

Title	A Nucleoside Anticancer Drug, 1-(3-C-EthynylD-Ribo-Pentofuranosyl)Cytosine, Induces Depth-Dependent Enhancement of Tumor Cell Death in Spread-Out Bragg Peak (SOBP) of Proton Beam
Author(s)	Maeda, Kenichiro; Yasui, Hironobu; Yamamori, Tohru; Matsuura, Taeko; Takao, Seishin; Suzuki, Motofumi; Matsuda, Akira; Inanami, Osamu; Shirato, Hiroki
Citation	PLOS One, 11(11), e0166848 https://doi.org/10.1371/journal.pone.0166848
Issue Date	2016-11-22
Doc URL	http://hdl.handle.net/2115/63679
Rights(URL)	https://creativecommons.org/licenses/by/4.0/
Туре	article
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	Supplemental data.pdf

S1 Figure. Maeda et al.

Cell line	Position	Depth (mm)	LET_{d} (keV/ μ m)	ECyd	D ₁₀ (Gy)	RBE ₁₀	SER	$D_{4Gy}\left(Gy ight)$	RBE _{4Gy}	SER _{4Gy}	$D_{2Gy}\left(Gy ight)$	RBE _{2Gy}	SER _{2Gy}	
A549	2	5	0.857	-	6.414 ± 0.197	1.068 ± 0.051	1.209	4.087 ± 0.212	0.981 ± 0.052	1.293	2.300 ± 0.200	0.874 ± 0.077	1.418	
	a			+	5.304 ± 0.531	1.299 ± 0.125		3.161 ± 0.453	1.282 ± 0.173		1.622 ± 0.325	1.264 ± 0.232		
	h	165	2 8 4 7	-	6.436 ± 0.181	1.065 ± 0.030	4.035 = 1.215 3.153 =	4.035 ± 0.092	0.992 ± 0.022	1.280	2.215 ± 0.098	0.904 ± 0.040	1.365	
	b		2.847	+	5.296 ± 0.987	1.327 ± 0.277		3.153 ± 0.744	1.325 ± 0.360		1.623 ± 0.481	1.323 ± 0.460		
	2	190	2 605	-	6.021 ± 0.332	1.132 ± 0.062	1.157	3.763 ± 0.221	1.065 ± 0.065	1.239	2.059 ± 0.190	0.977 ± 0.093	1.360	
	C		3.095	+	5.204 ± 0.230	1.316 ± 0.029		3.036 ± 0.127	1.319 ± 0.055		1.514 ± 0.105	1.326 ± 0.091		
	A	220	0.457	-	4.372 ± 0.206	1.568 ± 0.073	1 028	2.359 ± 0.255	1.709 ± 0.180	1.040	1.092 ± 0.176	1.863 ± 0.290	1 061	
	u	220	9.437	+	4.211 ± 0.822	1.656 ± 0.257	1.038	2.249 ± 0.501	1.836 ± 0.392	1.049	1.029 ± 0.285	2.040 ± 0.527	1.001	
V79	2	5	0.857	-	8.439 ± 0.348	1.034 ± 0.046	1.167	3.836 ± 0.135	1.044 ± 0.036	1.225	1.904 ± 0.060	1.051 ± 0.033	1.290	
	a		0.857	+	7.233 ± 0.567	1.211 ± 0.092		3.131 ± 0.230	1.282 ± 0.092		1.476 ± 0.102	1.359 ± 0.092		
	h	b 165	165	2 847	-	7.939 ± 0.671	1.102 ± 0.093	1 069	3.652 ± 0.307	1.100 ± 0.093	1 222	1.831 ± 0.155	1.098 ± 0.095	1 252
	b		0.5 2.847	+	7.433 ± 0.172	1.172 ± 0.031	1.008	2.987 ± 0.088	1.340 ± 0.040	1.223	1.353 ± 0.056	1.480 ± 0.061	1.333	
		c 190	190 3.695	-	6.947 ± 0.112	1.254 ± 0.020	1.157	2.928 ± 0.043	1.366 ± 0.020	1 240	1.348 ± 0.056	1.486 ± 0.060	1 4 4 0	
	С			+	6.003 ± 0.419	1.456 ± 0.127		1.15/	2.229 ± 0.161	1.801 ± 0.123	1.340	0.936 ± 0.077	2.146 ± 0.176	1.440
	1	220	0.457	-	6.263 ± 0.170	1.392 ± 0.073	1.020	1.020	2.352 ± 0.103	1.702 ± 0.073	1.040	0.993 ± 0.053	2.017 ± 0.108	1.027
	a	220	9.437	+	6.031 ± 0.152	1.445 ± 0.165	1.038	2.262 ± 0.202	1.778 ± 0.165	1.040	0.958 ± 0.122	2.111 ± 0.281	1.03/	

Supplementary Table 1. Summary of RBE₁₀, RBE_{2Gy} and RBE_{4Gy} values

 RBE_{10} , RBE_{4Gy} and RBE_{2Gy} were calculated as the ratio of 10% survival fraction (D₁₀) and isosurviving fraction at 4 Gy (D_{4Gy}) and 2 Gy (D_{2Gy}) to that of 250 kV X-rays, respectively. D₁₀s of X-rays were 6.8 Gy and 8.71 Gy for A549 cells and V79 cells, respectively.

(A) A549

S2 Figure. Maeda et al.

S3 Figure. Maeda et al.

A549

S4 Figure. Maeda et al.