Recovery of Impaired Somatosensory Evoked Fields after Improvement of Tongue Sensory Deficits with Neurosurgical Reconstruction

Hitoshi Maezawa 1, 2, *, Itaru Tojyo 3, Kazuya Yoshida 4, Shigeyuki Fujita 3

1Human Brain Research Center, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
2Department of Oral Physiology, Graduate School of Dental Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
3Department of Oral and Maxillofacial Surgery, School of Medicine, Wakayama Medical University, Kimiidera, Wakayama, Japan
4Department of Oral and Maxillofacial Surgery, National Hospital Organization, Kyoto Medical Center, Fushimi-ku, Kyoto, Japan

*Corresponding author: Hitoshi Maezawa, DDS, PhD, Assistant professor
Address: Department of Oral Physiology, Graduate School of Dental Medicine, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8586, Japan
TEL: 81-11-706-4229; FAX: 81-11-706-4229
E-mail: maezawa@den.hokudai.ac.jp

Keywords: magnetoencephalography, lingual nerve, sensory deficit, nerve injury, MEG, neurosurgical reconstruction

H. Maezawa et al.
Abstract

Somatosensory evoked fields (SEFs) induced by tongue stimulation can be useful as an objective parameter to assess sensory disturbances in the tongue. However, whether tongue SEFs can be useful as a clinical, objective follow-up assessment method of tongue sensation following oral surgery is unknown. Here we describe two cases in which tongue SEFs were successfully used in a clinical assessment. Two patients with unilateral tongue sensory deficits caused by lingual nerve injury during lower third molar extraction were recruited. Both patients underwent oral surgery to repair the damaged nerve, and all tongue sensory evaluations were made once before and once after surgery. SEFs were recorded by stimulating the affected and unaffected sides of the tongue separately, and cortical activity was evaluated over the contralateral hemisphere. The unilaterality of the deficit was also assessed. In both patients, stimulation of the unaffected side evoked reproducible cortical responses pre- and post-surgery. Both patients also recovered some sensation following surgery, as pre-surgery stimulation of the affected side failed to evoke cortical activity, whereas post-surgery stimulation evoked cortical activity on both sides. Sensation was initially highly lateralized in both patients, but was restored to approximately normal in the post-surgery evaluation. Finally, both patients’ rated their subjective tongue sensations on the affected side over 50% better after the surgical intervention. These cases indicate that tongue SEFs may have a clinical use as an objective parameter for assessing the course of tongue sensory recovery.

H. Maezawa et al.
Introduction

Sensory disturbance of the tongue caused by lingual nerve injury can sometimes lead to speech and eating difficulties, and can affect the patient’s quality of life significantly. Several recent papers have reported that oral surgeries for the impaired lingual nerve, such as microneurosurgical reconstruction, are useful for recovering sensation and reducing the sensory disturbance.1-8 In clinical situations, several sensibility tests, such as the two-point discrimination (TPD) test, are often used to assess the course of symptomatic sensory recovery of the tongue. However, the reproducibility of these tests is not high, since they depend on subjective self-assessments. Therefore, assessment methods that are objective, more reliable, and reproducible are required for following the sensory recovery of the tongue.9,10

Recently, we demonstrated that the evoked cortical response following tongue stimulation as measured by magnetoencephalography (MEG) can serve as an objective parameter for detecting sensory disturbances of the tongue caused by unilateral lingual nerve damage.11,12 In these studies, we found high intra-subject similarity of somatosensory evoked field (SEF) waveforms between the right and left sides of the tongue, which suggested that the unaffected (control) side of the tongue could serve as a reference for the affected (damaged) side in patients with unilateral lingual nerve injury. To evaluate cortical activity, we employed the activated root-mean-square (aRMS) parameter (see the Materials and Methods section for details), which utilizes the time average of the 18-channel RMS obtained from tongue SEFs. We successfully estimated the unilateral sensory disturbance of the tongue in each patient using a laterality index derived from the aRMS. However, it is not known if the objective assessment of tongue sensory disturbance using MEG can be useful as a follow-up assessment method in the clinical course of tongue sensory recovery. H. Maezawa et al.
Here we report two cases in which we successfully evaluated sensory recovery in the tongue by measuring tongue SEFs both before and after sensory recovery related to oral surgical intervention. A portion of this study has been reported previously.11

Case Reports

We recruited two right-handed patients (one male, one female, both aged 21 years) with sensory disturbance of the tongue (Table 1). Both of the patients met the following five criteria: (1) The sensory defect was caused by unilateral lingual nerve injury during third molar extraction; (2) Initial rating of the subjective sensation of the affected area was less than half of that of the unaffected area; (3) TPD of the affected area exceeded 5 mm; (4) Rating of the subjective sensation recovered to greater than half after oral surgery (details of surgical procedures are described below); (5) No pain sensation. The study was run in accordance with the Helsinki Declaration. Written informed consent was obtained from both participants, in accordance with the study protocol approved by the Ethics Committee, Kyoto University Graduate School of Medicine and Wakayama Medical University.

In the surgical intervention, the injured lingual nerve was exposed through an intraoral mucosal incision and lingual flap reflection by the same operator (SF). External neurolysis was performed in both patients. Optical magnifying glasses (250 mm) and an operating microscope (Superlux 301, Zeiss, Germany) were available during surgery.

In the case of Patient 1, almost all of the lingual nerves in the surgical site for the lower third molar extraction were intact under microscopic view. However, the part of the lingual nerve adjacent to the second molar had a sharp crescent-like fragment of the
extracted third molar crown inserted within it, creating a delicate and small wound (Fig 1). Therefore, we removed the fragment and sutured the small torn epineurium with 9-0 nylon.

In Patient 2, the lingual nerves adhered to the periosteum adjacent to the extracted lower second molar region and were disrupted in the form of a spiral groove about 8-mm long, which was a delicate and shallow wound within the depth of the epineurium, but not deep into the perineurium (Fig 2). We removed the scars in these wounds and sutured them with 9-0 nylon using the microscope.

Sensibility Tests, Sensory Evaluation, and Nerve Condition Assessment

The patients’ TPD, tactile sensation, and gustatory sensation of the affected side and its bilaterally symmetric healthy side were evaluated in a quiet room. Subjects were requested to close their eyes. TPD was evaluated by 5 grades: ≤5, >5, 10, 15, and 20 mm using the Disk-Criminator (Kono Seisakusyo, Chiba, Japan) with four stepwise spaces between 5 to 20 mm. Subjects were instructed to indicate with their fingers whether they felt one or two-points during the application of the Disk-Criminator (Kono Seisakusyo, Chiba, Japan). Tactile sensation was also classified into five grades using Semmes-Weinstein monofilaments (Kono Seisakusyo, Chiba, Japan). The perception tester is composed of four discrete monofilaments that have different diameters and produce four steps of stimulus magnitude: 2.83, 3.61, 4.31, and 6.65. The monofilament was applied to the same point as the electrical stimulation (2 cm lateral to the midline of the lower lip crust) with sufficient force until it bent, and held for 2 s. Subjects were required to gesture “yes” each time they sensed the application of the monofilaments. Gustatory sensation was assessed with localized testing disks (Sanwa Kagaku H. Maezawa et al.
Kenkyusho, Nagoya, Japan; salt, 1 M sodium chloride; sweet, 1 M sucrose; sour, 0.4 M acetic acid; bitter, 0.1 M quinine).

Sensory evaluations of the tongue were assessed using the British Medical Research Council (BMRC) Criteria. The condition of the injured lingual nerve was assessed by Sunderland and Seddon classification during the surgical procedures.

Tongue Stimulation

The affected and unaffected sides of the tongue were stimulated separately using an electrical stimulator (SEN7203, Nihon Kohden, Tokyo, Japan) through a pair of pin electrodes, as we reported previously. Biphasic constant current square electric pulses (0.5 ms for one phase) were applied at 1 Hz. The stimulus intensity of four times the sensory threshold in the unaffected area was used for both sides in each patient. The average number of stimuli applied was 600 for each side, and two sessions separated by a rest period were held in each stimulus point. The group-averaged data of two sessions were used for further analysis. The unaffected side was stimulated first in both patients.

Magnetoencephalographic Recordings

SEFs were recorded with a whole-head neuromagnetometer (Vectorview, Elekta Neuromag, Helsinki, Finland) equipped with 102 sensor units consisting of two planar gradiometers and one magnetometer by the same experimenter (HM). Data from 204 planar gradiometers were used for analysis since the planar gradiometers detect the largest signal just above the corresponding source. The recording bandpass was 0.1 to 990 Hz, and the sampling rate was 2997 Hz. The analysis window for averaging was 100 ms before to 500 ms after each trigger signal, and epochs with signal variation...
greater than 1500 fT/cm were excluded automatically from averaging. The baseline was calculated from -50 to -5 ms before stimulus onset.

Data Analysis

To estimate the evoked cortical activation for tongue stimulation, we used the aRMS as described in our previous studies.11,12 First, we calculated the spatial summation of the RMS from the contralateral 18-channel waveforms including the maximum amplitude channel. In one patient (Patient 2), no reliable response was detected following affected side stimulation. In this case, we selected 18 channels homologous to those channels analyzed for unaffected side stimulation to obtain the aRMS for affected side stimulation. Second, we calculated the temporal average of the RMS for the 10–150 ms period (RMS[10,150]) and subtracted the mean amplitude of the baseline RMS (RMS[-50,-5]) to obtain the aRMS.

Moreover, to assess the unilateral sensory disturbance of the tongue in each participant, the laterality index of the aRMS, expressed as (left − right)/(left + right), was compared to the normal range. The normal range was -0.287 to 0.337, which was set to the average ± 3 standard deviations (SD) of the laterality index obtained from 10 healthy volunteers, as described in our previous report.10

Results

Case 1

Sensibility Tests and Sensory Evaluations

The results of the sensibility tests and sensory evaluations are described in Table 2. The sensory evaluation scores showed that the sensory function improved by 2 levels of
the BMRC score. Patient 1 had first degree injury by Sunderland classification, and neurapraxia by Seddon classification. The unaffected side showed that the Semmes-Weinstein test score was 2.83 and Disk-Criminator score was <5 mm in both recordings.

SEFs and aRMS

Sensory threshold and stimulus intensity are described in Table 3. A traceable response was observed over the contralateral hemisphere following affected side (right side) stimulation in one patient (Patient 1) in the first recording (Fig 3). In contrast, a clear response was observed after sensory recovery in the second measurement in this patient (Patient 1) (Fig 4, Fig 5). Reproducible clear responses were detected during unaffected side stimulation both before and after sensory recovery (Fig 5).

In the first recording, the aRMS for affected side stimulation was 2.4 fT/cm, and it recovered to 4.4 fT/cm in the second recording (Table 2). The aRMS for unaffected side stimulation was 8.4 fT/cm in the first recording, and was 7.7 fT/cm in the second recording (Table 2).

Case 2

Sensibility Tests and Sensory Evaluations

The sensory evaluation scores showed that the sensory function of Patient 2 improved by 3 levels by the BMRC score (Table 2). Patient 2 had second or third degree injury by Sunderland classification, and axonotmesis by Seddon classification. As described above for Case 1, the unaffected side showed a Semmes-Weinstein score of 2.83 and Disk-Criminator score of <5 mm in both recordings.

H. Maezawa et al.
SEFs and aRMS

Sensory threshold and stimulus intensity are described in Table 3. No reliable response was detected following stimulation of the affected side (left side) in the first recording (Fig 6). In contrast, a clear response was observed in the second recording following stimulation of the affected side (left side). Clear activity was detected over the contralateral hemisphere during unaffected side (right side) stimulation, which was reproducible between the first and second recordings (Fig 6).

In the first recording, the aRMS for affected side stimulation was 0.4 fT/cm, and it recovered to 1.9 fT/cm in the second recording (Table 2). The aRMS for unaffected side stimulation was 2.5 fT/cm in the first recording, and was 3.1 fT/cm in the second recording (Table 2).

Laterality index of aRMS for both patients

The laterality index was out of the normal range in both patients in the first recording (0.556 [Patient 1] and -0.724 [Patient 2]) (Table 2, Fig 7). However, in the second recording, the laterality index was within the normal range in both patients (0.273 [Patient 1] and -0.240 [Patient 2]).

Discussion

In this study, we analyzed two cases in which we tried to assess the clinical course of tongue sensory recovery. In both patients, the laterality index was out of the pre-determined normal range before sensory recovery, but was within the normal range.
after sensory recovery. In addition, both objective and subjective markers of
nerve-damage-related deficits in tongue sensation were improved following surgery.

Previous studies have reported that evoked cortical responses following lingual
nerve stimulation are useful for detecting sensory disturbances of the tongue using
electroencephalography or MEG recordings.12,20 However, there have been no reports
examining the usefulness of cortical responses as a follow-up assessment method for
tongue sensory recovery after oral surgery.

In the present study, we adopted an objective assessment for patients using the
quantitative parameter aRMS, which represented cortical activation.11 This method is
advantageous because an objective parameter can be calculated easily, without having to
identify individual components visually. In fact, in our previous study on tongue SEF in
ten healthy volunteers, three or four components were identified. However, because
none of those components was consistently detected in all healthy subjects, neither the
latency nor amplitude of the components could be considered a reliable parameter
(Maezawa et al., 2008). This is especially important since the existence of the response
was based on an estimator’s subjective impression, and was sometimes difficult to
judge.

We found that in both patients, stimulation of the affected side induced RMS
waveforms with obviously larger amplitudes in the second recording (after sensory
recovery) than in the first recording (before sensory recovery). In contrast, a
reproducible response was observed following unaffected side stimulation between the
first and second recordings. Judging the sensory disturbance objectively at each
measurement time (before and after sensory recovery) using the laterality index, the
value, which was above the normal range before sensory recovery, was within the
H. Maezawa et al.
normal range along with the improvement of subjective symptoms in both patients. These results suggest that the laterality index parameter might be effective as an objective follow-up parameter for assessing tongue sensory recovery. Clinically, the commonly used diagnostic approaches of TPD and tactile sensation are subjective measures that do not always provide enough reliability and reproducibility. Quantitative assessment using the laterality index parameter aRMS is advantageous since it provides objective evidence of the disabled condition of the tongue at a given measurement time in the course of sensory recovery.

The intraoperative findings indicated that the lingual nerves were not seriously damaged in either patient. However, the severity of the lingual nerve injuries was different in each patient based on the Sunderland and Seddon classifications. Patient 1 had mild injury of the lingual nerve (first degree injury by Sunderland classification and neurapraxia by Seddon classification), whereas Patient 2 had an injury that was more severe (second or third degree injury by Sunderland classification and axonotmesis by Seddon classification). This is interesting given the different tongue SEFs between patients. In Patient 1, who had mild lingual nerve injury, a small response was detected with affected side stimulation in the first recording. In contrast, Patient 2, who had a more severe nerve injury, showed no response in the first recording. In future studies, we hope to increase the number of patients whose impaired nerve conditions can be visually assessed, and examine the relationship between the severity of the nerve condition and tongue SEFs. We hypothesize that it may be possible to predict the severity of lingual nerve injury non-invasively, by measuring tongue SEFs.

In conclusion, our study demonstrated the possibility that the laterality index, measured using the aRMS obtained from tongue SEFs, may serve as an objective
parameter for evaluating unilateral tongue sensory recovery. It could be possible to follow the sensory recovery of the tongue by analyzing the laterality of the cortical activity in response to tongue stimulation using MEG.

Acknowledgements

This work was supported by Grants-in-Aid for Young Scientists (B)25862071 (HM) from the Japan Society for the Promotion of Science. The authors thank Mr. Jun Matsubayashi, Masao Matsuhashi, Tatsuya Mima, and Hidenao Fukuyama (Kyoto university), and Takashi Nagamine (Sapporo medical university) for their advice on data analysis. None of the authors have potential conflicts of interest to be disclosed.
References

H. Maezawa et al.

H. Maezawa et al.

H. Maezawa et al.
<table>
<thead>
<tr>
<th>Pt</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Lesion side</th>
<th>First oral surgery*1</th>
<th>Second oral surgery*2</th>
<th>Period 1*3 (month)</th>
<th>Period 2*4 (month)</th>
<th>Period 3*5 (month)</th>
<th>Subjective sensation*6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>21</td>
<td>Right</td>
<td>Third molar extraction</td>
<td>Neurorrhaphy, Removal of fractured tooth</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Female</td>
<td>21</td>
<td>Left</td>
<td>Third molar extraction</td>
<td>Neurorrhaphy</td>
<td>6</td>
<td>19</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

Abbreviations: Pt, Patient number; F, First measure; S, Second measure.

*1 The surgery that caused lingual nerve injury.

*2 The second surgery for the treatment of lingual nerve injury.

*3 The period between the first oral surgery and the initial signs of sensory recovery.

*4 The period between the first oral surgery and the second oral surgery.

*5 The period between the first magnetoencephalography measure and the second magnetoencephalography measure.

*6 Tongue sensation in the affected side was assessed on a subjective scale from 0–10.

H. Maezawa et al.
Table 2. SENSORY FUNCTION OF THE TONGUE AND LINGUAL NERVE CONDITION

<table>
<thead>
<tr>
<th>Pt</th>
<th>Sensibility tests</th>
<th>Gustatory sensation</th>
<th>Sensory evaluation *1</th>
<th>Nerve condition *2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>TPD (mm)</td>
<td>TS</td>
<td>TPD (mm)</td>
<td>TS</td>
</tr>
<tr>
<td>1</td>
<td>>20</td>
<td>4.31</td>
<td>>5</td>
<td>3.61</td>
</tr>
<tr>
<td>2</td>
<td>>20</td>
<td>4.31</td>
<td>>10</td>
<td>4.31</td>
</tr>
</tbody>
</table>

Abbreviations: Pt, Patient number; 1, First measure; 2, Second measure; TPD, Two-point discrimination; TS, Tactile sensation; ×, absent; ○, present.

*1Sensory evaluations were assessed using the British Medical Research Council Criteria.18,19

*2Nerve condition was assessed by Sunderland and Seddon classification.16,17
Table 3. ELECTROPHYSIOLOGICAL FINDINGS

<table>
<thead>
<tr>
<th>Pt</th>
<th>Sensory threshold (mA)</th>
<th>Intensity* (mA)</th>
<th>aRMS (fT/cm)</th>
<th>Laterality index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>A</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>0.25</td>
<td>2.3</td>
<td>0.23</td>
<td>0.40</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>1.6</td>
<td>0.22</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Abbreviations: Pt, Patient number; 1, First measure; 2, Second measure; U, Unaffected side; A, Affected side.

*The stimulus intensity was four times the sensory threshold of the unaffected side in each recording.
Figure legends

FIGURE 1. Intraoperative photographs used for assessing the nerve conditions in Patients 1. The lingual nerve was damaged by the tooth fragment of the extracted third molar crown.

FIGURE 2. Intraoperative photographs used for assessing the nerve conditions in Patient 2. An 8-mm long segment of the lingual nerve epineurium was spirally damaged (indicated by the arrowheads).

FIGURE 3. The magnetic waveforms of somatosensory evoked fields (SEFs) following affected side (right side) stimulation for the first measurement in Patient 1 (before sensory recovery). Whole-head magnetic waveforms of SEFs for the first measurement. The top view of the SEFs recorded by the planar 204-channel recording shows traceable responses over the contralateral area. Each trace started 50 ms before to 300 ms after stimulus onset. As shown in the expanded waveforms, a traceable response (indicated by the black circle) was identified over the contralateral hemisphere. The root-mean-square (RMS) waveforms over the contralateral hemisphere were calculated from 18-channel waveforms including the channel with local maximum amplitude (traces within dashed outlines). The vertical scale was 35 fT/cm. The two dashed lines in the graph show the time points of 10 ms and 150 ms, respectively.

FIGURE 4. The magnetic waveforms of somatosensory evoked fields (SEFs) following affected side (right side) stimulation for the second measurement in Patient 1 (after H. Maezawa et al.)
sensory recovery). Whole-head magnetic SEF waveforms for the second measurement. Each trace started 50 ms before to 300 ms after stimulus onset. As shown in the expanded waveforms, clear responses (indicated by the arrow head) were detected over the contralateral area. The RMS waveforms were calculated from 18-channel waveforms over the contralateral hemisphere (traces within dashed outlines). The vertical scale was 35 fT/cm. The two dashed lines in the graph show the time points of 10 ms and 150 ms, respectively.

FIGURE 5. The RMS waveforms calculated from the 18-channels over the contralateral hemisphere in Patient 1 for the first (before sensory recovery) and second (after sensory recovery) recordings. The vertical scale was 35 fT/cm. The two dashed lines in each graph show the time points of 10 and 150 ms, respectively. The RMS amplitude in the first recording for the affected side was significantly smaller than that in the second recording. In the unaffected side, we observed highly similar shapes and amplitudes between the first and second recordings. Abbreviations: lt-side, Left side; rt-side, Right side; RMS, Root-mean-square; stim, Stimulation.

FIGURE 6. The RMS waveforms calculated from the 18-channels over the contralateral hemisphere in Patient 2 in the first (before sensory recovery) and second (after sensory recovery) recordings. The vertical scale was 25 fT/cm. The two dashed lines in each graph show the time points of 10 and 150 ms, respectively. The RMS amplitude in the first recording of the affected side was significantly smaller than that in the second recording. In the unaffected side, we observed highly similar shapes and

H. Maezawa et al.
amplitudes between the first and second recordings. Abbreviations: lt-side, Left side; rt-side, Right side; RMS, Root-mean-square; stim, Stimulation.

FIGURE 7. The laterality index of aRMS for both patients in the first (before sensory recovery) and second (after sensory recovery) recordings. The area between the two dashed lines indicates the predetermined normal range. The normal range was -0.287 to 0.337, which was set to the average ± 3 SD of the laterality index obtained from 10 healthy volunteers. The laterality index was out of the normal range in both patients before sensory recovery, but was within the normal range in both patients after sensory recovery. Abbreviations: aRMS, Activated root-mean-square; Pt, Patient number.
Patient 1

Posterior

Anterior

Lingual nerve

Tooth fragment

Alveolar bone
Patient 2

Tongue blade

Anterior

Posterior

Lingual nerve
First measure of SEF waveforms following affected-side (right-side) stimulation in Patient 1
Second measure of SEF waveforms following affected-side (right-side) stimulation in Patient 1
First measure

Affected-side (rt-side) stim. Unaffected-side (lt-side) stim.

Second measure

Affected-side (rt-side) stim. Unaffected-side (lt-side) stim.
First measure

Affected-side (lt-side) stim.
Unaffected-side (rt-side) stim.

Second measure

Affected-side (lt-side) stim.
Unaffected-side (rt-side) stim.
The laterality index of aRMS

First measure

Second measure

Normal range

Pt 1

Pt 2