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Preface

So many interesting and amazing phenomena exist around us. A lots of
scientists have challenged to understand these phenomena for a long time.
In statistical mechanics, we would like to prospect that the macroscopic
phenomena which we have enjoyed and sometimes suffered from should be
explained by the microscopic interactions among numerous small particles.
For instance, thermodynamics has been explained by the kinetic theory of
gasses. However, we can not treat these numerous interactions by determinis-
tic equations, so we apply statistics and probability theory for analyzing the
connection between microscopic interactions and macroscopic phenomena.
It is known that we have the phase transitions and the critical phenomena
in most statistical-mechanical models. In recent years, we have introduced
random environments for those models. By inducing a random environment,
it has been known that some qualitative changes occur in the phase transi-
tion and the critical phenomenon of each model. Our main interest in this
thesis is the behavior of linear polymers consisting of many monomers which
interact with one another and lying in a random environment. The behavior
of linear polymers is also affected by the random environment.

In this thesis, we consider self-avoiding walk (SAW) on a random environ-
ment and the pining model as the models of linear polymers in random media.
The systems of the statistical-mechanical models in random media are called
the disordered systems. In the disordered systems we mainly consider how
the random environment affects the critical point and the critical behavior
of the original statistical-mechanical models. Many kinds of models of the
disordered systems have been studied frequently and actively since 1980’s.
Classical examples in mathematics are Sinai’s one-dimensional random walk
in a random medium [60] and Smith and Wilkinson’s branching processes
in random environments [62]. More recent examples are the pinning models
[26, 41] and the directed polymer models [25]. We have two cases in the
disordered systems. One is the quenched case and another is the annealed
case. In the disorder systems, we have two randomness, random phenomenon
and random environment. In the quenched case we consider the random en-
vironment which is randomized much more slowly than that of the random
phenomenon. For instance, the particles in the air collide randomly to the
glass consisting of molecules which is put randomly. Therefore, we consider
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the system, letting the random environment fixed. On the other hand, the
annealed case is the case that time scale of the environment is greater than
that of the random phenomenon. So that we consider the system in the av-
eraged environment. Under a certain condition, it is known that the disorder
is irrelevant. This is one of the most interesting problems of the disordered
systems.

SAW is similar to random walk, however, it has self-avoidance constraint,
i.e., the walk never visits the same site once it visited. By this property, SAW
is no longer a Markov chain. This self-avoidance constraint is a very natural
assumption for linear polymers. Many interesting results on SAW have been
proven, however, in spite of the simple definition of SAW, many of the most
fundamental questions are left open and are difficult to solve mathematically
rigorously.

The pinning model is a model of discrete time and one-dimensional space.
This model has studied for considering the behavior of linear polymers con-
sisting of numerous monomers. For example, we can treat linear polymers
consisting of hydrophilic and hydorophobic monomers. These two kinds of
monomers are put randomly in a linear polymer and we consider the interface
between oil and water. Then, it is known that there is a phase transition
in the sense that the polymer either localizes at the interface or delocalizes,
and the random environment affects this critical phenomenon.

This thesis is organized as follows. In Chapter 1 we consider SAW on a
random environment. We first review SAW in a homogeneous setting with
some facts which are well-known, and then we introduce a random environ-
ment which we consider random conductor on each edge of the graph SAW
lies in. The main results of this chapter are displayed in Section 1.2, which
are about the critical point for the quenched susceptibility. This section has
two parts. First we give the qualitative result of the quenched critical point.
We show that the quenched critical point is independent of the reference
point and is a degenerate random variable. Second we estimate it quan-
titatively. We give upper and lower bounds of the quenched critical point
by using the Paley-Zygmund inequality and also give an application of this
inequality for SAW on RC. In the last section of this chapter, we consider
the model on a homogeneous degree tree. We apply the fractional moment
method to provide the exact value of the quenched critical point. Indeed, it
has already been known by Derrida and Spohn [27] and Baffet, Patrick, and
Pulé [7], however our approach is simple, heuristic, and is a good example of
the fractional moment method which is a strong method for understanding
the quenched case. In Chapter 2 we consider the pinning model. In the first
two sections, we review what has been known on both the pinning model
in a homogeneous setting and in an i.i.d. random environment and see some
comparisons with the Markovian model which is defined the pinning model
in an environment equipped with the Markov property. Section 2.3 is the
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main part of this chapter. We introduce the pinning model on renewal set,
which belongs to the class of long-range correlations. This is a joint work
with Dimitris Cheliotis and Julien Poisat. We prove some propositions and
theorems for the annealed case by analyzing the affection between two re-
newals and conclude with a discussion about the quenched case, which is an
ongoing project.
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Chapter 1

Self-avoiding walk (SAW) on
random conductors

This chapter is based on the work in [23]. We investigate SAW in a random
environment, which is topologically regular, but random in energy landscape.
The goal of this chapter is to achieve better understanding of how the intro-
duction of a random environment changes the properties of the critical point
and the critical exponent.

1.1 SAW in a general setting

SAW is a statistical-mechanical model for chain-like solvents, i.e., linear poly-
mers we consider in this thesis. SAW was first introduced by Flory [36, 37]
in order to investigate the behavior of polymer chains. Since then many
physicists have much more conjectures that are believed to be true. Most of
them are supported by numerical simulations and physical ideas that have
not been fully justified mathematically.

We consider SAW on Zd. Let Ω(x, y) be the set of nearest-neighbor self-
avoiding paths on Zd from x to y, and let Ω(x) =

∪
y∈Zd Ω(x, y). Denoting the

length of ω by |ω| (i.e., |ω| = n for ω = (ω0, . . . , ωn)) and the energy cost of
a bond between consecutive monomers by h ∈ R, we define the susceptibility
as

χh =
∑

ω∈Ω(x)

e−h|ω|, (1.1.1)

which is independent of the location of the reference point x ∈ Zd. Two other
key observables are the number of n-step SAWs and the two-point function:

cn =
∑

ω∈Ω(x)

1{|ω|=n}, Gh(x) =
∑

ω∈Ω(o,x)

e−h|ω|, (1.1.2)
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where o is the origin of Zd and 1{··· } is the indicator function. Obviously, we
have

χh =
∞∑
n=0

e−hncn =
∑
x∈Zd

Gh(x). (1.1.3)

Proposition 1.1.1 (Sub-additivity of SAW). For any m,n ∈ N0, it holds
that

cm+n ≤ cmcn. (1.1.4)

Proof. By the translation invariance,

cm+n =
∑
y∈Zd

∑
ω∈Ω(x;m)

1{ωm=y}
∑

η∈Ω(y;n)

1{ω◦η∈Ω(x;m+n)}

≤
∑

ω∈Ω(x;m)

∑
y∈Zd

1{ωm=y}
∑

η∈Ω(y;n)

1

= cmcn, (1.1.5)

where we denote Ω(x;n) = {ω ∈ Ω(x) : |ω| = n}, and ω ◦ η stands for the
concatenation of ω and η.

Proposition 1.1.2 (The connective constant). The connective constant µ
is well-defined and moreover,

µ = lim
n→∞

c1/nn = inf
n∈N

c1/nn . (1.1.6)

Proof. We fix k ∈ N, then n = km + r for some m ∈ N0 and r < k. By
Proposition 1.1.1, we have

c1/nn ≤ (cmk cr)
1/n ≤ c

m/n
k c1/nr , (1.1.7)

which implies lim supn→∞ c
1/n
n ≤ c

1/k
k . By taking the lim infk→∞, we prove

existence of the limit. Taking the infimum over k ∈ N gives us

lim
n→N

c1/nn = inf
k∈N

c
1/k
k . (1.1.8)

This completes the proof.

In the simple random walk case, the connective constant µ is equal to 2d since
the random walker can choose 2d directions in each step. For the nearest-
neighbor SAW model, we have dn ≤ cn ≤ 2d(2d− 1)n−1, which implies that
d ≤ µ ≤ 2d − 1. We obtain the lower bound by counting the walks that
take steps only in the positive coordinate directions and the upper bound by
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the memory-1 (without immediate reversals) walks. For d = 2, the following
rigorous bounds are known; µ ∈ [2.625622, 2.679193]. The lower bound is due
to Jensen [47] by counting bridges, and the upper bound is due to Pönitz
and Tittmann [59] by counting finite memory SAWs. We also know the
asymptotic behavior of the susceptibility around the critical point as follows.

χh ≍
h↓h0

(h− h0)
−γ. (1.1.9)

The constant γ is believed to exist and be the rate of divergence of χh. γ is
known as one of the critical exponents that have universality. It is predicted
that for each dimension the constant γ satisfied that

cn ∼
n↑∞

A µnnγ−1, (1.1.10)

where constant A depends on dimension d. The predicted values of the
critical exponent γ are

γ =


1 d = 1,
43/32 d = 2,
1.162 . . . d = 3,
1 with logarithmic correction d = 4,
1 d ≥ 5.

(1.1.11)

Note that in the simple random walk model γ = 1 for any dimension.

Proposition 1.1.3 (The critical point for SAW in a homogeneous setting).
It holds that for any dimension,

χh < ∞ ⇔ h > log µ. (1.1.12)

Proof. Since µ = infn∈N c
1/n
n by Proposition 1.1.2,

χh =
∞∑
n=0

cne
−hn ≥

∞∑
n=0

(
µe−h

)n
=

1

1− e−(h−log µ)
≥ 1

h− log µ
, (1.1.13)

which implies that χh0 = ∞. We put h = h0 + δ for any δ > 0, then

χh =
∞∑
n=0

cn
µn

e−δn, (1.1.14)

and this is finite. Therefore, by the monotonicity of χh,

χh < ∞ if h > h0,

χh = ∞ if h < h0.
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This completes the proof.

By the definition, we can also regard χh as a generating function of cn.
Therefore, the equation (1.1.3) directly shows that χh < ∞ if and only if
h > log µ. Then, we easily see that h0 = log µ is the critical point of the
susceptibility χh. For d = 1, since cn = 2, the critical point h0 is equal to 0.
For d = 2, on hexagonal lattice, it is known that h0 =

1
2
log(2 +

√
2) by [30].

Many other rigorous results on the behavior of χh and Gh around the critical
point h0 = log µ have been proven, especially in high dimensions d > 4, with
the help of the lace expansion [16, 53]. However, there still remain many
challenging open problems in two and three dimensions. See [61] and the
references therein.

1.2 SAW on random conductors on Zd

In recent years, various models of SAW in a quenched random environment
have attracted much attention of chemists, physicists and mathematicians
[21, 22, 45, 54]. It is natural to consider an inhomogeneous environment.
SAW on a randomly diluted lattice has introduced by Chakrabarti and
Kertész [21]. Le Doussal and Machta [29] investigate it by applying a renor-
malization method on a hierarchical lattice and show some conjectures. La-
coin [51] answers affirmatively to one of them by showing that, on an infinite
super-critical percolation cluster in two dimensions, the quenched critical
point (defined by the divergence of the quenched susceptibility) is strictly
smaller than the annealed one (defined by the divergence of the annealed
susceptibility).

1.2.1 The model and the thorems

In this section, we introduce a random environment to SAW. Let Bd denote
the set of nearest-neighbor bonds in Zd, and let X = {Xb}b∈Bd be a collec-
tion of integrable random variables whose law P is translation-invariant and
ergodic. From a physical point of view, Xb can be regarded as the magnitude
of resistance of a conductor attached to a bond b ∈ Bd, so it may be more
natural to assume Xb ≥ 0. However, the results in this section are all valid
without this assumption Xb ≥ 0. Given the environment X and the strength
of randomness β ≥ 0, we can define the quenched susceptibility at x ∈ Zd as

χ̂h,β,X(x) =
∑

ω∈Ω(x)

e−
∑|ω|

j=1(h+βXbj
), (1.2.1)

where

bj ≡ bj(ω) = (ωj−1, ωj). (1.2.2)
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Because of the inhomogeneity of X, the quenched susceptibility is no longer
translation-invariant and does depend on the location of the reference point
x ∈ Zd. Similarly to the homogeneous case, we also define

ĉβ,X(x;n) =
∑

ω∈Ω(x)

e−β
∑|ω|

j=1 Xbj1{|ω|=n}, (1.2.3)

Ĝh,β,X(x, y) =
∑

ω∈Ω(x,y)

e−
∑|ω|

j=1(h+βXbj
). (1.2.4)

These quantities are reduced to χh, cn and Gh(y − x) respectively, when
β = 0. Moreover,

χ̂h,β,X(x) =
∞∑
n=0

e−hnĉβ,X(x;n) =
∑
y∈Zd

Ĝh,β,X(x, y). (1.2.5)

Since χ̂h,β,X(x) is monotonic in h, we can define the quenched version of the
critical point as

ĥq
β,X(x) = inf{h ∈ R : χ̂h,β,X(x) < ∞}. (1.2.6)

Our goal in this chapter is to understand how the random environment X
affects the behavior of these quenched observables around its critical point.
There are numerous examples in which the introduction of randomness alters
the behavior of relevant observables. We mention those examples in preface.

As a first step to understand the properties of the random variable ĥq
β,X(x),

we consider the annealed case: we take the average of χ̂h,β,X(x) over the en-
vironment X (before n → ∞). Let

ha
β = {h ∈ R : E[χ̂h,β,X(x)] < ∞}, (1.2.7)

where E is the expectation for P. Since P is translation-invariant, the an-
nealed critical point ha

β does not depend on the location of the reference point

x ∈ Zd. We note that ĥq
β,X(x) ≤ ha

β by the definition. In particular, if X is
i.i.d. and the Laplace transform

λβ = E[e−βXb ] (1.2.8)

exists, then we can directly compute E[ĉβ,X(x;n)] as

E[ĉβ,X(x;n)] =
∑

ω∈Ω(x):|ω|=n

n∏
j=1

E[e−βXbj ] = λn
β cn, (1.2.9)

and the annealed susceptibility E[χ̂h,β,X(x)] can be compute as

E[χ̂h,β,X(x)] =
∞∑
n=0

e−hnE[ĉβ,X(x;n)] =
∞∑
n=0

e−(h−log λβ)ncn = χh−log λβ
.

(1.2.10)
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Let h = h0 + log λβ, then E[χ̂h,β,X(x)] < ∞ if and only if h > h0 + log λβ.
Therefore, we obtain

ha
β = h0 + log λβ. (1.2.11)

By Jensen’s inequality, we immediately see the lower bound as

ha
β ≥ h0 − βE[Xb], (1.2.12)

where the gap is O(β2) as β → 0.
The following theorem is the main result of this section.

Theorem 1.2.1. The quenched critical point ĥq
β,X(x) is almost surely a de-

generate random variable.

By the above theorem, we abbreviate ĥq
β,X(x) as ĥq

β,X . And we estimate
the quenched critical point quantitatively.

Theorem 1.2.2. For d ≥ 1 and β ≥ 0, we have P almost surely

h0 − βE[Xb] ≤ ĥq
β,X ≤ ha

β. (1.2.13)

In particular, for d = 1 the lower bound is an equality.

Since cn = 2 in Z1, µ = 1, i.e., h0 = 0. Let h = −βE[Xb] + δ and
∆j = X(x+j−1,x+j) − E[Xb]. Then, we have

χ̂h,β,X(x) = 1 +
∞∑
n=1

e−δn
(
e−β

∑n
j=1 ∆j + e−β

∑n−1
j=0 ∆−j

)
. (1.2.14)

By applying the individual ergodic theorem to those two sequences {∆j}∞j=1

and {∆−j}∞j=0, we can conclude that the above series almost surely converges
if and only if δ > 0.

For d ≥ 2, however, since cn grows exponentially, it is hard to control
the speed of convergence along those SAWs at the same time. Because of
this entropy effect, we strongly believe that the first inequality in (1.2.13) is
a strict inequality. If β is large and E[Xb] > 0, then the gap between the
lower and upper bounds in (1.2.13) is large, and the inequality (1.2.13) is no
longer effective. However in the following specific case, we may find a better
bound. Suppose that P(Xb = 0) is bigger than the critical point for the
oriented percolation on Zd

+. Then, there is almost surely an X-free infinite
oriented-percolation cluster Cx at some x ∈ Zd

+, in which the number of n-step
directed paths from x grows exponentially in n [39, Theorem 3.1(2)]. The
susceptibility χ̂h,β,X(x) can be bounded below by restricting the sum over
those directed paths in Cx, implying existence of a β-independent positive
lower bound on ĥq

β,X .
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1.2.2 A qualitative study of the quenched critical point

We prove Theorem 1.2.1 by showing that the quenched critical point is a
degenerate random variable that does not depend on the location of the
reference point.

Recall that X = {Xb}b∈Bd is a collection of integrable (thus almost surely
finite) random variables whose law P is translation-invariant and ergodic.
Following the similar analysis to that in Lacoin [52], we first prove that the
quenched critical point is independent of the location of the reference point.

Lemma 1.2.3. The quenched critical point ĥq
β,X(x) is almost surely a con-

stant function of x ∈ Zd.

Proof. We will show that

χ̂h,β,X(u) ≤ χ̂h,β,X(v)2 + eh+βX(v,u)χ̂h,β,X(v) (1.2.15)

holds for any pair of neighboring vertices u, v ∈ Zd. Since X(u,v) is almost
surely finite, it implies that χ̂h,β,X(u) < ∞ if and only if χ̂h,β,X(v) < ∞.
Repeated applications of this inequality to all neighboring vertices in Zd,
we conclude that all vertices are in the same equivalent class, i.e., either
χ̂h,β,X(x) < ∞ for all x ∈ Zd or χ̂h,β,X(x) = ∞ for all x ∈ Zd. Therefore,

ĥq
β,X(x) does not depend on x ∈ Zd, almost surely.
It remains to show (1.2.15). First, we split the sum into two as

χ̂h,β,X(u) =
∑

ω∈Ω(u)

e−
∑|ω|

j=1(h+βXbj
)(1{v∈ω} + 1{v/∈ω}). (1.2.16)

Due to the sub-additivity and reversibility of SAW, the contribution from
1{v∈ω} is bounded as∑
ω∈Ω(u):v∈ω

e−
∑|ω|

j=1(h+βXbj
) ≤

∑
ω∈Ω(u,v)

e
−

∑|ω|
j=1(h+βXbj(ω))

︸ ︷︷ ︸
Ĝh,β,X(u,v)

∑
η∈Ω(v)

e
−

∑|η|
j=1(h+βXbj(η)

)

︸ ︷︷ ︸
χ̂h,β,X(v)

= Ĝh,β,X(v, u) χ̂h,β,X(v)

≤ χ̂h,β,X(v)2. (1.2.17)

On the other hand, by adding an extra step from v to u, the contribution
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from 1{v/∈ω} is bounded as∑
ω∈Ω(u):v/∈ω

e−
∑|ω|

j=1(h+βXbj
) = eh+βX(v,u)

∑
ω∈Ω(u):v/∈ω

e−(h+βX(v,u))e
−

∑|ω|
j=1(h+βXbj(ω))

= eh+βX(v,u)

∑
ω̄∈Ω(v):ω̄1=u

e
−

∑|ω̄|
j=1(h+βXbj(ω̄))

︸ ︷︷ ︸
χ̂h,β,X(v)

≤ eh+βX(v,u)χ̂h,β,X(v), (1.2.18)

where we use the symmetry X(u,v) = X(v,u). This completes the proof.

Henceforth we simply denote ĥq
β,X(x) by ĥq

β,X .

Lemma 1.2.4. The quenched critical point ĥq
β,X is a degenerate random

variable.

Proof. Due to Lemma 1.2.3, the event {ĥq
β,X = h} is translation-invariant

for any h ∈ R. Since P is ergodic, we can conclude that P(ĥq
β,X = h) is either

zero or one.

1.2.3 A quantitative estimate of the quenched critical
point

In this section, we prove Theorem 1.2.2. Recall that its reduction to an
equality for d = 1 has already been mentioned soon after Theorem 1.2.2.

Upper Bound

Although it is trivial by the definition, the second inequality in (1.2.13) can
be proven in the following indirect but heuristic way. First, by the Markov
inequality, we have

P
(
ĉβ,X(x;n) ≥ n2E[ĉβ,X(x;n)]

)
≤ 1

n2
. (1.2.19)

Then, by the Borel-Cantelli lemma, we can conclude that the opposite in-
equality ĉβ,X(x;n) ≤ n2E[ĉβ,X(x;n)] holds for all but finitely many n, im-
plying almost sure convergence of χ̂h,β,X(x) for h > ha

β.

Remark 1.2.5. We may improve this upper bound to a strict inequality in
two dimensions by adapting the idea of Lacoin [52]. In his setting (i.e., SAW
on an infinite super-critical percolation cluster in Z2), it is proven that there
are b, θ ∈ (0, 1) such that

E[ĉβ,X(x;n)θ] ≤
(
bnE[ĉβ,X(x;n)]

)θ
. (1.2.20)
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Then, by the Markov inequality, we have

P
(
ĉβ,X(x;n) ≥ n2/θbnE[ĉβ,X(x;n)]

)
≤ 1

n2
. (1.2.21)

By the Borel-Cantelli lemma again, we conclude ĥq
β ≤ ha

β − log 1
b
.

Analyzing fractional moments as in (1.2.20) has been a standard method
to investigate disordered systems. To see how it is used in other settings, we
refer to [63] for random walks in random environments and to [12, 13] for
random pinning models.

Lower bound

In this section, we prove the first inequality in (1.2.13) by showing almost
sure divergence of the quenched susceptibility at h = h0 − βE[Xb] − βδ for
any β > 0 and δ > 0. Let ∆b = Xb − E[Xb] and define

Ω̂good

δ,X(x;n) =
{
ω ∈ Ω(x;n) :

∣∣ 1
n

∑n
j=1∆bj(ω)

∣∣ < δ
}
. (1.2.22)

Using this random set, we can bound χ̂h,β,X(x) at h = h0 − βE[Xb]− βδ as

χ̂h,β,X(x) =
∑

ω∈Ω(x)

1

µ|ω| e
β|ω|

(
δ− 1

|ω|
∑|ω|

j=1 ∆bj

)
≥

∞∑
n=1

1

µn
|Ω̂good

δ,X(x;n)|. (1.2.23)

If there are infinitely many n such that |Ω̂good

δ,X(x;n)| ≥ 1
2
cn, then, by cn ≥ µn

(cf., (1.1.6) in Proposition 1.1.2), we obtain divergence of the susceptibility.
Therefore,

P(χ̂h,β,X = ∞) ≥ P
(
χ̂h,β,X = ∞

∣∣∣ lim sup
n→∞

{
|Ω̂good

δ,X(x;n)| ≥ 1
2
cn
})

︸ ︷︷ ︸
1

× P
(
lim sup
n→∞

{
|Ω̂good

δ,X(x;n)| ≥ 1
2
cn
})

≥ lim
n→∞

P
(
|Ω̂good

δ,X(x;n)| ≥ 1
2
cn
)
. (1.2.24)

To complete the proof, it suffices to show that the rightmost limit is
positive since P(χ̂h,β,X(x) = ∞) is either zero or one. Here we use the Paley-
Zygmund (PZ) inequality [57] as follow. For a random variable Z ≥ 0 whose
second moment is finite and for ε ∈ (0, 1),

P(Z ≥ εE[Z]) ≥ (1− ε)2
E[Z]2

E[Z2]
. (1.2.25)
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Let Z = |Ω̂good

δ,X(x;n)|. Notice that, by the definition and ergodicity, we can

bound E
[
|Ω̂good

δ,X(x;n)|
]
from below as

E
[
|Ω̂good

δ,X(x;n)|
]
=

∑
ω∈Ω(x;n)

P
(∣∣ 1

n

∑n
j=1∆bj(ω)

∣∣ < δ
)
≥ cn

(
1− o(1)

)
. (1.2.26)

Using this and the trivial inequality E
[
|Ω̂good

δ,X(x;n)|2
]
≤ c2n, we obtain

lim
n→∞

P
(
|Ω̂good

δ,X(x;n)| ≥ 1
2
cn
)
≥ 1

4
> 0, (1.2.27)

as required.

Remark 1.2.6. We have the following much simpler proof of (1.2.27). First,
by the trivial inequality |Ω̂good

δ,X(x;n)| ≤ cn, we obtain

E
[
|Ω̂good

δ,X(x;n)|
]
≤ 1

2
cn P

(
|Ω̂good

δ,X(x;n)| < 1
2
cn
)
+ cn P

(
|Ω̂good

δ,X(x;n)| ≥ 1
2
cn
)

=
1

2
cn

(
1 + P

(
|Ω̂good

δ,X(x;n)| ≥ 1
2
cn
))

. (1.2.28)

Combining this with (1.2.26), we can readily conclude P
(
|Ω̂good

δ,X(x;n)| ≥
1
2
cn
)
≥ 1− o(1).

1.2.4 Another application of the PZ inequality

The PZ inequality is often applied to the second-moment method. It has also
been a standard tool to investigate the disordered systems. We show below
that the PZ inequality is used to investigate the critical behavior for SAW
on i.i.d. random conductors. From now on, we assume that λβ < ∞ for all
β ≥ 0.

Proposition 1.2.7. Suppose that

B1 ≡ E
[ ∑
y∈Zd

Ĝh,β,X(x, y)2
]
< ∞ (1.2.29)

and

B2 ≡ E
[ ∑
y,z∈Zd

Ĝh,β,X(x, z) Ĝh,β,X(z, y)2 Ĝh,β,X(y, x)
]
< ∞ (1.2.30)

hold uniformly in h > ha
β. Then, for any slowly-varying function L(h) ↓ 0 as

h ↓ ha
β, we have

lim inf
h↓ha

β

P
(
χ̂h,β,X(x) ≥ L(h)

h− ha
β

)
≥ 1−O(β2). (1.2.31)
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Although the above result is conditional and still weak to establish a deci-
sive conclusion, it provides an evidence to support the belief that, in high
dimensions, the coincidence ĥq

β,X = ha
β occurs and the critical exponent for

χ̂h,β,X(x), if it exists, is bounded below by its mean-field value 1. For SAW
in a homogeneous environment, the conditions (1.2.29)–(1.2.30) (in fact, the
former implies the latter because B2 ≤ B2

1 , which is a result of translation
invariance and the Cauchy-Schwarz inequality) are known to hold in dimen-
sions d > 4, via the lace expansion [16, 53]. The lace expansion yields a
convolution equation for the two-point function, which is applicable in both
homogeneous and inhomogeneous settings. In the current random setting,
however, because of the lack of translation invariance, we have not been able
to fully control the lace-expansion coefficients. This is under investigation in
an ongoing project.

Proof of Proposition 1.2.7. First, by replacing Z in (1.2.25) by χ̂h,β,X(x),
we have

P
(
χ̂h,β,X(x) ≥ εE[χ̂h,β,X(x)]

)
≥ (1− ε)2

E[χ̂h,β,X(x)]2

E[χ̂h,β,X(x)2]
. (1.2.32)

Since E[χ̂h,β,X(x)] = χh−log λβ
(cf., (1.2.10)) and χh ≥ (h−h0)

−1 for all h > h0

(cf., (1.1.6)), we have E[χ̂h,β,X(x)] ≥ (h− ha
β)

−1 for all h > ha
β. Replacing ε

in (1.2.32) by a slowly-varying function L(h) ↓ 0 as h ↓ ha
β, we can conclude

(1.2.31) as soon as we can show

E[χ̂h,β,X(x)2]− E[χ̂h,β,X(x)]2

E[χ̂h,β,X(x)]2
≤ O(β2), (1.2.33)

in the neighborhood of ha
β.

To prove (1.2.33) under the assumptions (1.2.29)–(1.2.30), we introduce
the notation

HX(ω) = −
|ω|∑
j=1

(
h+ βXbj(ω)

)
. (1.2.34)

Let Y = {Yb}b∈Bd be an independent copy of X. Then, we obtain

E[χ̂h,β,X(x)2]− E[χ̂h,β,X(x)]2

=
∑

ω,η∈Ω(x)

E
[
eHX(ω)EY

[
eHX(η) − eHY (η)

]]
. (1.2.35)

By the telescopic-sum representation, we can decompose eHX(η) − eHY (η) as

eHX(η) − eHY (η) =

|η|∑
j=1

eHX(η<j)e−h
(
e
−βXbj(η) − e

−βYbj(η)

)
eHY (η>j), (1.2.36)
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where η<j = (η0, . . . , ηj−1) and η>j = (ηj+1, . . . , η|η|), with the convention
HX(∅) = 0. Substituting this back into (1.2.35) and changing variables
from η<j to η(1), from ηj to a bond b, and from η>j to η(2), we obtain

E[χ̂h,β,X(x)2]− E[χ̂h,β,X(x)]2

=
∑

ω∈Ω(x)

η(1)◦b◦η(2)∈Ω(x)

E
[
eHX(ω)+HX(η(1))EY

[
e−h

(
e−βXb − e−βYb

)
eHY (η(2))

]]
,

(1.2.37)

where η(1) ◦ b ◦ η(2) is the concatenation of those three paths, whose lengths
are not fixed any more (due to the sum over j). Since b is not contained in
η(2), Yb is independent of HY (η

(2)), hence

EY

[(
e−βXb − e−βYb

)
eHY (η(2))

]
= EY

[
e−βXb − e−βYb

]
EY

[
eHY (η(2))

]
=

(
e−βXb − λβ

)
EY

[
eHY (η(2))

]
. (1.2.38)

Substituting this back into (1.2.37) yields

E[χ̂h,β,X(x)2]− E[χ̂h,β,X(x)]2,

= e−h
∑

ω∈Ω(x)

η(1)◦b◦η(2)∈Ω(x)

E
[
eHX(ω)+HX(η(1))

(
e−βXb − λβ

)︸ ︷︷ ︸
0 if b/∈ω

]
EY

[
eHY (η(2))

]

≤ e−2h
(
λ2β − λ2

β

)
E[χ̂h,β,X(x)]

∑
ω(1)◦b◦ω(2)∈Ω(x)

η(1)◦b∈Ω(x)

E
[
eHX(ω(1))+HX(ω(2))+HX(η(1))

]
,

(1.2.39)

where the restricted sum over η(2) is bounded above by E[χ̂h,β,X(x)], which
is translation invariant and independent of x ∈ Zd.

Next, we investigate the remaining sum∑
ω1◦b◦ω(2)∈Ω(x)

η(1)◦b∈Ω(x)

E
[
eHX(ω(1))+HX(ω(2))+HX(η(1))

]
(1{ω(2)∩η(1)=∅} + 1{ω(2)∩η(1) ̸=∅}).

(1.2.40)

Due to the independence among the variables in X, the contribution from
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1{ω(2)∩η(1)=∅} is bounded by∑
ω(1)◦b◦ω(2)∈Ω(x)

η(1)◦b∈Ω(x)

E
[
eHX(ω(1))+HX(η(1))

]
E
[
eHX(ω(2))

]

≤ E[χ̂h,β,X(x)]
∑

ω(1)◦b∈Ω(x)

η(1)◦b∈Ω(x)

E
[
eHX(ω(1))+HX(ω(2))

]

≤ E[χ̂h,β,X(x)] 2dB1. (1.2.41)

To bound the contribution from 1{ω(2)∩η(1) ̸=∅} in (1.2.40), we split ω(2) as

ω(3) ◦ω(4) at the last visit to η(1), so that ω(4)∩ η(1) = {ω(4)
0 }. Then, by using

the independence among the variables in X, we can bound the sum over ω(4)

by E[χ̂h,β,X(x)]. As a result, the contribution from 1{ω(2)∩η(1) ̸=∅} is bounded
by∑
y∈Zd

∑
ω(1)◦b◦ω(3)∈Ω(x,y)

ω(4)∈Ω(y)

1{ω(1)◦b◦ω(3)◦ω(4)∈Ω(x)}

∑
η(3)∈Ω(x,y)

η(4)◦b∈Ω(y)

1{η(3)◦η(4)◦b∈Ω(x)}1{ω(4)∩(η(3)◦η(4))={y}}

× E
[
eHX(ω(1))+HX(ω(3))+HX(η(3))+HX(η(4))

]
E
[
eHX(ω(4))

]
≤ E[χ̂h,β,X(x)]

∑
y∈Zd

∑
ω(1)◦b◦ω(3)∈Ω(x,y)

η(3)∈Ω(x,y)

η(4)◦b∈Ω(y)

1{b/∈η(3)} E
[
eHX(ω(1))+HX(ω(3))+HX(η(3))+HX(η(4))

]

= ehλ−1
β E[χ̂h,β,X(x)]

∑
y,z∈Zd

∑
ω(1)∈Ω(x,z)

b◦ω(3)∈Ω(z,y)

η(3)∈Ω(x,y)

η(4)∈Ω(y,z)

E
[
eHX(ω(1))+HX(b◦ω(3))+HX(η(3))+HX(η(4))

]

= ehλ−1
β E[χ̂h,β,X(x)]B2. (1.2.42)

Finally, by summarizing (1.2.39)–(1.2.42), we arrive at

E[χ̂h,β,X(x)2]− E[χ̂h,β,X(x)]2

E[χ̂h,β,X(x)]2
≤ e−2h(2dB1 + ehλ−1

β B2)(λ2β − λ2
β︸ ︷︷ ︸

O(β2)

), (1.2.43)

which proves (1.2.33). This completes the proof of Proposition 1.2.7

1.3 Phase transition for SAW on random con-

ductors on a tree

This model we treat in this section is SAW on a tree with random conductors,
which can be regarded as a directed polymer model on a disordered tree.
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According to a classical theorem by Kahane and Peyrière [49] and Biggins
[14], it is known that there exists a transition behavior in this model (see
[55]). Derrida and Spohn [27] prove that in each phase, there exists some
critical parameter inducing a qualitative change for the behavior of polymers
showing that a directed polymer on a tree with disorder can be reduced to
the study of nonlinear partial differential equations of reaction-diffusion type.
Buffet, Patrick, and Pulé give another proof based on the study of martingale
in [7]. In this section we give another probabilistic approach to the quenched
critical point by applying the fractional moment estimate.

1.3.1 The model and the theorem

We consider an SAW path ω on a degree-ℓ tree Tℓ. We denote by |ω| the
length of SAW ω and by Ω(x;n) the set of n-step SAWs from x ∈ Tℓ. We also
denote by Bℓ the set of nearest-neighbor bonds on Tℓ, we define the set of
random conductors X = {Xb}b∈Bℓ as a collection of i.i.d. random variables
whose probability law is denoted by P. Since cn = ℓ(ℓ − 1)n−1 on Tℓ, we
obtain µ = ℓ− 1.

Similarly to the Zd case, we define the quenched susceptibility at x ∈ Tℓ

by

χ̂h,β,X(x) =
∑

ω∈Ω(x)

e−
∑|ω|

j=1(h+βXbj
), (1.3.1)

where h ∈ R, β ≥ 0 and bj ≡ bj(ω) = (ωj−1, ωj). Since χ̂h,β,X(x) is monotonic
in h, we can define the quenched critical point by

ĥq
β,X(x) = inf{h ∈ R : χ̂h,β,X(x) < ∞}. (1.3.2)

Recall that we prove on Zd that ĥq
β,X(x) is independent of the reference point

x and it is a degenerate random variable in the previous section. It is valid
for the case that {Xb} is a collection of integrable random variables whose
law P is translation-invariant and ergodic. From now on, we simply write
the quenched critical point by ĥq

β.
We compute the annealed susceptibility E[χ̂h,β,X(x)] as

E
[
χ̂h,β,X(x)

]
=

∞∑
n=0

cn λ
n
β e

−hn = χh−log λβ
, (1.3.3)

and we have already known the annealed critical point is ha
β = log µ+log λβ.

As in Section 1.2, we have

log µ− βE[Xb] ≤ ĥq
β ≤ ha

β, (1.3.4)
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where the gap between these two bounds is O(β2) when β is small enough.

In a directed polymer model on a disordered tree, it is known that there
exists a transition behavior. The critical parameter that divides the system in
two phases is known explicitly. According to Kahane and Peyrière [49] and
Biggins [14], we introduce the quenched partition function of the directed
polymer model on a disordered tree.

Zn =
1

cn

∑
ω∈Ω(x;n)

e−
∑n

j=1(βXbj
+log λβ). (1.3.5)

They prove that this partition function Zn is a positive martingale with
respect to Fn(x) = σ(Xb : b = (u, v) ∈ Bℓ, |u−x| ≤ n, |v−x| ≤ n) for x ∈ Tℓ

through computing as follows.

E[Zn+1|Fn(x)] = E
[ 1

cn+1

∑
ω∈Ω(x;n+1)

e−
∑n+1

j=1 (βXbj
+log λβ)|Fn(x)

]
=

∑
y∈Tℓ

1

cnµ

∑
ω∈Ω(x;n)
ωn=y

e−
∑n

j=1(βXbj
+log λβ) E

[ ∑
z∈Tℓ

|z−y|=1

e−(βX(y,z)+log λβ)
]

= Zn. (1.3.6)

By the martingale convergence theorem and Kolmogorov’s 0-1 law, there
exists a non-negative random variable Z∞ := limn→∞ Zn and the probability
P(Z∞ = 0) is equal to either 0 or 1. We set the quenched free energy F(β),
which is equal to the quenched critical point ĥq

β.

F(β) := lim
n→∞

1

n
log(enh

a
βZn). (1.3.7)

For β ≥ 0, we define the function

f(β) = ha
β − β

( d

dβ
ha
β

)
. (1.3.8)

Since

d

dβ
f(β) =

d

dβ
ha
β −

{ d

dβ
ha
β + β

( d2

dβ2
ha
β

)}
= −β

{E[X2e−βX ]

λβ

−
(E[Xe−βX ]

λβ

)2}
< 0 for β > 0, (1.3.9)

the function f(β) is decreasing in β. Let βc be the positive root of f(β) = 0
if there exists, βc = ∞ otherwise. Kahane and Peyrière [49] and Biggins [14]
show that

P(Z∞ > 0) = 1 ⇔ β < βc (f(β) > 0),

P(Z∞ = 0) = 1 ⇔ β ≥ βc (f(β) ≤ 0).
(1.3.10)
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For β < βc, we call the weak disorder regime, and for β > βc, the strong
disorder regime. Derrida and Spohn [27] prove that the free energy is

F(β) =

{
ha
β if β ≤ βc,

β
βc
ha
βc

if β > βc.
(1.3.11)

They prove this result through the study of nonlinear partial differential
equations of diffusion-reaction type and derive βc from the minimal speed of
traveling wave solutions. Buffet, Patrick and Pulé [7] also prove (1.3.11) by
the martingale argument.

Figure 1.1: The function f(β) is convex and there exists βc such that f(βc) =
0.

We can find a close connection between the partition function Zn and the
quenched susceptibility χ̂h,β,X .

χ̂h,β,X(x) =
∞∑
n=0

cn λ
n
β e

−hn Zn. (1.3.12)

Recall that the free energy F(β) is equal to the quenched critical point ĥq
β.

The following statement is the main theorem of this section.

Theorem 1.3.1. For ℓ > 3,

ĥq
β =

{
ha
β if β ≤ βc,

β
βc
ha
βc

if β > βc,
(1.3.13)

where βc = θcβ and we obtain θc by optimizing the function log r(θ) = ha
θβ −

θha
β.

Note that the case ℓ = 2 is equivalent to the case Z. Since on Z, cn = 2
and these two SAW paths are independent, it is proven that ĥq

β = −βE[Xb]
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on Z by the strong law of large numbers. On Zd≥2, however, since cn grows
exponentially, it is hard to control the speed of convergence along the SAWs
at the same time. Because of the entropy effect, we strongly believe that the
first inequality in (1.3.4) is a strictly inequality. The exact value of quenched
critical point on Zd≥2 remains an open problem.

1.3.2 In the weak disorder regime

First we prove that ĥq
β = ha

β for β ≤ βc. We show that χ̂h,β,X(x) = ∞ at
h = ha

β − δ for any β ∈ [0, βc) and δ > 0. In the weak disorder regime, Zn

almost surely converges to some positive random variable Z∞. Then, for ε >
0, there exists an almost surely finite random variable N = N(ω,X, ε) ∈ N
such that for n ≥ N , |Zn − Z∞| < ε. Therefore, for h = ha

β − δ,

χ̂h,β,X(x) =
∞∑
n=0

cn
µn

eδnZn ≥ ℓ

ℓ− 1
(Z∞ − ε)

∞∑
n=N

eδn = ∞. (1.3.14)

This implies that ĥq
β = ha

β for β ≤ βc.
As an immediate consequence from (1.3.10) and (1.3.13), we show that

for ℓ ≥ 3, the critical exponent of the quenched susceptibility is almost
surely equal to 1 in the weak disordered regime. We consider the quenched
susceptibility at h = ha

β + δ for any β ∈ [0, βc) and δ > 0, which is given by

χ̂h,β,X =
∞∑
n=0

cn
µn

e−δn Zn. (1.3.15)

Therefore, χ̂h,β,X(x) is bounded from above as

χ̂h,β,X ≤
N−1∑
n=0

cn
µn

e−δn Zn +
∞∑

n=N

cn
µn

e−δn(Z∞ + ε)

≤ ℓN

ℓ− 1

(
max

0≤n≤N−1
Zn

)
+

ℓ(Z∞ + ε)

(ℓ− 1) eδN
1

1− e−δ
. (1.3.16)

and is bounded from below as

χ̂h,β,X ≥
∞∑

n=N

cn
µn

e−δn(Z∞ − ε) =
ℓ(Z∞ − ε)

(ℓ− 1) eδN
1

1− e−δ
. (1.3.17)

By (1.3.16) and (1.3.17), there exist random variables 0 < c < C < ∞
depending on ω, X and ε such that

c

h− ha
β

≤ χ̂h,β,X(x) ≤ C

h− ha
β

, as h ↓ ha
β. (1.3.18)
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1.3.3 In the strong disorder regime

In this section, we split the proof of Theorem 1.3.1 in two parts. First we will
give an upper bound of the quenched critical point by bounding fractional
moments of Zn and optimizing the choice of the fraction. Second we will
bound the quenched critical point from below by the same value that we find
as the upper bound.

The upper bound for the quenched critical point

First, we prove the following proposition to bound the quenched critical point
from above.

Proposition 1.3.2. For ℓ ≥ 3 and β > βc, it holds that

ĥq
β ≤ β

βc

ha
βc
, P-a.s., (1.3.19)

and the critical parameter βc is given by θcβ where θc ∈ (0, 1) is the value
that minimizes the function log r(θ), where r(θ) is defined by (1.3.26).

Our strategy for this proposition is to estimate the rate of convergence
of the martingale Zn. Recall that we have already known the convergence
of Zn to zero in the strong disorder regime. In this section, we denote Zn

by Z
(x)
n to emphasize the starting point x. We introduce another martingale

defined by

Z̃(y)
n =

1

(ℓ− 1)n

∑
η∈Ω̃(y;n)

e
−

∑n
j=1(βXbj(η)

+log λβ), (1.3.20)

where Ω̃(y;n) is the set of SAWs on a Cayley tree with branching ratio ℓ−1.
Therefore, we have

Z(x)
n =

∑
y∈Tℓ

|x−y|=1

e−βX(x,y)

ℓλβ

Z̃
(y)
n−1, (1.3.21)

Z̃
(y)
n−1 =

∑
z∈Tℓ\{x}
|y−z|=1

e−βX(y,z)

(ℓ− 1)λβ

Z̃
(z)
n−2. (1.3.22)

We apply a trivial inequality: for every θ ∈ (0, 1), (
∑

n an)
θ ≤

∑
n(an)

θ to
(1.3.21), and take expectation. Due to the transitivity of a homogeneous
degree tree and the i.i.d. property of X, we obtain

E[Zθ
n] ≤

∑
y∈Tℓ

|x−y|=1

E
[(e−βX(x,y)

ℓλβ

)θ]
E[Z̃θ

n−1] ≤ ℓ1−θ λθβ

λθ
β

E[Z̃θ
n−1], (1.3.23)
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and

E[Z̃θ
n−1] ≤

∑
z1∈T̃ℓ

|y−z1|=1

E
[( e−βX(y,z1)

(ℓ− 1)λβ

)θ]
E[Z̃θ

n−2] ≤ (ℓ− 1)1−θ λθβ

λθ
β

E[Z̃θ
n−2]

≤ · · · ≤
{
(ℓ− 1)1−θ λθβ

λθ
β

}n−1

. (1.3.24)

Substituting (1.3.24) into (1.3.23), we have

E[Zθ
n] ≤ ℓ1−θ λθβ

λθ
β

{
(ℓ− 1)1−θ λθβ

λθ
β

}n−1

=
( ℓ

ℓ− 1

)1−θ

r(θ)n, (1.3.25)

where

r(θ) = (ℓ− 1)E
[( e−βXb

(ℓ− 1)λβ

)θ]
. (1.3.26)

Therefore, by the definition of the annealed critical point ha
β, we have

log r(θ) = log µ+ log λθβ − θ
(
log µ+ log λβ

)
= ha

θβ − θha
β. (1.3.27)

We will show that E[Zθ
n] decays exponentially, i.e., r(θ) < 1 for some

θ ∈ (0, 1), we consider the function log r(θ), and compute the first and second
derivatives of it.

d

dθ
(log r(θ)) = −β

E[Xe−θβX ]

λθβ

− ha
β

= β
( d

dβ
ha
β

∣∣
β=θβ

)
− ha

β

=
1

θ

(
ha
θβ − f(θβ)

)
− ha

β, (1.3.28)

and

d2

dθ2
(log r(θ)) = β2

{E[X2e−θβX ]

λθβ

−
(E[Xe−θβX ]

λθβ

)2}
≥ 0. (1.3.29)

Thus, we can say that the function log r(θ) is convex. Since

d

dθ
(log r(1)) = β

( d

dβ
ha
β

)
− ha

β = −f(β) > 0 (1.3.30)

by (1.3.28), log r(0) = log(ℓ − 1) > 0 and log r(1) = 0 (see Figure 1.2),
there exists θ1 ∈ (0, 1) such that log r(θ1) = 0. Therefore, for θ ∈ (θ1, 1), we
conclude that E[Zθ

n] is exponentially decaying in the strong disorder regime.
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Figure 1.2: The function log r(θ) is convex and there exists θ1 ∈ (0, 1) such
that log r(θ1) = 0. For θ ∈ (θ1, 1), the function log r(θ) is strictly negative.

We show that the quenched susceptibility χh,β,X(x) is almost surely finite
for h > ha

β − 1
θ
log 1

r(θ)
and θ ∈ (θ1, 1). For θ ∈ (θ1, 1), h = ha

β − 1
θ
log 1

r(θ)
+ δ

and δ > 0, we have

χ̂h,β,X(x) =
∞∑
n=0

cn λ
n
β e

−hn Zn

=
ℓ

ℓ− 1

∞∑
n=0

e−δn r(θ)−n/θ Zn. (1.3.31)

By Markov’s inequality, for any ε > 0,

P(Zn ≥ (r(θ) + ε)n/θ) = P(Zθ
n ≥ (r(θ) + ε)n)

≤ E[Zθ
n]

(r(θ) + ε)n
≤

( ℓ

ℓ− 1

)1−θ( r(θ)

r(θ) + ε

)n

. (1.3.32)

Then, by the Borel-Cantelli lemma, the event {Zn < (r(θ) + ε)n/θ} occurs
for all but for finitely many n. We can control ε > 0 depending on δ > 0 for
the summation in (1.3.31) to be finite as

e−δn r(θ)−n/θ Zn ≤ exp
{
− n

(
δ − 1

θ
log

(
1 +

ε

r(θ)

))}
. (1.3.33)

so that χ̂h,β,X(x) is almost surely finite if we choose ε < r(θ)eθδ. This implies
that for any θ ∈ (θ1, 1),

ĥq
β ≤ ha

β +
1

θ
log r(θ) < ha

β. (1.3.34)

To optimize an upper bound above, we compute a derivation of r(θ) and
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f(β).

θ

dθ

(1
θ
log r(θ)

)
= − 1

θ2
log r(θ) +

1

θ

d

dθ
(log r(θ))

= − 1

θ2

{
ha
θβ − θβ

( d

dβ
ha
β

∣∣
β=θβ

)}
= − 1

θ2
f(θβ). (1.3.35)

Therefore, we have

θ

dθ

(1
θ
log r(θ)

)
< 0 if θβ < βc,
= 0 if θβ = βc,
> 0 if θβ > βc.

(1.3.36)

For θc = βc

β
∈ (θ1, 1)

1, we have the upper bound on the quenched critical

point ĥq
β, i.e.,

ĥq
β ≤ ha

β +
1

θc
log r(θc) =

β

βc

ha
βc

(1.3.39)

We finish the proof of Proposition 1.3.2.

Figure 1.3: The function 1
θ
log r(θ) is convex and takes the minimum value

when θcβ = βc.

1We check that θc > θ1. This is because
1
βh

a
β is convex since

∂

∂β

( 1

β
ha
β

)
= − 1

β2
f(β)

 < 0 β < βc,
= 0 β = βc,
> 0 β > βc.

(1.3.37)

Therefore,

log r(θc) = ha
βc

− βc

β
ha
β < 0 = log r(θ1). (1.3.38)

This implies that θc > θ1.
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The lower bound for the quenched critical point

To prove that ĥq
β = β

βc
ha
βc
, we need to show that for ℓ > 3, ĥq

β is almost surely

greater than β
βc
ha
βc

in the strong disorder regime.

Proposition 1.3.3. For ℓ ≥ 3 and β > βc, it holds that

ĥq
β ≥ β

βc

ha
βc
, P-a.s. (1.3.40)

Proof of Proposition 1.3.3. We refer the proof in [7]. For lighter nota-

tions, we define Sn(ω) =
∑n

j=1 Xbj(ω), ⟨ · ⟩β =
∑

ω∈Ω(x;n) · e−βSn(ω)∑
ω∈Ω(x;n) e

−βSn(ω) , and

Fn(β) =
1

nβ
log

∑
ω∈Ω(x;n)

e−βSn(ω). (1.3.41)

We give the expression of the quenched susceptibility again.

χ̂h,β,X(x) =
∞∑
n=0

cnλβe
−nhZn =

ℓ

ℓ− 1

∞∑
n=0

e−n(h−β log Fn(β)). (1.3.42)

To show that χ̂h,β,X(x) = ∞ holds almost surely for h = β
βc
ha
βc
, it suf-

fices to show that lim infn→∞ Fn(β) ≥ 1
βc
ha
βc

holds almost surely. Note that

lim infn→∞ Fn(β) ≥ 1
βc
ha
βc

implies lim supn→∞ P(Zn ≥ r(θc)
n/θc) > 02.

First we will show that Fn(β) is decreasing in β. For β1 ≥ β2, it holds that∑
ω∈Ω(x;n)

( e−β2Sn(ω)∑
ω∈Ω(x;n) e

−β2Sn(ω)

)β1/β2

≤ 1, (1.3.45)

2Since the event {χ̂h,β,X(x) = ∞} is translation-invariant in x, and the probability
measure P is ergodic,

P(χ̂h,β,X(x) = ∞) > 0 ⇒ P(χ̂h,β,X(x) = ∞) = 1. (1.3.43)

To prove that ĥq
β ≥ β

βc
ha
βc
, we show that P(χ̂h,β,X(x) = ∞) > 0 for h = β

βc
ha
βc
. Then we

define the event An = {Zn ≥ r(θc)
n/θc}. If Zn = r(θc), then χ̂h,β,X diverges.

P(χ̂h,β,X(x) = ∞) = P(χ̂h,β,X(x) = ∞|
∞∩

n=1

∪
k≥n

Ak)︸ ︷︷ ︸
=1

P(
∞∩

n=1

∪
k≥n

Ak)

≥ lim sup
n→∞

P(An). (1.3.44)

Therefore, to prove that P(χ̂h,β,X(x) = ∞) > 0, it suffices to show that the rightmost
limit in (1.3.44) is positive.
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and then,( ∑
ω∈Ω(x;n)

e−β1Sn(ω)
)1/β1

≤
( ∑

ω∈Ω(x;n)

e−β2Sn(ω)
)1/β2

. (1.3.46)

We can say that Fn(β) is decreasing in β. Next we will show the convexity
of Fn(β). Since by the decreasingness of Fn(β), it holds that F

′
n(β) ≤ 0, we

have

F′′
n(β) = − 1

2nβ
F′
n(β) +

1

nβ

(
⟨S2

n⟩β − ⟨Sn⟩2β
)
≥ 0. (1.3.47)

This implies that Fn(β) is a convex function in β. Finally by this convexity
of Fn(β, ω), for any ε > 0 independent of n and β we have

Fn(β) ≥ F′
n(βc − ε)(β − (βc − ε)) + Fn(βc − ε). (1.3.48)

Recall that we have already know limn→∞ Fn(β) =
1
β
ha
β in the weak disorder

regime and since 1
β
ha
β is differentiable in β, we have

F′
n(β) →

d

dβ

( 1

β
ha
β

)
= − 1

β2
ha
β +

1

β

( d

dβ
ha
β

)
= − 1

β2
f(β). (1.3.49)

We choose ε independently of n and β so that it holds that limε→0 limn→∞ F′
n(βc) =

0 as n → ∞. Therefore, we can conclude that lim infn→∞ Fn(β) ≥ 1
βc
ha
βc
. The

result follows.
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Chapter 2

The pinning model

The pinning model was introduced for the study of the behavior of linear
polymers by Fisher [35]. Linear polymers are chemical compounds consisting
of monomers. The polymer chain is defined as a Markov chain on Z, and we
consider a renewal process which is given as a sequence of inter-arrival times
of the Markov chain.

2.1 In a homogeneous setting

Let τ be a renewal process with τ0 = 0 and assume that τ is non-terminating,
that is, P(τ1 < ∞) = 1. The distribution of τ is given by

K(n) := P(τ1 = n) =
L(n)

n1+α
, α > 0, (2.1.1)

for all n ∈ N, where L(n) is a slowly varying function (See [15]) and the
parameter α is positive. If α = 1/2, the Markov chain represents return
times of a 1-dimensional simple random walk. We denote the probability
measure and its expectation by P and E respectively, and define the expected
waiting time µ := E[τ1] (note that µ is not the connective constant in this
chapter). If α < 1, µ is infinite, and otherwise. Then, we give the definitions
of the polymer measure Pn,h and the partition function Zn,h respectively by
the followings.

dPn,h

dP
(τ) =

1

Zn,h

eh
∑n

k=1 δkδn, n ∈ N, h ∈ R, (2.1.2)

where the partition function Zn,h is given by

Zn,h := E
[
eh

∑n
k=1 δkδn

]
, Z0,h = 1. (2.1.3)

In (2.1.3), the function δn is an indicator function 1{n∈τ}. The definition
(2.1.2) implies that a Markov chain obtains eh at every renewal (see Fig-
ure 2.1). Therefore, if h < 0, a Markov chain penalized by eh < 1 at every
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renewal. So that it is dominant that paths do not visit the origin and we
regard that the Markov chain tends to delocalize from the origin. From this
observation, we have a phase transition between the localized phase and the
delocalized phase. We define a critical point hc that separates these phases
and it is predicted that hc = 0. Note that if

∑
nK(n) < 1, then we put

K̃(n) := K(n)
1−K(∞)

and replace h by h + log(1 − K(∞)). So that the critical

point can be hc = − log(1−K(∞)) = − log
∑

nK(n). We also define he free
energy F : R 7→ [0,∞) by ∑

n∈N

e−nF(h)+hK(n) = 1, (2.1.4)

when such a solution exists, i.e., for h ≥ 0. When we can not solve this
equation, i.e., for h < 0, we set F(h) = 0. It is well-known the phase
transition is characterized by the free energy F.

Figure 2.1: A sample of a Markov chain and the renewal process τ pinned at
n visit at n at ℓ-th renewal. The Markov chain obtains a weight eh in each
renewal.

We consider the relation between the free energy and the partition func-
tion (see Figure 2.1). By a simple computation,

Zn,h =
n∑

k=1

∑
ℓ∈Nk

|ℓ|=n

k∏
j=1

K(ℓj)e
h =

n∑
k=1

∑
ℓ∈Nk

|ℓ|=n

k∏
j=1

eF(h)ℓjK̃h(ℓj)

= enF(h))
n∑

k=1

∑
ℓ∈Nk

|ℓ|=n

k∏
j=1

K̃h(ℓj) = enF(h)P(n ∈ τ̃ (h)), (2.1.5)

where the law K̃h is defined by

K̃h(n) := e−nF(h)+hK(n). (2.1.6)

By the definition (2.1.6), τ̃ (h) is also a renewal process with the density K̃h.
Then we have the following relation between the free energy F(h) and the
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partition function Zn,h.

lim
n→∞

1

n
logZn,h = F(h). (2.1.7)

This expression is often used for the definition of the free energy. (2.1.7) can
be proved based on the renewal theorem (See [41] or [42]). By (2.1.5), it is
sufficient to show logP(n ∈ τ̃ (h)) = o(n). For h < 0, we have trivial bounds
as ehK(n) ≤ P(n ∈ τ̃ (h)) ≤ 1. For h > 0, by the renewal theorem, P(n ∈ τ̃ (h))

goes to E[τ̃ (h)1 ] as n → ∞. To understand the critical phenomenon, we often
focus on the behavior of the free energy at the critical point hc.

Theorem 2.1.1 ([41, 42]). If hc = − log
∑

n K(n) (i.e. K(∞) > 0), we have
that

F(h) ∼
h↘hc

C(K)×


h− hc α > 1 ,

h−hc

log(h−hc)
α = 1 ,

(h− hc)
1/α α ∈ (0, 1) ,

(2.1.8)

where

C(K) =


∑

nK(n)/
∑

n nK(n) α > 1 ,
1/L(n) α = 1 ,{
α
∑

n K(n)/
(
L(n)Γ(1− α)

)}1/α
α ∈ (0, 1) .

(2.1.9)

Proof. We give the rough sketch of the proof of Theorem 2.1.1 (refer to
[41, 42] for more detail). First, we introduce the function φ as follows.

φ(x) = 1−
∞∑
n=1

e−nxK(n). (2.1.10)

We compute φ(x). Let K̄(n) :=
∑

j≥n K(j), then

φ(x) = 1−
∞∑
n=1

e−nx
(
K̄(n− 1)− K̄(n)

)
=

(
1− e−x

) ∞∑
n=0

e−nxK̄(n).

(2.1.11)

By the renewal theorem, we have the asymptotic behavior of φ(x) as follows.

φ(x) ∼
x↓0


xE[τ1] if α > 1,
L(n) x log 1

x
if α = 1,

Γ(1−α)
α

xα if α < 1

(2.1.12)

We have F(h) ↓ 0 for h → hc. Recall that by the definition of the free energy
(2.1.4), we have φ(F(h)) = 1−e−h. Therefore, replacing x by F(h), the proof
is completed.
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2.2 The general pinning model

The pinning model with i.i.d. disorder is regarded as a general model but
it has so many heuristic arguments and methods to analyze the disordered
systems. In order to make the argument lighter, we replace (2.1.1) by

K(n) := P(τ1 = n) ∼
n↗∞

cK
n1+α

, α > 0, (2.2.1)

for all n ∈ N, where cK > 0 is a normalization constant. We assume that ω
is a sequence of i.i.d. random variables satisfying the followings.

Eω[ω1] = 0, Eω[ω
2
1] = 1, Eω[e

βω1 ] ≡ Mβ < ∞, (2.2.2)

where we denote the probability measure and its expectation by Pω and
Eω respectively. For β ≥ 0, h ∈ R and a fixed realization of ω, we can
respectively define the probability measure Pω and the quenched partition
function Zn,ω by

dPω

dP
(τ) =

1

Zn,ω

e
∑n

k=1(h+βωk)δkδn, (2.2.3)

and

Zn,ω := Zn,β,h = E
[
e
∑n

k=1(h+βωk)δkδn

]
. (2.2.4)

We also define the annealed counterparts by

dPa
ω

dP× Pω

(τ) =
1

Za
n,ω

e
∑n

k=1(h+βωk)δkδn, (2.2.5)

and

Za
n,ω = Za

n,β,h = Eω[Zn,ω]. (2.2.6)

By the Fubini-Tonelli theorem and the i.i.d property of ω, we can compute
the annealed partition function as

Za
n,ω = EωE[e

∑n
k=1(h+βωn)δkδn]

= E[e
∑n

k=1(h+logMβ)δkδn] = Zh+logMβ
. (2.2.7)

Therefore, the annealed free energy is given as the homogeneous one.

Fa(β, h) = lim
n→∞

logZa
n,ω = F(0, h+ logMβ) (2.2.8)
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The annealed critical point ha
β is hc(0)− logMβ, where we write by hc(0) the

critical point in homogeneous case. On the other hand, the quenched free
energy is defined by the following limit

F(β, h) := lim
n→∞

1

n
Eω[logZn,ω] = sup

n∈N0

1

n
Eω[logZn,ω], (2.2.9)

for all h ∈ R and β ≥ 0. The existence of this limit and the last equality
follows from the super-additivity of the sequence {Eω[logZn,ω]}n∈N, i.e., For
m = 1, · · · , n− 1,

logZn,ω ≥ logE
[
e
∑n

k=1(h+βωn)δkδnδm

]
= logE

[
e
∑m

k=1(h+βωn)δkδm

]
+ logE

[
e
∑n

k=m+1(h+βωn)δkδn|m ∈ τ
]

= logZm,ω + logZn−m,θmω, (2.2.10)

where θ is a shift by one step to the left. By the definition (2.2.9), we can
see some straightforward properties of the quenched free energy.

• The quenched free energy F(β, h) is non-decreasing in both h and β.

• The function (β, h) 7→ F(β, h) is a convex since F(β, h) is the limit of
a sequence of convex functions.

The following property called the self-averaging holds for the quenched free
energy.

Proposition 2.2.1. P-almost surely and in L1 we have that for every β and
h,

lim
n→∞

1

n
logZn,ω = F(β, h). (2.2.11)

Note that the assumption of i.i.d. environment is not essential for this
proposition (In Section 2.3 we can also prove this property in another setting).
The proof of Proposition 2.2.1 is a direct consequence of the super-additivity
(2.2.10) and the sub-additive ergodic theorem (see [50]), however we put
another proof to show the basic argument of the pinning models.

Proof. By the super-additivity (2.2.10), letting n = km+ r,

1

n
logZn,ω ≥ m

n

n
m
−1∑

j=0

1

m
logZm,θjmω. (2.2.12)
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Applying the strong law of large numbers to the lefthand-side of (2.2.12), we
have

lim inf
n→∞

1

n
logZn,ω ≥ Eω

[ 1

m
logZm,θjmω

]
. (2.2.13)

Therefore, by the definition (2.2.9), we obtain

F(β, h) = lim sup
m→∞

1

m
Eω[logZm,θjmω] ≤ lim inf

n→∞

1

n
logZn,ω. (2.2.14)

On the other hand, by decomposing the partition function, we have

Zn,ω = Zm,ωZn−m,θmω︸ ︷︷ ︸
m∈τ

+
m−1∑
i=0

Zi,ω

n∑
j−m+1

K(j − i)eh+βωjZn−j,θjω︸ ︷︷ ︸
m/∈τ

. (2.2.15)

There exists a constant c > 0 (see (2.2.1)) such that for every i, j, and m,

K(j − i)

K(m− i)K(j −m)
≤ c{(j −m) ∧ (m− i)}1+α ≤ c{(n−m) ∧m}1+α.

(2.2.16)

Substituting (2.2.16) into (2.2.15), then taking logarithms and deviding by
n, we have

1

n
logZn,ω ≤ m

n

n
m
−1∑

j=0

( 1

m
logZm,θjmω +

1

m
(c+ β|ωjm|+ (1 + α) logm)

)
.

(2.2.17)

Therefore, using the same argument as estimating a lower bound, the result
follows.

By the monotonicity in β and Jensen’s inequality, we have

F(h) = F(0, h) ≤ F(β, h) ≤ Fa(β, h). (2.2.18)

This directly yields

ha
β = hc − logMβ ≤ ĥq

β ≤ hc. (2.2.19)

Therefore, we can define these two phases

L = {(β, h) : h > ĥq
β}, D = {(β, h) : h ≤ ĥq

β}. (2.2.20)

The region L is called the localized phase and the region D is called the
delocalized phase.
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Figure 2.2: The critical curve β 7→ ĥq
β that separates L and D is convex and

decreasing in β. Recall that hc is the homogeneous critical point and it is
positive if τ is not terminating.

The curvature of the quenched critical point close to β = 0 has been
studied with big interests on the pinning model. In fact, it is known that
if α < 1

2
, the quenched and annealed critical points coincide for small β.

We call this regime the irrelevant disorder regime. In the irrelevant disorder
regime, i.e., for α ∈ (0, 1

2
), the asymptotic behavior of the quenched free

energy is given as

lim
h↓ĥq

β

log F(β, h)

log(h− ĥq
β)

=
1

α
< 2. (2.2.21)

Recalling (2.1.8) in Theorem 2.1.1, the behavior of the quenched free energy
around its critical point is the same as the one of the homogeneous free energy.
On the other hand, it is known that if disorder is relevant, i.e., for α > 1

2
and

β > 0, the critical behavior differs from the one of the homogeneous system.
In the relevant disorder regime, it has been known that

lim inf
h↓ĥq

β

log F(β, h)

log(h− ĥq
β)

≥ 2, (2.2.22)

for every β > 0. Comparing with the curvature in the irrelevant disorder
regime, the quenched free energy in the relevant regime is smoother than
that in the irrelevant disorder regime. We call this phenomenon smoothing
effect. The smoothing effect for the free energy plays very important role to
understand the relevant disorder regime. A smoothing inequality (2.2.22) is
proven for general cases (see [17]).

The fractional moment method is known for the useful method to estimate
the quenched critical point. This method has been standard in the disordered
systems. In [41, 42] the following theorem is proven by the fractional moment
method.
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Theorem 2.2.2 ([41, 42]). For small β > 0, there exists a constant c such
that

ĥq
β − ha

β ≥


cβ2 α > 1
cβ2/(log(1 + 1

β
))2 α = 1

cβ
2α

2α−1 α ∈ (1
2
, 1)

exp
{

−1
cβ4

}
α = 1

2

(2.2.23)

These constants are given, for example the case α > 1. Alexander and
Zygouras [5] and den Hollander [26] also give the constant. Berger, Car-
avenna, Poisat, Sun and Zygouras prove the asymptotic behavior below in
[10].

Theorem 2.2.3 ([10]).

ĥq
β ∼

β↘0
(−1

2
+

1

2µ

α

α + 1
)β2 , α > 1 . (2.2.24)

Recently, Caravenna, Toninelli and Torri [19] have proven the asymptotic
behavior of the quenched critical point in the case α ∈ (1/2, 1). They use
the scaling limit and consider the continuous pinning model. This may be a
next standard method to understand the relevant regime of the disordered
systems. Many rigorous results about the quenched critical point and the
behavior of the quenched free energy have been obtained, however, it still
remain challenging open problems on the quenched case.

2.2.1 The pinning model on a Markovian environment

Here we introduce the pinning model with Markov disorder as an example
of short-range correlated model, which is studied in my master thesis. We
consider the renewal process τ as in the i.i.d. environment. Let ω = {ωn}n≥0

be a sequence of Markovian random variables satisfying that

Pω(ωj = +1|ωj−1) =
1 + εωj−1

2
, Pω(ωj = −1|ωj−1) =

1− εωj−1

2
, (2.2.25)

where ε > 0 is regarded as the strength of memory. In this environment, the
potential at n is affected by the status at the previous step. We define the
quenched and annealed partition functions and free energies as follows.

Zn,ω = E[e
∑n

k=1(h+βωkωk−1)δkδn], Za
n,ω = Eω[Zn,ω], (2.2.26)

and

F(β, h) = lim
n→∞

1

n
logZn,ω, Fa(β, h) = lim

n→∞

1

n
logZa

n,ω. (2.2.27)

We note that the Hamiltonian of the quenched partition function has non-
linear part ωkωk−1. If β = 0, we can reduce this model to the homogeneous
case. The following lemma plays important role of this model.
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Lemma 2.2.4. For any n ∈ N,

Pω(ωn = sn, · · · , ω1 = s1) =
n∏

j=0

(1 + εs̃j)Pη(ηj = s̃j), (2.2.28)

where ωk+1ωk = ηk and s̃j = sj+1sj with s̃0 = 0. Therefore, η = {ηn}n≥0 is
a sequence of i.i.d. random variables on {±1} with η0 = ω0 = 0, Pη is the
Bernoulli measure for η, and

Pη(ηj = +1) = Pη(ηj = −1) =
1

2
. (2.2.29)

Proof . The proof is based on the total probability formula and Markovian
property.

Pω(ωn = sn, · · · , ω1 = s1) = Pω(ωn = sn|ωn−1 = sn−1)

· · ·Pω(ω2 = s2|ω1 = s1)Pω(ω1 = s1)

=
1 + εsnsn−1

2
· · · 1 + εs2s1

2

1

2

=
(1
2

)n
n∏

j=1

(1 + εsjsj−1). (2.2.30)

Let η = {ηn}n≥0 be the sequence of i.i.d. random variables on {±1} which
satisfy that

Pη(ηn = +1) = Pη(ηn = −1) =
1

2
. (2.2.31)

Therefore,

Pω(ωn = sn, · · · , ω1 = s1) =
n∏

j=0

(1 + εs̃j)Pη(ηj = s̃j), (2.2.32)

where s̃j = sj+1sj with s̃0 = 0. We complete the proof.

In the annealed case, we can compute its critical point by the lemma
above.

Za
n,ω = E

[
eh

∑n
k=1 δkEω[e

β
∑n

k=1 ωkωk−1δk ]δn
]

= E
[
eh

∑n
k=1 δkEη

[ n∏
k=1

(1 + εηk)e
βηkδk

]
δn
]

= E
[
eh

∑n
k=1 δk

n∏
k=1

Eη

[
(1 + εηk)e

βηk
]δkδn] (2.2.33)
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Since η takes value on {±1}, Eη[(1+εηk)e
βηk ] = cosh β+ε sinh β. Therefore,

we have

ha
β = − logMε,β. (2.2.34)

where Mε,β = cosh β + ε sinh β. In an i.i.d. environment, if ω takes value on
{±1}, then the annealed critical point is ha

β = − logMβ ∼ −1
2
β2 as β ↓ 0.

However, in a Markovian environment, the annealed critical point (2.2.34)
is asymptotically equal to εβ. About the quenched case, the results is same
as those in general case. For example, we can prove the existence and the
self-averaging property of the quenched free energy. We define the shifted
quenched partition function by,

Zn−m,θmω = Eω

[
e
∑n

k=m+1(h+βωkωk−1)δkδn

]
, (2.2.35)

for m < n. The following lemma implies an estimate for the gap by the shift
θm.

Lemma 2.2.5. For every β ≥ 0, h ∈ R, and for m,n ∈ N (m < n),

Eω

[
logZn−m,ω

]
− β ≤ Eω

[
logZn−m,θmω

]
≤ Eω

[
logZn−m,ω

]
+ β. (2.2.36)

Proof. We can prove this lemma straightforwardly. Isolating one step, we
have

Zn−m,θmω = Eω

[
eh+

∑n
k=m+2(h+βωkωk−1)δkeβωm+1ωmδm+1δn

]
. (2.2.37)

We easily show that eβω1ω0δ1 = 1 and e−β ≤ eβωm+1ωmδm+1 ≤ eβ. Since ω is a
sequence of Markovian random variables, we conclude this lemma.

By Lemma 2.2.5, we can say the super-additivity for {Eω[logZn,ω]}. There-
fore, we can prove the existence and the self-averaging property of the quenched
free energy same as the general case. The critical point may differ, however
it is known that the asymptotic behavior of the free energy does not affect
by inducing a Markovian property to the environment.

2.3 The pinning model on renewal set

This section is based on the joint work with Dimitris Cheliotis and Julien
Poisat. We study the pinning model on a random environment defined by
a renewal set. This model belongs neither to the class of the short-range
correlations studied in Poisat [58, Theorems 2.1 and 2.2] and Berger [8, The-
orems 2.2 and 2.3], nor to the class of strong disorder introduced in Berger
[8, Theorem 2.5], [9, Theorems 1.5, 1.6 and 2.9] and Berger and Lacoin [11,
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Theorem 1.5]. The long-range correlated disorder model has been treated in
[58] and [8]. They assume the long-range correlated Gaussian environment
with power-low decaying correlation function. The model we consider in this
section belongs to the class of the long-range correlations but the power of
decaying is not clear.

2.3.1 Introduction of the pinning model on renewal set

As in Section 2.1, τ is defined as a renewal process with τ0 = 0, and we
assume that the distribution of τ is given by (2.1.1). Let τ̂ be another
(recurrent) renewal process with τ̂0 = 0 independent of τ . Similarly to the
renewal process τ , we define its inter-arrival law as

K̂(n) := P̂(τ̂1 = n) =
cK̂
n1+α̂

, α̂ > 0, (2.3.1)

for all n ∈ N, where cK̂ is a normalization constant. The results in this

section is still valid for the case that we put a slowly varying function L̂(n)
instead of cK̂ , that is, for all n ∈ N,

K̂(n) := P̂(τ̂1 = n) =
L̂(n)

n1+α̂
, α̂ > 0. (2.3.2)

In this section we use both definitions for making the argument lighter. Sim-
ilarly to τ , we denote by P̂ and Ê the probability measure and its expectation
respectively generated by K̂. We also set the expected waiting time of τ̂ by

µ̂ := Ê[τ̂1], (2.3.3)

which may be finite or infinite. The quenched polymer measure Pn,β,h and
the quenched partition function Zn,τ̂ are respectively defined by

dPn,β,h

dP
(τ) =

1

Zn,τ̂

e
∑n

k=1(h+βδ̂k)δkδn, (2.3.4)

and

Zn,τ̂ := Zn,β,h := E
[
e
∑n

k=1(h+βδ̂k)δkδn

]
, Z0,τ̂ = 1, (2.3.5)

for n ∈ N, β ≥ 0, and h ∈ R, where δ̂k = 1{k∈τ̂}. Recall that P and E
are the probability measure and the expectation for the renewal process τ
respectively and δk = 1{k∈τ}. The annealed counterparts are also defined by

dPa
n,β,h

dP× P̂
(τ) =

1

Za
n,τ̂

e
∑n

k=1(h+βδ̂k)δkδn, (2.3.6)

and

Za
n,τ̂ := Za

n,β,h = ÊE
[
e
∑n

k=1(h+βδ̂k)δkδn

]
, Za

0,τ̂ = 1, (2.3.7)

for n ∈ N, β ≥ 0, and h ∈ R. We denote by τ̃ the intersection of the two
renewals, which is itself a renewal process.
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2.3.2 Annealed behavior on renewal set

We begin with the annealed model and show some results on the annealed
case. The first result on the annealed model is the existence of the annealed
free energy which characterizes the rate of the annealed partition function
Za

n,τ̂ . Similarly to the general case, the annealed free energy Fa(β, h) must
be defined by

Fa(β, h) = lim
n→∞

1

n
logZa

n,τ̂ . (2.3.8)

The following proposition shows that this limit is well-defined and is finite,
non-negative. To simplify the proof, we introduce the fully-pinned partition
function by

Za,c
n,τ̂ := ÊE

[
e
∑n

k=1(h+βδ̂k)δkδnδ̂n

]
. (2.3.9)

Proposition 2.3.1 (The existence of the free energy). For all β ≥ 0 and
h ∈ R, the annealed free energy (2.3.8) exists and it is finite and non-negative.

These basic properties of the annealed free energy Fa(β, h) are the same
as those for the i.i.d. case, i.e., the function (β, h) 7→ Fa(β, h) is convex,
continuous and non-decreasing (see Figure 2.3). Therefore, we can define the
annealed critical point ha

β for all β.

ha
β = inf{h ∈ R : Fa(β, h) > 0}. (2.3.10)

It is obvious that Fa(β, h) = 0 ⇔ h ≤ ha
β by this definition.

Figure 2.3: The annealed free energy is convex and increasing. The critical
point ha

β is negative, i.e., less than the homogeneous critical point.

Before we show the next result, we observe the annealed critical point
by comparing it with the critical point for the homogeneous one. Due to
the proof of Proposition 2.3.1, we have the expression of the fully-pinned
annealed free energy which is equal to Fa(β, h).

Fa(β, h) = Fa,c(β, h) = lim
n→∞

1

n
logZa,c

n,τ̂ . (2.3.11)
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So that we consider Za,c
n,τ̂ instead of Za

n,τ̂ . Then, we transform the fully-pinned
partition function Za,c

n,β,h as

Za,c
n,τ̂ = ÊE

[
e
∑n

k=1(h+βδ̂k)δkδnδ̂n

]
= ÊEh

[
eβ

∑n
k=1 δ̂kδkδnδ̂n

]
. (2.3.12)

Here we introduce another interarrival law

Kh(n) := ehK(n), Kh(∞) = 1− eh, (2.3.13)

therefore, we can regard Za,c
n,τ̂ as a homogeneous partition function under

P̂ × Ph. By the definition of the homogeneous critical point, the annealed
critical point ha

β satisfies that

β = − log
∑
n∈N

K̂(n)Kha
β
(n). (2.3.14)

To make the argument below clear, we introduce the notation p(h) by

p(h) =
∑
n∈N

K̂(n)Kh(n) = P̂× Ph(τ̃
(h)
1 < ∞), (2.3.15)

where τ̃ (h) is a renewal process under P̂ × Ph. Then, we can simply rewrite
(2.3.14) as

β = − log p(ha
β). (2.3.16)

So that Fa(β, h) > 0 if and only if β > − log p(h). We also introduce the
notation I(h) by

I(h) := ÊEh[|τ̃ |]

=
∞∑
k=0

Ph(k ∈ τ)P̂(k ∈ τ̂). (2.3.17)

We have the following relation between p(h) and I(h) by the renewal theo-
rem.

p(h) = P̂× Ph(τ̃1 < ∞) = 1− P̂× Ph(τ̃1 = ∞) = 1− 1

I(h)
. (2.3.18)

Therefore, we have

β = − log(1− I(ha
β)

−1) ⇔ I(ha
β) =

1

1− e−β
. (2.3.19)

36



Remark 2.3.2. In this remark, we use the definition (2.3.2) for τ̂ . Let

β0 := − log p(0), (2.3.20)

then by the relation (2.3.18) and the argument below, we have that β0 is
positive if and only if I(0) is finite. Therefore, we see that

β0 =

{
> 0 if α+ α̂ < 1,
= 0 if α+ α̂ > 1.

(2.3.21)

We argue that β0 is positive if and only if I(0) is finite. Let

I(h;n) :=
n∑

k=0

Ph(k ∈ τ)P̂(k ∈ τ̂), (2.3.22)

then I(h) = limn→∞ I(h;n) by (2.3.17). For τ̃ to be recurrent, it is necessary
that both τ and τ̂ are recurrent. By the renewal theorem (see (2.4.3) in
Section 2.4), τ̃ is recurrent if and only if

(i) α + α̂ > 1,

(ii) α, α̂ ∈ (0, 1) with α + α̂ = 1 and
∑

n≥1
1

nL(n)L̂(n)
= +∞,

(iii) α = 0, α̂ = 1 (α = 1, α̂ = 0) and
∑

n≥1
L̂(n)
nr2nµ̂n

+∞,

where rn = P(τ1 > n) and µ̂n = E[τ̂1 ∧ n] → µ̂ as n → ∞. In the case (i), we
can easily see that I(0) is infinite. By Alexander and Berger [2], it is known
that the renewal mass function of τ̃ satisfies

P(n ∈ τ)P̂(n ∈ τ̂) =
L∗(n)

nθ∗
, (2.3.23)

for some θ∗ ≥ 0 and slowly-varying function L∗. Especially, if both τ and τ̂
are recurrent, then θ∗ = 2− (α ∧ 1)− (α̂ ∧ 1). In both cases, (ii) and (iii),

I(0) =
∞∑
k=0

L∗(k)

k
. (2.3.24)

Therefore, in the case α + α̂ = 1, whether I(0) is finite or not depends on
the slowly-varying functions L, L̂.

Consequently, the annealed critical point ha
β can be expressed as follow.

Proposition 2.3.3 (The annealed critical curve). The annealed critical curve
is

ha
β =

{
I−1

(
1

1−e−β

)
if β > β0,

0 if 0 ≤ β ≤ β0.
(2.3.25)
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By the property of the function I, we can see that ha
β is infinitely differen-

tiable in [0,∞) \ {β0} and the function β 7→ ha
β is concave since (β, h) 7→

Fa(β, h) is convex. By Jensen’s inequality, we have

Za
n,β,h ≥ E

[
e
∑n

k=1(h+βÊ[δ̂k])δkδn

]
= E

[
e
∑n

k=1(h+βP̂(k∈τ̂))δkδn

]
. (2.3.26)

Therefore, by the renewal theorem and the fact that hc = 0, we have

ha
β ≤ −β

µ̂
. (2.3.27)

Moreover, we have the following result about the annealed critical point ha
β.

Theorem 2.3.4 (The annealed critical point). If α̂ > 1 and as β ↓ 0, then
there exists a constant ca > 0 such that

ha
β = −β

µ̂
− caβ

γa(
1 + o(1)

)
, (2.3.28)

where

γa =


α̂ if α > 1 and α̂ < 2,
α+α̂−1

α
if α ∈ (0, 1) and α̂ < 1 + α,

2 otherwise.
(2.3.29)

The next proposition is about the behavior of the annealed critical point
around β0.

Proposition 2.3.5 (The annealed critical curve). If β0 > 0, then there exists
a constant c ∈ (0,∞) such that

ha
β ∼ c(β − β0)

1∨ α
1−α−α̂ (2.3.30)

as β ↓ β0.

38



Figure 2.4: The annealed critical curve β 7→ ha
β is convex and decreasing.

The critical point is β0 = − log p(0) and slope of ha
β at β0 might be positive

or equal to zero, depending on α and α̂ (See Remark 2.3.2 and Proposi-
tion 2.3.5). L is the localized phase and D is the delocalized phase respec-
tively.

Our last result for the annealed model is about the critical exponent for
the annealed free energy.

Theorem 2.3.6 (The annealed critical exponent). Let β > 0. There exists
a constant C = C(β) ∈ (0,∞) such that

1

C
εν

a
β ≤ Fa(β, ha

β + ε) ≤ C εν
a
β (2.3.31)

for all ε ∈ (0, 1), with

νa
β :=

{
1

αeff
∨ 1 if β > β0,

1
α
∨ 1 if 0 ≤ β ≤ β0,

(2.3.32)

where αeff := α+ {(1− α̂) ∨ 0}.

The case α̂ = 0 is not covered by this theorem, due to Lemma 2.4.5 in
Section 2.4. When νa

β = ∞, we keep only the second inequality in (2.3.31)
and it means that Fa(β, ha

β + ε) vanishes faster than any power of ε.

The existence of the annealed free energy

From this section, we will prove the results on the annealed model. First, we
prove the Proposition 2.3.1.

Proof of Proposition 2.3.1. First, we prove the existence of the limit
limn→∞

1
n
logZa,c

n,τ̂ and its finiteness and non-negativity.
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(i) The existence of the limit:
Since the sequence {logZa,c

n,τ̂}n∈N is super-additive, there exists the limit

limn→∞
1
n
logZa,c

n,τ̂ , and it is defined by

lim
n→∞

1

n
logZa,c

n,τ̂ = sup
n∈N

1

n
logZa,c

n,τ̂ =: Fa,c(β, h). (2.3.33)

(ii) Finiteness and non-negativity:
The following bounds of Za,c

n,τ̂ are trivial.

eh+βK(n)K̂(n)︸ ︷︷ ︸
τ and τ̂ return only at 0 and n

≤ Za,c
n,τ̂ ≤ e|h+β|n︸ ︷︷ ︸

τ and τ̂ return every step in [0, n]

. (2.3.34)

This implies the limit limn→∞
1
n
logZa,c

n,τ̂ is finite and non-negative.

In the rest of the proof, we show that Za
n,τ̂ is not different from Za,c

n,τ̂ so
much and the limits of them coincide each other. Let R be the last visit of
τ̃ . If R > n, then we say that τ̂ does not return. Now we decompose Za,c

n,τ̂

into two, up to R and from R to n.

Za
n,τ̂ = ÊE

[
e
∑n

k=1(h+βδ̂k)δkδn

]
=

n∑
r=0

ÊE
[
e
∑r

k=1(h+βδ̂k)δke
∑n

k=r+1(h+βδ̂k)δk1{R=r}δn

]
=

n∑
r=0

ÊE
[
e
∑r

k=1(h+βδ̂k)δkδrδ̂r

]
ÊE

[
e
∑n

k=r+1(h+βδ̂k)δk1{τ̃∩[r+1,n]=ϕ}δn|r ∈ τ̃
]

=
n∑

r=0

Za,c
r,τ̂ ÊE

[
e
∑n

k=r+1(h+βτ̂k)δk1{τ̃∩[r+1,n]=ϕ}δn|r ∈ τ̃
]
. (2.3.35)

Then we estimate ÊE[e
∑n

k=r+1(h+βτ̂k)δk1{τ̃∩[r+1,n]=ϕ}δn|r ∈ τ̃ ] by using transla-
tion invariance of τ̃ , the super-additivity of {logZa,c

r,τ̂ } and the monotonicity

of Fa,c(β, h) with respect to β. By (2.3.33), we have Za,c
r,β,h ≤ erF

a,c(β,h).

ÊE
[
e
∑n

k=r+1(h+βδ̂k)δk1{τ̃∩[r+1,n]=ϕ}δn|r ∈ τ̃
]
= ÊE

[
eh

∑n
k=r+1 δkδn|r ∈ τ̃

]
= Za,c

n−r,0,h

1

P̂(n− r ∈ τ̂)
≤ e(n−r)Fa,c(0,h) 1

P̂(n− r ∈ τ̂)

≤ e(n−r)Fa,c(β,h) 1

P̂(n− r ∈ τ̂)
. (2.3.36)

Combining with the trivial bound Za,c
n,τ̂ ≤ Za

n,τ̂ , therefore we have

Za,c
n,τ̂ ≤ Za

n,τ̂ ≤
n∑

r=0

Za,c
r,τ̂ e(n−r)Fa,c(β,h) 1

P̂(n− r ∈ τ̂)
= enF

a,c(β,h)

n∑
r′=0

1

P̂(r′ ∈ τ̂)

(2.3.37)

40



The last sum increases polynomially in n. This completes the proof.

The annealed critical curve

Next, we prove the Proposition 2.3.3.

Proof of Proposition 2.3.3. Recall that by the definition of the annealed
free energy (see the argument below Figure 2.3), we have

Fa(β, h) > 0 ⇔ β > − log p(h),

Fa(β, h) = 0 ⇔ β ≤ − log p(h).
(2.3.38)

For h = 0, Fa(β, 0) > 0 if and only if β > β0 and otherwise. We devide the
proof into two cases β ≤ β0 and β > β0.

1): β ≤ β0

For h ≤ 0, we have Fa(β, h) ≤ Fa(β, 0) = 0 by the monotonicity of the
annealed free energy in h (see Figure 2.3) and the fact mentioned above (by
(2.3.38)). On the other hand, for h > 0, we have Fa(β, h) ≥ Fa(0, h) > 0
since τ is a recurrent renewal. Thus, we conclude that ha

β = 0.

2): β > β0

For h ≥ 0, we have Fa(β, h) ≥ Fa(β, 0) > 0 by the monotonicity in h and the
choice of β (again (2.3.38)). We have

ÊEh

[
eβ

∑n
k=1 δ̂kδk

]
≤ Za

n,τ̂ ≤ Za,c
n,τ̂ (2.3.39)

The upper and lower bounds in (2.3.39) give the same free energy, which is
positive if and only if β > − log p(h). This implies that I(h) > (1− e−β)−1.
By the choice of β, we have

I(0) > 1

1− e−β
> 1, (2.3.40)

which means that (1 − e−β)−1 is in the range of I. The proof is completed.

Next, we prove Theorem 2.3.4 by analyzing the function I.

Proof of Theorem 2.3.4. Let us write

ha
β = −β

µ̂
(1 + εβ), (2.3.41)
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with εβ → 0 as β ↓ 0. Note that α > 1 implies β0 = 0 as in Remark 2.3.2.
From Proposition 2.3.3, we obtain, on the one hand,

I(ha
β) =

1

1− e−β
=

1

β

(
1 +

1

2
β + o(β)

)
. (2.3.42)

and on the other hand, from Lemma 2.3.7 below, we obtain

I(ha
β) =

1

µ̂

1

1− eh
a
β
+ c(−ha

β)
γa−2

=
1

β

(
1− εβ +

1

2µ̂
β + cβγa−1 + o(β) + o(εβ)

)
. (2.3.43)

By comparing (2.3.42) and (2.3.43), the result follows.

We use the definition (2.3.1) in the following lemmas and their proofs but
it is not essential.

Lemma 2.3.7. Suppose α̂ > 1. As h ↑ 0,

I(h)− 1

µ̂

1

1− eh
∼


c|h|α̂−2 if α > 1 and α̂ < 2,

c|h| α̂−1
α

−1 if α ∈ (0, 1) and α̂ < α + 1,
c otherwise,

(2.3.44)

where the constant c is given as
cK̂

µ̂2α̂(α̂+1)
.

Proof of Lemma 2.3.7. By the definition of I,

I(h) =
∑
n∈N0

Ph(n ∈ τ)P̂(n ∈ τ̂) =
∑

n,k∈N0

ehkP(τk = n)P̂(n ∈ τ̂)

=
∑
k∈N0

ehkP× P̂(τk ∈ τ̂). (2.3.45)

Then, for h < 0,

I(h)− 1

µ̂

1

1− eh
=

∑
k∈N0

ehkP× P̂(τk ∈ τ̂)− 1

µ̂

∑
k∈N0

ehk

=
∑
k∈N0

ehk
(
P× P̂(τk ∈ τ̂)− 1

µ̂

)
=

∑
k∈N0

ehkE
[
P̂(τk ∈ τ̂)− 1

µ̂

]
.

(2.3.46)

By Lemma 2.3.8, we have

E
[
P̂(τk ∈ τ̂)− 1

µ̂

]
∼ cK̂

µ̂2α̂(α̂− 1)
E[τ 1−α̂

k ], k → ∞. (2.3.47)
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On the other hand, for α̂ ∈ (0, 1), from Proposition 2.4.3,

E
[
P(τk ∈ τ̂)

]
∼ cα̂

cK̂
E[τ α̂−1

k ], k → ∞. (2.3.48)

In both case, the result follows from Lemma 2.4.4 and the standard Tauberian
arguments.

Lemma 2.3.8. (i) If α̂ > 1, then

E
[
P̂(τk ∈ τ̂)− 1

µ̂

]
∼ cK̂

µ̂2α̂(α̂− 1)

{
µ1−α̂k1−α̂ if α > 1,

E[X1−α̂
α ]k

1−α̂
α if α ∈ (0, 1),

(2.3.49)

as k → ∞, where Xα is an α-stable random variable 1.

(ii) If α̂ ∈ (0, 1), then

E
[
P̂(τk ∈ τ̂)− 1

µ̂

]
∼ cα̂

cK̂

{
µα̂−1kα̂−1 if α > 1,

E[X α̂−1
α ]k

α̂−1
α if α ∈ (0, 1),

(2.3.52)

as k → ∞.

Proof of Lemma 2.3.8.

(i) From the renewal convergence estimates in Frenk [38], for α̂ > 1, we
obtain

P̂(n ∈ τ̂)− 1

µ̂
∼ 1

µ̂2(α̂− 1)
nP̂(τ̂1 > n)

∼ cK̂
µ̂2α̂(α̂− 1)

n1−α̂, n → ∞. (2.3.53)

Then, we have P-almost surely

P̂(τk ∈ τ̂)− 1

µ̂
∼ cK̂

µ̂2α̂(α̂− 1)
τ 1−α̂
k , k → ∞, (2.3.54)

1The distributions whose characteristic functions are given by the following are called
stable laws.

exp{itc− b|t|α(1 + iκsgn(t)wα(t))}, (2.3.50)

where b, c are some constants, κ ∈ [−1, 1] and

wα(t) =

{
tan(πα2 ) if α ̸= 1,
2
π log |t| if α = 1.

(2.3.51)

Commonly, α is called the index. The α-stable random variable is defined as a random
variable which has stable law with index α. For more detail, refer to [46] and references
therein.
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and

E
[
P̂(τk ∈ τ̂)− 1

µ̂

]
∼ cK̂

µ̂2α̂(α̂− 1)
E[τ 1−α̂

k ], k → ∞. (2.3.55)

The result follows.

(ii) From Proposition 2.4.3, we have P-almost surely

P(τk ∈ τ̂) ∼ cα̂
cK̂

τ α̂−1
k , k → ∞, (2.3.56)

and with the same argument as in (i),

E
[
P(τk ∈ τ̂)

]
∼ cα̂

cK̂
E[τ α̂−1

k ], k → ∞. (2.3.57)

The result follows from Lemma 2.4.4.

Remark 2.3.9. If α̂ = 1, then the sequence {P̂(τk ∈ τ̂)− 1
µ̂
} belongs to the de

Haan class Π(L̂), which is defined as follow. Given a slowly varying function
L̂, a sequence An belongs to the de Haan class Π(L̂) if An satisfies for t > 0,

lim
n→∞

A⌊tn⌋ − An

L̂(n)
= log t. (2.3.58)

We prove Proposition 2.3.5 by using Lemma 2.3.8.

Proof of Proposition 2.3.5. Since β0 > 0, I(0) is finite. Then, we may
write

I(h)− I(0) =
∑
k∈N0

(ehk−1)E[P̂(τk ∈ τ̂)], (2.3.59)

and since α, α̂ < 1, we have E[P̂(τk ∈ τ̂)] ∼ ck
α̂−1
α by Lemma 2.3.8. The

result follows by the standard Tauberian arguments.

The asymptotic behavior of the annealed free energy

Proof of Theorem 2.3.6. We prove this theorem using the analogue of
the proof of Theorem 2.1.1.

1): β > − log p(0) (ha
β < 0)
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Lower Bound: First, we transform the annealed partition function simi-
larly to Proposition 2.3.3.

Za
n,β,ha

β+ε ≥ ÊE
[
e
∑n

k=1(h
a
β+ε+βδ̂k)δkδnδ̂n

]
= ÊEha

β

[
eεβ

∑n
k=1 δkeβ

∑n
k=1 δ̂kδkδnδ̂n

]
≥ ÊEha

β

[
e(β+ε)

∑n
k=1 δ̂kδkδnδ̂n

]
=: Ẽβ

[
eε

∑n
k=1 δ̃k δ̃n

]
, (2.3.60)

where Ẽβ stands for the expectation with respect to the law

Kβ(n) := eβP̂× Pha
β
(τ̃1 = n), Kβ(∞) = 1− e−β. (2.3.61)

Note that Ẽβ = ÊE when 0 ≤ β ≤ − log p(0) since ha
β = 0, and by

Lemma 2.4.5, the renewal function n 7→ P̂ × Pha
β
(τ̃1 = n) satisfies (2.4.12).

Under the law Kβ, the annealed partition function Za
n,β,ha

β+ε can be regard as

the homogeneous partition function. Then, we introduce the function φβ(x)
and compute it.

φβ(x) := 1−
∞∑
n=1

e−nxKβ(n) = 1− eβK̂β(e
−x), (2.3.62)

where K̂β is a generating function of Kβ i.e. K̂β(z) :=
∑∞

n=1K(n)zn. Let
uβ(n) be a renewal function for inter-arrival law Kβ, and we have

uβ(n) = 1{n=0} +
n∑

j=1

Kβ(j)uβ(n− j). (2.3.63)

Then,

ûβ(z) = 1 + K̂β(z)ûβ(z), K̂β(z) = 1− 1

ûβ(z)
. (2.3.64)

Since K̂β(1) =
∑∞

n=1Kβ(n) = e−β, therefore we have

φβ(x) = 1− eβ
(
1− 1

ûβ(e−x)

)
= eβ

(
e−β − 1 +

1

ûβ(e−x)

)
= eβ

( 1

ûβ(e−x)
− 1

ûβ(1)

)
=

eβ

ûβ(e−x)ûβ(1)

(
ûβ(1)− ûβ(e

−x)
)

=
eβ

ûβ(e−x)ûβ(1)
Aβ(e

−x), (2.3.65)

with

Aβ(z) :=
(
ûβ(1)− ûβ(z)

)
= (1− z)

∞∑
n=1

uβ(n)
n−1∑
k=0

zk

= (1− z)
∞∑
k=0

zk
∞∑

n=k+1

uβ(n). (2.3.66)
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The claim in Lemma 2.4.6 shows the asymptotic behavior of Aβ. Therefore,
the lower bound follows.

Upper Bound: Take a β1 ∈ (− log p(0), β), and let ε > 0 be small so that
ha
β + ε < ha

β1
. By the continuity of ha we have that there is βε ∈ (β1, β) so

that ha
β + ε = ha

βε
. And by the mean value theorem, there is ξε ∈ (βε, β)

with ha
β − ha

βε
= d

dβ
ha
ξε
(β − βε). Thus β − βε = c(β, ε) ε with c(β, ε) =

−1/ d
dβ
ha
ξε

→ −1/ d
dβ
ha
β > 0 as ε → 0+, as we know from Proposition 2.3.3

and the regularity properties of I. Then, since ha
β + ε < 0,

Za,c
n,β,ha

β+ε = ÊE
[
e
∑n

k=1(h
a
β+ε+βδ̂k)δkδnδ̂n

]
= ÊEha

β+ε

[
eβ

∑n
k=1 δ̂kδkδnδ̂n

]
=: ÊEha

βε

[
e(βε+cβ,εε)

∑n
k=1 δ̂kδkδnδ̂n

]
=: Ẽβε

[
ecβ,εε

∑n
k=1 δ̃k δ̃n

]
≤ Ẽβε

[
ecε

∑n
k=1 δ̃k δ̃n

]
, (2.3.67)

with c = 2c(β, 0+) > 0 and Ẽβε the mean value with respect to the renewal
defined in (2.3.61) above with βε in place of β. The result now follows on
applying Lemma 2.4.6 with I = [β1, β] and with the role of Kγ played by

the law n 7→ Pha
γ
× P̂(τ̃1 = n). The assumptions of the lemma are satisfied

due to Lemma 2.4.5 because J := ha
I is a compact subset of (−∞, 0) as ha is

continuous, decreasing, with ha
β1

< 0.

2): β ≤ − log p(0) (ha
β = 0)

Lower Bound: Since

Za
n,β,ε ≥ ÊE

[
eε

∑n
k=1 δkδnδ̂n

]
= E

[
eε

∑n
k=1 δkδn

]
P̂(n ∈ τ̂), (2.3.68)

the lower bound follows from Theorem 2.1 in [41].

Upper Bound: We assume that ε ∈ (0, β). Pick p̄ > 1 so that p̄(β − ε) ≤
− log p(0), and let q > 1 be defined by p̄−1 + q−1 = 1. Then

Za,c
n,β,ε = ÊE

[
e
∑n

k=1(ε+βδ̂k)δkδnδ̂n

]
≤ EÊ

[
e2ε

∑n
k=1 δke(β−ε)

∑n
k=1 δk δ̂kδnδ̂n

]
≤ EÊ

[
e2qε

∑n
k=1 δkδn

]1/q
EÊ

[
ep̄(β−ε)

∑n
k=1 δk δ̂kδnδ̂n

]1/p̄
, (2.3.69)

The quantity EÊ[ep̄(β−ε)
∑n

k=1 δk δ̂kδnδ̂n] is the partition function at p̄(β− ε) for
the homopolymer defined by the renewal τ̃ , which has zero free energy for
all parameters in (−∞,− log p(0)]. Thus, the required bound follows again
from Theorem 2.1 in [41].
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2.3.3 Quenched behavior on a renewal set

In this section we discuss the quenched case, which is ongoing work. First,
we state the quenched free energy.

Proposition 2.3.10 (The quenched free energy). The sequence

1

n
logZn (2.3.70)

converges almost surely and in L1 to a constant F(β, h).

We briefly explain the proof of Proposition 2.3.10. Note that when β = 0,
this is the homogeneous pinning model, for which we know that the free
energy F(0, h) exists. Therefore, we assume β > 0. In the case of Ê[τ̂1] = ∞,

E
[
eh

∑n
k=1 δkδn

]
≤ Zn ≤ eβ|τ̂∩[n]|E

[
eh

∑n
k=1 δkδn

]
. (2.3.71)

Since |τ̂ ∩ [n]|/n → 0 as n → ∞, the last inequality show that the limit we
are interested in exists and equals F(0, h). On the other hand, in the case
of Ê[τ̂1] < ∞, we apply Kingman’s subadditive ergodic theorem (see [50]).
Note that we need careful observation when τ̂ is stationary or not. Due to
this proposition, we can define the quenched critical point ĥq

β.
The main interest of the disordered systems is considering the quenched

case, the criterion between relevant and irrelevant, smoothing, and estimating
the difference between the quenched and annealed critical points. However,
we have not yet understood how the two renewal processes affect each other.
Recently, Alexander and Berger [2] show the distribution of τ ∩ τ̂ for all
α, α̂ ≥ 0. This result must be useful and essential for understanding the
quenched case of our model. As in Section 1.3 in Chapter 1, we strongly
believe that the quenched case in this system must have the weak and strong
disorder regimes, that is, there exists βc ≥ 0 such that

ĥq
β

{
= ha

β if β ∈ [0, βc),
> ha

β if β > βc.
(2.3.72)

In August 2016, Alexander and Berger [4] write a paper on this model
and they prove that in the case where τ ∩ τ̂ is recurrent, or transient with
α + α̂ = 1, the quenched and annealed critical points are equal (both equal
to 0 in the recurrent case).

2.4 Results from the renewal theory

We present some well-known results on renewal theorem (for more detail and
the proofs, refer to [6, 14]).
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Proposition 2.4.1. If τ is a renewal with τ0 = 0, then

E[|τ |] = 1

P(τ1 = ∞)
, (2.4.1)

where |τ | is the cardinality of the set of renewal times.

Proposition 2.4.2. If τ is transient with regular varying return time distri-
bution, then

P(n ∈ τ) ∼ P(τ1 = n)

P(τ1 = ∞)2
(2.4.2)

as n → ∞.

Proposition 2.4.3. If τ is a recurrent renewal with first return time distri-
bution K as in (2.1.1) then

P(n ∈ τ) ∼


K(n)

K̄(n)2
if α = 0,

cα
L(n)n1−α if α ∈ (0, 1),∑n

j=0 K̄(j) if α = 1,

(2.4.3)

as n → ∞, where K̄(j) =
∑∞

i=j+1K(i) for each i ≥ 0 and cα = α sin(πα)
π

. Note

that when α = 0, the sequence {K̄(n)}n≥1 is slowly varying, when α = 1, the
sequence {

∑n
j=0 K̄(j)}n≥1 is slowly varying.

The proof of this proposition is in [56, Theorem 1.1] for α = 0, in [40,
Theorem 1.1] for α ∈ (0, 1), in [15, Theorem 8.7.5] for α = 1, while for α > 1
it is the renewal theorem, refer to [6].

Lemma 2.4.4. If r > 0, then

E[τ−r
k ] ∼

{
(µk)−r if α > 1,
E[X−r

α ]k−r/α if α ∈ (0, 1),
(2.4.4)

as k → ∞, where Xα is an α-stable random variable.

Proof of Lemma 2.4.4. If α > 1, the result follows by bounded conver-
gence theorem. Since,

τk = τk − τk−1 + τk−1 − · · · − τ1 + τ1 =
k∑

i=1

(τi − τi−1), (2.4.5)

τk is a summation of i.i.d. sequence. By the renewal theorem, ( τk
k
)−r converges

P-a.s. to µ−r (it may be proven by Markov’s inequality as in the case α ∈
(0, 1) below and the Borel-Cantelli lemma) and is bounded from above by 1.
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If α ∈ (0, 1), we use that τk
k1/α

converges to an α-stable r.v. Xα. The only
complication is that ( τk

k1/α
)−r is not bounded, but the result still holds by

uniform integrability, namely, by Exercise 3.2.5 in [31], it is enough to show
that for some γ > r we have

sup
k≥1

E[(
τk
k1/α

)−γ] < ∞. (2.4.6)

To show this, first note that

E[(
τk
k1/α

)−γ] =

∫ ∞

0

P({τk/k1/α}−γ > t) dt =

∫ ∞

0

P(τk < k1/αt−1/γ) dt.

(2.4.7)

With the use of Markov’s inequality, the probability inside the integral is
bounded as

P(τk < k1/αt−1/γ) = P(e−θτk < e−θk1/αt−1/γ

) ≤ E[e−θτk ]eθk
1/αt−1/γ

= P[e−θτ1 ]keθk
1/αt−1/γ

= e−k(− logM(θ)−θk1/α−1t−1/γ), (2.4.8)

where we use i.i.d. property of τ for the equality in the second line and denote
by M(θ) the moment generating function E[e−θτ1 ]. We define the function Λ
by

Λ(θ, x) = − logM(θ)− θx, (2.4.9)

for x > 0. Then, Λ
′′
(θ, x) = −(M

′′
(θ)

M(θ)
− (M

′
(θ)

M(θ)
)2) ≤ 0, Λ(0, x) = 0, and

Λ(θ, x) → −∞ as θ → ∞. Therefore, there exists θc such that Λ(θ, x) ≤
Λ(θc, x) for any θ ≥ 0. A standard Tauberian argument [34, (5.22) of Chapter
XIII] shows that there exists a constant C > 0 such that M(θ) satisfies
M(θ) ≥ exp(−C|θ|α) for all θ ≥ 0. This implies, for x > 0, the following
bound

Λ(θc, x) = {−θcx− logM(θc)}
≤ {−θcx+ C|θc|α} = C1x

−α/(1−α) =: Λ∗(x), (2.4.10)

where C1 := (1− α)C(1−α)−1
αα(1−α)−1

> 0. We can regard Λ∗(x) as the rate
function for the sequence {τk}k≥1.

P(τk < k1/αt−1/γ) ≤ e−kΛ∗(k1/α−1t−1/γ)

= exp{−C1t
α

γ(1−α)}. (2.4.11)

Consequently, the probability in (2.4.8) is bounded from above. The result
follows from (2.4.7) and (2.4.11).
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Lemma 2.4.5. For any compact subset J of (−∞, 0) there are constants
0 < c1 < c2 and a slowly varying function L̃ such that

c1 ≤
Ph × P̂(n ∈ τ̃)

L̃(n)/n1+αeff

≤ c2, (2.4.12)

for all h ∈ J and n ≥ 1.

Proof of Lemma 2.4.5. The probability in the display equals

Ph(n ∈ τ)P̂(n ∈ τ̂). (2.4.13)

The second probability according to Proposition 2.4.3 is asymptotically equiv-
alent to L1(n)/n

(1−α̂)+ for some slowly varying function L1. Then the prob-
ability Ph(n ∈ τ) is bounded below by Kh(n) = ehL(n)n−(1+α), while for an
upper bound we let h0 = sup J < 0 and use the fact P(τk = n) ≤ kcK(n) for
all n, k ≥ 1 for some constant c > 0 (see [41, Lemma A.5]) to get

Ph(n ∈ τ) =
n∑

k=1

ehkP(τk = n) ≤ K(n)
n∑

k=1

eh0kkc, (2.4.14)

for all h ∈ J . It is crucial here that the compact set J does not include 0 so
that h0 < 0.

Lemma 2.4.6. Let I be a compact subset of (0,∞), {Kγ : γ ∈ I} a family of
renewal interarrival laws with Kγ(∞) = 1− e−γ and renewal function uγ for
each γ ∈ I, and such that there are α, c1, c2 > 0 and slowly varying function
L so that

c1
L(n)

n1+α
≤ uγ(n) ≤ c2

L(n)

n1+α
, (2.4.15)

for all n ≥ 1 and γ ∈ I. Let Fγ be the free energy corresponding to the
homopolymer defined by Kγ. Then there are C1, C2 > 0 and slowly varying

function L̂ so that

C1 ≤
Fγ(γ + h)

h
1
α
∨1L̂(1/h)

≤ C2, (2.4.16)

for all h ∈ (0, 1] and γ ∈ I. For α = 0, (2.4.16) means that for h ↓ 0,
Fγ(γ + h) vanishes faster than any polynomial.

Recall that Fγ is zero exactly in (−∞, γ] and positive elsewhere.
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Proof of Lemma 2.4.6. For h > 0, Fγ(γ + h) is the unique solution in x
of the equation

∞∑
n=1

Kγ(n)e
−nx = e−(γ+h), (2.4.17)

which we write as

Ψγ(x) = 1− e−h, (2.4.18)

with

Ψγ(x) = 1− eγ
∞∑
n=1

Kγ(n)e
−nx. (2.4.19)

Now for any function f : N → [0,∞), we define f̂(z) =
∑∞

n=1 f(n)z
n for all

z ∈ [0, 1]. Then the equality

uγ(n) = 1{n=0} +
n∑

j=1

Kγ(j)uγ(n− j) (2.4.20)

gives

K̂γ(z) = 1− 1

ûγ(z)
. (2.4.21)

In particular, e−γ = 1− 1/ûγ(1), so that

Ψγ(x) = 1− eγK̂γ(e
−x) = eγ

(
1

ûγ(e−x)
− 1

ûγ(1)

)
=

eγ

ûγ(e−x)ûγ(1)
Aγ(e

−x),

(2.4.22)

with

Aγ(z) := ûγ(1)− ûγ(z) = (1− z)
∞∑
n=1

uγ(n)
n−1∑
k=0

zk = (1− z)
∞∑
k=0

zk
∞∑

n=k+1

uγ(n).

(2.4.23)

Of interest to us is the behavior of Ψγ around 0, and thus of Aγ around 1.
The following claims addresses the issue. Let m :=

∑∞
n=1 L(n)/n

α.

Claim . (a) If α = 0, then there are 0 < C3 < C4 so that

C3 ≤
Aγ(z)

L0((1− z)−1)
≤ C4, (2.4.24)

for all z ∈ [1/2, 1], where L0 is the slowly varying function defined in
(2.4.30).
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(b) If α ∈ (0, 1), then there are 0 < C3 < C4 so that

C3 ≤
Aγ(z)

(1− z)αL((1− z)−1)
≤ C4, (2.4.25)

for all z ∈ [1/2, 1].

(c) If α = 1 and m = ∞, then there is a slowly varying function L̃ and
0 < C3 < C4 so that

C3 ≤
Aγ(z)

(1− z)L1((1− z)−1)
≤ C4, (2.4.26)

for all z ∈ [1/2, 1].

(d) If m < ∞ then there are 0 < C3 < C4 so that

C3 ≤
Aγ(z)

1− z
≤ C4, (2.4.27)

for all z ∈ [1/2, 1].

Proof of the claim. By the bounds we have on uγ, it suffices to examine
the behavior of

Q(z) :=
∞∑
k=0

zk
∞∑

n=k+1

L(n)

n1+α
. (2.4.28)

Denote by qk the coefficient of zk in this power series. It is qk ∼ L(k)
αkα

, for
α > 0, by Proposition 1.5.10 in [15], while for α = 0, qk is slowly varying
(Proposition 1.5.9.b in [15]). Thus

r∑
k=1

qk


∼ rqr if α = 0,

∼ L(r)r1−α

α(1−α)
if α ∈ (0, 1),

is slowly varying if α = 1 and m = ∞,
→ m if m < ∞.

(2.4.29)

These follow from Proposition 1.5.8 and Proposition 1.5.9(a) in [15]. Then
parts (a)-(c) of the claim follow from Corollary 1.7.3 in [15], while for the
case m < ∞ we just note that Q(z) maps [1/2, 1] to a compact set of (0,∞).
The corollary specifies that for L0 in (2.4.24) we can take

L0(y) = q[y], (2.4.30)

for all y ∈ [0,∞).

52



We continue with the proof of Lemma 2.4.6. The Claims and (2.4.22)
imply that there are constants 0 < C5 < C6 and slowly varying function L2

so that

C5 ≤
Ψγ(x)

xα∧1L2(1/x)
≤ C6, (2.4.31)

for all x ∈ (0, 1] and γ ∈ I. Let C > 0 fixed. For α > 0, by Proposi-
tion 1.5.15 in [15], there is a slowly varying function L̂ so that a solution
xC(h) of x

α∧1L2(1/x) = (1 − e−h)/C is asymptotically equivalent to a con-
stant multiple of h1∨1/αL̂(1/h) as h → 0+ (L̂ is the same for all C). If
α = 0, let xC(h) be the smallest solution of L0(1/x) = (1 − e−h)/C. Then,
xC(h) = 1/L−1

0 ((1− e−h)/C) with L−1
0 an obviously defined “inverse” of L0.

It is easy to see, by bounding below qk by
∑∞

n=k+1 L(n)/n
1+ε for any ε > 0,

that each xC goes to zero faster than any power of h. For each γ ∈ I, the
solution of (2.4.18) is between xC5(h), xC6(h), and this finishes the proof of
the lemma.
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Summary

We consider self-avoiding walk (SAW) on random conductors and the pinning
models in this thesis. Through considering these models we take a look at
the phase transitions and the critical phenomena for the disordered systems.

SAW on random conductors
In the study of SAW on random conductors, we can show the quenched crit-
ical point is independent of the reference point and is a degenerate random
variable although the quenched susceptibility does depend on both the ref-
erence point and the environment. On Z1, we know the exact value of the
quenched critical point, but on Zd≥2, we only estimate it from above and
below by applying the first and second moment estimate. Under the con-
dition that the lattice is homogeneous degree tree, we have known that the
quenched and annealed critical points coincide for small β, i.e., in the weak
disorder regime, and have the exact value of the quenched critical point in
the strong disorder regime. Derrida and Spohn have proven by associating
with solution for a nonlinear partial differential equation in [27], and Baffet,
Patrick and Pulé have applied the martingale theory in [7]. We also provide
the exact value of the quenched critical point by applying the fractional mo-
ment method. However, on Zd≥2, we can not apply these methods because
we do not have the martingale structure on Zd≥2.

Open Problem 1. On Zd≥2, what is the quenched critical point?
Can we find more sharp bounds than (1.2.13) in Theorem 1.2.1?

On a tree graph, we can prove that the quenched susceptibility diverges
at the critical point, but we have not known its behavior yet.

(i) Zd

log µ− βE[X] ≤ ĥq
β ≤ ha

β. (2.4.32)

(ii) Z1

ĥq
β = log µ︸︷︷︸

=0

−βE[X]. (2.4.33)
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(iii) Z2

log µ− βE[X] ≤ ĥq
β < ha

β. (2.4.34)

(iv) Homogeneous tree

ĥq
β =

{
ha
β if β ≤ βc,

β
βc
ha
βc

if β > βc.
(2.4.35)

To compute or estimate the quenched critical point on Zd≥2 and to under-
stand the behavior of the quenched susceptibility around its critical point
are ongoing works.

Pinning model on renewal set
In the study of the pinning model, we consider the model that belongs to the
class of the long-range correlations. By observing the interaction between
two renewals, we obtain some information on the annealed case

(i) the annealed critical curve

(ii) the annealed critical point

(iii) the asymptotic behavior of the annealed critical point

(iv) the asymptotic behavior of the annealed free energy around its critical
point

The difficulty of this model lies in how two renewal processes affect each
other. We have not completely understood it yet. Especially, we have few
knowledge about the quenched case.

Open Problem 2 (Irrelevant regime). For what α and α̂, the quenched and
annealed critical point coincides for small β?

Open Problem 3 (Relevant regime). How the smoothing inequality is?

Open Problem 4 (Relevant regime). If in the relevant regime, how much
the quenched critical point differs from the annealed one?

As in SAW on random conductors, we also want to know the critical param-
eter that divides the weak and strong disorder regimes. This is being done
by Alexander and Berger [4]. For the problem about the interaction of two
renewals, Alexander and Berger show some results in [2], for the problem
about the quenched critical point estimate, Caravenna, Sun, and Zygouras
give a hopeful method in [18]. The knowledge for the problems above is ac-
cumulating. In August. 2016, Alexander and Berger [4] write a paper on this
model and they prove that in the case where τ ∩ τ̂ is recurrent, or transient
with α + α̂ = 1, the quenched and annealed critical points are equal (both
equal to 0 in the recurrent case).
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