Regeneration dynamics of iron and nutrients from bay sediment into bottom water of Funka Bay, Japan

Nanako Hioki, Kenshi Kuma*, Yuichiroh Morita, Daichi Miura, Atsushi Ooki, Seiji Tanaka, Hiroji Onishi, Tetsuya Takatsu, Naoto Kobayashi, Yoshihiko Kamei

Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan

*Corresponding author: Kenshi Kuma, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
Tel & Fax: +81-138-40-8823; E-mail: kuma@fish.hokudai.ac.jp

Short Title: Iron in a subarctic coastal environment

Key words: Iron cycling, Nutrients, Dissolved oxygen, Humic-like dissolved organic matter, Bay sediment, Funka Bay (Japan).
Abstract

We studied iron remobilization and nutrient regeneration in bottom water of Funka Bay, Japan, bimonthly from August 2010 to December 2011. The bay basin (bottom depth, 92–96 m) is separated from the northwest Pacific Ocean at its mouth by a sill with a depth of 60 m. After a spring phytoplankton bloom during early March–early April, nutrients in bay bottom water tended to accumulate with time until August–September and to increase gradually with depth during April–October by the oxidative decomposition of settling particulate organic matter on the bay bottom. In contrast, the process of iron remobilization into bottom water of the bay is remarkably different from nutrient regeneration. The much higher concentrations of dissolved and total dissolvable iron near the bottom and the seasonally variable relationship between dissolved iron concentration and apparent oxygen utilization in bay bottom water likely reflect a balance between dissolved iron input and removal processes within the bay bottom water. The release of soluble Fe(II) from reducing bay sediments might induce the high concentrations of dissolved and total dissolvable iron in deep–bottom waters of Funka Bay and might be one of the most important sources of iron in Funka Bay. The upward transport of iron from the bay bottom to the surface water during the winter vertical mixing may play an important role on the supply of bioavailable iron for phytoplankton growth in the coastal waters.
1. Introduction

Iron is one of the most important micronutrients for phytoplankton growth in the ocean. Despite the great interest in the behavior of iron in open oceans, our understanding of the biogeochemical and physical mechanisms that regulate iron as well as nutrients is still limited in coastal regions. The concentration of dissolved iron (D-Fe) in remote oceanic regions is characteristically low relative to concentrations in coastal environments in close proximity to terrestrial and continental shelf sources of iron. The iron distributions in coastal waters are more dynamic and complicated than in oceanic environments, being subject to varying influences of atmospheric input, run-off from continents, shelf sediments, vertical and horizontal mixing, and phytoplankton productivity. Many recent studies highlight the potential importance of sedimentary iron sources for the coastal ocean, and even the open ocean (e.g., Lam et al. 2006; Hurst et al. 2010; Severmann et al. 2010). The release of Fe(II) from reducing continental shelf sediments might be one of the most important sources of iron in coastal waters (Lohan and Bruland 2008; Homoky et al. 2012a, b). Enrichment of iron in pore fluids and bottom waters is driven by the reductive dissolution of insoluble Fe(III) during the decomposition of organic matter.

Funka Bay, Japan, has an area of 2300 km2 with maximum depth of 96 m, and is separated from the northwestern North Pacific Ocean at its only entrance by a sill with 60-m depth (Figure 1). The seasonal changes in hydrographic conditions in Funka Bay have been reported in detail by several previous studies (e.g. Ohtani and Akiba 1970; Ohtani 1971; Ohtani and Kido 1980). Water exchange in this bay occurs periodically twice a year, with Oyashio water (OW) in early spring and Tsugaru warm water (TW) in early autumn (Ohtani 1971). In most years, there is a massive spring phytoplankton bloom in this bay, consisting mainly of chain-forming diatoms *Thalassiosira* spp. and *Chaetoceros* spp., for approximately ten days during early
March–early April (e.g. Maita and Odate 1988; Kudo and Matsunaga 1999; Shinada et al. 1999; Kudo et al. 2000, 2007; Yoshimura and Kudo 2011). One-third of the annual primary production in Funka Bay occurs during the spring bloom (Kudo and Matsunaga 1999). After the spring bloom, there is extensive settling and sedimentation of particulate organic matter on the bay bottom (Miyake et al. 1998), and the bottom water tends to be isolated from the surface during summer (Takahashi et al. 2005; Kudo et al. 2007).

In this study, we measured the seasonal vertical distributions of iron, nutrients, dissolved oxygen, and humic-like fluorescent dissolved organic matter (FDOM, measured as humic-like fluorescence intensity [humic F-intensity]) in the water column of three stations in the deepest part of Funka Bay located close together in the center of the bay. Humic F-intensity as well as water properties (temperature, salinity, and density) is very useful to discriminate between OW and TW (Saitoh et al. 2008; Kuma et al. 2014). In particular, our goal was to determine the factors controlling the seasonal distributions of iron in comparison with those of nutrients in bottom water of Funka Bay considering the sediment–water interface and water exchange after the spring bloom and to show the potential importance of sedimentary iron sources in the semi-closed benthic layer of Funka Bay for phytoplankton growth in the coastal waters.

2. Materials and methods

2.1 Sample collection and treatment

Sampling was conducted from the R/V Ushio-Maru at three stations, closely located in the center of the Funka Bay basin: Stn 23 (42°24.0’N, 140°31.0’E, bottom depth 95 m), Stn 30 (42°16.2’N, 140°36.0’E, bottom depth 92 m), and Stn 33 (42°19.0’N, 140°30.5’E,
bottom depth 96 m) (Fig. 1). Water samples were collected bimonthly during August 2010–February 2011 for all three stations and then during April–December 2011 for Stn 30. Samples were collected from water depths of 5 to 86 m at Stn 30 and from 5 to 90 m at Stn 23 and Stn 33 using acid-cleaned, Teflon®-coated, 5-L Niskin X sampling bottles (General Oceanics) attached to a rosette multi-sampler along with a conductivity-temperature-depth (CTD) probe (SBE 19plus, Sea-Bird Electronics, Inc.). Samples for analysis of D-Fe, nutrients, and humic F-intensity were gravity filtered on deck by connecting an acid-cleaned 0.22-µm pore-size membrane filter (Millipak 100, Durapore cartridge type, Millipore) to a sampling spigot on the Niskin X bottles. The filtered samples (7–8 mL) in 10-mL acrylic tubes for nutrient and humic F-intensity analyses were immediately frozen and kept below −20 °C in the dark until measurements in the laboratory. Unfiltered samples were collected for total dissolvable iron (T-Fe) and dissolved oxygen (DO) concentrations. The filtered (<0.22-µm fraction) and unfiltered seawater samples (100 mL) used for D-Fe and T-Fe analyses, respectively, were initially collected in pre-cleaned, 125-mL low density polyethylene bottles, which were then acidified with ultrapure grade HCl to pH 1.7–1.8 in a Class 100 clean room in the laboratory on shore and then allowed to stand at room temperature for three months until analyzed for iron in the laboratory (Bruland and Rue 2001). Sample treatment in the present study is the same as in our previous studies (e.g., Uchida et al. 2013). Hydrographic observations (salinity, temperature, and depth) were conducted with a CTD attached to the sampling rosette. Additional water samples for determining nutrients and DO concentrations in bottom water were collected approximately 0.5–1 m above the bottom at each station using a Van Dorn sampling bottle on a steel wire. In addition, a DO sensor (RINKO I, Alec Electronics Co. Ltd., Japan) was deployed at approximately 90-m depth at Stn 30 to continuously measure the DO concentration in bottom water from April to October 2010 and 2011. The DO sensor was calibrated with the oxygen-saturated seawater by bubbling air after
bimonthly pulling up on deck and then was deployed again.

2.2 Dissolved and total dissolvable iron

Acidified iron samples were buffered at pH 3.2 with a buffer solution of 8.15 M quartz-distilled formic acid and 4.54 M ultrapure grade ammonium hydroxide (0.8 mL per 100 mL sample solution) in a class 100 clean room in the laboratory onshore. The iron concentrations (D-Fe and T-Fe) in buffered 0.22-µm-filtered and unfiltered samples were determined by an automated iron analyzer (Kimoto Electric Co. Ltd., Japan) using a combination of chelating-resin concentration and luminol–hydrogen peroxide chemiluminescence (CL) detection in a closed flow-through system (Obata et al. 1993) as described in our previous studies (e.g., Kitayama et al. 2009). Briefly, iron in a buffered sample was selectively collected on 8-hydroxyquinoline immobilized chelating resin and then eluted with dilute (0.3 M) HCl. The eluent was mixed successively with luminol solution, 0.6 M aqueous ammonia, and 0.7 M H₂O₂, and then the mixture was introduced into the CL cell. Finally, the iron concentration was determined from the CL intensity. The accuracy of this analysis was checked using SAFe (Sampling and Analysis of Fe) reference materials (pH 1.7–1.8). The D-Fe in the SAFe surface (S) water and deep (D1) intercalibration waters, as determined by our analytical method in the present study after being buffered at pH 3.2, were 0.10 ± 0.01 nM (n = 6) for S and 0.70 ± 0.03 nM (n = 5) for D1, consistent with the community consensus values of 0.090 ± 0.007 nM for S and 0.67 ± 0.07 nM for D1 (Johnson 2007; GEOTRACES [www.geotraces.org]).

2.3 Nutrients, dissolved oxygen, and humic-like FDOM

Concentrations of major nutrients (NO₃ + NO₂, PO₄, and Si(OH)₄) were determined by...
using an autoanalyzer (Technicon) using CSK standard solutions for nitrate and nitrite
(Wako Pure Chemical Industries, Ltd., Japan) and standard methods (Parsons et al.
1984). Dissolved oxygen was determined onboard by the Winkler titration method with
potentiometric end-point using a 798 MPT Titrino analyzer (Metrohm). Apparent
oxygen utilization (AOU) was calculated by subtracting the measured oxygen content
from the dissolved oxygen concentration at saturation under in situ temperature and
salinity (Hansen 1999).

Humic-like FDOM was quantified by measuring humic F-intensity, as
reported in our previous studies (e.g., Uchida et al. 2013). The frozen 0.22-µm-filtered
samples in acrylic tubes were thawed and warmed overnight to room temperature in the
dark, and then the humic F-intensity was measured in a 1-cm quartz cell by using a
fluorescence spectrophotometer (model F-2000, Hitachi) at 320 nm excitation and 420
nm emission wavelengths and 10-nm bandwidths (Hayase et al. 1988; Hayase and
Shinozuka 1995). It has been reported that the storage in acrylic tube under freezing
conditions does not measurably affect the humic F-intensity of seawater samples (e.g.,
Uchida et al. 2013; Tanaka et al. 2014). Fluorescent intensity is expressed in terms of
quinine sulfate units (1 QSU = 1 ppb quinine sulfate in 0.05 M H₂SO₄, excitation 320
nm, emission 420 nm; Mopper and Schultz [1993]).

3 Results

3.1 Hydrographic features

Water properties (in-situ temperature [T], salinity [S], and density [σ_T]) were similar
throughout the water column at all three stations during August 2010–February 2011.
Therefore, we show the vertical profiles of water properties (Fig. 2) and the
temperature–salinity diagram (Fig. 3) only for Stn 30 during August 2010–December 2011. The salinities of typical OW and TW are below 33.3 and above 33.7, respectively (Ohtani 1971; Ohtani and Kido 1980, Fig. 3). Salinities in the upper 30 m of the water column in August 2010 and 2011 and in June 2011 were low (<32.5; Figs. 2, 3a, b) due to the surface inflow of OW and the inflow of meltwater after April (Hasegawa and Isoda 1997). After August, the surface salinity increased rapidly from early autumn to early winter as a result of the inflow of TW. Typical Funka Bay winter water (FW) with consistently low temperature and high salinity ($T < 6 \, ^\circ C, S > 33.3$; Fig. 3) is formed by vertical mixing during winter after the intrusion of TW in autumn and early winter (Ohtani and Akiba 1970; Ohtani and Kido 1980). Values for T, S, and σ_T in February and December 2011 (Figs. 2, 3) were almost unvaryingly constant throughout the water column, with narrow ranges for T and S ($T = 4$–$5 \, ^\circ C, S = 33.4$–33.6 in February 2011 and $T = 9 \, ^\circ C, S = 33.6$–$33.8$ in December 2011). After February, surface salinity decreased gradually from April to August as a result of OW inflow, although FW remained as bottom water during spring and summer (Fig. 3c, d). There was a stronger intrusion of TW into the bottom water during August, October, and December in 2011 than in 2010 (Fig. 3c, d).

3.2 Humic F-intensity, nutrients, and dissolved oxygen

During August 2010–February 2011, relatively similar distributions of humic F-intensity and nutrients and DO concentrations were observed throughout the water column at all three stations, although nutrient and DO concentrations in deep-bottom waters, except for near bottom, in October 2010 are different between the stations (lower nutrient and higher DO concentrations at Stn 33 and Stn 30 than Stn 23, data not shown). We therefore show only the vertical profiles at Stn 30 during August 2010–February 2011 (Fig. 4a–e) and April–December 2011 (Fig. 4f–j). Below the
surface mixed layer, humic F-intensity in August 2010 was relatively uniform throughout the water column at all three stations, with higher values (2.0–2.7 QSU) than those during October 2010–February 2011 (Fig. 4a). From August to October 2010 the humic F-intensity in the upper 20–40 m decreased rapidly to about 1.5 QSU, and values in December 2010 and February 2011 were low (1.5 to 1.7 QSU) and vertically uniform throughout the water column at all stations. The humic F-intensity tended to increase with time from February to April–August 2011 and then to decrease with time from August to December, with a vertically uniform profile in December 2011, remarkably similar to profiles in December 2010 and February 2011 at all stations (Fig. 4a, f). However, low values (below 2 QSU) were observed at depths of 60–80 m at Stn 30 in August 2011 (Fig. 4f), very different from those in August 2010 (Fig. 4a).

During August–October 2010 and April–October 2011, NO$_3$ + NO$_2$ and Si(OH)$_4$ were depleted in the surface water (<20–40 m depth), whereas there was still measurable PO$_4$ in the surface water. All nutrient concentrations tended to increase with depth in waters below 30–40 m depth in April–October, with maxima in bottom water in August (Fig. 4b–d, g–i). Nutrient concentrations in February and December 2011, however, were remarkably uniform, with relatively high concentrations throughout the water column.

Dissolved oxygen concentrations in August, October, and December 2010 and 2011 at all three stations were 5–7 ml L$^{-1}$ in the upper 60 m and 1.5–5 ml L$^{-1}$ in the deep to bottom waters (60 m–near bottom; Fig. 4e, j). Dissolved oxygen concentrations below 2 ml L$^{-1}$ were found only in the bottom water (>80-m depth), with concentrations decreasing with depth at all stations in August 2010 (Fig. 4e), whereas no such low-DO bottom water was observed in August 2011 (Fig. 4j). Dissolved oxygen concentrations in February 2011 were remarkably uniform, with high concentrations of around 7 ml L$^{-1}$ throughout the water column at all stations. The highest DO concentrations (about 8 ml L$^{-1}$) were observed in the upper 40 m in April 2011.

Dissolved oxygen concentrations
concentrations in the bottom water of Stn 30, which were measured at a depth of
approximately 90 m (2 m above the bottom) by a DO sensor, showed seasonal
variations from April to October (Fig. 5). In 2010, there was a continuous, rapid
decrease in concentrations from 6–7 ml L$^{-1}$ in the middle of June to 1.5 ml L$^{-1}$ in late
August–early September, followed by a rapid increase with a few sudden positive
fluctuations from early September to October. In 2011, there was a gradual decrease
from 5 ml L$^{-1}$ in April to 1.7 ml L$^{-1}$ in late August–early September, with several large
positive fluctuations. The higher DO concentration in the bottom water on 18 August
2011 (4–5 ml L$^{-1}$, Fig. 4j) as compared to that on 23 August 2010 (<2 ml L$^{-1}$, Fig. 4e) is
consistent with a large positive fluctuation in DO concentrations during 10–18 August
2011 (Fig. 5) although there were difference (approximately ±0.2 ml L$^{-1}$ at 1.5 ml L$^{-1}$
level and ±1 ml L$^{-1}$ at 5 ml L$^{-1}$ level) between DO concentrations determined by
Winkler titration method and a DO sensor probably because of different sampling and
deploying depths.

3.3 Dissolved and total dissolvable iron

Concentrations of D-Fe during August 2010–February 2011 had relatively similar
vertical and seasonal distributions at all three stations (Fig. 6a–c). However, it was
found that D-Fe levels and vertical profiles in bottom waters in October 2010 were
different between the stations. In October 2010, D-Fe concentrations in bottom water at
Stn 23 increased with depth to 10 nM (Fig. 6a), while those at Stn 33 and 30 were
remarkably uniform with low concentrations of 1–2 nM throughout the water column
(Fig. 6b–c). During August–December 2010 and April–October 2011, D-Fe
concentrations were relatively low (around 1–5 nM) from the surface to depths of 50–60
m and tended to increase rapidly with depth in waters below 70 m to the maximum
values (15–22 nM) in bottom water (around 90 m) in August 2010. However,
concentrations during winter 2011 increased gradually with depth from 4–7 nM at 5-m depth to 14–18 nM at around 90-m depth at all three stations in February 2011 (Fig. 6a–c), and from 5 nM in surface water to 9 nM in bottom water at Stn 30 in December 2011 (Fig. 6d).

T-Fe concentrations during August 2010–February 2011 also showed relatively similar vertical distributions at all three stations (Fig. 6e–g). In October 2010, however, T-Fe concentrations in bottom water at Stn 23 increased with depth to 400 nM (Fig. 6e), while those at Stn 33 and 30 were relatively uniform with low concentrations of about 50 nM (Fig. 6f, g). In the surface 20–40 m, T-Fe concentrations in August and October 2010 and 2011 and April 2011 were relatively low (around 4–27 nM). During winter, however, T-Fe concentrations were relatively high (around 28–60 nM) in December 2010 and February 2011, and in December 2011 they were vertically uniform and remarkably high (about 220–300 nM) in the upper 60 m of the water column (Fig. 6h). T-Fe concentrations in waters below 60 m tended to increase rapidly with depth to the maximum values (500–900 nM) in bottom water (around 90 m) in August 2010 and October 2011, and gradually with depth to approximately 180–250 nM during December 2010–August 2011.

4 Discussion

4.1 Water properties in Funka Bay

Temperature–salinity diagrams (Fig. 3) show the strong intrusion of TW into the deep–bottom waters in August 2011 and the strong presence of TW throughout the water column in October and December 2011 (Fig. 3d). However, there is no evidence of such extensive water exchange with TW in the water column in August–December
2010 (Fig. 3c). In addition, the remarkably constant T, S, and σ_T values throughout the
water column in February and December 2011 (Figs. 2, 3) are due to the strong vertical
water mixing during winter.

Previous studies (Saitoh et al. 2008; Kuma et al. 2014) have found that humic
F-intensity is relatively low in TW (1–1.5 QSU), which originates from Japan Sea
surface water, and relatively high in OW (≥2 QSU), which originates from Okhotsk Sea
water. In the present study, the lower, vertically homogeneous humic F-intensities
(around 1.5–1.6 QSU) in February and December are consistent with the constant and
relatively high S and σ_T values throughout the water column during winter, resulting
from vertical water mixing and predominance of water with TW origins (Figs. 2, 3, 4a,
and 7). After winter, the decrease in S and the increase in humic F-intensity to around 2–2.5
QSU from February to April–August are due to water exchange with OW with higher
humic F-intensity than TW. A plot of humic F-intensity against S below 70-m depth
showed that the bottom water in August and October 2010 was OW, whereas in
December 2010 and 2011 and in February 2011 it was TW (Fig. 7). However, the lower
humic F-intensity values in deep–bottom waters in August and October 2011 compared
to 2010 were due to the temporary intrusion of TW with lower humic F-intensity into
the deep–bottom waters in 2011 (Figs. 3c, d, 4a, f, 7).

4.2 Consumption of oxygen and nutrient regeneration in deep–bottom waters

In the surface water (<20–40 m depth during August–October 2010 and April–October
2011) after a spring phytoplankton bloom during early March–early April, NO$_3$ + NO$_2$
was depleted regardless of the PO$_4$ and Si(OH)$_4$ levels due to the consumption of NO$_3$ +
NO$_2$ by the phytoplankton (Fig. 4b–d, g–i). Kudo et al. (2000) reported that NO$_3$
depletion terminates the spring bloom in Funka Bay and Si(OH)$_4$ is further consumed
after the exhaustion of NO$_3$.

In general, DO concentrations in the deep–bottom waters below 60-m depth tend to decrease vertically toward summer, reaching seasonal minimum values in bottom water in August–September (Figs. 4e, j, 5). The decrease in DO concentrations in deep–bottom waters results from the consumption of oxygen by the microbial decomposition of settled particulate organic matter on the sediment surface layer after a spring bloom. However, DO concentrations then tend to increase toward fall–winter from the intrusion of TW (Kudo et al. 2007). Dissolved oxygen concentrations (Fig. 4e, j) as well as water properties (T, S; Fig. 2) and chemical components (humic F-intensity and nutrients; Figs. 4a–d, f–i) were vertically homogeneous during winter (December–February) because of the vertical mixing during winter. In the present study, DO concentrations below 2 ml L\(^{-1}\) were observed in the bottom water below 80-m depth at all stations in August 2010, although similarly low concentrations were not observed in August 2011 (Fig. 4e, j). Inagaki et al. (2012, 2014) reported that the hypoxic (DO <2 ml L\(^{-1}\)) conditions in bottom water of Funka Bay influenced macrobenthos abundance and the growth of flathead flounder \textit{Hippoglossoides dubius}, which is the dominant demersal fish species and an important fishery resource in Funka Bay. Higher DO concentrations (>2 ml L\(^{-1}\)) in August 2011 than in 2010 were due to the temporarily strong intrusion of TW with higher DO concentrations into the bottom water during 10–18 August 2011 (Figs. 4j, 5). We found that the TW intrusion also contributed strongly to temporarily lowering humic F-intensity and nutrient concentration in deep–bottom waters (Figs. 4–5).

All nutrient concentrations in bottom water tended to increase with time during April–August and then decrease with time during August–December (Fig. 4b–d, g–i). In bottom water (80–87 m) in 2011, however, PO\(_4\) concentrations in June were the highest, while NO\(_3\)+NO\(_2\) concentrations in June were the lowest and Si(OH)\(_4\) concentrations in June were lower than those in August and/or October (Fig. 4g–i). Watanabe and Tsunogai (1984) found a remarkable maximum concentration of
interstitial PO$_4$ at the depth of about 10 cm (Stn 30) in spring and summer. This
probably results from desorption of PO$_4$ on sediment particles under anoxic condition
through the oxidative decomposition of settled particulate organic matter on the bay
bottom after the spring bloom. Therefore, the highest concentrations of PO$_4$ in June
among the season (Fig. 4h) may be due to the large upward flux of PO$_4$ from pore water
of sediment to bottom water. The upward flux of PO$_4$ from pore water may contribute
some extent to the increase in PO$_4$ in the bottom water during spring and summer. In
addition, Kudo et al. (2007) found that NO$_3$ + NO$_2$ in bottom water at Stn 30 did not
increase from April to June because of the remineralization to NH$_4$ from April to June.
Therefore, low NO$_3$+NO$_2$ in bottom water in April–June (Fig. 4g) is attributable to the
remineralization to NH$_4$ during April–June although we did not measure NH$_4$
concentrations in this study. Nutrient regeneration in Funka Bay bottom water was
accompanied by oxygen consumption. The ratio of PO$_4$ to AOU below 70-m depth,
which was determined from the slope of PO$_4$ vs AOU by a linear regression (Fig. 8a),
was ~0.0060. The ratio was nearly the same as a global mean value of P:O$_2$ regeneration
ratio (~0.0067, DeVries and Deutsch 2014). The y-intercept of a plot of PO$_4$
concentration vs. AOU was approximately ~0.95 µM PO$_4$, indicating preformed PO$_4$
with conservative properties. Kudo et al. (2007) reported that the different preformed
PO$_4$ value in each year was due to the different yearly PO$_4$ concentration after the
winter vertical mixing, which replenishes oxygen to the whole water column. In
contrast, the relatively linear relationship between Si(OH)$_4$ and AOU in bottom water
(Fig. 8b) probably results from the seasonally constant concentration of interstitial
Si(OH)$_4$ and flux of Si(OH)$_4$ at the sediment–water interface (Watanabe and Tsunogai
1984).

The relationship between NO$_3$ + NO$_2$ and AOU in bottom water was
seasonally scattered (Fig. 9a). In addition, the (NO$_3$ + NO$_2$):PO$_4$ ratios in August 2010
at all stations (≥85 m), in October 2010 at Stn 23 and Stn 30 (≥80 m), in April and June
2011 at Stn 30 (≥70 m), and in August 2011 at Stn 30 (~91 m) were 10.44±0.60, 7.52±0.10, 4.65±1.05 (±1SD), and 8.50 respectively (Fig. 9b). The ratios were significantly lower ($p < 0.01$, t-test) than the Redfield ratio of 16:1 during biological production and regeneration of organic matter. Kudo et al. (2007) also reported that dissolved inorganic nitrogen (DIN: NO$_3$ + NO$_2$ + NH$_4$) in bottom water at Stn 30 increased linearly with AOU, although NO$_3$ + NO$_2$ did not increase from April to June because of the remineralization to NH$_4$ from April to June and the oxidation of NH$_4$ to NO$_3$ in July. Therefore, the (NO$_3$ + NO$_2$):PO$_4$ ratios far below 16:1 in April and June 2011 at Stn 30 (Fig. 9b) are probably attributable to the high concentration of NH$_4$ in the bottom water during April–June (Kudo et al. 2007). However, the low (NO$_3$ + NO$_2$):PO$_4$ ratios (Fig. 9b) in deep–bottom waters (≥80–90 m) with low DO concentrations (around 2–3 ml L$^{-1}$ or less; Fig. 4e, j) at all stations in August 2010 and at Stn 23 and Stn 30 in October 2010 may be due to the denitrification/anammox that occurs in shelf bottom sediments. Denitrifying bacteria consume NO$_3$ instead of oxygen for respiration in low-oxygen pore waters, which causes a NO$_3$ deficiency relative to PO$_4$. In addition, anammox (anaerobic oxidation of ammonium using nitrite to nitrogen gas) is also an important sedimentary process. Similar observations have been made near the continental shelves of the Bering Sea, Chukchi Sea, Okhotsk Sea, and elsewhere (Yoshikawa et al. 2006; Chang and Devol 2009; Mordy et al. 2010; Horak et al. 2013; Hioki et al. 2014). Under oxygen-depleted conditions, denitrification and anammox processes occur in the water column. In this study, minimum DO concentrations in the water were found to be about 1 ml L$^{-1}$ (45 µM) where denitrification and anammox processes might be inhibited. Previous studies had reported the oxygen sensitivities to N$_2$ loss processes, where denitrification is only active at 2–4 µM DO (Devol 1978) and anammox was completely inhibited at higher than about 13.5 µM of DO (Jensen et al. 2008). It is likely that the denitrification and anammox occurred under more oxygen-depleted condition, like within the sediments.
4.3 Iron remobilization in bay deep–bottom waters

In the surface water (<20–40 m depth during August–October 2010 and April–October 2011) after a spring bloom, D-Fe and T-Fe concentrations are relatively high (around 1–5 nM for D-Fe and 4–27 nM for T-Fe, Fig. 6), as compared to the iron levels in oceanic surface water (e.g., Kitayama et al. 2009; Uchida et al. 2013). The high iron is probably attributable to high iron inputs from rivers, atmosphere, and shelf sediments into nutrient-depleted surface water.

Recently, many studies have focused on benthic iron remobilization from shelf sediments (e.g., Lohan and Bruland 2008; Moore and Braucher 2008; Severmann et al. 2010; Homoky et al. 2012a, b). The increases in D-Fe and T-Fe concentrations with depth in waters below 70 m (Fig. 6a–c, e–g) in August 2010 were largely consistent with the increase in nutrient concentrations (Fig. 4b–d) and the decrease in DO concentration (Fig. 4e) with depth in deep–bottom waters. However, we found that the increases in D-Fe and T-Fe concentrations with depth near the bottom to remarkably high concentrations in bottom water were rapid, as compared to the gradual increase in nutrient concentrations and the gradual decrease in DO concentration with depth. The sudden increase in D-Fe and T-Fe concentrations with depth in deep–bottom waters in August 2010 probably resulted from a marked increase in soluble Fe(II) concentrations in anaerobic pore waters near the bay sediment-water interface in addition to the release of the dissolved Fe from biogenic particles, which would be related with DO and nutrient concentrations. In previous study, the oxidation-reduction potential (Eh) values in the sub-surface layer (around 5 cm) of the sediment at Stn 30 of the Funka Bay were from 0 to −50 mV in February and decreased to around −200 mV in April (Sasaki et al. 2001). Under the low Eh values in the sub-surface layer, it is possible that the denitrification \((\text{CH}_2\text{O (organic carbon)} + \text{NO}_3^- \rightarrow \text{N}_2 + \text{CO}_2)\) and the reduction to
water-soluble Fe\(^{2+}\) (CH\(_2\)O+particulate Fe(OH))\(_3\)→Fe\(^{2+}\)+CO\(_2\)) occur in the anaerobic bay sediment through microbial utilization of oxygen from oxygen-containing compounds such as nitrate and particulate Fe(III) hydroxide, respectively (Stigliani 1988).

Hypoxic and suboxic conditions in bottom water lead to an increased flux of reduced Fe(II) from non-biogenic Fe (lithogenic particulate Fe) in the shelf sediments because the oxidation rate of Fe(II) is slowed in a cold, low-oxygen environment (Lohan and Bruland 2008; Homoky et al. 2012a, b). In the overlying cold bottom water, the reduced Fe(II) then oxidizes to the less-soluble Fe(III), which may lead subsequently to the formation of colloidal and particulate Fe(III) hydroxide and then to the removal of colloidal and particulate Fe(III) from the water by aggregation and particle scavenging (Kuma et al. 1996; Kitayama et al. 2009; Hioki et al. 2014).

Therefore, D-Fe concentrations in deep–bottom waters of Funka Bay are inferred to reflect a balance between input and removal processes. The D-Fe removal process in deep–bottom waters results in the rapid increase in D-Fe concentration with depth in bottom water (Fig. 6a–c) and seasonally variable relationships between D-Fe concentrations and AOU (Fig. 10), remarkably different from those between nutrients and AOU (Figs. 8, 9a). Nutrients tend to accumulate conservatively in deep–bottom waters predominantly by the oxidative decomposition of settling particulate organic matter and the dissolution of biogenic silica on the bay bottom after the spring bloom.

The lower D-Fe and T-Fe concentrations near the bottom in August 2011 than in August 2010 (Fig. 6) are due to the temporary intrusion of TW with low iron concentrations into the deep–bottom waters in August 2011 (Figs. 3, 5). In addition, the uniformly lower iron concentrations in deep–bottom waters in October 2010 at Stn 33 and Stn 30 than Stn 23 (Fig. 6a–c, e–g) are probably due to the temporary water renewal by the intrusion into the deep-bottom waters at Stn 33 and Stn 30. Similar phenomena in deep-bottom waters, except for near bottom, in October 2010 at the three stations were observed for nutrient and DO (lower nutrient and higher DO concentrations at Stn 33
and Stn 30 than Stn 23, data not shown). The temporary water renewal in deep-bottom waters is an important mechanism for the reduction of iron and nutrients and the recovery of DO in deep-bottom waters of Funka Bay basin.

The wider depth ranges in the water column with homogenously high iron and nutrient concentrations in February and December 2011 compared to in December 2010 (Figs. 4, 6) are due to the stronger vertical water mixing from December to February (also evident in the remarkably constant T, S, and σ_T values throughout the water column; Fig. 2). The vertical water mixing during winter in Funka Bay is the most important mechanism for transporting iron from the bay bottom to the surface water. The upward transport of iron during winter may play an important role on the supply of bioavailable iron for phytoplankton growth in the coastal waters.

The actual concentration of soluble iron in seawater is likely maintained primarily by complexation of D-Fe with organic, iron-binding ligands such as humic dissolved organic matter, which controls the solubility of Fe(III) hydroxide in seawater (Kuma et al. 1996; Chen et al. 2004; Kitayama et al. 2009). However, the D-Fe concentrations throughout the water column in February and December 2011 (approximately 5–18 nM; Fig. 6a–d) were extremely high relative to Fe(III) hydroxide solubility (approximately 0.3–0.4 nM), which was estimated by using an equation derived in our previous study for the relationship between Fe(III) hydroxide solubility and humic F-intensity in the central North Pacific Ocean (Kitayama et al. 2009): Fe(III) hydroxide solubility (nM) = $0.226 \times$ humic F-intensity (QSU) – 0.045 ($R = 0.78$, $n = 14$). Therefore, the extreme excess of D-Fe throughout the water column in February and December 2011 (Fig. 6a-d) is probably due to the presence of colloidal iron (both colloidal Fe(III) hydroxide and iron bound to colloidal organic matter) in the D-Fe fraction (<0.22-µm pore-size), resuspended from the bay sediment during the winter vertical mixing.
Acknowledgments We thank K. Toya for technical assistance. We also thank the
captain and crew of the R/V Ushio-Maru of Hokkaido University for their help in
sampling. We are grateful to two reviewers for their constructive and helpful comments
on this work. This study was supported partly by a grant for 2010–2011 FYs Research
Projects from the Hokusui Society Foundation, Sapporo, and a grant for Scientific
Research (no. 22510001) from the Ministry of Education, Culture, Sports, Science and
Technology, Japan

References

Bruland KW, Rue EL (2001) Analytical methods for the determination of
concentrations and speciation of iron. In: Turner DR, Hunter KA (eds) The
biogeochemistry of iron in seawater. Wiley, Chichester, pp 255–289
Chang BX, Devol AH (2009) Seasonal and spatial patterns of sedimentary
seawater controlled by dissolved organic matter. Global Biogeochem Cycles 18:
Devol AH (1978) Bacterial oxygen uptake kinetics as related to biological processes in
DeVries T, Deutsch C (2014) Large-scale variations in the stoichiometry of marine
organic matter respiration. Nature Geosci 7: 890–894
Hasegawa N, Isoda Y (1997) Fresh water budget of Funka Bay. Umi to Sora, 73,
113–121 (in Japanese with English abstract)

Maita Y, Odate T (1988) Seasonal changes in size-fractionated primary production and nutrient concentrations in the temperate neritic water of Funka Bay, Japan. J

Yoshimura T, Kudo I (2011) Seasonal phosphorus depletion and microbial responses to the change in phosphorus availability in a subarctic coastal environment. Mar Chem
Figure captions

Fig. 1 Map showing sampling locations (Stn 23: bottom depth 95 m; Stn 30: bottom depth 92 m; Stn 33: bottom depth 96 m) closely located in the center of the bay basin, in Funka Bay (Hokkaido, Japan)

Fig. 2 Vertical distributions of temperature, salinity, and density at Stn 30 in Funka Bay during 13 August 2010–11 February 2011 (a–c) and during 13 April–14 December 2011 (d–f).

Fig. 3 Temperature–salinity diagram at Stn 30 in Funka Bay during 13 August 2010–11 February 2011 (a, c) and during 13 April–14 December 2011 (b, d). (c) and (d) are enlargements of the areas shown in *light brown* in (a) and (b), respectively. (*Tw* Tsugaru Warm Current, *O* Oyashio Coastal Branch, *Oi* ice melting water of the Oyashio, *Fw* Funka Bay water formed in winter, *Fs* Funka Bay water formed in summer (Ohtani 1971)) Red arrow signs indicate the temporally strong intrusion of Tsugaru Warm Current into deep–bottom waters on 18 August 2011.

Fig. 4 Vertical distributions of humic F-intensity (a, f) and nutrients (b–d, g–i) and dissolved oxygen (DO, e, j) concentrations at Stn 30 during 13 August 2010–11 February 2011 (a–e) and during 13 April–14 December 2011 (f–j). Light brown area shows low DO concentration below 2 ml L$^{-1}$ (e, j)

Fig. 5 Seasonal variations of dissolved oxygen (DO) concentrations, which were
measured at 90 m depth of Stn 30 during April–October in 2010 and 2011 by a DO sensor. Light brown area shows low DO concentration below 2 ml L\(^{-1}\).

Fig. 6 Vertical distributions of dissolved iron (D-Fe, a–d) and total dissolvable iron (T-Fe, e–h) concentrations at Stn 23, Stn 33, and Stn 30 during 13 August 2010–11 February 2011 (a–c, e–g) and at Stn 30 during 13 April–14 December 2011 (d, h).

Fig. 7 Humic F-intensity versus salinity in deep–bottom waters (≥70 m) at Stn 23, Stn 33, and Stn 30. (TW Tsugaru Warm water, OW Oyashio water)

Fig. 8 PO\(_4\) (a) and Si(OH)\(_4\) (b) versus AOU in deep–bottom waters (≥70 m) at Stn 23, Stn 33, and Stn 30.

Fig. 9 NO\(_3\) + NO\(_2\) versus AOU (a) and NO\(_3\) + NO\(_2\) versus PO\(_4\) (b) in deep–bottom waters (≥70 m) at Stn 23, Stn 33, and Stn 30.

Fig. 10 D-Fe versus AOU in deep–bottom waters (≥70 m) at Stn 23, Stn 33, and Stn 30. Each curve was obtained by power fitting of the data in August and October 2010, in December 2010, and in August and October 2011.
Fig. 3 Hioki et al.
<table>
<thead>
<tr>
<th></th>
<th>Humic F-intensity (QSU)</th>
<th>NO$_3$ + NO$_2$ (µM)</th>
<th>PO$_4$ (µM)</th>
<th>Si(OH)$_4$ (µM)</th>
<th>DO (ml L$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 10 – Feb 11</td>
<td>(Bottom depth: 92 m)</td>
</tr>
<tr>
<td>(a) Humic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) NOx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) PO$_4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) Si(OH)$_4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) DO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f) Humic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g) NOx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h) PO$_4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) Si(OH)$_4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(j) DO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4 Hioki et al.
DO at 90 m depth of Stn 30

10-18 Aug 2011

TW intrusion

Fig. 5 Hioki et al.
Fig. 6 Hioki et al.
Fig. 7 Hioki et al.

Humic vs Salinity (≥70 m)

- Aug 10, Oct 10: Av. 2.40
- Dec 10 and 11: Av. 1.59
- Aug 11, Oct 11
- Dec 10 and 11: Av. 1.59
- Feb 11

- OW
- TW
Fig. 8 Hioki et al.

(a) PO_4 vs AOU ($\geq 70 \text{ m}$)

$Y=0.00595X+0.948$ (R=0.888, n=50)

(b) Si(OH)_4 vs AOU ($\geq 70 \text{ m}$)

$Y=0.273X+12.68$ (R=0.923, n=50)
Fig. 9 Hioki et al.

(a) NO_x vs AOU ($\geq 70 \text{ m}$)

$Y = 2.86X + 9.06$ (R = 0.739, n = 50)

(b) NO_x vs PO_4 ($\geq 70 \text{ m}$)

- Aug 10, $\geq 85 \text{ m}$
- Oct 10, all stations
- Oct 10, $\geq 80 \text{ m}$
- Stn 23 and Stn 30
- Aug 11, $\sim 91 \text{ m}$
- Stn 30
- Apr 11, Jun 11, $\geq 70 \text{ m}$
- Stn 30
Fig. 10 Hioki et al.