Hydrogen-deuterium substitution in solid ethanol by surface reactions at low temperatures

Author(s)
Oba, Yasuhiro; Osaka, Kazuya; Chigai, Takeshi; Kouchi, Akira; Watanabe, Naoki

Citation
Monthly notices of the royal astronomical society, 462(1): 689-695

Issue Date
2016-07-18

Doc URL
http://hdl.handle.net/2115/63550

Rights
This article has been accepted for publication in Monthly notices of the royal astronomical society, © 2016, Oba, Yasuhiro; Osaka, Kazuya; Chigai, Takeshi; Kouchi, Akira; Watanabe, Naoki, Published by Oxford University Press on behalf of The Royal Astronomical Society. All rights reserved.

Type
article

Additional Information
There are other files related to this item in HUSCAP. Check the above URL.

File Information
MNRAS-2016-Oba-689-95(1).pdf
Hydrogen–deuterium substitution in solid ethanol by surface reactions at low temperatures

Yasuhiro Oba, Kazuya Osaka, Takeshi Chigai, Akira Kouchi and Naoki Watanabe

Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-ku, Sapporo, Hokkaido 060-0189 Japan

Accepted 2016 July 13. Received 2016 July 7; in original form 2016 May 11

ABSTRACT

Ethanol (CH₃CH₂OH) is one of the most abundant complex organic molecules in star-forming regions. Despite its detection in the gas phase only, ethanol is believed to be formed by low-temperature grain-surface reactions. Methanol, the simplest alcohol, has been a target for observational, experimental, and theoretical studies in view of its deuterium enrichment in the interstellar medium; however, the deuterium chemistry of ethanol has not yet been an area of focus. Recently, deuterated dimethyl ether, a structural isomer of ethanol, was found in star-forming regions, indicating that deuterated ethanol can also be present in those environments. In this study, we performed laboratory experiments on the deuterium fractionation of solid ethanol at low temperatures through a reaction with deuterium (D) atoms at 10 K. Hydrogen (H)–D substitution, which increases the deuteration level, was found to occur on the ethyl group but not on the hydroxyl group. In addition, when deuterated ethanol (e.g. CD₃CD₂OD) solid was exposed to H atoms at 10 K, D–H substitution that reduced the deuteration level occurred on the ethyl group. Based on the results, it is likely that deuterated ethanol is present even under H-atom-dominant conditions in the interstellar medium.

Key words: astrochemistry – ISM: clouds – ISM: molecules.

1 INTRODUCTION

Various types of deuterated molecules have been observed in the interstellar medium, such as cold dense cores and star-forming regions (Roueff & Gerin 2003; Caselli & Ceccarelli 2012). The relative abundances of these molecules compared to normal (i.e. fully hydrogenated) molecules can reach at most an order of 10⁻¹ (Caselli & Ceccarelli 2012), which is several orders of magnitude higher than the Galactic D/H ratio (∼10⁻⁵; Linsky 2003). Such D enrichment is linked to either ion–molecule reactions in the gas phase, grain-surface reactions, or a combination of both processes at temperatures as low as 10 K. Of deuterated interstellar molecules, methanol (CH₃OH) has attracted much attention in view of its chemical evolution in space because it is significantly enriched in D (Nagaoka, Watanabe & Kouchi 2005, 2007). The H–D substitution reaction is of particular importance for D enrichment in interstellar molecules such as methanol and formaldehyde (Watanabe & Kouchi 2008). After deuterium fractionation on interstellar grains, methanol is desorbed and deuterated isotopologues are detected in the gas phase (e.g. [CH₂DOH]/[CH₃OH] = 30 per cent, [CD₃OH]/[CH₃OH] = 1.4 per cent in IRAS 16293; Parise et al. 2004).

In contrast to extensive studies related to methanol, the next simplest alcohol, ethanol (CH₃CH₂OH), has attracted less attention in terms of D enrichment in the interstellar medium, although CH₃CH₂OH itself is one of the dominant COMs (10⁻⁹–10⁻⁸ versus H₂; Nummelin et al. 2000; Ikeda et al. 2001). More recently, relatively abundant ethanol (0.12 per cent versus H₂O) was detected in comet C/2014 Q2 (Lovejoy) (Biver et al. 2015), suggesting its formation in low-temperature environments. Since the observed abundance cannot be reproduced in gas-phase chemistry models (Charnley et al. 1995), it is predicted that interstellar and cometary CH₃CH₂OH is mainly formed by grain-surface reactions such as hydrogenation of CCO (Hall & Miller 2010) and reactions of CH₃ with CH₂OH (Garrod, Widicus Weaver & Herbst 2008). Laboratory experiments showed that photolysis of solid CH₂OH yielded CH₃CH₂OH, as well as other various COMs (Öberg et al. 2009). Therefore, ethanol may have a chance to become enriched in D atoms to relatively simpler molecules such as CO, H₂CO (Hidaka, Kouchi & Watanabe 2007; Hidaka et al. 2009), and H–D substitution of methanol (Nagaoka, Watanabe & Kouchi 2005, 2007).

© 2016 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society
during or after its formation on grains, similar to methanol. Given that interstellar ethanol is considered a precursor for larger COMs like ethylformate (C₂H₅OCHO; Belloche et al. 2009), it is necessary to comprehensively elucidate its deuterium fractionation pathway for better understanding of chemical evolution in space.

Astronomical observations showed two kinds of 13C-substituted ethanol molecules (13CH₃CH₂OH and CH₃13CH₂OH) that were tentatively detected in Sgr B2(N) (Belloche et al. 2013), while D-substituted ethanol molecules have never been detected in the interstellar medium. Although spectroscopic data for deuterated ethanol has been scarce, laboratory millimetre-wave spectra (35–500 GHz) of deuterated ethanol (CH₃CH₂OD, CH₃CHDOH, and CH₂DCH₂OH) were very recently reported (Walters et al. 2015).

Since the spectral range is consistent with that of Atacama Large Millimeter/submillimeter Array, future detection of deuterated ethanol is expected if it is present in the interstellar medium. In this study, we performed laboratory experiments on the deuterium fractionation of various kinds of solid ethanol isotopologues by surface reactions with D atoms at 10 K to examine a possible pathway for D enrichment of ethanol in the interstellar medium.

2 EXPERIMENTAL PROCEDURE

Experiments were performed using the Apparatus for Surface Reaction in Astrophysics (ASURA) system. The ASURA mainly consists of a reaction chamber and an atomic source, with multiple turbo-molecular pumps. Details of ASURA have been reported elsewhere (Watanabe et al. 2006; Nagaoka et al. 2007). Normal ethanol (CH₃CH₂OH) (Kanto Kagaku, 99.5 per cent) and deuterated ethanol isotopologues, CD₃OH (CDN Isotopes, 99.5 per cent), CH₃CD₂OH (CDN Isotopes, 98.8 per cent), and CD₃CD₂OD (Acros Organics, 99 per cent) were used without further purification for the experiments described below. About 15 monolayers (ML: 1 ML = 10¹⁵ molecules cm⁻²) of solid ethanol were produced by vapour deposition of gaseous ethanol on to an aluminium (Al) substrate at 10 K through a capillary plate. The solid ethanol layer was exposed to D atoms which were produced by the dissociation of D₂ molecules in microwave-induced D₂ plasma. Experiments on D–H substitution were performed using the solids of deuterated ethanol isotopologues, which were exposed at 10 K to H atoms produced in the same manner as the D atoms. The fluxes of D and H atoms were estimated as 3.9 × 10¹⁴ and 4.6 × 10¹⁴ atoms cm⁻² s⁻¹, respectively, by the procedure described in Oba et al. (2014a). Atoms were cooled to 100 K through interactions with the inner wall of a cold Al pipe and sprayed onto the solid ethanol layer for up to 180 min. Reaction products were monitored in situ by a reflection-absorption-type Fourier-transform infrared spectrometer with a resolution of 4 cm⁻¹. Incident angle of the infrared (IR) beam was 83° to normal.

The band strength of CH₃CH₂OH solid was reported in a previous study (2.0 × 10⁻¹⁸ cm molecules⁻¹) for the C–C stretching band at 879 cm⁻¹, determined by a transmittance method; Boudin, Schutte & Greenberg 1998); however, the band strengths of deuterated ethanol have not been reported. We estimated the band strengths of four kinds of deuterated ethanol samples by the method of Nagaoka et al. (2007). Briefly, each deuterated ethanol isotopologue was deposited onto the substrate under the same conditions as those for CH₃CH₂OH (e.g. gas pressure in the gas mixing chamber and the deposition duration). In this way, equivalent amounts of each ethanol isotopologue were obtained as confirmed by their temperature-programmed desorption spectra. The unknown band strengths were then derived from comparison to the previ-
other molecules, such as CH₃OH (Nagaoka et al. 2007), H₂CO (Hama & Watanabe 2013). Previous studies showed that H abstraction by D atoms from energetic ions at temperatures as low as 10 K and thus require hardly occur thermally without external energy input (e.g. UV or quantum tunnelling (Watanabe & Kouchi 2008; Hama & Watanabe 2008; Sivaramakrishnan et al. 2010).

\[
\text{CH₃CH₂OH} + \text{H} \rightarrow \text{CH₃CH₂O} + \text{H₂}. \quad (4)
\]

If reaction (3) is also endothermic, it does not proceed even by quantum tunnelling. In addition, these theoretical studies reached the consensus that hydrogen abstraction from the hydroxyl group has a higher barrier compared to that from the methylene and methyl groups. The absolute values of the activation barrier for those reactions in the gas phase are generally different from those on the surface. However, the difference should be negligible in the physisorption system when physisorption energy is much lower than the activation energy of reaction. Therefore, it is reasonable to consider that the activation barrier for the hydrogen abstraction from the hydroxyl group is also largest even on the surface and that H-D substitution on a hydroxyl group is not favoured under the present experimental conditions. In contrast, hydrogen abstraction from the hydroxyl group of CH₃CHOH formed in reaction (1a) could be energetically possible, which leads to the formation of CH₂CHO (Xu, Xu & Lin 2012) (see Supporting Information for further details). The change in the peak shape of the O–H stretching band could be caused in part by a peak shift due to changes in the interaction between molecules.

To study the H–D substitution of ethanol at the functional group level in more detail, similar experiments were performed by using partly deuterated isotopologues (CD₃CH₂OH and CH₃CD₂OH) as described in the following sections.

3.1.2 CD₃CH₂OH or CH₃CD₂OH + D

When solid layers of partly deuterated isotopologues (CD₃CH₂OH or CH₃CD₂OH) were exposed to D atoms, we confirmed H–D substitution on the methylene or methyl group, likely a result of successive H abstraction–D addition reactions (see Supporting Information). In contrast, the hydroxyl group did not exchange its H atom with a D atom. Deuterium atoms on the methyl or methylene group may also be abstracted by D atoms; however, the formed radical may recombine with another D atom to yield the same molecule as the initial reactant, which does not change the total abundance of that reactant.

3.2 Reaction of deuterated ethanol isotopologues with H atoms

When solid layers of CD₂CD₂OD were exposed to H atoms at 10 K, D–H substitution occurred on the ethyl group (CD₂CD₂–) (Fig. 3, equations 5 and 6). This behaviour is different from methanol where D–H substitution was not observed under similar experimental conditions (Nagaoka et al. 2007). We propose that D–H substitution is initiated by the following reactions.

\[
\text{CD₂CD₂OD} + \text{H} \rightarrow \text{CD₂CD₂D} + \text{HD} \quad (5a)
\]

\[
\text{CD₂CD₂D} + \text{H} \rightarrow \text{CD₂CD₂OH} \quad (5b)
\]

\[
\text{CD₂CD₂OD} + \text{H} \rightarrow \text{CD₂CD₂OD} + \text{HD} \quad (6a)
\]

\[
\text{CD₂CD₂OD} + \text{H} \rightarrow \text{CHD₂CD₂OD}. \quad (6b)
\]

In contrast to D–H substitution at the ethyl group, the O–D group did not exchange its D atom with an H atom (Fig. 3), suggesting that
deuterium abstraction from the O–D group by H atoms (equation 7) does not occur under the present experimental conditions.

\[
\text{CD}_2\text{CD}_2\text{OD} + \text{H} \rightarrow \text{CD}_3\text{CD}_2\text{O} + \text{HD}.
\]

(7)

This is consistent with the case of the H–D substitution of O–H group, which is likely due to the same reasons discussed earlier. Therefore, we conclude that H–D and D–H substitution reactions occur only with the carbon-bound hydrogen/deuterium atoms of ethanol.

When solid layers of CH\(_3\)CD\(_2\)OH or CD\(_3\)CH\(_2\)OH were exposed to H atoms at 10 K, we confirmed that D–H substitution occurred on the partly deuterated ethanol to yield CH\(_3\)CH\(_2\)OH (see Supporting Information for the reaction pathways). Since D abstraction would have a large activation barrier of several thousands of kelvins, the as the case for reactions (1a) and (2a), they require quantum tunnelling to proceed at low temperatures. Although carbon-bound H in CH\(_3\)CD\(_2\)OH and CD\(_3\)CH\(_2\)OH would also be abstracted by H atoms, the formed radical (e.g. CH\(_2\)CD\(_2\)OH and CD\(_3\)CHOH, respectively) should recombine with another H atom to yield molecules that are the same as the reactants (CH\(_3\)CD\(_2\)OH and CD\(_3\)CH\(_2\)OH).

3.3 Other mechanisms for H–D and D–H substitution

H–D and D–H substitution reactions may also occur via another process; direct atom-exchange reactions via formation of unstable intermediates. In the case of methanol, for example, the following reaction (equation 8) was proposed for H–D substitution:

\[
\text{CH}_3\text{OH} + \text{D} \rightarrow \text{CH}_3\text{DOH}^* \rightarrow \text{CH}_2\text{DOH} + \text{H},
\]

(8)

where CH\(_3\)DOH\(^*\) represents an excited intermediate species. Osamura, Roberts & Herbst (2004) calculated the activation barrier of a direct H–H exchange reaction between CH\(_3\)OH and an H atom to be \(>35 \text{ kcal mol}^{-1}\). Based on the barrier height of a similar reaction, Nagaoka et al. (2007) concluded that this process does not have a significant contribution to H–D exchange in methanol. In the case of ethanol, there have been no reports on the following direct H–D exchange reaction (equation 9):

\[
\text{CH}_3\text{CH}_2\text{OH} + \text{D} \rightarrow \text{CH}_3\text{CD}_2\text{OH}^*\text{ or CH}_3\text{DCH}_2\text{OH}^* \\
\rightarrow \text{CH}_3\text{CHDOH or CH}_3\text{DCH}_2\text{OH} + \text{H},
\]

(9)

where CH\(_3\)CHDOH\(^*\) and CH\(_3\)DCH\(_2\)OH\(^*\) represent possible excited intermediate species. Since these reactions are exothermic, they would proceed if the activation barrier is low enough for the reactants to overcome or tunnel at low temperatures. In contrast, the following direct D–H exchange reactions do not occur at 10 K since these reactions (equation 10) are endothermic:

\[
\text{CD}_3\text{CD}_2\text{OD} + \text{H} \rightarrow \text{CD}_3\text{CD}_2\text{OH}^*\text{ or CD}_3\text{CHD}_2\text{OH}^* \\
\rightarrow \text{CD}_3\text{CHDOH or CD}_3\text{DCH}_2\text{OH} + \text{D},
\]

(10)

where CD\(_3\)CD\(_2\)OH\(^*\) and CD\(_3\)CHD\(_2\)OH\(^*\) represent possible excited intermediate species. Since D–H substitution actually occurred when deuterated isotopologues reacted with H atoms (Fig. 3), we conclude that D–H substitution proceeded through successive D abstraction–H addition as previously proposed. Similarly, we deduce that the observed H–D substitution predominantly occurs via successive H abstraction–D addition, although H–D direct exchange cannot be excluded.

3.4 Rates for H–D and D–H substitution reactions

Fig. 4 shows variations in the column densities of partly deuterated ethanol isotopologues after exposure to D or H atoms. The column densities of isotopologues decreased with time. After an exposure of 180 min, the decrease in the reactants was up to \(\sim 15\) per cent of the initial amount. Given that H–D or D–H substitution reactions proceed through successive atom abstraction and addition, the first atom-abstraction reaction, which has a large activation barrier of several thousands of kelvins (Park et al. 2003; Carvalho et al. 2008; Sivaramakrishnan et al. 2010), should be the rate-determining step. Under those conditions, the net rate of H–D or D–H substitution reactions can be expressed by the following pseudo-first-order single exponential decay function (equation 11):

\[
\frac{N_t}{N_0} = e^{-k't},
\]

(11)

where \(N_t\) and \(N_0\) represent the column density of ethanol isotopologues at times \(t\) and 0, respectively, and \(k'\) represents the effective rate constant of a reaction \(k' = k \times N_X\), where \(k\) and \(N_X\) represent the rate constant and the number density of X atoms \((X = \text{H or D})\) on the surface, respectively. Since it is difficult to measure the absolute value of \(N_X\) in this study, we cannot separate \(k\) and \(N_X\) from \(k'\); instead, we can obtain the value of \(k'\) for each reaction by fitting the plots in Fig. 4 into equation (11).

Unfortunately, fitting the entire data range up to 180 min was not successful. This may be a result of the multilayer properties of the solid samples. Ethanol molecules embedded in deeper layers may be much less reactive compared to those on the outermost surface, although the reaction itself may proceed in the deeper layers to some extent (Oba et al. 2016). Since the plots in Fig. 4 are considered to be reflective of reactions at the outermost surface and in the deeper layers, entire plots up to 180 min may not fit to a one-term single exponential function (11) in which we assume a sole value of \(k\). Instead, we fitted the plots for shorter exposures to time function (equation 11) based on the assumption that H and D atoms preferentially react with the outermost ethanol molecules at such duration; hence, we expect to get a more reliable value for the kinetic parameters without taking the effect of multilayers into account.
account. The plots of the initial 30 min were fitted to the function (equation 11) and the values of \(k' \) for the H–D and D–H substitution reactions of CD3CH2OH and CH2CD2OH were obtained. Given that only a methylene-H is substituted with a D atom when CD3CH2OH reacted with D atoms, we assume that the value of \(k' \) obtained in this experiment represents the effective rate constant of H–D substitution for the methylene group of ethanol isotopologues (hereafter denoted as \(k_{\text{CD2-H}}' = k_{\text{CH2-D}}' \)). Likewise, the effective rate constants of H–D substitution on the methyl group (\(k_{\text{CH3-D}}' \)) and that of D–H substitution in the methylene (\(k_{\text{CD2-H}}' \)) and methyl (\(k_{\text{CH3-H}}' \)) groups of the isotopologues were estimated as shown in Table 1. The value of \(k_{\text{CH2-D}}' \) is the largest, and \(k_{\text{CD2-H}}' \) is about 65 per cent of \(k_{\text{CH2-D}}' \). The values of \(k_{\text{CH3-D}}' \) and \(k_{\text{CD3-H}}' \) are comparable to each other, but are factor of \(\sim 2 \) smaller than \(k_{\text{CH2-D}}' \) and \(k_{\text{CD2-H}}' \).

In this study, the flux of H atoms (\(F_H \)) is slightly larger than that of D atoms (\(F_D \)) by a factor of 1.2. Assuming that correlation between atomic flux and the surface number density of atoms is independent from the atomic species, H or D, the obtained \(k_{\text{CH3-D}}' / k_{\text{CD2-H}}' \) ratio (\(\sim 1.6 \)) leads to a \(k_{\text{CH3-D}}' / k_{\text{CD2-H}}' \) ratio of \(\sim 1.9 \). The small difference in isotope effects is consistent with other reactions, such as H–D and D–H substitution reactions for H2CO and CH3NH2 (Hidaka et al. 2009; Oba et al. 2014b), in contrast to those for methanol and glycine where significant isotope effects are observed (Nagaoka et al. 2005, 2007; Oba et al. 2015).

The rate of the quantum tunnelling reaction generally depends on various parameters such as the potential barrier shape of a reaction and the tunnelling mass (Hama & Watanabe 2013; Meisner & Kästner 2016). The barrier shapes differ little between H- and D-atom abstraction reactions, except at zero point energy. In the case of D-atom abstraction reactions, the tunnelling mass is often \(\sim 1 \) regardless of the types of molecules, while the tunnelling mass is \(\sim 0.5 \) for H-atom abstraction. Therefore, the H-atom abstraction reaction, having a smaller tunnelling mass, is generally expected to be faster as is observed in the methanol and glycine systems. Therefore, another factor should be considered to explain the small isotope effect observed in H–D and D–H substitution of ethanol. Recently, tunnelling addition reactions of H or D atoms to solid benzene were found to have little isotope dependence on the reaction rates at 15–25 K (Hama et al. 2015). It was proposed that the isotope effect on the surface tunnelling reaction can weaken when the tunnelling rate is significantly large compared to the surface diffusion rate of H and D atoms. This is one of the scenarios used to explain the results from ethanol. In fact, the activation barrier for H-atom abstraction from ethanol is much smaller than that from methanol (Pardo, Banfelder & Osman 1992) and thus a faster tunnelling rate can be expected for ethanol. In addition, Kuwahata et al. (2015) demonstrated that even when \(F_D = F_H \), the surface number density of D atoms (= \(N_D \)) is 4 or 10 times larger than that of H atoms (= \(N_H \)) on amorphous solid water and polycrystalline ice, respectively, because the recombination rate of H atoms is faster than that of D atoms due to the faster diffusion of the lighter particle.

The variations in the column densities of ethanol isotopologues normalized to the initial molecule for reaction with D (open square) and H (filled circle) atoms on the (a) methylene and (b) methyl group. Symbols include statistical errors.

Table 1. Summary of the effective rate constant \(k' \) for H–D and D–H substitution reactions.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Functional group</th>
<th>(k') (min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H–D substitution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD3CH2OH + D → CD2CHOH + HD</td>
<td>Methylene</td>
<td>(k_{\text{CH2-D}}')</td>
</tr>
<tr>
<td>CD3CHOH + D → CD3CHOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH3CD2OH + D → CH2CD2OH + HD</td>
<td>Methyl</td>
<td>(k_{\text{CD2-H}}')</td>
</tr>
<tr>
<td>CH3CD2OH + D → CH2CD2OH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D–H substitution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH3CD2OH + H → CH2CD2OH + HD</td>
<td>Methylene</td>
<td>(k_{\text{CD3-H}}')</td>
</tr>
<tr>
<td>CH3CHOH + H → CH3CHOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH3CHOH + H → CH3CHOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH3CD2OH + H → CH2CD2OH + HD</td>
<td>Methyl</td>
<td>(k_{\text{CD2-H}}')</td>
</tr>
</tbody>
</table>
the total abundance of ethanol is constant throughout the time, the isotopologues, we expect the detection of singly deuterated ethanol under those water-dominant conditions. It has been theoretically and experimentally demonstrated that the formation of H-bond could result in a suppression or enhancement of reactivity (Woon 2002; Oba et al. 2016). On the other hand, since the effect of H-bond is very small for alcohol molecules (Karpfen 2011), we expect that the reactivity of pure solid ethanol isotopologues may not significantly differ from that in water-dominant environments.

Since the OH/DD of ethanol does not show exchange with H or D atoms, we only need to consider the reactions of the methylene and methyl groups (see Supporting Information for the possible pathways of the H-D and D-H substitution reactions). Then, for example, in the case of CH₃CH₂OH, we set the rate equation as follows (equation 12):

\[
dN_{\text{CH}_3\text{CD}_2\text{OH}}/dt = -k_{\text{CH}_3-\text{D}}N_{\text{D}}N_{\text{CH}_3\text{CD}_2\text{OH}} + k_{\text{CD}_2-\text{H}}N_{\text{H}}N_{\text{CH}_3\text{CD}_2\text{OH}} - k_{\text{CH}_3+\text{D}}N_{\text{D}}N_{\text{CH}_3\text{CD}_2\text{OH}} + k_{\text{CD}_3-\text{H}}N_{\text{H}}N_{\text{CH}_3\text{CD}_2\text{OH}},
\]

where \(N_{\text{CH}_3\text{CD}_2\text{OH}}, N_{\text{CH}_3\text{CD}_2\text{OH}},\) and \(N_{\text{CH}_3\text{CD}_2\text{OH}}\) represent the column densities of \(\text{CH}_3\text{CD}_2\text{OH}\), \(\text{CH}_3\text{CD}_2\text{OH}\), and \(\text{CH}_3\text{CD}_2\text{OH}\), respectively. By setting similar equations for other isotopologues (see Supporting Information) and solving them under the specific conditions noted above, we estimated the relative abundance of ethanol isotopologues.

\(\text{CH}_3\text{CH}_2\text{OH}\) was found to be dominant over other isotopologues, followed by \(\text{CH}_3\text{CD}_2\text{OH}\) and \(\text{CH}_2\text{DCH}_2\text{OH}\), whose relative abundances \((\text{CH}_3\text{CHDOH}/\text{CH}_3\text{CH}_2\text{OH} \text{ and } \text{CH}_2\text{DCH}_2\text{OH}/\text{CH}_3\text{CH}_2\text{OH})\) are \(1.2 \times 10^{-2}\) and \(6.1 \times 10^{-3}\), respectively, after \(10^6\) yr in dense molecular clouds. Note that these values are only valid under the present assumptions. In the following paragraphs, we discuss a possible presence of ethanol deuterated isotopologues in molecular clouds given that the obtained values are applicable to the actual environment.

Although the calculated relative abundances are smaller than those of deuterated methylamine \(\text{CH}_3\text{D}_2\text{NH}_2\), \(\text{CH}_3\text{D}_2\text{NH}_2/\text{CH}_3\text{NH}_2 \sim 7.5 \times 10^{-2}\); Oba et al. 2014a) estimated under the same assumptions (e.g. atomic D/H = 0.01, \(t = 10^6\) yr, \(n_d = 1\) \(\text{cm}^{-3}\)), the relative abundance of \(\text{CH}_3\text{CD}_2\text{OH}\) was slightly larger than atomic D/H. Other isotopologues having more than two D atoms are found to be much less abundant \((<10^{-4}\) versus \(\text{CH}_3\text{CH}_2\text{OH})\) under the applied conditions.

In spite of the possible low abundances of deuterated ethanol isotopologues, we expect the detection of singly deuterated ethanol because the abundance of \(\text{CH}_3\text{CH}_2\text{OH}\) is relatively high in the range \(10^{-9} - 10^{-8}\); Nummelin et al. 2000; Ikeda et al. 2001) in various astronomical sources. We suggest that IRAS 16293-2422 is surely a good target for detection of deuterated ethanol because \(\text{CH}_3\text{CH}_2\text{OH}\) has been clearly detected (Bischop et al. 2008) and deuteration chemistry is very active in that region, as inferred from the detection of a number of deuterated species such as \(\text{CD}_3\text{OH}\) and \(\text{DCOOCH}_3\) (Parise et al. 2004; Demyk et al. 2010). Moreover, mono-deuterated dimethyl ether \((\text{CH}_2\text{OCH}_2\text{D})\) was recently detected in IRAS 16293-2422 whose abundance is \(\sim 15\) per cent of the non-deuterated molecule (Richard et al. 2013). Since dimethyl ether, which is a structural isomer of ethanol, is proposed to form on cold grains (Garrod et al. 2008), the detection of \(\text{CH}_2\text{OCH}_2\text{D}\) promises the existence of deuterated ethanol because ethanol is also expected to form on grains. We confirmed the deuterium fractionation of dimethyl ether by the reaction of deuterium atoms with \(\text{CH}_3\text{OCH}_2\text{H}\) under similar conditions used in this study (Oba et al. 2016). Therefore, we strongly expect that H-D substitution of both ethanol and dimethyl ether occurs on interstellar grains and that deuterated ethanol will be found in future astronomical observations, as was the case for dimethyl ether.

ACKNOWLEDGEMENTS

The authors thank Drs H. Hidaka and Y. Osamura for valuable discussion about reaction mechanisms. This study was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and the Japan Society for the Promotion of Science (JSPS; KAKENHI Grant Number JP26108501).

REFERENCES

Biver N. et al., 2015, Sci. Adv., 1, e1500863

Y. Oba et al.
SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article.

Figure A1. (a) Infrared spectrum of solid CD$_3$CH$_2$OH, (b) difference spectrum of CD$_3$CH$_2$OH after exposure to D atoms for up to 180 min, and (c) infrared spectrum of solid CD$_3$CD$_2$OH.

Figure A2. (a) Infrared spectrum of solid CH$_3$CD$_2$OH, (b) difference spectrum of CH$_3$CD$_2$OH after exposure to D atoms for up to 180 min, and (c) infrared spectrum of solid CD$_3$CD$_2$OH.

Figure A3. (a) Infrared spectrum of solid CH$_3$CD$_2$OH, (b) difference spectrum of CH$_3$CD$_2$OH after exposure to H atoms for up to 60 min, and (c) infrared spectrum of solid CH$_3$CH$_2$OH.

Figure A4. (a) Infrared spectrum of solid CD$_3$CH$_2$OH, (b) difference spectrum of CD$_3$CH$_2$OH after exposure to H atoms for up to 30 min, and (c) infrared spectrum of solid CH$_3$CH$_2$OH.

Figure A5. Possible reaction pathways for H–D (solid line) and D–H (dashed line) substitution reactions in solid ethanol on grain surfaces at low temperatures. As the reaction proceeds, the deuteration level of ethanol increases. The number of D atoms in isotopologues is shown on the left side. (http://www.mnras.oxfordjournals.org/lookup/suppl/doi:10.1093/mnras/stw1714/-/DC1).

Please note: Oxford University Press is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.