Short Communication

Microsatellite loci in the tetraploid spined loach, Cobitis biwae, and cross-species amplification in four related species

O. Jablonska1*, A. Marín2*, K. Kowalewska1, T. Fujimoto2 and K. Arai2

1University of Warmia and Mazury in Olsztyn, Department of Zoology, Oczapowskiego, Olsztyn, Poland
2Hokkaido University, Graduate School of Fisheries Sciences, Minato, Hakodate, Hokkaido, Japan

*These authors contributed equally to this study.
Corresponding author: O. Jablonska
E-mail: olga.jablonska@uwm.edu.pl

Received July 25, 2016
Accepted August 22, 2016
Published September 23, 2016
DOI http://dx.doi.org/10.4238/gmr.15039027

Copyright © 2016 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License.

ABSTRACT. Fifteen microsatellite loci were identified in the tetraploid spined loach, Cobitis biwae (Teleostei: Cobitidae). Among these, 14 were polymorphic (5-31 alleles) and showed moderate to high cross-species amplification transferability in four related species, Cobitis matsumbarai, Cobitis taenia, Misgurnus anguillicaudatus, and Misgurnus fossilis. The loci, described herein, will be useful for population genetics, phylogeny, parentage analysis, and detection of hybridization among Cobitis species.

Key words: Hybrid; Polyploid; SSRS; Enriched library
INTRODUCTION

Spined loaches of the genus *Cobitis* (Cobitidae, Cypriniformes) are fresh water fishes, widely distributed in Europe and Asia. They are species complex that result from the natural process of hybridization, unisexual reproduction, and polyploidization (Saitoh et al., 2010; Janko et al., 2012; Choleva et al., 2014). The genus *Cobitis* has attracted interest owing to its unusually complicated and poorly recognized genome constitution, which is a consequence of hybridization and genome duplication events (Bohlen and Rab, 2001).

The isolation of nuclear markers, such as microsatellite markers is helpful for tracing hybridization events in *Cobitis* complexes, and has been previously conducted in some European *Cobitis* species (De Gelas et al., 2008). However, to date, no microsatellite marker has been described for *Cobitis* distributed around Asia.

One of the Japanese *Cobitis* complexes is *C. biwae*, which comprises the diploid and tetraploid forms having 48 and 96 chromosomes, respectively (Kobayashi, 1976; Ueno and Ojima, 1976). The diploid form is distributed throughout the northern and central Honshu and on the Pacific slope of Shikoku Islands, whereas the tetraploid form occurs in the western Honshu and Shikoku and its distribution is limited to the Seto Inland Sea slope (Kimizuka and Kobayashi, 1983; Kitagawa et al., 2003). *C. biwae* could be an appropriate model, not only for zoogeographic studies (Bohlen and Rab, 2001), but also for evolutionary process or recent tetraploidization due to natural gene duplication (Kusunoki et al., 1994; Kitagawa et al., 2003). In the present study, we report the first set of microsatellite loci for *C. biwae* and the levels of their polymorphism among tetraploid individuals. Additionally, all the loci were tested for cross-species amplification in four other related Cobitidae species.

MATERIAL AND METHODS

Fifty-eight tetraploid *C. biwae* individuals captured from the Kamo River, Takehara City, Hiroshima Prefecture, Japan were used in this study. Ploidy status of all the fishes was determined by measuring the DNA content of somatic cells collected from caudal-fin using flow cytometry (Fujimoto et al., 2007). Tetraploidy was determined by the DNA content measured with a Ploidy Analyzer (Partec GmbH, Münster, Germany) using DNA content in the diploid wild type *Misgurnus anguillicaudatus* as the reference (2.53 pg/nucleus; Zhang and Arai, 1996). The DNA content of *C. biwae* (5.75 ± 0.15 pg/nucleus) was in the range of other tetraploid *Cobitis* (Vasil’ev et al., 1999; Juchno et al., 2010). Genomic DNA was isolated from the dorsal fin clip following the standard phenol-chloroform protocol. Microsatellite enriched library was constructed using the DNA isolated from one individual by magnetic beads hybridization selection protocol (Glenn and Schable, 2005). Briefly, approximately 5 mg DNA was digested with HaeIII (Roche, Basel, Switzerland). After enzymatic digestion, the digested DNA was size selected (500-1,500 bp) using QIAquick gel extraction kit (Qiagen, Hilden, Germany). The recovered DNA was dephosphorylated and ligated to SNX linker (Hamilton et al., 1999) and then amplified by PCR using SNX forward primer. A hybridization step was performed for the enrichment library construction. Purified linker ligated DNA was hybridized to biotinylated (CAT) and (GAT) probes (hybridization temperatures were about 5 degrees below the Tm of each probe). Subsequently, the hybridized DNA was captured using streptavidin-coated magnetic beads (Dynabeads® Magnetic Beads; Life Technologies, Carlsbad, CA, USA) and subjected to stringent washes to remove the unhybridized DNA.
recovered DNA was amplified by PCR using the SNX forward primer (initial denaturation for 2 min at 92°C, followed by 25 cycles of denaturation for 45 s at 94°C, annealing for 1 min at 62°C, extension for 1 min at 72°C, and a final extension for 30 min at 72°C). Amplified fragments were ligated into pCR4-Topo vector and transformed into TOP10 One Shot chemical competent *Escherichia coli* cells (Life Technologies). A total of 96 colonies were screened by PCR using M13(-20)-F and M13-R primers, and sequenced using the BigDye terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Waltham, MA, USA) with M13(-20) forward primer on an ABI PRISM 3130XL Genetic Analyzer (Applied Biosystems). Primers, containing sufficient flanking regions, were designed for 35 microsatellite containing sequences using the Primer Premier 6.0 software. All putative microsatellite loci were PCR screened in four *C. biwae* individuals. Finally, 21 primer pairs were selected based on agarose gel visualization of the PCR products for further screening by fragment analysis sequence using M13-tailed primers. PCR was performed as described by Morishima et al. (2008). Briefly, 100 ng template DNA was amplified in a final volume of 10 µL reaction mix containing 200 µM dNTPs, 0.3 pmol M13-tailed forward primer, 3.0 pmol reverse primer, 3.0 pmol fluorescence-labeled M13 primer, and 0.5 U *Taq* polymerase (TaKaRa Bio Inc., Kusatsu, Shiga, Japan); thermocycling conditions were as follows: initial denaturation for 3 min at 95°C, followed by 35 cycles of denaturation for 30 s at 95°C, annealing for 30 s at 56°C, extension for 30 s at 72°C, and a final extension for 45 min at 72°C. PCR products were sequenced using formamide with GeneScan LIZ-500 size standard (Applied Biosystems). The GeneMapper 3.7 software (Applied Biosystems) was used for allele scoring.

ATETRA 1.2 (Van Puyvelde et al., 2010), which was developed to analyze tetraploid microsatellite data, was used to estimate the number of alleles (N_A), expected heterozygosity (H_E), and Shannon-Wiener diversity indices (H').

RESULTS AND DISCUSSION

After fragment analysis, 15 microsatellite loci resulted in unambiguous peak patterns. These loci were used for genotyping 58 tetraploid individuals of *C. biwae*. Although only tri-nucleotide biotinylated probes were used for constructing the libraries, a high rate of di-nucleotide CA/GT repeat motif was found (73%). This finding is consistent with that of a previous study, where di-nucleotide microsatellite motifs were the most abundant form of microsatellites in vertebrates and arthropods (Tóth et al., 2000). Overall, 14 polymorphic primer sets were used, and revealed up to four alleles per locus per individual, confirming tetraploidy. The N_A per locus ranged from 4 (*Cobi26*) to 31 (*Cobi31*), with a mean of 11.4 (Table 1).

The H_E ranged from 0.388 to 0.947 (mean $H_E = 0.693$), and the H' ranged from 0.811 to 3.160 (mean $H' = 1.672$). The loci exhibited moderate to high levels of polymorphism (4 to 31 alleles). The transferability of the microsatellite loci, reported herein, was evaluated in four related species: *Cobitis matsubarai* (Kawatana River, Shimonoseki City, Yamaguchi Prefecture, Japan), *Cobitis taenia* (Lake Leginski, Warmia-Masuria Province, Poland), *M. anguillicaudatus* (Kunebetsu River, Nanae Town, Hokkaido Prefecture, Japan), and *Misgurnus fossilis* (Wieprz River, Lubelskie Province, Poland) (Table 2). Moderate (*M. anguillicaudatus* and *M. fossilis*) to high (*C. matsubarai* and *C. taenia*) levels of cross-species amplification were observed. The new microsatellite loci described in this study will be useful for population genetics, phylogeny, parentage analysis, and hybrid detection among *Cobitis* species.
Conflicts of interest

The authors declare no conflict of interest.

Genetics and Molecular Research 15 (3): gmr.15039027
ACKNOWLEDGMENTS

Research supported by the Japan Society for the Promotion of Science (JSPS), including Postdoctoral Fellowship for Foreign Researchers (O. Jablonska, #2012FY; #PE12052) and the Poland-Japan Research Cooperative Program in 2015 to 2016 FY. Moreover, research supported in part by the University of Warmia and Mazury in Olsztyn, Poland (project #12.620.020-300). The authors would like to thank T. Umino (Hiroshima University, Higashi-Hiroshima, Japan) for providing C. biwae samples, H. Sakai (National Fisheries University, Shimonoseki, Japan) for C. matsubarai samples, as well as A. Boron and D. Juchno (University of Warmia and Mazury in Olsztyn, Poland) for providing M. fossilis and C. taenia samples.

REFERENCES

Genetics and Molecular Research 15 (3): gmr.15039027
