
 

Instructions for use

Title Web-Based Five Senses Input Simulation : Ten Years Later

Author(s) Rzepka, Rafal; Araki, Kenji

Citation ことば工学研究会 : 人工知能学会第2種研究会ことば工学研究会資料, 43, 25-33

Issue Date 2013-07-26

Doc URL http://hdl.handle.net/2115/63961

Type article

File Information Web-Based Five Senses Input Simulation_ Ten Years Later.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Web-Based Five Senses Input Simulation –

– Ten Years Later

Rafal Rzepka and Kenji Araki

Graduate School of Information Science and Technology
Hokkaido University, Sapporo, Japan

{kabura,araki}@media.eng.hokudai.ac.jp,
http://arakilab.media.eng.hokudai.ac.jp

Abstract. A decade has passed from our paper in which we question
the sensors technology not being ready to give a machine the five senses
with the recognition level close to human’s and, as we expected, sensing
devices are still not su�cient to become a base for the world knowledge
based reasoning. Although we did not developed the proposed system
any further because of limited access to Internet data, the need for ma-
chine experience is now even more urgent than before. Existing world
knowledge retrieval systems tend more and more to concentrate on name-
entity information ignoring very basic world knowledge which is still one
of the most di�cult obstacles on the path for reasoning about everyday
situations. In our paper we will introduce results of our latest trial to
automatize previously proposed theory for enriching machine’s capabil-
ity to simulate environmental perception and deepen human behavior
understanding.

1 Introduction

Our long-term project for acquiring everyday knowledge (GENTA - GENeral
belief reTrieving Agent)[1] is based on experiences shared by Japanese bloggers.
Ten years ago, when we performed some experiments with the Bacterium Lin-

gualis method[2], used by GENTA for the knowledge and language acquisitions,
we noticed that expressions used for recognizing negative and positive load of a
sentence are heavily context-dependent. Machines lacking basic experiences are
easily fooled by words with multiple meaning which, when just counted without
considering the context, bring erroneous results. Famous ”colorless green ideas
sleep furiously” by Chomsky [3] are seriously treated by machines because of the
experiences shortage, which, in turn, is caused by their still poor physical world
sensing.

Also in humans, at least in theory, something that contradicts our experi-
ences, make us alert, suspicious, uncertain, hesitating and if we fail to recognize
such state, we are prone to errors. In our 2003 paper [4], we stated that “before
the computers start to seek for the sixth sense or start to understand beauty,
nuances and metaphors they should have a solid commonsense built on physical
experiences” and ten years later we still support that claim. There are multiple
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Fig. 1. Overview of the shortcut idea where Internet resources supplement a machine’s
experiences when they lack real sensations.

theories on how the human beings are creating a simple perception from their
five senses. Aristotle [5] claimed that the commonsense (kōine aisthēsis) is build
upon our five senses. Later John Locke [6] proposed a similar definition of “com-
mon sense” saying that it builds on phenomenological experience. Each of the
senses gives input, and then the sense-data are integrated into a single “impres-
sion” and this integration is made by the common sense – the sense of things in
common between essentially di↵erent impressions. To achieve a rich simulation
process for testing these theories we would need not only technologically ad-
vanced sensors and the fusion of their constant input but also methods for their
automatic interpretation human user to be understood. Programming haptic de-
vice to generate output understandable in the same way as, for instance, sound
recognizer is obviously possible, however it would be rather di�cult when there
are five inputs and the central unit has to learn mutual relations to be used in
interaction with human. This is why we always promote natural languages for an
universal and widely accessible method for accessing and manipulating machines
and their learning processes, in spite of their ambiguity. Although a huge step
forward in understanding simple utterances, technologies for other four senses
did not show any revolutionary progress and a wide interpretation on what is
seen on a picture or video, what is touched, smelled or tasted in real world – is
still out of the reach of conventional AI systems. Hence, the most di�cult part of
learning by physical experience which is convergence of all sensor inputs into the
one interpretation (perception) – simply cannot be performed. Our proposition
was to use web-mining to simulate the sensor-input experiences and to help a
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machine to create its common sense based on other people experiences. For a
decade we left this idea mostly untouched but we decided to return to its real-
ization and utilize its results for generating new Japanese entries for ConceptNet
[7] and for context processing which we need for our text understanding tasks,
for example Machine Ethics project that uses text-mining [8] and metaphor gen-
eration projects using a big corpus of Japanese figurative sentences [9].

The long-distance goal of this research is a machine that could simulate input
from the 5 senses when sensors data is not available or is available but ine�cient
(see Figure 1). Such process could a base for what we call artificial imagination.

2 Basic methods for simulating non-physical experiences

As we aim at machines that understand human behavior, not at an information
retrieval task, our approach is di↵erent from name entity centered systems like
KnowItAll [7], TextRunner [8] or NELL (Never Ending Language Learner) [9].
Our goal is to develop and test a multidisciplinary approach for using real world
data in order to achieve common sense knowledge. So far we have been work-
ing on several projects with two common topics commonsensical and emotional
knowledge retrieval from Internet resources as they are the biggest and “alive” as
their contents are changing with people’s opinions and beliefs. The basic idea is
to retrieve needed strings of words, count the frequency and calculate the inter-
dependencies between the comparable items. Some examples will be introduced
below.

2.1 The Knowledge Source

Currently we still work only on Japanese since this language seems to have an
easier structure for computer processing especially because of its particles usage
what Fillmore has suggested in his works [11]; another reason are the cultural
di↵erences that influence common sense depending on the language. For the
experiments we use five billion sentences corpus [12] which is easier to use than
the data we collected 10 years ago with Larbin robot, we also use Solr instead
of limited access to Google, acquiring comparable search speed. Ameba blog
service used in [12] has a sti↵ html structure which allows to get rid of non-blog
contents. Our first challenge to cope with five senses was made mostly manually,
this time all the of experiments described in this paper were done manually.

2.2 Eyes Input Simulation

To test all the five senses simulations we have tested them using 127 action
phrases as “(to) call a doctor” or “(to) steal a car”. This list was an enhanced
set we use in our research for recognizing ethically problematic acts [8] – this
time we added more everyday life actions like “writing a book” or states like
”someone laughing” and removed similar entries, for example these needed for
comparing reactions to killing various kinds of animals, which in most cases have
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a)

b)

c)

Fig. 2. An original figure from 2003 paper: a) A human child learning from the five
sense experiences, b) the ideal robot with perfect sensors and c) the idea of WWW-
based supplement for the sensors input memory
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very low hit rate in blogs. Input phrases have Noun-Particle-Verb structure and
the sensing words (mostly adjectives) are exact matches for SenseWord-Noun.
For the visual input simulation we chose a set of basic descriptive adjectives (See
Table 1) shapes and colors, which is the biggest set of all five. A “commonsense
border” of 10 hits was experimentally set to limit “peculiar cases” as “cold sun”
or “black snow”.

Table 1. 36 sense words for recognizing visual characteristics.

Japanese akarui, kurai, ōkii, chiisai, akai, kiiroi, kuroi, shiroi, aoi, midori-no, asai,
fukai, usui, ōi, sukunai, osoi, hayai, kagayakashii, chairo, nagai, furui,
makkuro-na (3 types of writing), kitanai, kirei-na (2 types), shikakui, chikai,
tōi, takai, hikui, hiroi, semai, futoi, hosoi

English bright, dark, big, small, red, yellow, black, white, blue, green, shallow, deep,
thin, large, small, slow, fast, shiny, brown, long, old, pitch black, dirty, clean,
square, close, distant, high, low, wide, narrow, thick, thin

2.3 Fingers Input Simulation

Perfect haptic sensors are probably the most di�cult ones to develop, however
sense of touch is an important natural tool for keeping our everyday life safe. For
this input simulation we used adjectives and onomatopoeias which are associated
with surface characteristics, shown in Table 2.

Table 2. 34 sense words for recognizing haptic characteristics.

Japanese katai (3 types), betabeta suru, tsumetai, yawaraka, omoi, karui, suzushii,
asai, fukai, attakai (2 types), atsui (3 types), itai, usui, samui, surudoi, to-
gatte iru, eiri-na, nurui, kawaita, nureta (2 types), nebaneba shita, nurunuru
shita, jimejime shita, munmun suru, zarazara shita, tsurutsuru shita, got-
sugotsu shita, fuwafuwa shita, guchagucha shita

English hard, tough, sticky, cold, soft, heavy, and light, cool, shallow, deep, warm
(2 types), hot (3 types), thick, painful, pale, cold, sharp, pointed (sharp),
tepid, dry, wet (2 types), slimy, gluey, steamy, sultry, rough, slick, rugged,
flu↵y, squashy

2.4 Ears Input Simulation

Firstly, it must be clarified that in “ears input” we do not include speech recog-
nition but only sound characteristics. As in the case of touch, only adjectives do
not bring su�cient hits, we collected also mimetics (gitaigo) and onomatopoeias
(giseigo) to broaden the search. The set is shown in Table 3.
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Table 3. 31 sense words for recognizing sound characteristics.

Japanese urusai, shizuka-na, pokipoki suru, zāzā suru, biribiri suru, gorogoro suru,
bukubuku suru, kasakasa suru, katakata suru, gatagata suru, gachagacha
suru, gachan suru, karan suru, gangan suru, kiikii suru, gōngōn suru,
sarasara suru, janjan suru, charin suru, chirin suru, chirinchirin suru,
chinchin suru, tonton suru, batan suru, patan suru, pachipachi suru,
pachipachi suru, pachin suru, pishari suru, rinrin suru

English noisy, quiet, crack, rushing water, tear, rumble, bubble, rustle, rattle, clatter,
clank, pound, squeak, purr, murmur, continuous sound, clink, tinkle, jingle,
ding, knock, bang, snap, crackle, clack, smack, ring

2.5 Tongue and Nose Input Simulations

Probably there is no need to place a tasting sensors in robot’s mouth they could
be also located in its fingers. But the input should be interpreted the same way
as humans do and the recognition output should be one of this category sense
words. The same situation is with smelling sensors. In 2003 we proposed an idea
to use smell-associated expressions as “smells like X”, “smells sweet”, “smells
fishy”, etc, but to keep the consistency with other word sets, we limited the sense
words for taste and smell to basic ones shown in Table 4 and avoided metaphors.

Table 4. 14 sense words for recognizing taste and 6 for smell characteristics.

Japanese (taste) amai (2 variations), nigai, suppai (2 variations), karai (2 variations),
shoppai, nigai, shibui (2 variations), amazuppai, shibō-no ōi, abu-
rakkoi

English sweet (2 types), bitter, sour (2 types), spicy (2 types), salty, bitter,
astringent (2 types), sweet and sour, fatty, greasy

Japanese (smell) kusai, kōbashii, namagusai, kaguwashii, ii nioi-no, ii kaori-no
English smelly, aromatic, fishy, fragrant, of a nice smell, smelling nice

3 Sense Word Sets E�ciency

90 nouns describing physical instances were extracted by the first author from
127 phrases and input to the five senses recognizer. Then the first author evalu-
ated the output. Retrieval precision appeared to be high achieving 0.96, but the
recall was rather low achieving 0.43 which gives f-score of 0.60. There was only
one error for 30 retrievals caused by metaphoric description of a novel - “deep”.
Possible reasons for the very low recall were as follows. Firstly, the blog data
used were searched by whole phrases with “if” statements, because we focus on
cause-e↵ect relationship in our research and always tend to use full sentences
to avoid less meaningful blog entries. The second reason that was visible was
simple too low number of sense words. Another problem was deciding if a noun
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is physical instance or not. For example word “hito” (a man) was used in the
examples in the meaning of somebody and a ”shōsetsu” (a novel) was used in a
category of a book context rather than of a physical book. The same problem
was with name places as a city name can be treated as a common description
for group of physical instances as buildings, streets, monuments, etc., but it is
not obvious that you can touch Tokyo (however one could smell it literally or
hear the sound of it).

3.1 Repeating Experiments With Bigger Data

For the second trial we have used sets of Japanese words taken from a thesaurus
[15] to avoid problematic inputs. To limit errors caused by lack of dependency
parsing and nouns used for describing other nouns (i.e. “black snow shoes”,
Japanese particles were added to nouns in all the queries (direct object wo,
theme / topic ga and wa, object ni and instrument / location de). We used
word category “tools, decorations, monuments, etc.” assuming that it consists
of words describing physical artifacts. There were 289 words in the category and
we used them for repeating the retrieval experiment. The system again reached
a high precision of 0.92 but this time the recall dropped drastically to 0.08 which
resulted in very low f-score of 0.15. Used thesaurus had too many rare words
that never appeared in the blog corpus. If we limit the dataset to nouns which
had a hit rate above 10 (59 hits), the results were much better: recall increases
to 0.42 but it gave f-score of 0.57 which was lower than the results for the smaller
set.

4 Conclusions and Future Work

The main goal of this research is to simulate the human’s perceptual process. It
is much easier for a machine to guess the observed object when more sensors than
one are working. For this reason, our proposed simulation system needs as rich
sensory input as possible, therefore the achieved recall is far too low. However,
we managed to mechanize our idea from 2003 and the system achieved very high
precision of 0.92. Consequently the next obvious step is to increase the range
of search and number of sense words. Because there is quite a possibility that
rare words will be fed to the system, some kind of categorization is needed – if a
’snake’ category member ’anaconda’ has not enough hits, other members of the
snake family could bring more knowledge about the object with ine�cient de-
scription. To assure that we are dealing with a physical, not metaphorical world,
we would also need to consider altering the sense words to avoid ambiguities as in
case of word “high” which in Japanese can also mean “expensive”. Such system,
if successful could possibly help simplifying idiom or metaphor understanding
or generation – we are currently working on the latter. During the tests in 2003
we noticed that there are many adjectives, as for example “soft” (yawarakai),
which appears in more than one sensor simulator. This time we have left such
words unaltered, however we plan to experiment with more specific queries as
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“sounds soft”, “looks soft”, “feels soft”, etc. We will also have to find a method
for recognizing named entities which also bring a possibility for erroneous sens-
ing.

In this paper we introduced several ideas for web-based support for machines
that need to learn by experience. We automatized our ideas from 2003 for sup-
porting agents that work in the physical world as their number will be growing
constantly. Even when the five types (or more) of sensors symbolizing human’s
five senses are able to transmit proper information, there are cases which stand
against the commonsense and the appropriate reactions based on a wider expe-
rience are needed. However, gaining various experiences by a robot or a group
of robots in di↵erent environments, would demand a lot of money and time.
Therefore we assumed that senses supplement each other (we were inspired by
a phenomenon of the spatial knowledge of blind children which keeps growing
even without visual input [17][18]) and treating experiences of others as own
ones, would help to reduce costs of knowledge acquisition in future.
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