditions and snow removal operation factors, toward quantifying 

the effects of snow removal operations in Sapporo. Cyber-physical system (CPS) is a smart cycle system 

that collects and analyzes real-world data, and then the real-world can be given feedback from the analysis 

results. CPSs allow us to collect valuable data, such as traffic data, weather data and snow removal 

operation factors from advanced sensors. Physical-world data are now easily convertible into computerized 

data through CPSs. 

 

The location of the present study was a 4.8-km section of Nishi-5-chome Tarukawa Dori, a major arterial 

in Sapporo, Japan. The duration for analysis was on weekdays for the winter season of 2013-2014 

(December, 2013 to March, 2014). The variables of traffic conditions, weather conditions, and snow 

removal operation factors were considered for the analysis in the present study. Four steps were performed 

to develop the travel speed prediction model for the effective snow removal operations. The first step was 

to establish a dataset for analysis by combining traffic conditions, weather conditions and snow removal 

operation factors. The second step was to develop two regression models, which were multiple linear 
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regression (MLR) models and panel data models, with all the variables. The third step was to investigate 

the autocorrelation of the residuals between the actual values and estimated values of the regression models, 

in order to apply an autoregressive integrated moving average (ARIMA) model to the residuals. If the 

residuals were autocorrelated with among the others, they would be predicted by ARIMA model. This kind 

of model, which is combined both a regression model and an ARIMA model, is called a regression with 

ARIMA (RegARIMA) model. The fourth step was to verify the developed RegARIMA models under 

different weather conditions: snow conditions and non-snow conditions. In addition, using the developed 

travel speed prediction model, the travel time saving effects of snow removal operations were quantified. 

 

According to the model validation results, the developed RegARIMA model was more suitable for 

forecasting travel speed in winter regardless of snow weather conditions than the univariate ARIMA model, 

which is a prediction model using only the past observations. The developed RegARIMA models showed 

that temperature had a U-shaped relationship with travel speed and deep snow had a negative correlation 

with travel speed. Snow removal for road widening and fresh snow removal had a positive correlation with 

travel speed. In addition, the vehicle turning rate was negatively correlated and the intersection size had a 

positive relationship with travel speed in the MLR with ARIMA model. Vehicles going straight were 

obstructed by the vehicles turning left and right at intersection especially on the winter road which were 

narrowed by fresh snow removal operations. On the other hand, the negative effects of the turning rate 

would be decreased if the intersection size were big enough space to wait for an opportunity to turn right 

and left at intersections. From the estimation for the effects of snow removal operations, around 1,076 JPY 

per vehicle for the road widening operations and 3,420 JPY per vehicle for the fresh snow removal 

operations could be found as the travel time saving benefits during from February 13 to February 20, 2014. 

In terms of individual snow removal operation, most of the travel time saving benefits for fresh snow 

removal operation was less than 100 JPY/veh a day among all sections, and the effects of snow hauling 

were the greatest of any snow removal operation.  
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The results suggest a methodology for predicting the travel speed, considering weather conditions and 

snow removal operations in an urban area. This methodology can be used when forecasting traffic 

congestion in winter in an urban area, and it can be used for developing winter road maintenance strategies 

in an urban area. For example, the locations and times of traffic congestion could be predicted by the 

proposed methodology. Then, snow removal equipment could be deployed more economically in advance 

to the proper locations. The evaluation of snow removal operations also can be calculated by estimating 

travel speed or travel time. To develop the present study further, the road networks of the city should be 

considered, in which case the effectiveness of snow removal in reducing traffic congestion would be clearer. 

 

< This dissertation is the modified and revised from the following original journals and proceeding> 

1. Hong, S., T. Hagiwara, S. Takeuchi, and B. Lu (2015). Effect of Weather Conditions and Snow-removal 

Operations on Travel Speed in an Urban Area. Transportation Research Records: Journal of Transportation 

Research Board, No.2482, pp.90-101. 

 

2. Hong, S., T. Hagiwara, S. Takeuchi, and B. Lu (2015). Travel Speed Estimation considering Weather Conditions 

and Snow Removal Operations on an Urban Arterial. Journal of the Eastern Asia Society for Transportation 

Studies, Vol.11, pp.1029-1046. 

 

3. Hong, S., T. Hagiwara, B. Lu, M. Kawasaki (2016). A Method for Estimating Urban Travel Speed in Winter 

Using Panel Data Models. A proceeding of the 2016 Transportation Research Board 95th Annual Meeting, 

Washington, D.C., No.16-1121. 
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1 INTRODUCTION 

 

1.1 BACKGROUND 

 

Sapporo, the fifth-most-populous city in Japan, is the world’s snowiest city of more than 1 million residents. 

According to the City of Sapporo, the city has a population of nearly 1.94 million and averages 600 cm of 

snowfall annually. It is rare to find such a snowy city of this size (see Table 1-1). 

 

Table 1-1 the major cities of the world in heavy snowfall regions 

Countries Cities Population (millions) Snowfall (cm) 

Austria Vienna 1.6 172 

Canada Montreal 1.0 215 

China Shenyang 7.2 49 

Germany Munich 1.2 100 

Japan Sapporo 1.9 630 

Russia St. Petersburg 4.7 297 

* Population count data was based on population censuses from 1999 to 2004. 

* Snowfall data are the average snowfall from 1981 to 2010 in Sapporo, and from 1985 to 1990 in other cities 

(Data from the City of Sapporo[1]) 

 

This heavy snowfall affects all kinds of transportation in winter, such as road traffic, railway transport and 

air transport, and it disrupts daily life. For these reasons, snow removal is one of the most important issues 

in the city. The city appropriates approximately $150 million dollars for snow removal to support 

socioeconomic activities in winter, and about 76% (about $116 million dollars) of the snow-removal 

budget is spent on road management annually. In FY2012, more than $175 million dollars was spent on 

winter road management, because of an unusually heavy cumulative snowfall of 623 cm for that year[2]. 

 

Traffic congestion in winter tend to be affected not only by traffic volume but also by external factors of 

weather conditions, road design, road works and so on. According to the previous studies, snowfall 
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influences traffic conditions such as travel speed and capacity [3]–[5]. These facts suggest that winter road 

maintenance is crucial to reduce traffic congestion in Sapporo. The City of Sapporo sets levels of snow 

removal operations on roads according to the number of lanes the road has. For example, 6-lane arterials 

are maintained to 4 lanes in winter, and 4-lane arterials are maintained to 3 lanes in winter (see Figure 1-

1(a)-(d)). In other words, the number of effective lanes in winter is changed by snow removal operations. 

The decrease in effective road width leads to road capacity reduction. Besides, vehicles turning left and 

right at intersections obstruct vehicles going straight during the snow season more than in other seasons 

because of the reduction in effective number of lanes by snow removal operations. Thus, roads in Sapporo 

tend to be more congested in winter than in any other season. Figure 1-2 shows the average travel speed 

for the study area (the arterial Nishi-5-chome St.) in Sapporo, in winter (Feb. 2014) and autumn (Oct. 

2014). The travel speed is about 5 to 10 km/h slower in winter than in autumn all day. 

 

 
(a) the level of snow removal operation on 6-lane arterials 
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(b) the level of snow removal operation on 4-lane arterials 

 

 
(c) the level of snow removal operation on 2-lane arterials 
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(d) the level of snow removal operation on community roads 

Figure 1-1 Levels of snow removal operation on roads in Sapporo  

(modified from the city of Sapporo[6]) 

 

 
Figure 1-2 Average weekday travel speed in winter and autumn on Tarukawa-dori (Ave.), Sapporo 
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1.2 RESEARCH OBJECTIVES 

 

Due to snow characteristics, the effect of weather conditions in winter on the travel speed is different from 

other seasons. For example, when rain falls, the rainwater is drained into the sewer or sinks below ground. 

On the other hand, snow would remain on the ground until melting or removing it. Moreover, the snow 

pushed to the shoulders can adversely affect the road capacity by reducing the effective road width. For 

these reasons, traffic engineers should be more attentive to winter road maintenances. 

 

The objective of this dissertation is to develop a methodology for travel speed prediction considering 

weather conditions and snow removal operations on an urban arterial in Sapporo, Japan. In addition, a 

method for quantifying of the effects of snow removal operations is proposed to establish the effective 

snow removal operation strategy. 

 

1.3 DISSERTATION OUTLINE 

 

This dissertation is composed of 7 chapters. And the contents of these chapters are described as follow. 

 

Chapter 1 is the stage that the importance of recognizing winter road maintenance in urban areas where 

have a lot of snow. The traffic conditions in Sapporo in winter is explained to emphasize the present study. 

Cyber physical system (CPS) is also introduced at the end of this chapter. In chapter 2, the literatures 

related to traffic performance and winter season, and associated with travel behaviors and adverse weather 

conditions are reviewed. The previous researches on snow removal operations are also reviewed in this 

chapter. Finally, the literatures on forecasting traffic conditions are reviewed. Chapter 3, data collection, 

states what kinds of and how processing data used in the present study. In this dissertation, four kinds of 

data are collected and analyzed: taxi probe data, weather condition data, snow removal operation data and 

traffic count data. Chapter 4 develops models for forecasting traffic conditions using the processed data in 
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chapter 3. In addition, the developed models are compared each other by some measurement: the R-squared 

value, the mean absolute error, and the mean absolute percentage error. Chapter 5 forecasts the winter 

traffic conditions in Sapporo using the suggested model in chapter 4 to validate the model. The validation 

is conducted whether the suggested model can predict traffic conditions under snowy days or not. Chapter 

6 quantifies the effects of snow removal operations by the suggested model. Finally, in chapter 7, the 

overall conclusions and contributions of this dissertation are discussed and the further researches are 

presented. The research flow is presented in Figure 1-3. 

 

 

Figure 1-3 Research Flow 
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1.4 CYBER PHYSICAL SYSTEMS (CPS) 

 

Cyber-physical system (CPS) is a smart cycle system that collects and analyzes real-world data from 

advanced sensors, and then the feedback on the results is provided to the real-world (see Figure1-4). While 

information networks have separately developed in each field in an information society, a CPS society 

creates added value through connecting various fields in our life including transportation, housing, medical 

fields, and so on. And finally, the results of analyzed data from various fields can led to creative solution 

for social problems, such as energy, pollution, transportation, and low birthrate problems[7]. 

 

 

Figure 1-4 CPS cycle 

 

In the future, fully autonomous feedback on the advanced data analysis and decisions can be provided 

under in a CPS society due to an artificial intelligence (AI) advance depending on fields. According to 

ministry of economy, trade and industry (METI), Japan[8], there are five levels in an information and 

communications technology (ICT) as Table 1-2, and today, the ICT lies at the fourth level. 
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Table 1-2 ICT Levels and changes of each level 

Level Contents Time 

Level I Separate use by each device (stand-alone) Until the late 1990’s 

Level II Connection with networks in some devices (networked) Until the early 2000’s 

Level III 

Change the function of collection, accumulation, analysis 

of data from individual device to a data center on 

networks (clouded) 

Until the late 2000’s 

Level IV 
Data collection from the real-world, analysis the data, and 

the provision of feedback to the real-world (CPS) 
About 2010’s (current) 

Level V 
Value creation and realization of fully autonomous 

system by AI 
In future 

(source: Ministry of Economy, Trade and Industry (METI), Japan[8]) 

 

In this dissertation, three kinds of real world data are collected and transformed into computerized data: 

taxi-probe data, weather conditions data and snow removal operations data. These data are used for 

estimating travel speed by statistical models. And the results of the present study can be used to develop 

the strategies for winter traffic control and for snow removal operations. If the results of the present study 

were applied to the strategies for the traffic control and snow removal operations, it would affect the real 

world, traffic condition and snow removal operations. Therefore, the present study can expect to contribute 

to realization of a CPS society. 
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2 LITERATURE REVIEW 

 

This chapter reviews the relationship among traffic condition changes, weather conditions, and snow 

removal operations. Section 2.1 reviews the previous studies related to weather conditions and traffic 

performance, such as traffic volume, travel speed, and road capacity. In section 2.2, the previous studies 

associated with the effects of adverse weather conditions on travel behaviors are reviewed, such as a change 

in the mode choice and route choice under adverse weather conditions. In section 2.3, the literatures on 

estimating and forecasting the traffic conditions are reviewed. And section 2.4 investigates researches on 

snow removal operations. At the end of each section, the summarized results of the reviewed researches 

are presented (Table 2-1, 2-2, 2-3 and 2-4). Section 2.5 summarizes the literatures and differentiates 

between the previous studies and the present study. 

 

2.1 RESEARCHES ON THE EFFECTS OF WEATHER CONDITIONS ON 

TRAFFIC CONDITIONS 

 

Ibrahim and Hall [9] studied the effect of adverse weather conditions on the relationships of flow-

occupancy and speed-flow. They collected the data on the Queen Elizabeth Way Mississauga freeway for 

five months from October 1990 to February 1991. According to their study, the free-flow speed was 

reduced by 2 km/h under the light rain condition, and reduced by 3 km/h under the light snow condition. 

In case of heavy precipitation, the decrease in free-flow speed was larger than light precipitation. The free-

flow speed was dropped around 5~10 km/h under heavy rain, and round 38~50 km/h under heavy snow. 

Maximum traffic flow rate was decreased by 10~20% under heavy rain conditions, and by 30~48% under 

heavy snow conditions. 
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Agarwal et al.[3] investigated the adverse weather impacts on urban freeway segments. The study area was 

the freeway road network of the Twin Cities, and the traffic and weather information data were a four-year 

dataset from Jan. 2000 to Apr. 2004. The authors divided the weather information into several categories 

to know the traffic condition changes depending on the severity of the adverse weather: rain, snow, wind 

speed, low visibility, and temperature. The authors indicated that the traffic conditions, which were 

capacity, and average operating speed, decreased with the severity of the adverse weather conditions. And 

they compared the results from their study and from Highway Capacity Manual 2000 (HCM 2000). 

According to their results, the impact of light rain on capacity was greater than the HCM 2000. In contrast, 

the impacts of light rain, light snow and moderate snow on operating speeds were similar with the HCM 

2000. However, the speed reductions caused by heavy rain and snow from the HCM 2000 were significant 

higher than the results from the study. The impacts of all snow severities on capacity were similar with the 

HCM 2000.  

 

Maze et al.[4] reviewed the literatures on the impact of adverse weather conditions on traffic demand, 

traffic safety, and traffic flow relationships: volume, speed and density. The authors found that the traffic 

volume was reduced by 5% under rain conditions and by 7 to 80% under snow conditions depending on 

the traffic types (commuter, commercial, long-distance travel) and the severity of adverse weather 

conditions. In terms of traffic safety, the authors mentioned accident rates increased rapidly under snow 

conditions. And the authors mentioned that the severity of traffic accidents caused by adverse weather 

conditions were related to both the location and the weather condition at the time when the accident took 

place. The authors also mentioned that the capacity and speed on highways were significantly related with 

the adverse weather conditions. According to their research, the freeway capacity was decreased by an 

average of 14% under heavy rain conditions, and by an average of 22% under heavy snow conditions.  

 

Datla and Sharma [10] investigated the change of highway traffic with adverse weather conditions: 

temperature, snowfall, and combined cold and snow. Their study area was a highway in Alberta, Canada, 
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and they collected and used hourly traffic data and weather data in winter months (from November to 

March) for the study for 11 years between 1995 and 2005. The multiple regression analysis was used, and 

they considered the effects of time of day, day of week and type of highway separately. According to their 

study, the effect of low temperature on the weekend traffic was more than the weekday traffics regardless 

of road types: commuter and recreational roads. Similarly, the commuter road traffic was less affected by 

cold weather than the recreational road traffic. In other words, depending on the trip necessity, the effects 

of low temperature on the traffic was different. The authors argued that the commuter roads were less 

correlated with snowfall. On the other hand, the effects of snowfall on the recreational roads were larger 

when the temperature was low. 

 

Dehman [11] investigated the effects of weather conditions on two capacities of freeway bottlenecks: free-

flow capacity (pre-breakdown flow (PBDF)) and congested-flow capacity (queue discharge flow (QDF)). 

The study areas were four bottlenecks in Milwaukee freeway, Wisconsin, and the author collected 

precipitation amount and visibility distance as weather conditions. The author argued that the QDF was 

more sensitive to weather conditions than the PBDF. According to the study, the PBDF was reduced by 

2.1%, 5.4%, and 12.1% due to very light rain, light rain, and moderate rain, respectively. And under the 

very light snow and light snow conditions, the PBDF was decreased by 3.4% and 13.2%. In addition, the 

thick fog and shallow fog reduced the PBDF by 5.0% and 1.6%. On the other hand, the QDF was reduced 

by 7.7%, 11.8%, and 16.8% under very light rain, light rain, and moderate rain conditions. In case of snow, 

very light snow and light snow reduced the QDF by 8.8% and 22.3%. The QDF in thick fog and shallow 

fog were decreased by 6.5% and 4.3%. Finally, the author indicated that the principal reason why the effect 

of fog was the smallest was fog makes poor visibility only, but the snow and rain makes both poor visibility 

and slippery surfaces. 

 

Zhao et al.[12] studied the effect of adverse weather conditions on the free-flow speed of freeways in the 

Buffalo metropolitan area from both micro and macro levels. The authors developed linear regression 
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models to predict average speed for the macro-level analysis. According the results, the speed increased 

by about 0.77 mph as visibility increased by 1 mile. And the travel speed at the below freezing temperature 

was 0.98-mph slower than at the above freezing temperature. Finally, when the wind speed was increased 

by 10 mph, the travel speed was decreased by around 0.5 mph. As a micro-level approach, the authors 

calibrated the TRANSIMS model, which is a cellular-automata (CA) based traffic simulation model, for 

driving behaviors to be reflected adverse weather conditions. 

 

Kwon et al. [13] identified the factors affecting capacity and free-flow speed on urban freeways under  

adverse weather conditions. The study area of the study was the Don Valley Parkway (DVP) in Toronto. 

And they used traffic, weather, and road condition data from 2010 to 2012 in winter seasons. The authors 

considered temperature, wind speed, and visibility, snowfall, deep snow, and road surface conditions (icy 

or dry) as weather and road surface condition factors. The authors found the visibility and road surface 

conditions were statistically related with both capacity and free-flow speed. On the other hand, the authors 

argued that the snowfall affects capacity and free-flow speed only if the visibility factor was not included 

in their model. According to their study, the capacity was decreased by 31.97 vphpl for each increase of 1 

mm/h snow intensity, and was increased by 226.51 vphpl for each increase of 1 km visibility. On the other 

hand, the free-flow speed was increased by 5.84 km/h every increase of 1 km visibility, and was decreased 

by 0.86 km/h every increase of 1 mm/h snow intensity. 

 

Tsapakis et al. [14] investigated the impact of rain, snow, and temperature on macroscopic travel times 

during morning and evening peak period and non-peak period. The study area and period were London 

area in UK during from October to December 2009. The authors found that the total travel time were 

increased by 0.1~2.1%, 1.5~3.8%, and 4.0~6.0% because of the light rain, moderate rain, and heavy rain, 

respectively. And light snow and heavy snow increased the travel time by 5.5~7.6% and 7.4~11.4%. The 

temperature effects on the travel time was not significant in their study. 
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Lin et al. [15] quantified the impact of adverse weather conditions extracted from social media data on 

freeway traffic speed. They argued that the real world weather information could be inferred from social 

media service data such as Twitter and Facebook. The study area of their study was two freeways in 

Buffalo-Niagara metropolitan area, and they collected weather data, Twitter data, and traffic data from the 

study area. They developed linear regression models to identify the weather effects on freeway speed with 

and without the Twitter-based weather variables. According to the authors, the model with twitter-based 

weather data was relatively more accurate than the without twitter-based weather data model especially 

during daytime with snowfall. Based on the middle lane of the freeway, the freeway speed was increased 

by 0.23 mph for every 1-mile increase in visibility, and decreased by from 24 to 30 mph for every 1-mm 

increase in snowfall. In addition, the number of snow events recorded in Twitter led to from 0.5 to 1.0 mph 

decreases in the freeway speed. 

 

Table 2-1 Literatures on the relationship between weather conditions and traffic conditions 

Researchers 

(year) 

Road types/ 

Regions 
Weather Traffic condition reductions 

Ibrahim and 

Hall (1994) 

Freeway / 

Ontario, 

Canada 

Rain 
Max. traffic flow rate 10~20% 

Free-flow speed 2~10 km/h 

Snow 
Max. traffic flow rate 30~48% 

Free-flow speed 3~50 km/h 

Agarwal et 

al. 

(2005) 

Freeway / 

Minnesota, US 

Rain 
Capacity 1~17% 

Free-flow Speed 1~7% 

Snow 
Capacity 3~28% 

Free-flow Speed 3~15% 

Low 

Temperature 

Capacity 1~10% 

Free-flow Speed 1~3.6% 

Wind speed 
Capacity 1~2% 

Free-flow Speed 1~1.5% 

Visibility 
Capacity 9~10.5% 

Free-flow Speed 6~11% 
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Table 2-1(continued) Literatures on the relationship between weather conditions and traffic conditions 

Researchers 

(year) 

Road types/ 

Regions 
Weather Traffic condition reductions 

Maze et al. 

(2006) 

Review paper 

(average 

reduction of 

traffic 

conditions) 

Rain 
Capacity 2~14% 

Speed 2~6% 

Snow 
Capacity 4~22% 

Speed 4~13% 

Temperature 
Capacity 1~8% 

Speed 1~2% 

Wind speed 
Capacity 1% 

Speed 1% 

Visibility 
Capacity 10~12% 

Speed 7~12% 

Datla and 

Sharma 

(2010) 

Highway / 

Alberta, 

Canada 

Snow 

> 0℃ 
Commuter Traffic 

0.5~1.7% 
Recreational Traffic 

≤ 0℃ 
Commuter Traffic 0.7~1.8% 

Recreational Traffic 0.5~3.1% 

Temperature 
Commuter Traffic 0~14% 

Recreational Traffic 0~31% 

Dehman 

(2012) 

Bottleneck of 

freeway/ 

Wisconsin, US 

Snow 
Free-flow capacity 3.4~13.2% 

Congested-flow capacity 8.8~22.3% 

Rain 
Free-flow capacity 2.1~12.1% 

Congested-flow capacity 7.7~16.8% 

Fog 
Free-flow capacity 1.6~5.0% 

Congested-flow capacity 4.3~6.5% 

Zhao et al. 

(2012) 

Freeway / 

Buffalo, US 

Visibility 

Travel speed 

10-mph/ 1-mile 

decrease in visibility 

Wind speed 
0.5-mph/ 10-mph 

increase in wind speed 

Temperature 
0.98-mph at above 

freezing temperature 
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Table 2-1(continued) Literatures on the relationship between weather conditions and traffic conditions 

Researchers 

(year) 

Road types/ 

Regions 
Weather Traffic condition reductions 

Kwon et al. 

(2013) 

Freeway/ 

Toronto, 

Cananda 

Snow intensity 
Free-flow speed 0.86 km/h 

Capacity 31.97 vphpl 

Visibility 
Free-flow speed 5.84 km/h 

Capacity 226.51 vphpl 

Tsapakis et 

al. 

(2013) 

Urban road 

network / 

London, UK 

Rain 

Travel time 

0.1~6.0% increased 

Snow 5.5~11.4% increased 

Temperature Not significant 

Lin et al. 

(2015) 

Freeway / 

Buffalo, US 

Visibility 

Travel speed 

0.23 mph/ 1-mile 

decrease in visibility 

Snow 

inch 
24~30 mph/ 1-mm 

decrease in snowfall 

number 0.5~1.0 mph 

 

 

2.2 RESEARCHES ON THE RELATIONSHIP BETWEEN WEATHER 

CONDITIONS AND TRAVEL BEHAVIORS 

 

Khattak et al.[16] investigated factors which influence automobile commuters’ enroute decisions to divert 

from their regular route in response to information about incidents and other factors which influence a 

subsequent decision to return to the regular route after diversion. The authors obtained data from a survey 

of automobile commuters in downtown Chicago to develop models of diversion and return behavior. The 

authors mentioned that drivers would change their route based on their expectations of the change in traffic 

conditions due to events including incidents and adverse weather conditions. 

 

Mahmassani et al.[17] reviewed various existing researches on the subject of the relationship between 

traffic and weather events, with an emphasis on two sides: traffic supply side impacts and traffic demand 
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side impacts. They argued that traffic demand for drivers would be reduced under adverse weather 

conditions because of abandoning or holding off their trips, but for pedestrians and cyclists, the rising 

traffic demand could be observed when they changed their mode to private vehicles. Furthermore, they 

mentioned that inclement weather conditions can move the traffic demand for peak-hour when commuters 

decided to go to work earlier or later than usual. 

 

Khattak and Palma [18] identified the impact of weather conditions on car commuters’ behavior. The study 

was conducted in Brussels, Belgium. The authors found that the weather conditions affected commuters’ 

travel decisions especially on departure time. The weather conditions influenced the travel pattern of 

around half of the motor vehicle drivers. 60% of automobile commuters changed their departure time, and 

35% of respondents used alternate routes due to adverse weather conditions. On the other hand, though 

around 70% of respondents had an alternative transportation, they did not change their transportation mode 

according to seasons and weather conditions. 

 

Nankervis [19] presented the relationship between bicycle commuting and the weather (short-term) and 

seasonal (long-term) variation. The study area was Melbourne, Australia and the author surveyed to 

students of three universities in Melbourne. The author found that the seasonal weather affected commuting 

by bike. The cycling commuters were the most in summer and autumn, and less in winter. For short term 

weather conditions, the author considered wind, rain, and temperature. According to the study, wind, rain, 

and temperature had a significant relationship with the number of bike riders. And especially, the effect of 

temperature was larger than other weather conditions. According to the survey in the study, only less than 

5 % of respondents would not ride bike under adverse weather conditions. 

 

Cools et al.[20] investigated that the effect of weather conditions on travel behavior, and in the adverse 

weather condition, whether people change the travel behavior depending on their trip purposes (commuting, 

shopping, and leisure). The six weather conditions were considered in their study: cold, snow, rain, fog, 
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warm, and storm. And five kinds of travel behavior were considered: mode change, time-of-day change, 

location change, trip cancellation, and route change. The study was conducted in Flanders, Belgium. 

According to their research, the commuting trips was less affected by weather conditions than other 

purposes. However, the impact of snowy weather on travel behavior was the largest of other weather 

conditions which were cold, rain, fog, warm, and storm. Regardless of their purposes, people tend to 

change mode, time-of-day, location, or route during snowy weather; even went as far as to cancel the trip. 

Finally, the authors argued that the results of the study can contribute weather-related policy issues. 

 

Flynn et al. [21] quantified the effects of weather conditions on the commute decisions of bike commuters. 

They collected data, personal characteristics, distances from home to work, transportation mode, and 

weather data, for 4 weeks in period between 2009 and 2010 in Vermont, US. Weather conditions data, 

which were temperature (℉), wind speed (mi/h), rainfall, and deep snow (inches), collected from 18 

stations. According the results of their study, the bike commuting under no-rain weather conditions was 

almost twice as likely to commute by bike under rain weather conditions. A 1-℉ increase in temperature 

increased the bike commuter by about 3%. Similarly, the bike commuting was decreased by around 5% 

for each increase of 1-mi/h wind speed, and decreased by about 10% for each increase of 1-inch deep snow. 

 

Saneinejad et al.[22] investigated the impact of weather on the five transport modes: auto drive, auto 

passenger, transit, bike and walk. They used the multinomial logit (MNL) model for identifying the impact. 

Moreover, the interaction among weather, age, and gender was considered through interaction models. The 

authors collected three kinds of data in Toronto, Canada: travel survey data, level of service data, and 

weather data. The data were collected for Sep. 8th to Dec. 16th, 2001 and May 8th to Jun. 12th, 2002. 

According to their study, walking and cycling younger groups were more negative relationship with cold 

than older groups. In terms of gender, cycling female group was around 1.5 times more negative 

relationships with temperature than males. Furthermore, cycling groups were more influenced by weather 

conditions which were low temperature, wind speed, and precipitation than pedestrian groups. The authors 
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also investigated the effects of weather changes on the mode choice and trip rate. They found an increase 

of 17% cycling trips and 2% walk and transit trips for each 6℃ increase in temperature. On the other 

hand, the effects of rain precipitation were less than the effects of temperature. 

 

Sears et al. [23] measured the seasonal change in bicycle commuting trips in the northeastern state of 

Vermont. According to their study, the temperature and precipitation had strong effects on the commuters’ 

decision whether to commute by bicycle. And the bike commute was similar trend regardless of gender 

and age under adverse weather conditions. In summer, the bicycle commuters were more than winter or 

fall in the study. The authors found that the wind speeds had a significant relationship with the bike 

commuting, while the daylight was not statistically related. And deep snow had a negative relationship 

with commuting bicycle. The rates of bike commuting were an increase of 3% for each 1℉ increase in 

temperature, and a decrease of 5% for each 1mph increase in wind speed. The bike commuters were 

decreased by 10% with every 1-in increase in snowfall. 

 

Meng et al. [24] examined the effects of weather conditions and weather forecasts on bike travel behavior. 

The study area was a tropical country, Singapore, which has a hot temperature, humid, and rainy weather. 

They investigated the traveler behaviors according to the timings of getting weather information: during 

trip and before trip. The authors indicated the cyclists preferred to ride bicycle at lower temperature (29.5°C 

- 31.5°C) and humidity (52.3% - 62.7%), and no rain (in the past hour). According to the results, though 

the cyclists got the forecasted rain information, the cyclists’ behaviors were different depending on the 

current weather conditions. When the current weather condition was normal, the cyclists were less believed 

the weather information. 41.3% of cyclists who got the information before the trip would change their 

mode, while 30.3% of cyclists who got the information during the trip would change their mode. On the 

other hand, when the current weather conditions were poor or very poor conditions, 67.5% and 92.7% of 

people who got the information before the trip would change their mode, while half and 70% of people 

who got the information during the trip would change their mode. 
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Table 2-2 Literatures on the relationship between weather conditions and travel behaviors 

Researchers 

(year) 
Targets / Regions 

Weather 

conditions 
Results 

Khattak and 

Palma (1997) 

Automobile 

commuters / 

Brussels, Belgium 

Adverse 

weather 

Departure time 

change 
60% 

Route change 35% 

Nankervis 

(1999) 

Students riding 

bike / Melbourne, 

Australia 

Wind Don’t ride bike 3.0% 

Rain Don’t ride bike 0.0% 

Temperature Don’t ride bike 3.0% 

Cools et al. 

(2010) 

Mode changes / 

Flanders, Belgium 

Cold 

temperature 

Commuting 6.2%  

Shopping 8.5% 

Leisure 10.1% 

Snow 

Commuting 24.2% 

Shopping 21.8% 

Leisure 25.6% 

Rain 

Commuting 15.2% 

Shopping 14.4% 

Leisure 16.1% 

Fog 

Commuting 5.4% 

Shopping 8.1% 

Leisure 12.7% 

Warm 

temperature 

Commuting 18.4% 

Shopping 20.3% 

Leisure 22.7% 

Storm / heavy 

wind 

Commuting 13.2% 

Shopping 13.2% 

Leisure 14.4% 
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Table 2-2(continued) Literatures on the relationship between weather conditions and travel behaviors 

Researchers 

(year) 
Targets / Regions 

Weather 

conditions 
Results 

Flynn et al. 

(2012) 

Bicycle commuter 

trips /  

Vermont, US 

Temperature 3% increased (1℉) 

Wind speed 5% decreased (1 mph) 

Snow 10% decreased (1 inch) 

Saneinejad et al. 

(2012) 

Number of trips / 

Toronto, Canada 

6℃ decrease in 

temperature 

Walk 2% decreased 

Transit 2% decreased 

Bike 17% decreased 

Drive Little increased 

Auto passenger 7% increased 

20% decrease in 

rain frequency 
All mode 

1~1.7% increased 

20% increase in 

rain frequency 
1~1.9% decreased 

Sears et al. 

(2012) 

Bicycle commuter 

trips /  

Vermont, US 

Temperature 3% increased (1℉) 

Wind speed 5% decreased (1 mph) 

Snow 10% decreased (1 inch) 

Meng et al. 

(2016) 

Mode shift rate 

from cycle to 

others/ 

Singapore 

Got the weather 

forecast 

information 

“rain in the day” 

during trips 

Current normal 

weather 
30.3% 

Current poor 

weather 
50.3% 

Current very 

poor weather 
70.2% 

Got the weather 

forecast 

information 

“rain in the day” 

before trips 

Current normal 

weather 
41.3% 

Current poor 

weather 
67.5% 

Current very 

poor weather 
92.7% 
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2.3 RESEARCHES ON TRAFFIC CONDITIONS ESTIMATION/PREDICTION 

 

Huang and Ran[25] suggested a neural network (NN) model based on back-propagation algorithm to 

predict travel speed under adverse weather conditions. The authors used travel time as representing traffic 

conditions, and temperature, humidity, and visibility were considered as weather conditions. And other 

weather conditions were included in the model as indicator variables: clear day have 0, otherwise, the value 

of variables was 1. The authors argued that the predicted speed by the NN model is more reasonable and 

acceptable than the time-series model. 

 

Williams et al.[26] developed a seasonal Autoregressive Integrated Moving Average (ARIMA) model to 

predict vehicular traffic flow on two fixed locations: freeways in United States (I-75) and in the United 

Kingdom (M25). They compared their model with other heuristic approaches: random walk forecast, 

historical average forecast, and deviation from historical average forecast. The predictive performance of 

each model were compared by three statistics: root mean square error of prediction (RMSEP), mean 

absolute deviation (MAD), and mean absolute percentage error (MAPE). In their study, the seasonal 

ARIMA models had the best predictive performance (8.74% of MAPE for M25 and 8.97% of MAPE for 

I-75. And the deviation from the historical average heuristic prediction method were the second best 

method in the forecast performance (9.78% of MAPE for M25 and 9.54% of MAPE for I-75). 

 

Van den Bossche et al. [27] developed models to forecast the frequency and severity of traffic accidents in 

Belgium. They used the monthly accidents data from 1974 to 1999 to develop the prediction model, and 

the accidents in 2000 were predicted by a regression model with ARMA errors. They considered monthly 

percentage of frost days, snow, sunlight, precipitation and thunderstorm as weather conditions. And five 

laws related traffic safety were included as dummy variables. According to their study, the weather 

conditions and some regulations were significantly related with traffic safety. The authors argued that the 

predicted accidents trend by the model were quite accurate. 
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Billings et al[28]. predicted the arterial travel time for a part of Minnesota State Highway 194. The authors 

used the Global Positioning System (GPS) probe vehicle data to apply the ARIMA model. And their target 

to predict was the afternoon peak hour travel time from 3:30pm to 5pm. They argued that the ARIMA 

model performed well for urban arterials including queuing and signal delays which had a bad predictive 

accuracy by other prediction methods on freeways. 

 

Zeng et al[29]. proposed the combined ARIMA and Multilayer Artificial Neural Network (MLANN) to 

predict the complex and random traffic flow. The study area was 45km-length of Guangyuan Highway in 

Guangzhou. And the data of their study was collected every 8 minutes from 7am to 7pm of weekdays. To 

check the predictive accuracy, three statistics were applied: Relative Mean Errors (RME), Mean Absolute 

Relative Error (MARE) and Root Mean Squared Errors (RMSE). The authors found that the hybrid model 

the forecasting errors were significantly reduced: the predictive accuracy of the hybrid model was higher 

by 46% than the ARIMA model. They argued that the combined model was better the forecasting accuracy 

than the models used separately. 

 

Vlahogianni and Karlaftis[30] investigated the effects of precipitation on the temporal evolution of lane 

by lane speed patterns on freeways in Athens. They used recurrence quantification analysis (RQA) to 

quantify the effects of precipitation on the travel speed. According to the authors, the travel speed on right 

side lane have different patterns with the travel speed patterns of left and middle lanes. In terms of rain and 

snow, irrespective of precipitation intensity, the accuracy for forecasting lane speed patterns were changed. 

The authors argued that employing a single model for forecasting traffic conditions can lead to fallacious 

results. 

 

Yang et al.[5] identified traffic deterioration according to weather conditions such as snowfall and 

temperature. An 8km-length section of Seohaean freeway in Korea was selected as the study area. Traffic 
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volume and speed were obtained from 8 vehicle detection systems (VDS), and weather data (snowfall, 

deep snow, and temperature) were obtained from the weather center for four months (Oct. 2005 to Feb. 

2006) Using the collected data, the ANOVA analysis was conducted to know the characteristics of the 

traffic volume and travel speed depending on the weather conditions. According to the authors, the average 

speed was 6.7% in light snow (3cm or less), 9.0% in moderate snow (3cm~10cm), and 12.8% in heavy 

snow (10cm or above) slower than the speed of normal days. Whereas the standard deviation of the speed 

was increased by 8.7% in light snow, 33.6% in moderate snow, and 114.7% in heavy snow. And the authors 

also developed the multiple linear regression (MLR) models. According to the MLR models developed in 

this research, ravel speed was reduced to 0.4% as snowfall increased by 1cm, while traffic volume was 

reduced to 13.8%.  

 

Dunne and Ghosh[31] used stationary wavelet transform (SWT) which is the stationary form of discrete 

wavelet transform (DWT) to develop a neuro-wavelet prediction algorithm to forecast hourly traffic flow 

considering rainfall effects. The study collected rain precipitation data and real-time traffic flow data from 

urban arterials in Dublin, Ireland. The authors developed the switchable algorithm between a dry model 

and a wet model, depending on the rainfall forecast. The results forecasted by the suggested models (neuro-

wavelet model) were more accurate than the standard artificial neural network (ANN) model results. 

 

Zhang and Ge [32] employed a Takagi–Sugeno–Kang Fuzzy Neural Network (TSKFNN) approach to 

predict freeway travel time. TSKFNN is a combination of a Takagi–Sugeno– Kang (TSK) type fuzzy logic 

system and a neural network (NN). They collected traffic data from freeway in Houston, Texas. The 

authors compared their model with other prediction models: the back propagation neural network (BPNN) 

and the time series model (ARIMA). And the authors argued that the TSKFNN model showed the best 

accuracy of the considered prediction models. 
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Kim et al.[33] predicted traffic speed on the freeway under different snow intensity level: normal, light 

snow, and heavy snow. The traffic data was collected by vehicle detecting system (VDS) on a freeway in 

Korea, and the weather conditions was collected by road weather information system (RWIS) for two years. 

The k-nearest neighbors (k-NN) algorithm was used to forecast speed for real-time during winter. 

According to the result of their study, the mean absolute percentage error (MAPE) was less than 6% under 

normal weather conditions, and less than 8% under light snow conditions across all time steps considered: 

from 5 minute to 60 minute. On the other hand, the MAPE was more than 6% under heavy snow conditions. 

 

Wang et al. [34] forecasted the short-term traffic speed using the hybrid model of empirical mode 

decomposition (EMD) and autoregressive integrated moving average (ARIMA). They set three scenarios: 

mixed flow in freeway work zones, vehicle-type specific in freeway work zones, and on-ramp. The selected 

areas for the study were the work zone on a freeway in Springfield, MA and the on/off-ramp on a freeway 

in Atlanta, GA. And the authors argued that the hybrid EMD-ARIMA model offered higher predictive 

performances in all scenarios than the traditional forecasting models: the traditional ARIMA, the Holt–

Winters, the artificial neural network models, and a naive model. According to their results.  

 

Mais et al. [35] investigated the weather effects on traffic accident fatalities, and estimated the unaffected 

accident fatality series by weather conditions. They estimated the effects of temperature and precipitation 

on traffic accident fatalities in UK for the period 1991-2014 using the combination model of a regression 

model and ARIMA model (RegARIMA). The authors argued if the weather-related accidents were 

excluded from the series, the rest might be due to other factors which can control by policy makers. 

 

Roh et al.[36] investigated the variations of daily traffic volumes related to weather conditions, such as 

snow and temperature, with an emphasis on class of vehicles (passenger cars and trucks). The authors 

developed multiple categorical linear regression (MCLR) models to identify the relationship among 

classified traffic, snowfall and temperature. The authors obtained the traffic data at one Weigh-In-Motion 
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(WIM) site at Leduc located on highway 2A in Canada. And they collected the weather data from 

Environment Canada weather information archives. According to their study, the effects of snowfall and 

cold on daily volumes were totally opposite for passenger cars and trucks. The passenger cars decreased 

when weather is snow or the temperature dropped below -25℃. Truck traffic, however, increase regardless 

of snowfall and cold temperature. The authors argued that passenger cars are more susceptible to inclement 

weather conditions than trucks. Besides, they also argued that this is because truck drivers change their 

route from frontage roads to highways in adverse weather conditions. Furthermore, truck drivers drive 

vehicles without regard to weather conditions because most of them follow a strict schedule. 

 

Table 2-3 Literatures on the traffic condition estimation/prediction 

Researcher (year) Regions/Countries Road types Targets Method 

Huang and Ran (2003) Chicago, US Motorways Traffic speed NN 

Williams et al. (2003) 
Atlanta, US and 

London, UK 
Freeways Traffic flow SARIMA 

Van den Bossche et al. 

(2004) 
Belgium Whole country Accidents RegARMA 

Billings et al. (2006) Minnesota, US Urban arterial Travel time ARIMA 

Zeng et al. (2008) Guangzhou, China Highway Traffic flow 
ARIMA 

+MLANN 

Vlahogianni and 

Karlaftis (2012) 
Athens, Greece Freeway Travel speed RQA 

Yang et al. (2012) Jeonbuk, Korea Freeway 
Travel speed 

Traffic volume 
MLR 

Dunne and Ghosh 

(2013) 
Dublin, Ireland Urban arterials Traffic flow SWT 

Zhang and Ge (2013) Houston, US Freeway Travel time TSKFNN 

Kim et al. (2015) Gyeonggi, Korea Freeway Traffic speed k-NN 

Wang et al. (2015) 
Atlanta, US and 

Springfield, US 
Freeway Traffic speed EMD–ARIMA 

Mais et al. (2016) UK Whole country 
Traffic accident 

fatalities 
RegARIMA 

Roh et al. (2016) Alberta, Canada Highway Traffic volume MCLR 
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2.4 RESEARCHES ON SNOW REMOVAL OPERATIONS 

 

Tanabe et al.[37] measured separate effects for each type of snow removal operations. They measured the 

individual effect of snow removal by choice-based conjoint analysis. The authors considered frequent snow 

removal operations, road width, sight distance, slippery road surface, and bumpy road surface as 

independent variables, and the amount of willing to pay for snow removal operation was considered as the 

dependent variable. They collected the dependent variable data from a questionnaire survey in Sapporo, 

Japan. The authors argued that the respondents have great interest in the effective road width and deicing 

materials. 

 

Hayashiyama et al. [38] evaluated the indirect benefits of snow removal operations in Sapporo by the 

contingent valuation method (CVM). They considered willingness to pay (WTP) and willingness to accept 

compensation (WTA) for improving or deteriorating the level of snow removal. According to their results, 

the average WTA was much higher than the average WTP for both the raising and reducing snow removal 

service level. The WTP for reducing the snow removal operation level was $27 million to $33 million, the 

WTA was $190million to $300million. In contrast, the WTP for raising the level of snow removal 

operation was $17 million to $23 million, and the WTA was $180 million to $200 million. The authors 

argued that the WTP was better to measure the benefits because the WTA tended to overestimate in the 

study. And the authors also mentioned the present level of snow removal service in Sapporo is high because 

the values of WTA and WTP were bigger for reducing the level than for raising the level. 

 

Lin [39] estimated the effects of weather conditions and maintenance on road surface conditions and on 

traffic volume and travel speed. Plowing, sanding, chemical were considered as road maintenance factors, 

and temperature and wind speed were considered as weather condition factors. The road maintenance 

factors in the study was included as indicator variables in the study. The author defined two kind of effects 

on traffic conditions in the road maintenance works and weather conditions: direct effect and indirect effect. 
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The effect of road maintenance works and weather conditions on traffic conditions is defined as the direct 

effect. On the other hand, the mixed effect, which is a combination of the effect of road maintenance works 

and weather conditions on road surface conditions and the effect of road surface condition on traffic 

conditions, is defined as the indirect effect. And the author argued that when estimating traffic conditions, 

both direct and indirect effects of maintenance works and weather conditions should be considered. 

 

Koizumi and Naoi [40] verified the dispatch criteria for three kind of snow removal operations: fresh fallen 

snow removal operation, road surface leveling operation, and snow compacting operation. To verify the 

criteria, the authors considered two types of cost which are the loss cost due to travel speed reduction by 

snowfall and the cost for snow removal operations. Travel speed reduction was estimated by linear 

regression model in their study. 

 

Table 2-4 Literatures on the traffic condition estimation/prediction 

Researcher 

(year) 

Regions 

/Countries 
Purpose Method 

Hayashiyama  

et al. (2001) 
Sapporo, Japan 

To measure the benefits of snow 

removal 

Contingent valuation method 

(CVM) 

Tanabe et al. 

(2002) 
Sapporo, Japan 

To measure the benefits of snow 

removal 
Choice-based conjoint analysis 

Lin (2008) Iowa, US 

To investigate the effects of 

snow removal on the road 

surface condition 

Decision tree (CHAID) and 

multinomial logistic regressions  

Koizumi and 

Naoi (2012) 
Hokuriku, Japan 

To verify the current snow 

removal strategy 

Find the snow removal level to 

minimize cost 
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2.5 SUMMARY & RESEARCH OPPORTUNITY 

 

As a result of reviews of previous studies, an amount of researches have been conducted on the effects of 

weather conditions on traffic performances which are traffic volume, travel speed, and road capacity. Most 

of the previous studies focused on the decreasing rate of free-flow speed, traffic volume, and road capacity 

by adverse weather conditions. According to their studies, weather conditions, such as rain, snow, fog, and 

low temperature, affects traffic performances in a negative way. Some researchers developed traffic 

performance estimation models through statistical methods. They quantified the effects of weather 

conditions on transportation performances. The relationship between weather conditions in winter and 

traffic conditions is studied very much by the previous researches. However, most of the studies considered 

the effects of various weather conditions including rainfall, snowfall, temperature and fog, but did not 

consider the effects of snow removal operations. Therefore, this dissertation considers the effect of both 

weather conditions and snow removal operations on traffic conditions. 

 

Many researchers have studied the relationship between weather conditions and travel behaviors. 

According to the previous studies, not only traffic modes but also departure time of day, destination, and 

route can be changed under adverse weather conditions. Most of studies mentioned that people on foot or 

cyclist are more easily affected by cold temperature and both snow and rain precipitation than other modes. 

Therefore, some researchers[16] mentioned that the increased traffic demand for vehicle trips can be 

observed when pedestrians and cyclists changed their mode to vehicles. From the previous studies, it was 

found that adverse weather conditions affect the vehicle demand in two ways: positive and negative effects. 

In other words, motorists are unwilling to drive in adverse weather conditions, whereas pedestrians and 

cyclists tend to change their mode to vehicles including passenger cars and public transportation. The target 

season of the present study is winter in urban area. The weekday modal split in urban area in Japan is as 

Table 2-4. According to Table 2-5, around 40~45% of people have taken walk, bicycle or motorcycle for 
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their trips. In other word, many portion of these group would change their modes. This is a reason that the 

winter road maintenance in urban areas is important. 

 

Table 2-5 Weekday modal split in urban area in Japan (%) 

City size Walk 
Motorcycle/

Bike 
Bus Rail Car 

More than 1 million 27.4 17.7 4.3 26.9 23.8 

0.5 ~ 1 million 23.1 18.4 2.5 25.6 30.4 

0.3 ~ 0.5 million 24.0 15.6 2.9 18.9 38.6 

Less than 0.3 million 23.1 18.5 2.0 16.7 39.7 

Total 24.9 17.6 3.1 21.4 33.1 

(source: H. G. Retzko [41]) 

 

As a result of the previous researches reviews, many researchers estimated and predicted traffic conditions, 

such as travel speed, traffic volume, and even including traffic accidents, by diverse methodologies: 

ARIMA, NN, RegARIMA, MLR and so on. However, the weather-related traffic estimation and prediction 

studies have been comparatively scarcer than traffic condition prediction studies under incidents and events. 

Some authors of the previous studies[25], [30], [31], [33] emphasized the importance of developing traffic 

prediction models under adverse weather conditions because the traffic patterns during adverse weather 

conditions are significantly affected like other incidents and events. Though they tried to forecast traffic 

condition considering weather conditions, most researchers considered only one kind of weather conditions: 

rainfall or snowfall or fog. In this dissertation, not only a weather condition but also three kinds of weather 

conditions and snow removal operations are considered to forecast the travel speed. To estimate the travel 

speed, the present study uses a regression model with autoregressive integrated moving average 

(RegARIMA) model. Because the RegARIMA model have both characteristics of regression models and 

time series models, it can forecast the travel speed considering weather and snow removal[35]. 
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The studies on the effects of snow removal operations were rare to find. Some previous studies estimated 

the effects of snow removal operations in the economic aspect based on the answers from the questionnaire 

survey. These researchers, however, did not consider the relationship between snow removal operations 

and traffic performances. On the other hand, a researcher[37] considered maintenance works in winter, 

such as plowing, sanding, and chemical, to estimate the road surface conditions. And the researcher argued 

the traffic performances are affected not only by maintenance works directly but also by the indirect effects 

which are the road surface conditions affected by maintenance works. The researcher considered only one 

kind of snow removal operation as an indicator variable: plow snow removal. However, there are several 

kinds of snow removal operations in heavy snow areas such as the fresh snow removal, the widening of 

effective road width, the surface leveling, and the snow hauling. Furthermore, the direct effects of the snow 

removal operation on traffic performances were not considered. In this dissertation, the direct effects of 

three kinds of snow removal operations except the surface leveling operations mentioned above on the 

travel speed are considered. 
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3 DATA COLLECTION 

 

This chapter describes how and what kinds of data were collected. In section 3.1, the location and regional 

characteristics of selected arterial are provided. Section 3.2 explains how this dissertation collected and 

processed travel speed data. Section 3.3 defines each weather condition considered, and describes what 

kinds of weather condition data were collected. In section 3.4, types of snow removal operations in Sapporo 

are introduced. Besides, this chapter explains how each snow removal operation is reflected in this 

dissertation. Finally, in section 3.5, the plans and results of traffic count which conducted in this research 

are produced. 

 

3.1 STUDY AREA 

 

To identify the relationships among weather conditions, snow removal operations, and travel speed, this 

dissertation selected a 4.8-km segment of the Nishi 5-chome Tarukawa Dori (an urban arterial) from JR 

Sapporo Station to Subway Asabu Station as the study area (see Figure 3-1). The study area was divided 

into 10 sections demarcated by major intersections, and each section was separated by direction: 

northbound versus southbound. In other words, the study area is composed of 20 links as Figure 3-2. The 

length of each section is presented in Table 3-1. Nishi-5-chome Tarukawa Dori is a four-lane arterial. This 

route is a main street that connects the central commercial/business district of Sapporo to residential areas 

north of that district. The annual average daily traffic (AADT) for the 12 hours from 07:00 to 19:00 was 

17,888 vehicles, and the traffic volume was greater southbound (9,739 veh/12h) than northbound (8,149 

veh/12h) in 2010 [42]. 
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Figure 3-1 The study area: Nishi 5-chome Tarukawa Dori  

(modified from Google Maps) 
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(a) section 1 

 

(b) section 2 

 

(c) section 3 

 

(d) section 4 

 

(e) section 5 

 

(f) section 6 
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(g) section 7 

 

(h) section 8 

 

(i) section 9 

 

(j) section 10 

Figure 3-2 Sections of the study area  

(modified from Google Maps) 

 

Table 3-1 The section lengths 

Section ID Length (km) Section ID Length (km) 

1 0.4 6 0.6 

2 0.5 7 0.35 

3 0.4 8 0.8 

4 0.4 9 0.35 

5 0.4 10 0.6 

Whole section (km) 4.8 
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3.2 TRAVEL SPEED 

 

Travel speed (km/h) was collected from probe taxis in Sapporo provided by Fujitsu Intelligent Society 

Solution, SPATIOWL. These data are 5-minute link-based data that include the locational information 

(geographic coordinates) for the departure and arrival nodes, road types, link lengths, travel time, the 

number of taxis during the collection interval, and the locational information for the departure and arrival 

nodes of the next links that the taxis are going to head. The travel direction for probe taxis can be clearly 

discerned by collecting the information of next links. 

 

The data were aggregated into hourly data to match the interval of the weather condition data. Taxi probe 

data for the hours of 20:00 to 07:00 were not included in the analysis, because night taxi ridership is rare 

in Sapporo. The duration for analysis was the winter of 2013-2014, from 10 December 2013 to 31 March 

2014. Only weekdays were used for analysis, because the traffic patterns of these periods differ from 

general traffic patterns. Additionally, taxis slower than preferred walking speed (1.21 mi/h = 4.356 km/h) 

[43] were excluded to ignore abnormally slow taxis, such as those waiting for passengers, and vehicles 

broken down on the road. In summary, the analysis period covered 13 hours per day for weekdays in the 

winter of 2013-2014 (10 December 2013 to 31 March 2014), with other times excluded from analysis. 

Descriptive statistics of the travel speed for each month and for each link are shown in Table 3-2 and Table 

3-3 respectively. 

 

Table 3-2 Descriptive statistics of the travel speed for each month (unit: km/h) 

Month Max. 85% Mean 15% Min. S.D. 

December, 2013 40.36 25.82 20.00 13.50 4.42 6.12 

February, 2014 42.18 23.36 17.40 10.13 4.36 5.56 

January, 2014 39.84 23.00 17.37 11.29 4.36 6.03 

March, 2014 59.16 26.44 20.32 13.82 4.43 6.17 

Whole period 59.16 24.82 18.69 11.79 4.36 6.13 
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Table 3-3 Descriptive statistics of the travel speed for each link (unit: km/h) 

Link ID Max. 85% Mean 15% Min. S.D. 

  N1 25.80 15.15 12.01 8.93 4.43 3.06 

  N2 39.57 28.87 24.33 19.63 11.97 4.41 

  N3 59.16 29.72 24.41 18.79 7.06 5.46 

  N4 35.50 25.47 21.52 17.20 4.37 4.23 

  N5 39.37 29.45 24.52 19.77 7.68 5.09 

  N6 29.38 21.45 16.84 11.72 4.69 4.54 

  N7 32.09 23.13 19.20 15.40 4.64 4.30 

  N8 32.59 24.93 18.71 9.63 4.59 6.46 

  N9 40.36 29.20 25.09 21.06 7.56 4.10 

  N10 34.34 20.98 17.09 13.04 4.63 4.10 

 Northbound total 59.16 26.64 20.37 13.42 4.37 6.22 

  S1 22.74 11.50 8.31 5.58 4.36 2.87 

  S2 27.50 20.15 15.25 8.86 4.42 4.95 

  S3 37.09 22.06 17.35 12.18 4.42 4.87 

  S4 30.55 22.22 17.10 11.40 5.15 4.77 

  S5 30.90 23.97 18.70 12.50 4.62 5.50 

  S6 34.13 26.25 20.18 15.32 4.53 5.38 

  S7 28.71 20.85 16.16 11.36 5.29 4.37 

  S8 27.41 23.06 19.65 16.51 6.58 3.22 

  S9 37.85 23.66 18.69 12.93 4.79 5.27 

  S10 30.57 21.33 18.01 14.73 5.48 3.42 

 Southbound total 37.85 22.37 17.00 10.23 4.36 5.54 

Whole section 59.16 24.82 18.69 11.79 4.36 6.13 

 



 

- 37 - 

3.3 WEATHER CONDITIONS 

 

The weather condition data were collected by the Automated Meteorological Data Acquisition System 

(AMeDAS) of Sapporo. AMeDAS automatically collects various weather data at weather stations, such as 

weather, wind direction/speed, amount of precipitation, type and height of cloud, visibility, air temperature, 

humidity and atmospheric pressure. And there are about 1,300 AMeDAS stations in Japan[44]. The 

AMeDAS station in Sapporo is about 1.8 km from JR Sapporo Station and 5.6 km from the Asabu Subway 

Station (Figure 3-3). The present study assumes that the weather conditions are same at the AMeDAS 

station and in the study area. Among the weather data, the air temperature, snowfall, and deep snow, was 

considered for the analysis. 

 

 
Figure 3-3 The location of the AMeDAS station in Sapporo 
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Definitions of each weather term are defined on the website of the Japan Meteorological Agency 

(JMA)[45]. Deep snow (cm) is defined as the depth of snow and hail cover on the ground, including both 

fresh and old snow and hail per unit time of observation (1 hour), whereas snowfall (cm) includes only 

fresh snow and hail. Temperature (℃) is the value measured 1.25~2.0 m above the ground. These are 

represented by continuous variables. All these weather data were collected every hour. Descriptive 

statistics of the weather condition for the winter of 2013-2014 are presented in Table 3-4. 

 

Table 3-4 Descriptive statistics of the weather conditions for the winter season of 2013-2014 

 Max. 85% Mean 15% Min. S.D. 

Dec. 2013 

Temperature (℃) 10.6 3.7 0.8 -2.7 -5.3 3.0 

snowfall(cm) 5.0 0.0 0.1 0.0 0.0 0.5 

Deep snow(cm) 52.0 29.0 13.2 0.0 0.0 14.4 

Jan. 2014 

Temperature (℃) 8.1 -0.2 -4.1 -7.3 -10.7 3.2 

snowfall(cm) 7.0 0.0 0.2 0.0 0.0 0.7 

Deep snow(cm) 75.0 65.0 57.5 49.0 41.0 7.1 

Feb. 2014 

Temperature (℃) 7.3 -0.3 -3.5 -7.3 -13.7 3.5 

snowfall(cm) 5.0 0.0 0.2 0.0 0.0 0.6 

Deep snow(cm) 113.0 93.0 81.2 70.0 61.0 12.1 

Mar. 2014 

Temperature (℃) 13.0 4.9 0.5 -3.5 -7.1 4.1 

snowfall(cm) 5.0 0.0 0.1 0.0 0.0 0.5 

Deep snow(cm) 107.0 87.0 74.6 56.5 28.0 16.7 

Total 

Temperature (℃) 13.0 2.6 -1.5 -5.9 -13.7 4.1 

snowfall(cm) 7.0 0.0 0.2 0.0 0.0 0.6 

Deep snow(cm) 113.0 85.0 56.0 8.0 0.0 29.6 

 

The average travel speeds on Nishi 5-chome Tarukawa Dori during the study period are illustrated in 

Figure 3-4, which shows that the relationship between travel speed and temperature plots as a “U” shape. 

In terms of temperature, some researchers have studied the relationship between temperature and traffic 

accidents, and they have proposed that the relationship is J- or U-shaped. Lee et al.[46] found a J-shaped 
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relationship between temperature and the number of injuries from traffic accidents. They mentioned that 

the injuries accidents decreased as the temperature decreased under condition of above 0℃. On the other 

hand, the accidents increased as the temperature decreased under condition of below zero degree Celsius. 

Takahashi et al.[47] noted that accidents in winter in Hokkaido tend to be most frequent at the temperature 

range between -6 and 0℃. Asano and Hirasawa[48] also found that the average number of skid accidents 

peaks when the daily average temperature is around -4℃. A U-shaped relationship of the average travel 

speed and temperature in Figure 3-4 is partly relevant to the previous studies mentioned above. The 

relationship between temperature and traffic accidents in the previous studies also represents as U and J 

shapes. These results might be because the road surface at the certain range of temperatures has mixed 

freezing conditions, such as ice, slush, and water. For this reason, drivers feel more difficultly driving at 

the temperature of the minimum point on the J-curve or U-curve than at other temperature ranges because 

the mixed freezing condition is more slippery than homogeneous freezing conditions. Thus, the squared 

temperature variable (℃2) is also included in the speed prediction model of the present study.  

 

 
Figure 3-4 Average travel speed sections versus air temperature 
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3.4 SNOW REMOVAL OPERATIONS 

 

Four kinds of snow removal operations are performed on roads in Sapporo: fresh snow removal, road 

surface leveling, widening of the effective road width, and snow hauling. Snow removal operations are 

performed based on the threshold level of effective road width as Figure 1-1. Road snow removal in 

Sapporo is done by machines such as snow graders, snow bulldozers, rotary snow blowers and backhoes 

(see Figure 3-5). About 1,400 snow removal machines and 6,000 dump trucks are deployed[49] to 

complete such removal in the 7 hours from midnight to 7 a.m.[50]. 

 

  
(a) snow grader (b) snow bulldozer 

 
 

(c) rotary snow blower (d) backhoe 

Figure 3-5 Snow removal equipment  

(source: the City of Takikawa[51]) 
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Snow removal operations for urban areas are shown in Figure 3-6. In fresh snow removal operations, newly 

fallen snow is pushed to the shoulders. The operations are executed by snow graders and snow bulldozers. 

The fresh snow removal affects traffic in two opposite ways. This operation can maintain the roads in good 

condition by removing newly fallen snow on the road surface. However, the effective road width is 

narrowed when the snow is pushed to the shoulders. In leveling operations, snow graders and snow 

bulldozers flatten rough roads. In road widening operations, the effective width of roads that have been 

narrowed by fresh snow removal is increased. The widening operations are performed by rotary snow 

blowers. In snow hauling, piled snow is hauled to disposal sites by rotary snow blowers, backhoes, and 

dump trucks. Fresh snow removal operations are performed when the deep snow on the road is more than 

10 cm, while other operations are performed when the city deems it necessary.  

 

 
Figure 3-6 Snow removal operations for urban areas  

(source: Wakkanai Development and Construction Department, MLIT[52]) 

 

This dissertation addresses the three snow removal operations other than road surface leveling. To develop 

the speed estimation model, the road widening snow removal operations are expressed as the indicator 

variable. The road widening operation indicator was defined as “1” for links on which the effective road 
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width was increased by road widening operation, and “0” for links on which the effective road width was 

decreased by fresh snow removal operation. So long as the fresh snow removal pushes snow to the 

shoulders, the road surface is clearer but the effective road width is narrower. Therefore, fresh removal 

operations are represented as both an indicator variable and a discrete variable to reflect the effects on 

traffic in two opposite ways. The fresh snow removal operation indicator is defined as “1” when the road 

surface was cleaned by fresh snow removal operation, and “0” when the road was covered with snow. And 

the number of fresh snow removal operations between two road widening operations was represented as a 

discrete variable. Lastly, snow hauling operations were not employed as an independent variable, but the 

effects were reflected by changes in the deep snow variable. After performing the hauling operation on a 

section, the deep snow variable on that section was changed to 0 cm. The conditions of deep snow and 

snow removal on link N5 for the winter of 2013-2014 are shown as an example in Figure 3-7. 

 

 
Figure 3-7 Deep snow and snow removal conditions for the winter of 2013-2014 (Link N5) 
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3.5 TRAFFIC COUNT SURVEYS 

 

This dissertation assumes that vehicles turning left and right at intersections obstruct vehicles going straight 

during the snow season more than in other seasons because of the reduction in effective number of lanes 

by snow removal operations. The traffic count survey was conducted to know how the turning rates at 

intersections would affect travel speed. The vehicles were counted by directions and classified by the 

vehicle classes, and the traffic counts were done on Wednesday and Thursday for two weeks in winter, and 

the recorded results for a week made one set. Two sets of traffic count survey were conducted. The date of 

the 1st set was 17th and 18th February, 2016 and the 2nd set was 24th and 25th February, 2016. Table 3-5 

shows the dates which the traffic counts were conducted by intersections. The counted vehicles were 

recorded three times a day: morning peak hours (7am~9am), non-peak hours (2pm~4pm), and evening 

peak hours (6pm~8pm). Before starting the traffic count survey, all surveyors were given the guideline for 

the survey and conducted the survey using the traffic count recording sheets.  

 

Table 3-5 The traffic count survey dates and times by intersections 

Intersection ID 
1st set 2nd set 

Northbound Southbound Northbound Southbound 

1 17 Feb. 17 Feb. 24 Feb. 25 Feb. 

2 17 Feb. 17 Feb. 24 Feb. 24 Feb. 

3 18 Feb. 17 Feb. 25 Feb. 24 Feb. 

4 18 Feb. 17 Feb. 24 Feb. 25 Feb. 

5 18 Feb. 17 Feb. 24 Feb. 24 Feb. 

6 17 Feb. 17 Feb. 25 Feb. 24 Feb. 

7 17 Feb. 18 Feb. 25 Feb. 25 Feb. 

8 18 Feb. 17 Feb. 25 Feb. 24 Feb. 

9 17 Feb. 18 Feb. 24 Feb. 25 Feb. 

* 17th and 24th February are Wednesday, 18th and 25th February are Thursday. 
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Vehicles on roads are mixed with various classes, this dissertation were classified into two vehicle classes 

as Table 3-6: heavy vehicle class and passenger car class. They were converted to the passenger car unit 

(PCU) based on the passenger car equivalent (PCE) (see Table 3-7). PCE is defined by Highway Capacity 

Manual (HCM) 2010[53] as “the number of passenger cars displaced by a single heavy vehicle of a 

particular type under specified roadway, traffic, and control conditions”. Using the PCE and the percentage 

of each vehicle type, the counted number of vehicles can be converted into PCU by Equation 3-1: 

Where, 

𝑄𝑃𝐶_𝑖 is the number of passenger cars (pcu) on link 𝑖. 

𝑄𝑉_𝑖 is the number of unclassified vehicles (veh) on link 𝑖. 

𝑃𝑃𝐶_𝑖 and 𝑃𝐻𝑉_𝑖 are the percentage of passenger car and heavy vehicle respectively (%)on link 𝑖. 

𝐸𝐻𝑉_𝑖 is the PCE on link 𝑖. 

 

Table 3-6 Vehicle classification under the road traffic act and the present study 

Classification 
Description 

Dissertation Road Traffic Act 

Heavy 

vehicle 

class 

Special-Purpose 

Motor Vehicles 

Motor vehicles with caterpillar treads such as bulldozers, 

steamrollers, graders, snowplows, tractors, etc. are classified into 

two categories: large and small. Small special-purpose motor 

vehicles are those of up to 15km per hour in maximum speed, up to 

4.7m in length, up to 2m in height, and up to 1.7m in width 

Large Motor 

Vehicles 

- Gross vehicle weight: ≥11 tons 

- Payload: ≥6.5 tons or Occupancy: ≥30 persons 

Middle-Category 

Motor Vehicles 

- Gross vehicle weight: 5≤tons<11 

- Payload: 3≤tons<6.5 or Occupancy: 11≤persons<30 

Passenger 

car class 

Ordinary Motor 

Vehicles 

- Gross vehicle weight: <5 tons 

- Payload: <3 tons or Occupancy: <11 persons 

(source: Japan Automobile Manufacturers Association, the Motor Industry of Japan 2010, 2010[54]) 

Table 3-7 Passenger car equivalent (PCE) by the terrain types in Japan 

 

𝑄𝑃𝐶_𝑖 = 𝑄𝑉_𝑖(𝑃𝑃𝐶_𝑖 + 𝐸𝐻𝑉_𝑖 ∙ 𝑃𝐻𝑉_𝑖) 

 

 

(3-1) 
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 urban & level mountainous at intersections 

1-lane & 2-lane roads 2.0 3.5 

1.7 

More than 3-lane roads 2.0 3.0 

(source: Japan Road Association, Road Traffic Capacity, 1984[55]) 

 

In this dissertation, the rates of turning vehicles at intersections and the sizes of intersections were 

considered to explain the characteristics of each intersection. The rate of turning vehicles at the intersection 

is defined as the rate of vehicles turning left and right of outflow vehicles at the intersection. It is expected 

to identify the effects of the rate of turning vehicles at intersection on the travel speed. The size of 

intersection is defined as the number of lanes of the approach from the right at the intersection. The larger 

size of intersection indicates that the waiting space for vehicles turning left and right would be increased. 

The sizes of each intersection on the study area are shown in Table 3-8, and the rates of turning vehicles 

are presented in Table 3-9 for northbound traffic and Table 3-10 for southbound traffic. The dissertation 

employed the average turning vehicle rate of the two traffic count survey sets mentioned above as an 

independent variable to develop the travel speed estimation model. 

 

Table 3-8 The sizes of each intersection on the study area 

Intersection ID 
Intersection 

size 
Intersection ID 

Intersection 

size 
Intersection ID 

Intersection 

size 

1 4 4 6 7 4 

2 4 5 4 8 9 

3 7 6 4 9 2 
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Table 3-9 The rates of turning vehicles at the intersections (northbound traffic) 

Time Set* 
Intersections (Northbound) 

1 2 3 4 5 6 7 8 9 

Morning-

peak 

1st set 8.0% 11.6% 18.1% 28.9% 5.9% 17.6% 9.4% 52.4% 11.3% 

2nd set 2.8% 12.8% 15.3% 38.6% 9.9% 16.6% 9.4% 56.3% 9.2% 

average 5.5% 12.2% 16.6% 33.3% 8.2% 17.1% 9.4% 54.4% 10.2% 

Non-peak 

1st set 6.2% 6.9% 15.6% 20.1% 5.4% 18.4% 6.4% 33.8% 8.9% 

2nd set 4.9% 7.5% 16.9% 30.5% 8.6% 22.2% 7.6% 42.4% 10.0% 

average 5.6% 7.2% 16.2% 25.2% 6.9% 20.3% 7.0% 38.0% 9.4% 

Evening-

peak 

1st set 3.5% 4.3% 9.7% 23.7% 6.5% 19.3% 7.8% 36.5% 14.4% 

2nd set 2.7% 5.3% 12.3% 27.3% 5.1% 16.5% 8.0% 36.0% 13.0% 

average 3.1% 4.8% 11.0% 25.5% 5.8% 17.9% 7.9% 36.3% 13.7% 

* 1st set: 17th and 18th Feb., 2016. 

 

Table 3-10 The rates of turning vehicles at the intersections (southbound traffic) 

Time Set* 
Intersections (Southbound) 

1 2 3 4 5 6 7 8 9 

Morning-

peak 

1st set 30.5% 12.6% 30.5% 23.6% 4.2% 21.9% 3.0% 29.3% 2.3% 

2nd set 31.2% 15.4% 31.1% 18.0% 4.4% 21.5% 3.8% 32.9% 2.9% 

average 30.9% 14.1% 30.8% 20.2% 4.3% 21.7% 3.5% 31.0% 2.6% 

Non-peak 

1st set 32.6% 9.2% 27.7% 20.8% 3.7% 26.0% 9.2% 31.0% 4.5% 

2nd set 26.4% 10.3% 37.6% 21.7% 5.2% 31.2% 5.3% 32.6% 8.2% 

average 29.6% 9.7% 32.5% 21.2% 4.4% 28.5% 7.2% 31.7% 6.3% 

Evening-

peak 

1st set 33.3% 11.3% 29.3% 26.6% 5.7% 27.7% 6.0% 38.4% 5.5% 

2nd set 21.8% 8.5% 27.6% 20.6% 5.0% 32.8% 5.2% 34.7% 7.7% 

average 27.0% 10.1% 28.5% 24.0% 5.4% 30.1% 5.6% 36.7% 6.6% 

* See Table 3-4. 
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4 MODEL DEVELOPMENT 

 

This chapter develops a travel speed prediction model considering weather conditions and snow removal 

operations, and an appropriate model for speed estimation in winter is suggested. As a travel speed 

prediction model, the present study employed regression with the autoregressive integrated moving 

average error (RegARIMA) model. Figure 4-1 shows the analysis flow for developing the travel speed 

estimation model. The first step is to set up a dataset for analysis by combining traffic, weather, and snow 

removal operation data. The second step is to develop a multiple linear regression (MLR) and a fixed 

effects (FE) models, which is a linear regression model for panel data, with all the variables to identify the 

effects of external variables in winter on the travel speed (section 4.1 and section 4.2). The third step is to 

investigate the autocorrelation of the residuals between observed values and estimated values of the MLR 

model and FE model, in order to apply autoregressive integrated moving average (ARIMA) models. Then, 

ARIMA models are developed with the residuals, and two regression models and ARIMA model are 

combined (section 4.3). The last step is to compare the predictive accuracies of developed models to select 

the appropriate model for travel speed estimation in winter (section 4.4). 

 

 
Figure 4-1 Analysis flow 
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4.1 MULTIPLE LINEAR REGRESSION MODEL 

 

A linear regression model is a modeling technique to explain the relationship among the factors by a line. 

The slope of the line and the intercept can be used to estimate the influence of the factor. The model is 

commonly used for analysis of the cross-sectional data, which is obtained at the same point in time or 

regardless of difference in time from the survey of many subjects such as individuals, groups, countries, 

or companies. A linear regression model is also used to forecast change in the dependent variable by 

changing the independent variable. If one independent variable is related with the dependent variable, the 

linear regression is called simple linear regression. And if the linear regression has two or more 

independent variables, it is called multiple linear regression (MLR). 

 

The MLR is based on fallowing five assumptions[56]. 

1. Linearity – the dependent variable and independent variables need to be linearly related. 

2. Normality – all variables in MLR are normally distributed. 

3. Lack of collinearity – it is also called multicollinearity. MLR is required to have little or no 

multicollinearity. Multicollinearity means that some independent variables have relationships with 

other independent variables. 

4. Homoscedasticity – it means that the variance of all residuals are equal. 

5. Independence of errors – It is called autocorrelation (also known as serial correlation). The errors 

should not be correlated with each other. 

 

Several tests can be used in determining whether assumptions are violated or not. The F-test is used to 

check the linearity assumption. In this test, the null hypothesis (H0) is that all regression coefficients (𝛽) is 

zero which means the regression line is not statistically significant (𝛽𝑖 = 0). On the other hand, the 

alternative hypothesis (H1) is that at least one regression coefficient is not zero which means the regression 

line is statistically significant (𝛽𝑖 ≠ 0). The variance inflation factor (VIF) shows how much independent 
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variables correlated each other in the MLR. When the VIF of 1 means independent variables are not 

correlated. And generally, the rule of thumb is that if VIF value not exceed 10, it is regarded as little or no 

multicollinearity. Durbin-Watson test is usually considered to test the autocorrelation in the residuals. 

When Durbin-Watson statistic (d) of 2 indicates no correlation. The range of the d is between 0 and 4, and 

if the d is much less than 2, the residuals are positively correlated, while much larger than 2, the residuals 

have a negative correlation with other residuals. As a roughly, the acceptable range of d is between 1.5 and 

2.5[57], [58]. Coefficient of determination (also known as R-squared) can be used to examine the goodness 

of fit of MLR models. The range of R-squared is between 0 and 1, and the larger R-squared means better 

explanation performance of the model. It can be calculated by Equation 4-1.  

where, 

SST, SSR and SSE are total, regression (explained), and error (unexplained) sum of squares respectively. 

𝑦𝑖 is the observed value of the dependent variable. 

𝑦 is the mean of the observed values. 

𝑦̂𝑖 is the predicted value. 

 

In this dissertation, travel speed is considered as the dependent variable and the other variables are 

independent variables: vehicle turning rates at intersections, the intersection size, weather conditions and 

snow removal variables. To identify the relationships between travel speed and the other variables, the 

MLR models could be developed and expressed as following Equation 4-2: 

 

𝑆𝑆𝑅

𝑆𝑆𝑇
=

∑(𝑦̂𝑖 − 𝑦)2

∑(𝑦𝑖 − 𝑦)2
=

𝑆𝑆𝑅

𝑆𝑆𝐸 + 𝑆𝑆𝑅
=

∑(𝑦̂𝑖 − 𝑦)2

∑(𝑦𝑖 − 𝑦̂𝑖)2 + ∑(𝑦̂𝑖 − 𝑦)2
= 𝑅2, 0 ≤ 𝑅2 ≤ 1  

 

 

(4-1) 
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where, 

𝜀 is error term. 

𝛽𝑖 is regression coefficients (also called effects).  

 

The links (S1 and N10) at both ends of the study route were not included in the analysis because the traffic 

data were collected at intersections from 1 to 9 in Figure 3-1 and 3-2. These links did not include the two 

information of turning rates and intersection sizes. The other links of the study area were analyzed by the 

MLR model using the stepwise method to select the statistically significant variables in the model, and the 

analysis results are shown in Table 4-1. The results of the MLR models, deep snow has a negative 

relationship with travel speed, whereas snowfall variable were not statistically significant at the 95% 

confidence level. The reason can be easily found in the definition of these. As a mentioned above, deep 

snow is defined as the depth of snow including both fresh and old snow, whereas snowfall includes only 

fresh snow. It means the snowfall is a subset of the deep snow. Therefore, at the step of selecting variables, 

the snowfall is excluded from the model by the stepwise method. According to the result, travel speed is 

analyzed to be reduced by 0.14 km/h as the deep snow increase by 1 cm. In case of temperature, the 

temperature squared value correlated positively with the travel time. This means that the relationship 

between the temperature and the travel speed are U-shaped in the present study. This result is related with 

previous studies[46]–[48]. The researchers found the relationship between temperature and traffic 

accidents represents as U or J shapes. The number of fresh snow removals had a negative correlation with 

travel speed, while the operation itself was positively correlated. The result has shown that fresh snow 

 

(𝑇𝑟𝑎𝑣𝑒𝑙 𝑆𝑝𝑒𝑒𝑑)

= (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) + (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒2)𝛽1 + (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)𝛽2

+ (𝑆𝑛𝑜𝑤𝑓𝑎𝑙𝑙)𝛽3 + (𝐷𝑒𝑒𝑝 𝑠𝑛𝑜𝑤)𝛽4 + (# 𝑜𝑓 𝑓𝑟𝑒𝑠ℎ 𝑠𝑛𝑜𝑤 𝑟𝑒𝑚𝑜𝑣𝑎𝑙)𝛽5

+ (𝑅𝑜𝑎𝑑 𝑤𝑖𝑑𝑒𝑛𝑖𝑛𝑔)𝛽6 + (𝐹𝑟𝑒𝑠ℎ 𝑠𝑛𝑜𝑤 𝑟𝑒𝑚𝑜𝑣𝑎𝑙)𝛽7

+ (𝑇𝑢𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒)𝛽8 + (𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒)𝛽9 + 𝜀 

 

 

(4-2) 
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removal operations affected traffic in two opposite ways. Firstly, these operations can keep the roads in 

good condition by the removal of snow from the carriageway. Secondly, the effective road width is 

narrowed when the snow is pushed to the shoulders. According to the result of MLR analysis, the 

coefficient of the number of fresh snow removal operations was -0.36, and the operation was 0.67. It 

indicates that if the fresh snow removal operations were performed more than 3 times without the road 

widening operation, despite removing the snow from the road by the operation, the travel speed would be 

slow. However, road widening operation was negatively correlated with travel speed. This result is 

counterintuitive, because an increase in the effective road width should leads to a decrease in the traffic 

density. More research is required regarding these variables. In case of the vehicle turning rate at 

intersections and the intersection size, the turning rate was negative correlated and the intersection size had 

a positive relationship with travel speed. Vehicles going straight are affected by the vehicles turning left 

and right at intersection especially on the winter road which are narrowed by fresh snow removal operations. 

However, the negative effects of the turning rate decrease if the intersection has enough space to wait for 

turning at intersection. The developed model by the MLR can be expressed as Equation 4-3. 

 

  

 

(𝑇𝑟𝑎𝑣𝑒𝑙 𝑆𝑝𝑒𝑒𝑑)

= 22.72 + 0.01(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒2) − 0.03(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)

− 0.14(𝐷𝑒𝑒𝑝 𝑠𝑛𝑜𝑤) − 0.36(# 𝑜𝑓 𝑓𝑟𝑒𝑠ℎ 𝑠𝑛𝑜𝑤 𝑟𝑒𝑚𝑜𝑣𝑎𝑙)

− 0.34(𝑅𝑜𝑎𝑑 𝑤𝑖𝑑𝑒𝑛𝑖𝑛𝑔) + 0.67(𝐹𝑟𝑒𝑠ℎ 𝑠𝑛𝑜𝑤 𝑟𝑒𝑚𝑜𝑣𝑎𝑙)

− 16.48(𝑇𝑢𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒) + 0.60(𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒) + 𝜀 

 

 

(4-3) 
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Table 4-1 Result of the MLR model 

Variables Estimate t-value VIF 

Constant 22.72 147.59   

Temperature2 (℃2) 0.01 6.02 1.05 

Temperature (℃) -0.03 -2.95 1.47 

Snowfall (cm)       

Deep snow (cm) -0.14 -70.39 1.31 

The number of fresh snow removal -0.36 -12.19 2.00 

Road widening snow removal* -0.34 -3.23 1.89 

Fresh Snow removal* 0.67 7.80 1.19 

Turning rate -16.48 -34.73 2.13 

Intersection size 0.60 21.77 2.11 

F-value (p-value) 1,007.712 (0.00) 

R-squared 0.38 

Durbin-Watson 0.79 

* indicator variables 

 

All independent variables included in the MLR models were statistically significant at the 95% confidence 

level. And the sample sizes are 16,614. According to the result of the developed MLR model, the model 

explains around 40% of the dependent variable. In addition, the F-value from the F-test for verifying the 

linearity assumption was 1,007.712: thus, the regression was statistically significant at the 0.05 significance 

level (p<0.05). All the VIF values of the selected independent variables were less than 10, therefore the 

model was regarded as no multicollinearity. However, the Durbin-Watson statistic (0.79) was lower than 

1.5. This indicates that the residuals of the model serially correlate with each other. This assumption 

violation often occurs when analyzing time series data[59]. It is necessary to correct residuals by 

transforming from the autocorrelated errors to the uncorrelated errors (white noise). 
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4.2 FIXED EFFECTS MODEL 

 

A fixed effects (FE) model is a linear regression for panel data. In econometrics, data types are divided 

into cross-sectional data, time-series data, and panel data as Figure 4-2, according to the data collection 

methods. Panel data, also known as longitudinal data, represents a fusion of cross-sectional data and time 

series data. Frees[60] explained panel data that “unlike regression data, with longitudinal data we observe 

subjects over time. Unlike time-series data, with longitudinal data we observe many subjects”. Because 

panel data has not only cross-sectional information, but also time-series information, a panel data analysis 

model has some important advantages over other data models[60]. First, the panel data model is able to 

analyze dynamic relationships. For example, in case of traffic accidents, the accident rates can be estimated 

if cross-sectional data is only considered. And the change in accident rates over time can be estimated 

when time-series data is used only. In contrast, other useful information, such as the driving experience of 

drivers, can be drawn by tracking individual drivers (panel data). Secondly, the panel data model can model 

individual heterogeneity among the subjects. In other words, the panel data model can control for 

unobserved and unmeasured variables, such as the cultural background and driving habits of drivers.  

Furthermore, the panel data model has less multicollinearity among independent variables than other data 

models have: cross-sectional data models and time-series data models. On the other hand, there are some 

drawbacks in the panel data model. The often referred drawback is hard to collect and design data for 

analysis because the dataset for panel data is composed of time-series and cross-sectional data[61]. And a 

drawback of the FE model is that it is unable to estimate the coefficient for time-invariant effects, but these 

effects are included in the intercept of the model. 
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Figure 4-2 Types of econometric data 

 

Two major models for panel data are the fixed effects (FE) model and the random effects (RE) model. The 

FE model assumes that the unobserved time-invariant individual (subject) effects can be explained as the 

individual specific effects through fixed intercepts, whereas the RE model assumes that the unobserved 

individual effects are stochastic[61]. In the FE model, the individual specific effects are considered as a 

parameter, in the RE model, on the other hand, the individual specific effects are included as an error[62]. 

In other words, the main difference between the two models is whether the individual specific effects are 

related with other independent variables or not[63]. However, Rendon [62] mentioned that to treat the 

effects as parameters or as an error term is not important for econometricians, but whether they decide to 

use it or not is. Therefore, this dissertation decided to use the FE model, and each link ID of the present 

study is regarded as individuals in the model. Because, the travel speed on each link is expected to be 

different due to unobserved variables on links and at intersections. 

 

As that in Equation 4-2, the observed travel speed is considered as the dependent variable, and the other 

variables are included as independent variables for the FE model. Besides, the dataset has 18 links 

(individuals) and 923 hours (duration) information. The MLR model without a constant can be expressed 
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by Equation 4-4. The independent variables of the turning rate and the intersection size were not included 

in the fallowing model. The reason is that the two variables are not time-variant variables, but time-

invariant variables: the data was collected by traffic counts survey. 

where,  

𝛽𝑖 is regression coefficients as the MLR model. 

(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑛𝑎𝑚𝑒)𝑖𝑡 is the observed variables for the 𝑖 link at the 𝑡 time period.  

𝜇𝑖𝑡 is the error term for the 𝑖 link at the 𝑡 time period.  

 

The FE model considers the section (individual) specific effects. Thus, the FE model can be provided as 

the extension of Equation 4-4 by Equation 4-5. 

where, 𝜇𝑖𝑡 = 𝑣𝑖 + 𝜀𝑖𝑡.  

The error term (𝜇𝑖𝑡) of Equation 4-4 was disassembled into the unobserved time-invariant effects, which 

is replaced with the section specific effects (𝑣𝑖), and the residuals (𝜀𝑖𝑡).  

 

 

(𝑇𝑟𝑎𝑣𝑒𝑙 𝑆𝑝𝑒𝑒𝑑)𝑖𝑡

= (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒2)𝑡𝛽1 + (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)𝑡𝛽2 + (𝑆𝑛𝑜𝑤𝑓𝑎𝑙𝑙)𝑡𝛽3

+ (𝐷𝑒𝑒𝑝 𝑠𝑛𝑜𝑤)𝑖𝑡𝛽4 + (# 𝑜𝑓 𝑓𝑟𝑒𝑠ℎ 𝑠𝑛𝑜𝑤 𝑟𝑒𝑚𝑜𝑣𝑎𝑙)𝑖𝑡𝛽5

+ (𝑅𝑜𝑎𝑑 𝑤𝑖𝑑𝑒𝑛𝑖𝑛𝑔)𝑖𝑡𝛽6 + (𝐹𝑟𝑒𝑠ℎ 𝑠𝑛𝑜𝑤 𝑟𝑒𝑚𝑜𝑣𝑎𝑙)𝑖𝑡𝛽7 + 𝜇𝑖𝑡  

          𝑓𝑜𝑟 𝑖(𝑙𝑖𝑛𝑘) = 𝑁1, 𝑁2, … , 𝑆9, 𝑆10, 

              𝑡(𝑡𝑖𝑚𝑒) =2013-D10-07, 2013-D10-08, 2013-D10-09, …, 2014-F13-07, 

2014-F13-08, …, 2014-M31-18, 2014-M31-19 

 

 

(4-4) 

 

(𝑇𝑟𝑎𝑣𝑒𝑙 𝑆𝑝𝑒𝑒𝑑)𝑖𝑡

= (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒2)𝑡𝛽1 + (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)𝑡𝛽2 + (𝑆𝑛𝑜𝑤𝑓𝑎𝑙𝑙)𝑡𝛽3

+ (𝐷𝑒𝑒𝑝 𝑠𝑛𝑜𝑤)𝑖𝑡𝛽4 + (# 𝑜𝑓 𝑓𝑟𝑒𝑠ℎ 𝑠𝑛𝑜𝑤 𝑟𝑒𝑚𝑜𝑣𝑎𝑙)𝑖𝑡𝛽5

+ (𝑅𝑜𝑎𝑑 𝑤𝑖𝑑𝑒𝑛𝑖𝑛𝑔)𝑖𝑡𝛽6 + (𝐹𝑟𝑒𝑠ℎ 𝑠𝑛𝑜𝑤 𝑟𝑒𝑚𝑜𝑣𝑎𝑙)𝑖𝑡𝛽7 + 𝑣𝑖 + 𝜀𝑖𝑡 

 

 

(4-5) 
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The independent variables in FE models explain part of the dependent variable. And the leftover variation 

of the dependent variable, which means the dependent variable (travel speed) cannot be explained by the 

independent variables on each link, is the section-specific effect estimate. In other words, the structure of 

the FE model is the same as the MLR model with individual dummy variables as intercept shifters. So, it 

is also called the least squares dummy-variable model (LDV). 

 

As the MLR models, all links except the link N10 and S1 were analyzed by the FE model. The analysis 

results are shown in Table 4-2 and the section-specific effects are presented in Figure 4-3 and Table 4-3. 

The basic assumption of the FE model is the same as the MLR model, excluding multicollinearity: the 

panel model has less multicollinearity as mentioned above. All independent variables selected for the FE 

models were statistically significant at the 95% confidence level. The R-squared value of FE model was 

0.51 and it means that it explains more than 50% of the dependent variable. The R-squared value of the FE 

model increased by 0.13 from the value of the MLR, though the FE model has less independent variables 

than the MLR model. This result is the FE model has captured the unobserved individual specific effects 

by intercept shifters. An example of the estimated travel speed on link N9 by the FE model and the MLR 

model were shown with the observed travel speed in Figure 4-4. In addition, the F-value from the F-test 

for verifying the linearity assumption was 1,422.8: thus, the developed FE model was statistically 

significant at the 0.05 significance level (p<0.05). In case of the Durbin-Watson statistic, it was larger than 

the MLR but the statistic (1.13) was still lower than 1.5. It indicates the residuals of the model were serially 

correlated each other. This indicates that the residuals of the model serially correlate with each other. In 

other words, the correlated residuals should be corrected to uncorrelated errors (white noise) as the 

residuals of the MLR. The method will be discussed in the next section. 

 

The employed variables in the FE model were similar with the MLR result. However, all employed 

variables in the FE were intuitive unlike the MLR result. Though the number of fresh snow removal 

deployments variable was not selected in the model, the fresh snow removal and the road widening 
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operations had positive relationships with the travel speed. Both the temperature and the temperature 

squared value correlated positively with the travel time. This means that the relationship between the 

temperature and the travel speed are U-shaped in the present study. According to the estimated section-

specific effects, the southbound travel speeds were more explained by the independent variables of the FE 

model than the northbound travel speeds. In other word, there were more of unobserved variables on the 

northbound links than on the southbound links such as the time-of-day traffic patterns by directions.  

 

Table 4-2 Result of the FE model 

Variables Estimate t-value p-value 

Temperature2 (℃2) 0.01 6.02 0.00 

Temperature (℃) 0.02 -2.95 0.03 

Snowfall (cm)       

Deep snow (cm) -0.13 -70.39 0.00 

The number of fresh snow removal       

Road widening snow removal* 0.70 -3.23 0.00 

Fresh Snow removal* 0.63 7.80 0.00 

F-value (p-value) 1,422.8 (0.00) 

R-squared 0.51 

Durbin-Watson 1.13 

* indicator variables 
 

 
Figure 4-3 Section-specific effect estimates 



 

- 58 - 

Table 4-3 Section-specific effect estimates 

Link ID 

(Northbound) 
Estimate Std. Error t-value 

Link ID 

(Southbound) 
Estimate Std. Error t-value 

N1 19.02 0.18 106.87 S1 - 

N2 26.73 0.15 179.75 S2 19.74 0.15 132.28 

N3 26.81 0.15 180.21 S3 19.52 0.15 130.99 

N4 23.92 0.15 160.77 S4 20.25 0.15 134.71 

N5 26.05 0.15 173.42 S5 21.69 0.15 144.20 

N6 18.38 0.15 122.39 S6 17.82 0.15 118.15 

N7 20.86 0.15 138.47 S7 21.32 0.15 141.52 

N8 20.38 0.15 135.22 S8 20.21 0.15 134.09 

N9 26.61 0.15 176.50 S9 19.53 0.15 129.57 

N10 - S10 16.86 0.15 17.65 

 

 

 

 
Figure 4-4 Comparison of the estimated travels speed by the FE and the MLR (Link N9) 
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4.3 REGRESSIONS WITH ARIMA ERRORS (RegARIMA) 

 

According to the results the MLR model and the FE model, the residuals of the models are serially 

correlated each other. However, it violated the no autocorrelation assumption of regressions: the residuals 

of the regression model should be uncorrelated with other residuals. The autocorrelated residuals will 

probably include more information which could be not explained by the regression models[27]. Hence, the 

autocorrelated residuals should be extracted to transform them into the white noise with mean zero and 

variance, 𝜎2. Though there are several methods to correct the correlated residuals, this dissertation used 

the autoregressive integrated moving average (ARIMA) model to correct correlated errors. Some 

researchers have used this method which called the linear regression model with ARIMA (RegARIMA) 

model [27], [35], [64], [65]. The RegARIMA consists of two parts: the regression part and the ARIMA 

part. The basic steps are shown in Figure 4-5. 

 

 
Figure 4-5 The steps for the RegARIMA 
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4.3.1 Autoregressive Integrated Moving Average (ARIMA) 

 

The ARIMA model is a general model for forecasting a time series, and it assumes that future values can 

be explained through the values of several past observations and random errors. It gives higher weight to 

the recent past than to the distant past, so the model is suitable for predicting short-term values in the time-

series[66]. The ARIMA model is employed in various fields for forecasting time series, but the general 

ARIMA model is hard to apply some time series that are periodic or seasonal. The seasonal ARIMA model 

could be applied instead of the general ARIMA model to overcome the periodic limitation. The seasonal 

ARIMA model can describe future values not only concerning recent past trend but also concerning 

periodic trend. For example, the road tends to be crowded with commuters at morning and evening peak 

times on weekdays, and this occurs periodically. 

 

Section 4.1 and 4.2 revealed that the developed models of MLR and FE have an autocorrelation problem. 

It can be presented as Equation 4-6. The developed two regression models, the MLR and the FE allow the 

estimated travel speed to differ from link to link, so the residuals can be different across links. ARIMA 

models account for the residuals on each link. An ARIMA model is a general model for forecasting a time 

series, and a seasonal ARIMA model that is an expanded ARIMA model can be applied for periodic or 

seasonal time series. 

where,  

𝜇𝑖𝑡 is the autocorrelated residuals of the regression models: the MLR and the FE models 

(hereinafter referred to as “unexplained travel speed” at the section 4.3.1) 

𝜀𝑖𝑡 is a serially independent error which cannot be estimated by the ARIMA model. 

 

 

(𝑇𝑟𝑎𝑣𝑒𝑙 𝑠𝑝𝑒𝑒𝑑)𝑖𝑡 =  𝛼 + 𝛽(𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)𝑖𝑡 + 𝜇𝑖𝑡 

𝜇𝑖𝑡 = (𝐴𝑅𝐼𝑀𝐴 𝑚𝑜𝑑𝑒𝑙) + 𝜀𝑖𝑡  

 

 

(4-6) 
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Now, the new error term is a white noise. In other words, the “unexplained travel speed” (𝜇𝑡) can be 

predicted by the ARIMA model. The equation of the ARIMA (𝑝, 𝑑, 𝑞) model for the “unexplained travel 

speed” (𝜇𝑡) can be written as follow: 

 

where,  

𝑑 is the number of non-seasonal differences. 

∅𝑝(B) represents a stationary autoregressive (AR) operator of order 𝑝.  

It can be expressed by ∅𝑝(B) = 1 − ∅1𝐵 − ∅2𝐵2 − ⋯ − ∅𝑝𝐵𝑝,  

θ𝑞(𝐵) is a moving average (MA) operator of order 𝑞.  

It can be expressed by θ𝑞(𝐵) = 1 − θ1𝐵 − θ2𝐵2 − ⋯ − θ𝑞𝐵𝑞. 

𝜇𝑡 is the “unexplained travel speed” of Equation 4-7. 

𝜀𝑡 is a new error term which is independent each other. 

𝐵 is a backshift operator. 

It is a useful notation for time series lags: for example, 𝐵𝑘y𝑡 = 𝑦𝑡−𝑘.  

 

As mentioned above, the traffic patterns are periodic. Thus the seasonal ARIMA should be considered and 

the seasonal ARIMA model (ARIMA(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠) can be expressed by Equation 4-8. 

where, 

𝐷 is the number of seasonal differences. 

Φ𝑃(𝐵𝑠) and Θ𝑄(𝐵𝑠) express seasonal AR operator of order P and seasonal MA operator of order Q 

respectively. 

 

∅𝑝(𝐵)(1 − 𝐵)𝑑𝜇𝑡 = 𝜃𝑞(𝐵)𝜀𝑡 

 

 

(4-7) 

 

𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝛷𝑃(𝐵𝑠)(1 − 𝐵𝑠)𝐷𝜇𝑡 = 𝜃𝑞(𝐵)𝛩𝑄(𝐵𝑠)𝜀𝑡 

 

 

(4-8) 
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S is the length of a cycle. 

A periodic cycle defined as 13 hours in the present study (from 7 am to 8 pm). 

 

This dissertation illustrates the ARIMA model estimation process using the unexplained travel speed by 

the MLR of link N8. To analysis the seasonal ARIMA models, the data to be predicted should be stationary 

time series which has constant mean, variance, and autocorrelation over time. It can be checked by time 

series plot in Figure 4-6(a). The mean of time series plot fluctuated over time: nonstationary. Figure 4-6(b) 

and (d) represents the plot of the autocorrelation function (ACF) the seasonal ACF respectively, and Figure 

4-6(c) and (e) are the partial autocorrelation function (PACF) and the seasonal PACF. Both the ACF and 

the PACF explains the correlation between current value and past value, and they show which past value 

should be considered in estimating the ARIMA model. As shown the ACF and the PACF in Figure 4-6, 

spikes can be found at the seasonal lags: 13th, 26th, 39th, …13nth. Hence, a seasonal difference was taken, 

and the results are presented in Figure 4-7 (ARIMA(0,0,0)(0,1,0)13). In Figure 4-7(a), the time series plot 

looks still non-stationary thus an additional first difference was taken. After first and seasonal differencing, 

the time series plot was turned into stationary as Figure 4-8 (ARIMA(0,1,0)(0,1,0)13). At lag 1 of Figure 

4-8(b) and season lag 1, the spikes were protruding above the line of 95% confidence level. Consequently, 

the ARIMA(0,1,1)(0,1,1)13 was considered. 
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(a) time series plot for residuals 

  
(b) ACF (c) PACF 

  
(d) seasonal ACF (e) seasonal PACF 

Figure 4-6 The residuals between observed and estimated by MLR on Link N8 (ARIMA(0,0,0)(0,0,0)13) 
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(a) time series plot for residuals 

  
(b) ACF (c) PACF 

  
(d) seasonal ACF (e) seasonal PACF 

Figure 4-7 The seasonal difference on Link N8 (ARIMA(0,0,0)(0,1,0)13) 
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(a) time series plot for residuals 

  
(b) (c) 

  
(d) (e) 

Figure 4-8 The first difference of seasonal difference on Link N8 (ARIMA(0,1,0)(0,1,0)13) 
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The residuals in ARIMA models should be not correlated each other: white noise, independent identically 

distributed. However, the residuals of the ARIMA(0,1,1)(0,1,1)13 analysis were correlated with the past 

errors especially at lag 1 according to the residual ACF and residual PACF in Figure 4-9. The spike at lag 

1 in the residual PACF suggests AR(1) component, so the ARIMA(1,1,1)(0,1,1)13 was analyzed. In Figure 

4-10, no more spikes were found in both the residual ACF and residuals PACF. Therefore, 

ARIMA(1,1,1)(0,1,1)13 was selected to predicted the future values. The statistics for the significant test of 

the considered ARIMA models, ARIMA(0,1,1)(0,1,1)13 and ARIMA(1,1,1)(0,1,1)13, are presented in 

Table 4-4. 

 

 

 
Figure 4-9 Residual ACF and PACF of ARIMA(0,1,1)(0,1,1)13 
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Figure 4-10 Residual ACF and PACF of ARIMA(1,1,1)(0,1,1)13 

 

Table 4-4 The results of the seasonal ARIMA model for the residuals from the MLR (Link N8) 

Model 
Model Fit Statistics Ljung-Box Q 

Stationary R2 Statistics DF Sig. 

ARIMA(0,1,1)(0,1,1)13 0.471 52.180 16 0.000 

ARIMA(1,1,1)(0,1,1)13 0.493 20.644 15 0.149 

 

In Table 4-4, the R-squared value and the results of Ljung-Box test were shown. The R-squared value 

means the same as other statistical models, it describes how well the data are explained by the model. The 

Ljung-Box statistics is a statistical test whether the correlation coefficient among the errors are different 

from zero or not. The null hypothesis (H0) of this test is that the errors are independently distributed. 

According to the results of Ljung-Box test in Table 4-3, the model of ARIMA(0,1,1)(0,1,1)13 was rejected 

the alternative hypothesis and accepted null hypothesis, it means the residuals of the model are 
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autocorrelated. In case of ARIMA(1,1,1)(0,1,1)13 model, the residuals were independent and the R-squared 

value was higher than ARIMA(0,1,1)(0,1,1)13 model. Ultimately, the ARIMA(1,1,1)(0,1,1)13 model was 

selected to estimate the unexplained travel speed by the MLR models on link N8. The predicted 

unexplained travel speed is shown in Figure 4-11. 

 

 
Figure 4-11 Actual and estimated “unexplained travel speed” by ARIMA(1,1,1)(1,1,1)13 (Link: N8) 

 

Using the same method as above, the unexplained travel speeds of other links were analyzed and the results 

were presented in Table 4-5. The R-squared values of the ARIMA models for the unexplained travel speeds 

by FE models were slightly higher than the ARIMA models for the unexplained travel speeds by MLR 

models on most of links. 
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Table 4-5 The results of the ARIMA model for the residuals from the regressions 

Link ID ARIMA 
Stationary R2 Sig. of Ljung-Box Q 

MLR error FE error MLR error FE error 

N1 ARIMA (0,1,2)(0,1,1)13 0.653 0.659 0.227 0.255 

N2 
ARIMA (2,1,1)(0,1,1)13 0.656 - 0.578 - 

ARIMA (1,1,2)(0,1,1)13 - 0.658 - 0.389 

N3 ARIMA (0,1,2)(0,1,1)13 0.664 0.664 0.169 0.155 

N4 ARIMA (2,1,1)(0,1,1)13 0.649 0.650 0.615 0.555 

N5 ARIMA (0,1,2)(0,1,1)13 0.644 0.644 0.648 0.666 

N6 ARIMA (5,1,4)(0,1,1)13 0.622 0.623 0.352 0.371 

N7 ARIMA (4,1,2)(0,1,1)13 0.613 0.612 0.108 0.109 

N8 ARIMA (1,1,1)(0,1,1)13 0.493 0.493 0.149 0.187 

N9 ARIMA (1,1,1)(0,1,1)13 0.684 0.687 0.789 0.793 

S2 ARIMA (1,1,2)(0,1,1)13 0.581 0.583 0.075 0.069 

S3 ARIMA (14,1,2)(0,1,1)13 0.624 0.627 0.371 0.335 

S4 ARIMA (12,1,1)(1,1,1)13 0.614 0.616 0.480 0.498 

S5 ARIMA (2,1,1)(1,1,1)13 0.534 0.534 0.824 0.810 

S6 ARIMA (12,0,7)(0,1,1)13 0.420 0.428 0.073 0.086 

S7 ARIMA (5,1,1)(0,1,1)13 0.632 0.631 0.506 0.534 

S8 ARIMA (1,1,2)(0,1,1)13 0.608 0.611 0.220 0.300 

S9 ARIMA (5,1,6)(0,1,1)13 0.698 0.459 0.575 0.679 

S10 ARIMA (0,1,1)(0,1,1)13 0.716 0.720 0.379 0.388 

 

4.3.2 Combining Two Models: Regression Model and ARIMA Model 

 

In section 4.1 and 4.2, the travel speed was estimated by MLR and FE models. And in section 4.3, the 

residuals (unexplained travel speed) of MLR and FE models was estimated by ARIMA models. In this 
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section, the results of the estimated travel speed and residuals were combined to get more accurate estimate 

travel speed (RegARIMA model). The predictive abilities of two RegARIMA models (MLR+ARIMA and 

FE+ARIMA) were also compared to find which combined model is more accurate. The predictive 

accuracies of the two models were compared in terms of the R-squared value, the mean absolute error 

(MAE), and the mean absolute percentage error (MAPE). The smaller the MAE and the MAPE, the better 

the predictive ability, while the larger the R-squared value, the better the predictive ability. The equation 

of the R-squared is the same as Equation 4-1, and the others are as follows (Equation 4-9 and 4-10): 

Where, 

n is the number of observations. 

𝑌𝑖 is the observed value at 𝑖. 

𝑌̂𝑖 is the predicted value at 𝑖. 

 

The measures of the RegARIMA models were presented in Table 4-6. According to the results, the R-

squared value of the FE+ARIMA model was increased from the FE model (Table 4-2) by estimating the 

residuals. On the other hand, the R-squared value of the MLR+ARIMA model was slightly decreased from 

the MLR model (Table 4-1). In addition, the MAE and the MAPE of the FE+ARIMA model had higher 

values than the MLR+ARIMA. It might be because that the MLR model expressed a line for 18 links in 

the present study, while the FE model had multiple lines for each links by the individual specific effects. 

In other words, the residuals of the FE model were relatively stable regardless of links, and the residuals 

of the MLR model were disorderly. Furthermore, even though the number of independent variables of the 

FE+ARIMA were less than the MLR with ARIMA, the accuracies of the FE+ARIMA model were larger: 

the turning rates at intersections and the intersection size were not included in the FE model. According to 

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑌𝑖 − 𝑌𝑖̂|
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the MAPE of the model, the model has around 80% accuracy, and the model has around 3.3 km/h error on 

average on the study area. Finally, the MLR showed the counterintuitive result in Table 4-1, and the FE 

result was intuitive. Therefore, the FE+ARIMA model was selected appropriate model in this dissertation. 

The R-squared value was 0.725, it represents that the model can explain 72.5% of the dependent variable. 

An example of the estimated travel speed plots on link N9 were presented in Figure 4-12. As shown in 

Figure 4-12, the accuracy of estimated speed by the RegARIMA model, which was combined of the FE 

model and the ARIMA, was much higher than the FE model.  

 

Table 4-6 Comparison of the MLR with ARIMA model and the FE with ARIMA model 

Link ID 

MAE MAPE R-squared 

MLR with 

ARIMA 

FE with 

ARIMA 

MLR with 

ARIMA 

FE with 

ARIMA 

MLR with 

ARIMA 

FE with 

ARIMA 

N1 7.126 3.521 64.39% 30.92% 0.525 0.911 

N2 11.749 2.950 47.22% 12.57% 0.276 0.779 

N3 14.434 3.831 58.15% 17.03% 0.302 0.609 

N4 12.394 2.868 56.92% 14.56% 0.405 0.570 

N5 10.655 3.256 41.96% 15.18% 0.228 0.744 

N6 4.337 2.687 32.19% 19.65% 0.327 0.804 

N7 3.849 2.739 24.42% 17.83% 0.343 0.502 

N8 12.159 4.214 64.05% 32.42% 0.417 0.800 

N9 12.686 3.121 49.86% 12.97% 0.259 0.720 

S2 6.018 3.749 49.29% 36.14% 0.445 0.813 

S3 5.423 3.255 40.21% 23.67% 0.324 0.611 

S4 6.169 2.880 34.77% 21.18% 0.552 0.708 

S5 6.552 3.010 41.06% 25.61% 0.359 0.751 

S6 4.497 4.457 26.04% 21.85% 0.180 0.793 

S7 3.599 3.871 24.89% 30.61% 0.533 0.794 

S8 2.903 1.971 15.84% 10.46% 0.453 0.690 

S9 7.860 3.233 41.11% 20.79% 0.455 0.589 

S10 4.475 3.052 28.41% 17.64% 0.389 0.354 

total 7.607 3.259 41.15% 21.16% 0.367 0.725 
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Figure 4-12 Estimated speeds by the FE model and the RegARIMA model (FE with ARIMA) (link: N9)  
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5 EFFECTIVENESS OF THE REGARIMA IN WINTER 

 

The present study developed the RegARIMA models to predict the travel speed in winter on urban arterials. 

The developed model showed around 80 percent predictive accuracy of the observed travel speed using in-

sample of data. Then, the model validation process is necessary using out-of-sample of data in order to see 

how the model can forecast well in winter. And it should to be checked whether the predicted results using 

out-of-sample of data have similar predictive accuracy with the results using in-sample of data or not. 

Since the present study is related to snow in winter, the two periods were used for the model validation 

according to the weather conditions: non-snow day (section 5.1) and snow day (section 5.2). The FE with 

ARIMA model was used as a RegARIMA model for model validation in this chapter. Furthermore, the 

travel speed predicted by the RegARIMA under two different weather conditions was compared with the 

univariate ARIMA results, which has only the observed travel speed data as a variable, to investigate the 

effectiveness of the model in winter. 

 

5.1 NON-SNOW CONDITIONS 

 

The travel speed for the three weekdays which are March 25, 26, and 27 of 2014 was predicted by both the 

univariate ARIMA model and the RegARIMA model in order to compare the performance of the models 

under non-snow conditions. The weather of this period had no precipitation, and the travel speed of these 

days were predicted by the data until the day before, and the MAE and the MAPE are shown in Table 5-1. 

 

According to Table 5-1, the predictive accuracy of the RegARIMA was around 88.7% and of the univariate 

ARIMA was around 88.4% on non-snow days. Although the accuracy of the RegARIMA model was not 

so different with the univariate ARIMA model. In other words, the two models are acceptable for 

forecasting the travel speed in non-snow conditions. The error rates were relatively high in the southern 
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sections on both directions of the study area: the section 1, 2, and 3 (link N1, N2, N3, S2, and S3 in Table 

5-1). This is because that the traffic pattern in this area was quite different with other area due to the traffic 

control system and the geometric designs. For example, the turning right is prohibited at the intersection 1 

(see Figure 3-1 and 3-2), and Hokkaido University adjoins the west side of the intersection 2 and 3. It 

means that the vehicles turning left for northbound and the vehicles turning right for southbound are limited 

at these intersections, so the turning rates for the university are very low. 

 

Table 5-1 The MAE and the MAPE of forecasted travel speeds on non-snow days 

Link ID 
MAE MAPE 

ARIMA RegARIMA ARIMA RegARIMA 

N1 2.554 2.438 18.1% 20.1% 

N2 2.375 2.481 8.9% 9.6% 

N3 4.435 4.791 17.6% 19.8% 

N4 2.129 2.283 9.4% 10.5% 

N5 2.983 2.967 10.5% 10.5% 

N6 1.498 1.651 6.7% 7.4% 

N7 1.887 1.951 8.4% 8.7% 

N8 2.075 2.189 8.3% 8.7% 

N9 2.187 2.268 8.3% 8.6% 

S2 3.756 1.817 22.5% 12.0% 

S3 3.558 2.743 21.9% 18.9% 

S4 2.153 1.947 9.3% 8.8% 

S5 1.596 1.600 6.6% 6.7% 

S6 2.799 2.721 10.9% 10.0% 

S7 2.346 2.351 10.8% 11.2% 

S8 1.283 1.227 5.5% 5.3% 

S9 1.977 2.017 8.6% 8.9% 

S10 2.705 2.772 16.7% 17.5% 

Total 2.461 2.345 11.6% 11.3% 
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5.2 SNOW WEATHER CONDITIONS 

 

The travel speed for another three weekdays which are February 13, 14, and 17 of 2014 was predicted by 

both the univariate ARIMA model and the RegARIMA model in order to compare the performance of the 

models under snow conditions. During the snow period, around 20 cm of snow fell in Sapporo. The amount 

of hourly falling snow during the period is shown as Figure 5-1. The predictive accuracies of the two 

models were compared in terms of the MAPEs and the MAEs using the out-of-sample data, and the results 

are presented in Table 5-2. 

 

 
Figure 5-1 Snowfall from Feb. 13th to 17th, 2014 in Sapporo 

 

According to Table 5-2, the predictive accuracy of the univariate ARIMA was about 82.1% and of the 

RegARIMA was about 84.1% under snow conditions. Although the predictive accuracy of the RegARIMA 

model under snow weather conditions was reduced by 4.6% compared to non-snow weather conditions, 

the difference in accuracy between the univariate ARIMA and the RegARIMA was increased. In other 

words, the RegARIMA model is more appropriate than the univariate ARIMA model regardless of snow 



 

- 76 - 

weather conditions. The reason is that the univariate ARIMA model only considered its own previous data, 

but the RegARIMA included other external information of weather conditions and snow removal 

operations.  

 

Table 5-2 The MAE and the MAPE for the forecasted travel speeds by links on snow days 

Link ID 
MAE MAPE 

ARIMA RegARIMA ARIMA RegARIMA 

N1 1.89 1.97 19.7% 20.0% 

N2 2.39 2.06 10.9% 9.2% 

N3 4.04 3.45 20.4% 17.0% 

N4 2.89 2.43 14.6% 11.4% 

N5 3.82 3.66 20.2% 18.3% 

N6 3.22 2.31 21.3% 15.2% 

N7 2.70 1.99 18.3% 13.0% 

N8 2.80 3.26 20.9% 21.5% 

N9 3.53 3.12 18.5% 16.2% 

S2 2.45 2.83 20.6% 22.5% 

S3 2.26 1.97 14.0% 11.9% 

S4 3.20 2.51 23.6% 18.0% 

S5 3.12 2.63 20.4% 17.0% 

S6 2.61 2.22 16.2% 13.5% 

S7 2.08 1.97 18.5% 17.6% 

S8 1.54 1.31 9.2% 7.7% 

S9 3.39 3.79 21.8% 22.4% 

S10 2.23 2.47 13.0% 14.0% 

Total 2.79 2.55 17.9% 15.9% 
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Table 5-3 shows how the predictive accuracy of the two models changes over time under different weather 

conditions. The results show that the predictive accuracy regardless of weather conditions was changed 

over time in both models: the univariate ARIMA and the RegARIMA. When focusing on the predictive 

accuracy over time, the difference in the accuracy between the two models increased substantially under 

snowy condition. In other words, the predictive accuracy of ARIMA decreased over time under snow 

conditions, while the RegARIMA was relatively stable over time regardless of weather. As mentioned 

above, it is because of the difference in the employed variables in the models. In other words, the travel 

speed estimation model in winter should consider not only the past observations but also other external 

factors to obtain more accurate results. A sample speed profile from February 10 to February 20 of 2014 

on link S7 was shown in Figure 5-2. As shown in Figure 5-2, the gap between the ARIMA and the 

RegARIMA is getting wider after snowing over time. 

 

Table 5-3 Changes in the MAE and the MAPE of forecasted travel speeds over time  

Weather 
Predicted 

day 

MAE MAPE 

ARIMA RegARIMA Difference ARIMA RegARIMA Difference 

Non-

Snow 

1st day 2.34 2.37 -0.03 11.8% 12.2% -0.4% 

2nd day 2.51 2.40 0.11 11.9% 11.5% 0.4% 

3rd day 2.53 2.27 0.26 11.2% 10.2% 1.0% 

Snow 

1st day 2.62 2.81 -0.19 14.3% 14.9% -0.6% 

2nd day 2.59 2.42 0.17 17.5% 16.5% 1.0% 

3rd day 3.15 2.43 0.72 21.8% 16.4% 5.4% 
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Figure 5-2 Predicted speeds in snow days by the RegARIMA and the univariate ARIMA (link: S7) 
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6 ESTIMATION OF THE EFFECTS OF SNOW REMOVAL 

OPERATIONS 

 

This chapter presents a methodology for quantifying the effects of the snow removal operations. The 

effects of snow removal operations were represented as the travel time reduction afforded by such 

operations. The predicted travel time can be derived from the predicted travel speed and the link length on 

each link. Chapter 5 confirmed that the developed RegARIMA model in the present study can predict the 

travel speed in winter. Section 6.1 quantify the effect of a snow removal operation conducted independently 

in winter season of 2013-2014 in Sapporo. In section 6.2, the effect of several snow removal operations 

conducted in combination during a certain period in winter were quantified. 

 

6.1 EFFECTS OF A SINGLE SNOW REMOVAL OPERATION 

 

Figure 6-1 shows the flow of estimation for the travel time saving effects by three types of snow removal 

operation. First of all, the travel speed prediction model should be developed as chapters 4. The second 

step is to forecast the future travel speed by the travel speed prediction model with the observed travel 

speed data, weather forecasts information, and snow removal operations as chapter 5. To identify the 

effects of individual snow removal operations, the recorded independent variables until each snow removal 

operation performed are used. In other words, the effect of a single snow removal operation is defined as 

the saved travel time for the day after the operation is performed. For example, when a fresh snow removal 

operation on link S5 was performed on the night of Jan. 6, the difference in travel time between with and 

without the operation on Jan. 7 is defined as the fresh snow removal effect on link S5. And the travel time 

can be forecasted by the prediction travel speed and the link lengths (see Table 3-1) by Equation 6-1. At 

last, the travel time reduction is the difference in predicted travel time between the case with snow removal 

and that without snow removal, and the travel time saved by a snow removal operation is transformed into 
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the travel time-saving benefit (Equation 6-2). In Japan, the unit costs for travel time by types of vehicle is 

classified into three by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT)[67] as Table 

6-1. The present study considers only the value of only passenger car class (45.78 JPY/min./veh) which 

includes both passenger cars and buses [68]. 

 

Table 6-1 Units of the time value cost by types of vehicle  

Vehicle Type Unit cost (JPY/min/veh) 

Passenger car class 45.78 

Light goods vehicle 47.91 

Heavy goods vehicle 64.18 

(Source: MLIT [67]) 
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                      𝑜𝑛 𝑡ℎ𝑒 𝑑𝑎𝑦 𝑎𝑓𝑡𝑒𝑟 𝑠𝑛𝑜𝑤 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

 

(6-1) 

(𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑠𝑎𝑣𝑖𝑛𝑔 𝑏𝑒𝑛𝑒𝑓𝑖𝑡)𝑖

= (∑(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒)𝑖𝑡_𝑤𝑖𝑡ℎ

20

𝑡=7

− ∑(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒)𝑖𝑡_𝑤𝑖𝑡ℎ𝑜𝑢𝑡

20

𝑡=7

) × 𝑈𝑇 

𝑓𝑜𝑟 with: with snow removal operations 

without: without snow removal operations 

𝑈𝑇  is the unit cost of travel time for the passenger car class  

(45.78 JPY/min/veh) 

 

 

(6-2) 
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Figure 6-1 Flow of estimating the travel time saving effects of individual snow removal operation 

 

In the winter of 2013-2014, ten fresh snow removal deployments, two road widening deployments and two 

snow hauling deployments were conducted, and these operations were selected to estimate the snow 

removal effects of each operation taken independently. The dates on which snow removal operations were 

performed are shown in Table 6-2. The RegARIMA model in the present study considered only the 

weekdays and the travel speed on weekends and holidays were not included. Because F3 was Friday, the 

next study day to estimate the effect of the snow removal operation is Monday (Jan. 20). However, the 

snow fell in Sapporo on Sunday (Jan. 19), and it eliminated the effects of snow removal operation in the 

suggested RegARIMA model. The reason is that the fresh snow removal variable in the RegARIMA model 

was reflected as whether snow on the road surface or not. Therefore, the fresh snow removal operation of 

F3 was excluded from the analysis.  
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Table 6-2 The dates the snow removal operations were performed 

Fresh snow removal Road widening Snow hauling 

ID Date Section ID Date Section ID Date Section 

F1 Jan. 6 All W1 Feb. 19 All H1 
Jan. 14~ 

Jan. 23 
2~10 

F2 
Jan. 12 

& Jan. 13 
All W2 

Feb. 23 

~ Feb. 24 
5 ~ 10 H2 

Mar. 8 

~ Mar. 10 
5 ~ 10 

F3 Jan. 17 All       

F4 Jan. 21 All       

F5 Feb. 4 All       

F6 Feb. 5 All       

F7 Feb. 11 All       

F8 Feb. 13 All       

F9 Feb. 17 All       

F10 Feb. 21 All       

(Source: the City of Sapporo[69]) 

 

The travel speed with and without snow removal operations on days after each snow removal operation 

performed were predicted to estimate the effects of the operations by the travel speed prediction model. 

For instance, to estimate the effects of F1 which performed on Jan. 6, both of the travel speeds with and 

without F1 on Jan. 7 were forecasted. The predicted travel speeds with and without fresh snow removal 

operations were presented in Table 6-3 and road widening operations and snow hauling operations were 

presented in Table 6-4. The travel speeds in both of the two tables is the daily average travel speed. 
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Table 6-3 The predicted travel speed with and without fresh snow removal operations by link (km/h) 

Link 

ID 

F1 F2 F4 F5 F6 

With* Without* With Without With Without With Without With Without 

N1 9.20 8.56 9.96 9.33 9.79 9.25 13.34 13.24 12.83 12.19 

N2 21.08 20.45 23.91 23.28 18.10 17.56 22.45 22.35 23.26 22.62 

N3 20.37 19.73 24.28 23.65 18.11 17.57 23.74 23.64 25.52 24.89 

N4 18.19 17.56 18.93 18.30 17.56 17.02 21.83 21.73 20.15 19.52 

N5 20.66 20.02 24.63 23.99 26.43 25.89 25.82 25.72 23.15 22.51 

N6 13.48 12.85 11.53 10.90 19.65 19.12 16.25 16.15 16.28 15.64 

N7 16.20 15.57 13.97 13.34 21.56 21.02 18.30 18.21 19.14 18.51 

N8 13.64 13.00 6.94 6.31 23.52 22.98 17.11 17.02 15.51 14.87 

N9 21.04 20.41 24.63 24.00 23.81 23.27 25.75 25.66 24.41 23.77 

S2 14.88 14.25 6.10 5.46 7.42 6.88 18.49 18.39 17.77 17.13 

S3 17.72 17.09 11.53 10.90 11.62 11.08 19.39 19.29 19.70 19.07 

S4 13.51 12.88 10.66 10.03 9.80 9.26 18.48 18.38 18.02 17.38 

S5 16.13 15.50 10.48 9.85 12.55 12.01 21.53 21.44 20.25 19.62 

S6 14.39 13.75 14.29 13.65 20.25 19.71 20.48 20.38 18.56 17.93 

S7 11.02 10.38 10.66 10.03 19.49 18.95 16.35 16.25 17.39 16.76 

S8 15.60 14.97 15.56 14.92 21.17 20.63 18.96 18.86 17.86 17.23 

S9 13.48 12.85 10.34 9.70 20.80 20.27 19.80 19.70 19.21 18.58 

S10 14.94 14.31 15.30 14.66 18.29 17.75 17.75 17.65 18.42 17.78 

Link 

ID 

F7 F8 F9 F10 

With Without With Without With Without With Without 

N1 13.12 12.49 13.02 12.39 11.97 11.34 10.67 10.03 

N2 23.78 23.14 26.78 26.15 20.90 20.26 20.14 19.51 

N3 27.47 26.84 24.78 24.15 21.28 20.64 21.41 20.78 

N4 23.61 22.97 23.35 22.72 20.20 19.56 17.80 17.16 

N5 27.40 26.77 25.66 25.02 16.99 16.35 17.45 16.81 

N6 15.87 15.24 15.14 14.51 11.12 10.49 10.51 9.88 

N7 17.81 17.17 18.03 17.40 15.66 15.03 16.97 16.34 

N8 14.09 13.45 18.55 17.92 13.73 13.09 12.04 11.40 

N9 24.79 24.15 23.98 23.34 21.93 21.29 21.40 20.77 

S2 17.69 17.06 18.02 17.39 15.80 15.16 13.58 12.94 

S3 17.19 16.55 18.92 18.29 16.30 15.66 15.79 15.16 

S4 17.89 17.25 19.80 19.17 14.23 13.60 12.94 12.31 

S5 19.56 18.93 20.33 19.70 15.69 15.05 12.24 11.61 

S6 18.85 18.21 18.73 18.10 15.47 14.83 14.67 14.04 

S7 14.72 14.09 14.54 13.91 11.63 10.99 11.35 10.72 

S8 18.42 17.79 19.55 18.92 16.05 15.42 16.14 15.50 

S9 16.51 15.87 17.89 17.26 16.90 16.27 12.95 12.32 

S10 16.66 16.03 18.67 18.04 16.83 16.19 15.93 15.30 

(*With and Without: with and without snow removal operations) 
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Table 6-4 The predicted travel speed with and without road widening operations and snow hauling 

operations by link (km/h) 

Link ID 
W1 W2 H1 H2 

With Without With Without With Without With Without 

N1 12.37 11.73             

N2 19.19 18.56     33.80 25.56     

N3 19.91 19.28     33.50 25.27     

N4 21.62 20.98     33.21 24.98     

N5 17.80 17.16 17.45 16.81 29.74 22.75 25.13 20.17 

N6 10.79 10.16 10.51 9.88 19.63 12.65 18.68 13.73 

N7 9.49 8.85 12.14 11.50 28.53 21.92 21.14 17.08 

N8 4.52 3.89 9.37 8.74 32.12 25.52 22.54 18.48 

N9 24.96 24.33 23.55 22.92 33.71 26.92 27.22 23.03 

S2 15.31 14.68     30.90 22.67     

S3 17.74 17.10     28.71 20.47     

S4 14.07 13.43     28.38 20.15     

S5 14.52 13.88 12.24 11.61 17.59 10.60 17.64 12.68 

S6 16.66 16.02 14.67 14.04 19.83 12.84 20.99 16.04 

S7 12.37 11.74 12.36 11.73 20.79 14.19 15.42 11.35 

S8 17.16 16.53 18.61 17.97 27.15 20.54 19.99 15.93 

S9 13.02 12.38 13.02 12.38 18.29 11.50 18.94 14.74 

S10 16.63 16.00 16.91 16.28 23.51 16.72 18.54 14.35 

 

 

According to the travel speed in Table 6-3 and 6-4, the travel speed can be seen to increase when the snow 

removal operations were performed. The predicted travel time with and without snow removal operations 

are shown as Table 6-5 and 6-6. The travel time in the tables were calculated by Equation 6-1. Both of the 

two tables represent the sum of the average hourly travel time on the predicted day. 
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Table 6-5 The predicted travel time with and without fresh snow removal operations by link (minute/veh) 

Link 

ID 

F1 F2 F4 F5 F6 

With Without With Without With Without With Without With Without 

N1 35.5 38.3 32.3 34.7 32.7 34.8 23.8 23.9 24.5 25.9 

N2 18.7 19.2 16.4 16.8 21.7 22.4 17.5 17.6 16.8 17.3 

N3 15.5 16.0 12.9 13.2 17.3 17.9 13.3 13.3 12.3 12.6 

N4 17.3 17.9 16.6 17.2 17.9 18.4 14.4 14.4 15.5 16.1 

N5 15.2 15.7 12.7 13.0 11.8 12.1 12.1 12.2 13.5 13.9 

N6 36.0 37.9 42.2 44.8 24.1 24.9 29.3 29.4 29.0 30.2 

N7 16.9 17.6 19.7 20.7 12.7 13.0 15.0 15.0 14.3 14.8 

N8 48.1 50.7 130.7 164.9 26.7 27.4 37.5 37.7 41.7 43.6 

N9 13.1 13.5 11.1 11.4 11.5 11.8 10.6 10.7 11.2 11.5 

S2 28.1 29.5 85.7 103.8 60.8 68.1 21.3 21.4 22.1 22.9 

S3 18.2 18.9 29.0 31.0 28.5 30.3 16.4 16.5 16.0 16.6 

S4 23.7 25.0 30.4 32.5 32.5 34.7 17.0 17.1 17.5 18.1 

S5 19.6 20.5 31.3 33.6 27.9 29.8 14.5 14.6 15.5 16.0 

S6 33.0 34.6 35.9 38.1 23.4 24.1 22.9 23.0 25.4 26.3 

S7 25.0 26.6 26.0 27.7 14.1 14.5 16.8 16.9 15.8 16.4 

S8 40.1 41.8 40.5 42.2 29.6 30.4 33.0 33.2 35.0 36.3 

S9 20.5 21.6 28.5 30.7 13.2 13.6 13.8 13.9 14.3 14.8 

S10 31.5 32.9 30.9 32.3 25.7 26.5 26.5 26.6 25.5 26.4 

Link 

ID 

F7 F8 F9 F10 

With Without With Without With Without With Without 

N1 24.0 25.3 24.2 25.4 26.4 27.9 29.7 31.6 

N2 16.5 16.9 14.6 15.0 18.8 19.4 19.5 20.1 

N3 11.4 11.7 12.7 13.0 14.8 15.2 14.7 15.1 

N4 13.3 13.6 13.4 13.8 15.5 16.1 17.6 18.3 

N5 11.4 11.7 12.2 12.5 18.5 19.2 18.0 18.7 

N6 29.8 31.0 31.3 32.8 43.3 46.1 46.0 49.1 

N7 15.4 16.0 15.2 15.7 17.5 18.2 16.1 16.8 

N8 46.0 48.4 34.1 35.4 47.0 49.5 54.3 57.6 

N9 11.0 11.3 11.4 11.7 12.5 12.9 12.8 13.2 

S2 22.2 23.0 21.8 22.6 25.0 26.0 29.2 30.7 

S3 18.4 19.1 16.7 17.2 19.3 20.1 19.9 20.8 

S4 17.6 18.2 15.9 16.4 22.1 23.1 24.4 25.7 

S5 16.1 16.6 15.4 15.9 20.1 21.0 26.0 27.5 

S6 25.0 25.8 25.1 26.0 30.5 31.8 32.6 34.2 

S7 18.6 19.5 18.9 19.8 23.7 25.1 24.3 25.8 

S8 33.9 35.2 32.0 33.1 39.0 40.6 39.1 40.8 

S9 16.7 17.4 15.4 16.0 16.3 17.0 21.6 22.8 

S10 28.2 29.3 25.2 26.1 27.9 29.0 29.5 30.8 
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Table 6-6 The predicted travel time with and without road widening operations and snow hauling 

operations by link (minute/veh) 

Link ID 
W1 W2 H1 H2 

With Without With Without With Without With Without 

N1 25.5 27.0       

N2 20.4 21.2   11.6 15.3   

N3 15.8 16.3   9.3 12.4   

N4 14.5 14.9   9.4 12.5   

N5 17.6 18.3 18.0 18.7 10.5 13.8 12.5 15.6 

N6 44.6 47.6 46.0 49.1 24.1 38.0 25.4 34.9 

N7 29.2 31.4 22.6 23.8 9.6 12.5 12.9 16.0 

N8 188.4 253.9 72.1 78.3 19.7 25.0 28.2 34.8 

N9 11.0 11.3 11.6 11.9 8.1 10.2 10.0 11.9 

S2 25.8 26.9   12.7 17.5   

S3 17.7 18.4   11.0 15.5   

S4 22.4 23.4   11.1 15.7   

S5 21.8 22.9 26.0 27.5 18.1 31.0 17.9 25.2 

S6 28.4 29.5 32.6 34.2 24.1 38.3 22.5 29.7 

S7 22.3 23.5 22.3 23.6 13.2 19.5 18.0 24.7 

S8 36.5 37.9 33.8 35.1 23.1 30.6 31.5 39.7 

S9 21.4 22.5 21.6 22.8 15.2 25.0 14.7 19.1 

S10 28.3 29.4 27.8 28.9 20.0 28.3 25.5 33.3 

 

According to the travel speed in Table 6-5 and 6-6, the travel time was decreased when the snow removal 

operations were performed as the results of the predicted travel speed. The saved travel time by the snow 

removal operations can be calculated by Equation 6-2, and it was presented in Table 6-7. 

 

 

 

 

 

 

 



 

- 87 - 

Table 6-7 Saved travel time by snow removal operations by link (minute/veh) 

Link ID F1 F2 F4 F5 F6 F7 F8 

N1 2.87 2.34 2.13 0.11 1.30 1.25 1.26 

N2 0.59 0.45 0.70 0.06 0.48 0.46 0.36 

N3 0.51 0.35 0.55 0.05 0.32 0.27 0.34 

N4 0.63 0.59 0.59 0.05 0.51 0.37 0.38 

N5 0.49 0.34 0.25 0.04 0.38 0.27 0.31 

N6 1.91 2.66 0.73 0.11 1.19 1.26 1.41 

N7 0.70 0.96 0.33 0.07 0.49 0.57 0.56 

N8 2.62 34.15 0.65 0.12 1.91 2.35 1.25 

N9 0.41 0.30 0.26 0.03 0.30 0.29 0.31 

S2 1.45 18.17 7.30 0.08 0.83 0.84 0.81 

S3 0.73 2.00 1.77 0.05 0.54 0.72 0.59 

S4 1.23 2.08 2.14 0.09 0.65 0.65 0.53 

S5 0.83 2.26 1.95 0.07 0.51 0.55 0.50 

S6 1.57 2.21 0.68 0.11 0.91 0.88 0.89 

S7 1.56 1.71 0.41 0.11 0.60 0.85 0.87 

S8 1.71 1.76 0.77 0.19 1.30 1.22 1.08 

S9 1.05 2.22 0.35 0.08 0.50 0.68 0.58 

S10 1.41 1.36 0.78 0.15 0.92 1.12 0.89 

Link ID F9 F10 W1 W2 H1 H2 

N1 1.52 1.93 1.42    

N2 0.59 0.64 0.71  3.76  

N3 0.46 0.45 0.53  3.07  

N4 0.51 0.66 0.44  3.12  

N5 0.73 0.69 0.66 0.69 3.26 3.10 

N6 2.79 3.16 2.97 3.16 13.92 9.53 

N7 0.74 0.63 2.18 1.25 2.92 3.10 

N8 2.45 3.31 65.50 6.13 5.31 6.52 

N9 0.37 0.39 0.29 0.32 2.05 1.83 

S2 1.07 1.48 1.14  4.78  

S3 0.80 0.85 0.67  4.53  

S4 1.05 1.29 1.08  4.61  

S5 0.87 1.49 1.03 1.49 12.89 7.27 

S6 1.33 1.56 1.15 1.56 14.24 7.16 

S7 1.40 1.48 1.23 1.24 6.29 6.78 

S8 1.62 1.64 1.42 1.22 7.50 8.23 

S9 0.65 1.18 1.15 1.18 9.83 4.43 

S10 1.10 1.24 1.13 1.10 8.28 7.72 
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The saved travel time by a snow removal operation was changed into the economic value by the travel 

time unit cost, and the results show in Table 6-8. Most of the fresh snow removal benefit is found to be 

less than 100 JPY per vehicle, and the benefit of road widening is greater than that of fresh snow removal 

in the study area. The benefit of snow hauling was the largest of snow removal in the present study. 

According to the results, some benefits of link N8 were much larger than of the other links. This is because 

the travel speed on link N8 was relatively slower than other links on that dates. For example, the average 

speed of N8 on Jan. 14 (for F2) was 7.78 km/h, while the average speed of the whole study area on that 

date was 13.73 km/h. In other words, snow removal operations were more effective on congested roads. 

 

Table 6-8 Value for the saved travel time by snow removal operations by link (JPY/veh) 

Link ID F1 F2 F4 F5 F6 F7 F8 

N1 131.5 107.3 97.5 4.9 59.6 57.2 57.7 

N2 26.9 20.7 32.2 2.6 21.8 20.9 16.3 

N3 23.2 15.9 25.3 2.2 14.5 12.5 15.4 

N4 29.0 26.9 27.0 2.2 23.3 16.9 17.2 

N5 22.2 15.4 11.5 1.6 17.5 12.4 14.2 

N6 87.6 121.9 33.3 5.0 54.7 57.8 64.6 

N7 31.8 43.8 15.2 3.1 22.6 26.2 25.4 

N8 119.8 1,563.6 30.0 5.6 87.4 107.6 57.1 

N9 19.0 13.5 12.0 1.5 13.7 13.4 14.3 

S2 66.5 832.0 334.1 3.8 37.8 38.2 36.9 

S3 33.3 91.4 81.1 2.5 24.9 33.1 27.0 

S4 56.5 95.4 98.1 4.0 29.7 29.9 24.4 

S5 38.0 103.5 89.4 3.1 23.4 25.0 23.1 

S6 71.9 101.1 31.2 4.9 41.8 40.2 40.6 

S7 71.6 78.4 18.7 5.0 27.7 38.8 39.9 

S8 78.1 80.4 35.2 8.7 59.4 55.6 49.4 

S9 47.9 101.5 16.0 3.7 22.8 31.2 26.6 

S10 64.7 62.4 35.6 6.7 42.0 51.4 40.8 

Average 56.6 193.1 56.8 3.9 34.7 37.1 32.8 
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Table 6-8 (continued) Value for the saved travel time by each snow removal operation (JPY/veh) 

Link ID F9 F10 W1 W2 H1 H2 

N1 69.4 88.3 64.8 na na na 

N2 27.2 29.3 32.4 na 172.3 na 

N3 21.1 20.8 24.2 na 140.7 na 

N4 23.4 30.0 20.2 na 142.9 na 

N5 33.3 31.6 30.2 31.6 149.4 142.0 

N6 127.6 144.7 135.8 144.7 637.4 436.2 

N7 33.9 28.9 99.8 57.4 133.5 141.9 

N8 111.9 151.6 2,998.5 280.8 243.0 298.6 

N9 17.1 18.0 13.2 14.8 93.9 84.0 

S2 48.9 67.8 52.2 na 219.0 na 

S3 36.6 39.0 30.7 na 207.3 na 

S4 48.0 58.9 49.2 na 211.1 na 

S5 39.8 68.3 47.3 68.3 590.1 332.8 

S6 60.7 71.4 52.8 71.4 651.9 327.7 

S7 64.0 67.7 56.1 56.7 287.9 310.4 

S8 74.0 75.3 64.8 55.8 343.1 377.0 

S9 30.0 54.2 52.4 54.1 449.9 202.9 

S10 50.4 56.8 51.8 50.2 379.1 353.6 

Average 51.0 61.3 215.4 80.5 297.2 273.4 

 

 

6.2 THE EFFECTS OF SNOW REMOVAL OPERATIONS FOR A PERIOD 

 

It is similar with the estimation of individual snow removal effects to estimate for the travel time saving 

effects by snow removal operations for a period. However, several snow removal operations are performed 

in winter. Therefore, in the present study, some snow removal operation scenarios are designed to estimate 

the effects of snow removal operations for a period.  

 

The period from Feb. 13 to 20 of 2014 was selected for estimation of the effects of snow removal operations. 

During this period, 22 cm of snow fell in Sapporo, and two fresh snow removals and one road widening 
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were performed. The fresh snow removal operations were performed on Feb. 13 and 17, and the road 

widening operation was performed on Feb. 19th. The snow removal equipment dispatching criteria were 

not changed in the present study. Four scenarios were designed for estimating the effects of snow removal 

operations for the period, and the analysis flow is presented in Figure 6-2. 

 

- Scenario 1: both fresh snow removal and road widening operations 

- Scenario 2: road widening operation only 

- Scenario 3: fresh snow removal operation only 

- Scenario 4: no snow removal operations 

 

 
Figure 6-2 Process for calculating the benefit of snow removal operations 
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The difference in the predicted travel time between Scenario 4 and each other scenario is defined as the 

effect of snow removal for each of those scenarios. For example, the difference in the travel time between 

scenario 4 and scenario 3 is the saved travel time by the fresh snow removal operation for a period. As 

section 6.1, the travel time saving benefits can be estimated by the unit costs for travel time. 

 

First of all, the travel speed of the study period was predicted by the RegARIMA model depending on the 

snow removal scenarios designed above in order to calculate the travel time on each link. The predicted 

travel time by the scenario can be expressed similar to section 6.1 by Equation 6-3. 

The travel time saving benefits are estimated by Equation 6-4. 

 

Table 6-9 represents the average predicted travel speed during the study period on each link by the 

scenarios. The travel speed of scenario 1 had the fastest (average 17.36 km/h) of the scenarios, flowed by 

scenario 3 (17.25km/h), 2 (16.96km/h), and 4 (16.84km/h). According to the results, the predicted travel 

speed of scenario 3 exceed those of scenario 2 during the period. This is because each operation has a 

different duration of effectiveness. Road widening was performed on the night of Feb. 19, whereas fresh 

 

(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒)𝑖𝑑𝑡 =
(𝐿𝑖𝑛𝑘 𝐿𝑒𝑛𝑔𝑡ℎ)𝑖

(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑇𝑟𝑎𝑣𝑒𝑙 𝑠𝑝𝑒𝑒𝑑)𝑖𝑑𝑡
× 60 (𝑚𝑖𝑛𝑢𝑡𝑒) 

         𝑓𝑜𝑟 𝑖(𝐿𝑖𝑛𝑘) = 𝑙𝑖𝑛𝑘 𝐼𝐷 (𝑁1, 𝑁2, … , 𝑆9, 𝑆10) 

𝑑(𝑑𝑎𝑡𝑒) = 𝑒𝑎𝑐ℎ 𝑑𝑎𝑡𝑒 𝑓𝑟𝑜𝑚 𝐹𝑒𝑏. 13 𝑡𝑜 𝐹𝑒𝑏. 20.  

             𝑡(𝑡𝑖𝑚𝑒) = 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑑𝑎𝑦 𝑓𝑟𝑜𝑚 7: 00 𝑡𝑜 20: 00. 
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(𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑠𝑎𝑣𝑖𝑛𝑔 𝑏𝑒𝑛𝑒𝑓𝑖𝑡)𝑖

= ( ∑ ∑
(𝐿𝑖𝑛𝑘 𝑙𝑒𝑛𝑔𝑡ℎ)𝑖

(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑣𝑒𝑙 𝑠𝑝𝑒𝑒𝑑)𝑖𝑑𝑡_4

20

𝑡=7

20

𝑑=13

− ∑ ∑
(𝐿𝑖𝑛𝑘 𝑙𝑒𝑛𝑔𝑡ℎ)𝑖

(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑣𝑒𝑙 𝑠𝑝𝑒𝑒𝑑)𝑖𝑑𝑡_𝑆

20

𝑡=7

20

𝑑=13

) × 60 × 𝑈𝑇 

𝑓𝑜𝑟 𝑆(𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜) = 𝑡ℎ𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (1, 2, 𝑜𝑟 3) 

 

 

 

(6-4) 
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snow removal was performed on the nights of Feb. 13 and 17. Although the predicted speed of scenario 3 

exceed those of scenario 2 during the period, Figure 6-3 shows that the difference in the predicted speeds 

between Scenario 4 and Scenario 2 exceed the difference between Scenario 4 and Scenario 3 on Feb. 20. 

In other words, the effects of snow removal in the present study were not absolute; rather, they differ 

according to the selected period.  

 

Table 6-9 The average predicted travel speed by snow removal scenario from Feb. 13 to Feb. 20  

Link ID 

Average predicted travel speed (km/h) 

(Scenario 1) 

Both snow removal 

operations 

(Scenario 2) 

Only road widening 

operation 

(Scenario 3) 

Only fresh snow 

removal operation 

(Scenario 4) 

No snow removal 

operation 

N1 12.08 11.68 11.97 11.56 

N2 23.25 22.85 23.14 22.73 

N3 23.41 23.01 23.30 22.89 

N4 20.97 20.56 20.85 20.45 

N5 19.55 19.14 19.43 19.02 

N6 10.91 10.51 10.80 10.39 

N7 16.37 15.96 16.25 15.84 

N8 12.83 12.43 12.72 12.31 

N9 24.19 23.79 24.08 23.67 

S2 16.08 15.67 15.97 15.56 

S3 17.07 16.66 16.95 16.55 

S4 18.12 17.71 18.00 17.60 

S5 19.66 19.25 19.55 19.14 

S6 17.11 16.70 16.99 16.59 

S7 12.52 12.11 12.40 11.99 

S8 17.46 17.05 17.34 16.94 

S9 15.23 14.82 15.11 14.71 

S10 15.70 15.30 15.59 15.18 

Average 17.36 16.96 17.25 16.84 
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Figure 6-3 The travel speed profiles by snow removal scenario (link: S7) 
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The estimated travel time per vehicle on each link by snow removal scenario was presented in Table 6-10, 

and the value of travel time per vehicle was calculated as Table 6-11. Finally, the travel time saving effects 

of each snow removal operation scenario were estimated in Table 6-12. 

 

Table 6-10 The travel time by snow removal scenario from Feb. 13 to Feb. 20  

Link ID 

Travel Time (minute/veh) 

(Scenario 1) 

Both snow removal 

operations 

(Scenario 2) 

Only road widening 

operation 

(Scenario 3) 

Only fresh snow 

removal operation 

(Scenario 4) 

No snow removal 

operation 

N1 157.50 163.00 158.96 164.62 

N2 101.21 103.03 101.72 103.58 

N3 80.62 82.08 81.04 82.52 

N4 89.81 91.59 90.31 92.12 

N5 96.38 98.49 97.00 99.16 

N6 266.14 277.81 269.78 282.03 

N7 100.62 103.25 101.38 104.07 

N8 307.84 319.47 311.55 323.70 

N9 67.92 69.09 68.25 69.44 

S2 146.89 150.80 148.02 152.03 

S3 111.19 113.98 111.98 114.83 

S4 104.04 106.43 104.71 107.15 

S5 95.91 97.89 96.43 98.45 

S6 165.18 169.16 166.29 170.36 

S7 132.10 136.61 133.41 138.08 

S8 215.15 220.31 216.62 221.90 

S9 108.97 112.07 109.87 113.06 

S10 179.70 184.54 181.07 186.03 

Total 2,527.19 2,599.61 2,548.41 2,623.12 
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Table 6-11 The value of travel time by snow removal scenario from Feb. 13 to Feb. 20  

Link ID 

Travel Time Value (JPY/veh) 

(Scenario 1) 

Both snow removal 

operations 

(Scenario 2) 

Only road widening 

operation 

(Scenario 3) 

Only fresh snow 

removal operation 

(Scenario 4) 

No snow removal 

operation 

N1 7,211 7,462 7,277 7,536 

N2 4,633 4,717 4,657 4,742 

N3 3,691 3,758 3,710 3,778 

N4 4,112 4,193 4,134 4,217 

N5 4,412 4,509 4,441 4,539 

N6 12,184 12,718 12,351 12,911 

N7 4,606 4,727 4,641 4,764 

N8 14,093 14,626 14,263 14,819 

N9 3,109 3,163 3,125 3,179 

S2 6,725 6,903 6,776 6,960 

S3 5,090 5,218 5,126 5,257 

S4 4,763 4,873 4,794 4,905 

S5 4,391 4,482 4,415 4,507 

S6 7,562 7,744 7,613 7,799 

S7 6,048 6,254 6,108 6,321 

S8 9,849 10,086 9,917 10,159 

S9 4,989 5,131 5,030 5,176 

S10 8,227 8,448 8,290 8,517 

Total 115,695 119,010 116,666 120,086 
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Table 6-12 The travel time saving effects of each snow removal operation 

Link ID 

Travel Time Saving Effects (Benefits) (JPY/veh) 

(Scenario 1) 

Both snow removal 

operations 

(Scenario 2) 

Only road widening 

operation 

(Scenario 3) 

Only fresh snow removal 

operation 

N1 325.91 74.45 259.12 

N2 108.68 25.14 84.92 

N3 86.65 20.06 67.70 

N4 105.65 24.11 82.99 

N5 127.12 30.50 98.67 

N6 727.47 193.07 560.61 

N7 157.93 37.66 123.24 

N8 726.18 193.68 556.30 

N9 69.28 15.84 54.26 

S2 235.07 56.29 183.35 

S3 166.60 39.12 130.47 

S4 142.11 32.72 111.66 

S5 116.21 25.54 92.26 

S6 237.31 54.98 186.37 

S7 273.55 66.98 213.54 

S8 309.12 72.60 241.80 

S9 186.84 45.04 145.73 

S10 289.94 68.45 227.05 

Total 4,391.64 1,076.23 3,420.06 

 

Scenario 1 is found to save 4,392 JPY per vehicle from Scenario 4 (no snow removal) during the period. 

The benefits of Scenarios 2 and 3 were 1,076 and 3,420 JPY per vehicle during the period. As mentioned 

above, the benefits of snow removal in the present study were not absolute. However, the traffic 

administrators can estimate the effects of snow removal operations by the suggested methodology on their 

selected period to perform more cost-effective snow removal operations. 
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7 CONCLUSIONS AND FURTHER RESEARCH 

 

This chapter describes the conclusions and further researches of the present study. Section 7.1 provides the 

summary of the overall results of the present study. And the contribution and the further research of the 

present study are discussed. 

 

7.1 CONCLUSIONS 

 

Many previous researchers identified the relationship between traffic performances and weather conditions 

such as rainfall, snowfall, fog, and so on. Also lots of studies investigated about the impact of weather 

conditions on travel behaviors including mode choice and route choice. Some researchers have studied 

about the snow removal operation for various purposes. However, the effects of snow removal operations 

on traffic performance were rarely considered in previous studies. Therefore, this dissertation developed a 

methodology for quantifying snow removal effects by the RegARIMA model considering weather and 

snow removals on an urban arterial in Sapporo, Japan. 

 

The study area of the present study was a 4.8-km section of Nishi-5-chome Tarukawa Dori, a major arterial 

connecting the CBD to residential areas of Sapporo. The data of traffic conditions, weather conditions, and 

snow removal operation were collected from 07:00 to 20:00 on weekdays in winter season of 2013-2014 

(December, 2013 to March, 2014) by CPSs. CPSs allow us to collect valuable data, such as traffic data, 

weather data and snow removal operation factors from advanced sensors. Physical-world data are now 

easily convertible into computerized data through CPSs. In the weather condition data, snowfall, deep 

snow, and temperature were included. Three kinds of snow removal operations were considered in the 

present study: the fresh snow removal operation, the widening operation of effective road width, and the 
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snow hauling operation. The travel speed was collected by probe taxis, and the turning rate at intersections 

was collected by the traffic count survey. 

 

Four steps were performed to develop the travel speed prediction model for the effective snow removal 

operations. The first step was to establish a dataset for analysis by combining traffic conditions, weather 

conditions and snow removal operation factors. The second step was to develop two regression models, 

which were multiple linear regression (MLR) models and panel data models, with all the variables. The 

third step was to investigate the autocorrelation of the residuals between the actual values and estimated 

values of the regression models, in order to apply an autoregressive integrated moving average (ARIMA) 

model to the residuals. If the residuals were autocorrelated with among the others, the residuals were 

estimated by ARIMA model. This kind of model, which is combined both a regression model and an 

ARIMA model, is called a regression with ARIMA (RegARIMA) model. The fourth step was to confirm 

the effectiveness of the developed RegARIMA models in winter under different weather conditions: snow 

conditions and non-snow conditions. In addition, using the developed travel speed prediction model, the 

travel time saving effects of snow removal operations were quantified. 

 

According to the models results, the temperature was found to have a U-shaped relationship with travel 

speed. Deep snow had a negative correlation with travel speed. Meanwhile, both snow removal operations 

(i.e., road widening and fresh snow removal) had a positive correlation with travel speed. In addition, the 

vehicle turning rate was negatively correlated and the intersection size had a positive relationship with 

travel speed in the MLR with ARIMA model. Vehicles going straight were obstructed by the vehicles 

turning left and right at intersection especially on the winter road which were narrowed by fresh snow 

removal operations. On the other hand, the negative effects of the turning rate would be decreased if the 

intersection size were big enough space to wait for an opportunity to turn right and left at intersections. 
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The model validation was done using out-of-sample of data in order to see how the model can forecast 

well under different weather conditions: snow day and non-snow day. The predictive accuracies of travel 

speed for the univariate ARIMA and the RegARIMA under different weather conditions were compared. 

The predictive accuracy of the developed RegARIMA model was around 88.7% and 84.1% under non-

snow and snow days respectively. It was found that under snow weather conditions, the RegARIMA was 

found to be more stable over time, regardless weather. Besides, the difference in the RegARIMA and the 

ARIMA models was increased over time.  

 

The travel time reduction afforded by snow removal was defined as the effect of snow removal, and the 

travel time reduction was converted into travel time saving benefit. The effect of a single snow removal 

operation and the effect of several snow removal operations in combination during a week were considered. 

The fresh snow removal benefit was found to be less than 100 JPY per vehicle, and the effects of snow 

hauling were the greatest of any snow removal operation. In terms of effect of snow removal operations 

for the study period, the current snow removal strategy (scenario 1) is found to save 4,392 JPY per vehicle 

from Scenario 4 (no snow removal) during the period from February 13 to February 20, 2014. The benefits 

of Scenarios 2 (the widening operation) and 3(the fresh snow removal operation) were 1,076 and 3,420 

JPY per vehicle during the period. 

  

7.2 CONTRIBUTION AND FURTHER RESEARCH 

 

The results suggested a methodology for predicting the travel speed, considering weather conditions and 

snow removal operations in an urban area. The suggested methodology can be used for developing winter 

road maintenance strategies that aim to reduce traffic congestion in winter. For example, the locations and 

times of traffic congestion could be predicted by the proposed methodology. Then, road traffic 

administrators could deploy snow removal equipment more economically in advance to the proper 
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locations. In addition, although the current snow removal strategy in Sapporo is based on snowfall 

accumulation, it could be changed based on the travel speed reduction rate to improve the strategy. 

 

The quantifying methodology for the effects of snow removal operations was also suggested in the present 

study. The methodology can contribute to develop the cost-efficient snow removal strategy. Road traffic 

administrators could apply the changed snow removal strategy to the real road networks. In other words, 

the present study can expect to contribute to realization of a CPS society. Cyber-physical system (CPS) is 

a smart cycle system that collects and analyzes real-world data, and then it gives feedback from the analysis 

to the real-world. 

 

Based on the results of this study, further research is needed to obtain more reliable results. First, only five 

independent variables were used in this study, so if additional independent variables, such as road surface 

conditions, traffic volume, and measured effective road width, were considered in the models, it would 

help toward the development of more reliable travel speed estimation models. Second, urban roads have 

many intersections. Therefore, not only should the impacts of winter weather and snow removal operations 

on a single arterial be considered, but so should those impacts on the overall road network be considered.  

Finally, more accurate weather data would be helpful. The weather data of the present study were collected 

from a weather station that is a few kilometers from the study area. However, if the road weather 

information system (RWIS) data were used, the results would be improved. 
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