
 

Instructions for use

Title Quantum mechanical grad-B drift velocity operator in a weakly non-uniform magnetic field

Author(s) Chan, Poh Kam; Oikawa, Shun-ichi; Kosaka, Wataru

Citation Physics of Plasmas, 23(2), 022104
https://doi.org/10.1063/1.4941096

Issue Date 2016-02-05

Doc URL http://hdl.handle.net/2115/64482

Rights
Copyright 2016 American Institute of Physics. This article may be downloaded for personal use only. Any other use
requires prior permission of the author and the American Institute of Physics. The following article appeared in Phys.
Plasmas 23, 022104 (2016) and may be found at
http://scitation.aip.org/content/aip/journal/pop/23/2/10.1063/1.4941096.

Type article

File Information 1.4941096.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Quantum mechanical grad-B drift velocity operator in a weakly non-uniform magnetic
field
Poh Kam Chan, Shun-ichi Oikawa, and Wataru Kosaka 
 
Citation: Physics of Plasmas 23, 022104 (2016); doi: 10.1063/1.4941096 
View online: http://dx.doi.org/10.1063/1.4941096 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pop/23/2?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Effects of magnetic field on the interaction between terahertz wave and non-uniform plasma slab 
Phys. Plasmas 22, 103302 (2015); 10.1063/1.4931742 
 
Formation of current filaments and magnetic field generation in a quantum current-carrying plasma 
Phys. Plasmas 20, 092310 (2013); 10.1063/1.4823725 
 
Effects of the non-uniform initial environment and the guide field on the plasmoid instability 
Phys. Plasmas 20, 061206 (2013); 10.1063/1.4811144 
 
The parametric decay of dust ion acoustic waves in non-uniform quantum dusty magnetoplasmas 
Phys. Plasmas 18, 063705 (2011); 10.1063/1.3595235 
 
Electrostatic drift waves in nonuniform quantum magnetized plasmas 
Phys. Plasmas 15, 082103 (2008); 10.1063/1.2967479 
 
 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  118.20.97.233 On: Fri, 05 Feb

2016 21:40:12

http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/779483913/x01/AIP-PT/PoPArticleDL_012716/SearchPT_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Poh+Kam+Chan&option1=author
http://scitation.aip.org/search?value1=Shun-ichi+Oikawa&option1=author
http://scitation.aip.org/search?value1=Wataru+Kosaka&option1=author
http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://dx.doi.org/10.1063/1.4941096
http://scitation.aip.org/content/aip/journal/pop/23/2?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/22/10/10.1063/1.4931742?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/20/9/10.1063/1.4823725?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/20/6/10.1063/1.4811144?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/18/6/10.1063/1.3595235?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/15/8/10.1063/1.2967479?ver=pdfcov


Quantum mechanical grad-B drift velocity operator in a weakly non-uniform
magnetic field

Poh Kam Chan,1 Shun-ichi Oikawa,2 and Wataru Kosaka1

1Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
2Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan

(Received 10 December 2015; accepted 19 January 2016; published online 5 February 2016)

This paper presents the analytical solution for quantum mechanical grad-B drift velocity operator

by solving the Heisenberg equation of motion. Using the time dependent operators, it is shown the

analytical solution of the position operators in x̂ðtÞ and ŷðtÞ of the particle in the presence of a

weakly non-uniform magnetic field. It is also shown numerically that the grad-B drift velocity oper-

ator agrees with the classical counterpart. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4941096]

I. INTRODUCTION

In the field of plasma physics, grad-B drift velocity is

a well-known topic. The gyration of the particle or drift

motion of a charged particle has gained the interest of many

researchers especially after Alfv�en1 and Spitzer2 had

obtained the expression for the drift velocity of a charged

particle in the presence of a non-uniform magnetic field.

Following that, analytical analysis is getting attention by

researchers. Seymour,3,4 Hurley,5 and Karlson,6 obtained the

classical particle drift in a static magnetic field using differ-

ent analytical approaches. Different approaches are being

studied by researchers, e.g., Birmingham7 uses bounce-

average guiding-center trajectory to solve the drift motion of

a charged particle. However, in later research, the drift ve-

locity of a charged particle was studied in a wide field of

plasma by using the classical approach.8–14

In recent years, the motion of charged particles is getting

attention not only in the classical approach but also in the quan-

tum approach.15–20 In considering the diffusion of plasmas, it

was pointed out more than half a century ago21,22 that the wave

character of a charged particle should be taken into considera-

tion when the temperature is high, i.e., when the relative speed

of the interacting particle is fast. The criterion required for the

classical theory to be valid in terms of relative speed g in

hydrogen plasma is given as g < 2e2=ð4pe0�hÞ ¼ 4:4� 106 m/

s,22 where e and �h � h=2p stand for the elementary electric

charge and the reduced Planck’s constant.

As pointed out in Refs. 23–25 that (i) for distant encoun-

ters in the plasma of a temperature T � 10 keV and

n ¼ 1020m�3, the average potential energy U � 30 meV is

as small as the uncertainty in energy DE � 40 meV, and (ii)

for a magnetic field B � 3 T, the spatial size of the wave-

function in the plane perpendicular to the magnetic field is as

large as the magnetic length rB ¼
ffiffiffiffiffiffiffiffiffiffi
�h=eB

p
� 2� 10�8 m,26

which is larger than the typical electron wavelength

ke � 10�11 m and is around one-tenth of the average inter-

particle separation n�1=3 � 2� 10�7 m. Thus, for plasma

with temperature T � 10 keV or higher, ions as well as elec-

trons should be treated quantum mechanically. In current

plasma physics, the quantum mechanical effect enters as a

minor correction to the Coulomb logarithm in the case of

close encounter.27 Nonetheless, the neoclassical theory28 is

capable of predicting a lot of phenomena such as related to

the current conduction.

Such phenomena linearly depend on the change in mo-

mentum Dp ¼ mDv or in position Dr due to the Coulomb

interaction. The diffusion, however, is a quadratic function

change, such as Dp2 and Dr2, and is not properly accounted

for in the existing classical and neoclassical theories.

Corresponding to these facts, the authors conducted the

quantum mechanical analyses29–33 on a single charged parti-

cle in the presence of external electromagnetic fields, focus-

ing especially on the time development of variance in

position and momentum. For the plasma mentioned above,

the deviation rrðtÞ of the ions would reach the interparticle

separation n�1=3 in a time interval of the order of 10�4 s.

After this time, the wavefunctions of neighboring particles

would overlap, as a result the conventional classical analysis

may lose its validity. Plasmas may behave like extremely-

low-density liquids, not gases, since the size rr of each parti-

cle is of the same order of the interparticle separation n�1=3.

In this paper, it is shown the derivation of drift velocity of a

particle in the presence of a non-uniform magnetic field, Landau

gauge-like quadratic vector potential A ¼ �Bŷð1� ŷ=2LBÞex,

where LB is the magnetic gradient scale length and B is the mag-

netic flux density. Here, the quantum mechanical grad-B drift

velocity operator is obtained and confirmed with the numerical

calculation. More importantly, the solution agrees with the clas-

sical drift counterpart.

II. TIME DEPENDENT OPERATOR IN A UNIFORM
MAGNETIC FIELD

The two-dimensional Schr€odinger equation is solved

numerically29–33 and theoretically for a wavefunction w at

position r and time t

i�h
@w
@t
¼ 1

2m
�i�hr� qAð Þ2 þ qV

� �
w; (1)

where V and A stand for the scalar and vector potentials, m
and q are the mass and electric charge of the particle under
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consideration, and i �
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit. In the

presence of a uniform magnetic field, with a Landau gauge,26

of Ax ¼ �By;Ay ¼ 0;Az ¼ 0; and by solving the Heisenberg

equation of motion

i�h
dX̂ tð Þ

dt
¼ X̂ tð Þ; Ĥ
� �

; (2)

where the square bracket ½�; �� is the commutator, Ĥ is the

Hamiltonian, X̂ can be any operator and its time develop-

ment X̂ðtÞ, it is well known that the time dependent operators

for position x̂ðtÞ and ŷðtÞ are obtained analytically as

x̂ tð Þ ¼ x̂ þ P̂y

qB
� P̂y

qB
cos xtþ ŷ þ P̂x

qB

 !
sin xt; (3)

ŷ tð Þ ¼ � P̂x

qB
þ ŷ þ P̂x

qB

 !
cos xtþ P̂y

qB
sin xt; (4)

where x � qB=m is the cyclotron frequency, P̂y ¼ �i�h@y is

the y-component of the momentum operator, and P̂x ¼ �i�h@x

is the x-component of the momentum operator. The expecta-

tion value of the position x̂ðtÞ and ŷðtÞ is obtained by imple-

menting the initial condition for wavefunction at r ¼ r0 with

r0 being the initial center of wavefunction w is given by

w r; 0ð Þ ¼ 1ffiffiffi
p
p

rB
exp �

r � r0ð Þ2

2r2
B

þ ik0 � r
( )

; (5)

where the magnetic length rB is the initial standard deviation

and �hk0 is the initial canonical momentum.

A particle in a uniform magnetic field can be solved

straightforwardly; however, for the non-uniform magnetic

case B ¼ Bð1� ŷ=LBÞez, the theoretical derivations become

long and complicated. Spitzer2 pointed out that for a general

classical equation of drift velocity, it can only be solved ana-

lytically by an approximate theory. Hence, in this paper, we

solved the Heisenberg equation of motion analytically with

the magnetic gradient scale length to first order in L�1
B . In

Section V, both the classical and quantum mechanical grad-

B drift velocities are obtained.

The grad-B drift velocity analytical solution is compared

with the numerical calculation. For the numerical calculation,

a two-dimensional Schr€odinger equation code is developed

and the calculation is done on a GPU (Nvidia GTX-580:

512cores/3GB @1.54 GHz), using CUDA.34 Furthermore, the

numerical errors had been removed from the numerical calcu-

lation by subtracting the variances in the non-uniform mag-

netic field from the uniform magnetic field.29,30

III. TIME DEPENDENT OPERATOR FOR WEAKLY
NON-UNIFORM MAGNETIC FIELD

In the presence of a weakly non-uniform magnetic field

B ¼ Bð1� ŷ=LBÞez, a Landau gauge-like quadratic vector

potential is given as

A ¼ �Bŷ 1� ŷ

2LB

� �
ex: (6)

Substituting the vector potential in Eq. (6) into the two-

dimensional Schr€odinger equation in Eq. (1), the Hamiltonian

Ĥ for a charge particle with a mass m and a charge q in the

absence of an electrostatic potential for the non-relativistic

charge particle is given to first order in L�1
B as

Ĥ ¼ 1

2m
P̂

2

y þ P̂
2

x �
P̂

3

x

qBLB

 !
; (7)

where

P̂x ¼ 1þ P̂x

qBLB

 !
qBŷ þ 1þ P̂x

2qBLB

 !
P̂x: (8)

The exact mechanical momentum operator mv̂ ¼ P̂ � qÂ
¼ ðmû;mv̂Þ is given as

mû ¼ P̂x þ qBŷ 1� ŷ

2LB

� �
; (9a)

mv̂ ¼ P̂y; (10)

where v̂ is the velocity operator. The mechanical momentum

operator mû to first order in L�1
B is given as

mû ¼ P̂x �
P̂x

2

2qBLB
: (9b)

From the Heisenberg equation of motion, the time derivative

of P̂x is given as

dP̂x

dt
¼ 1þ P̂x

qBLB

 !
xP̂y ¼ X̂P̂y; (11)

which leads to the definition of the angular frequency opera-

tor as

X̂ ¼ 1þ P̂x

qBLB

 !
x: (12)

On the other hand, for the momentum operator in the y-direc-

tion P̂y, we have

dP̂y

dt
¼ �X̂ P̂x �

3P̂
2

x

2qBLB

 !
: (13)

In order to derive the time dependent momentum opera-

tors P̂xðtÞ and P̂xðtÞ with Heisenberg equation of motion,

Eqs. (11) and (13) are expanded using the Heisenberg

picture

X̂ tð Þ ¼ exp � t

i�h
Ĥ

� �
X̂ exp

t

i�h
Ĥ

� �
: (14)

Let us choose the operator X̂ as

X̂ ¼ P̂x; (15)

and
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X̂ ¼ P̂x þ
6P̂

2

y � 9P̂
2

x

2qBLB
: (16)

Using Heisenberg equation of motion Eq. (2), the time derivative of the operator X̂ given in Eq. (16) can be obtained as

dX̂

dt
¼ þX̂

1
P̂y þ

1

2

P̂yP̂x þ P̂xP̂y

qBLB

 !
� 4 2X̂ð Þ1 P̂xP̂y þ P̂yP̂x

qBLB
; (17a)

d2X̂

dt2
¼ �X̂

2
P̂x �

3

2

P̂
2

x

qBLB
�

P̂
2

y � P̂
2

x

qBLB

 !
� 4 2X̂ð Þ2 P̂

2

y � P̂
2

x

qBLB
; (17b)

d3X̂

dt3
¼ �X̂

3
P̂y þ

1

2

P̂yP̂x þ P̂xP̂y

qBLB

 !
þ 4 2X̂ð Þ3 P̂xP̂y þ P̂yP̂x

qBLB
; (17c)

d4X̂

dt4
¼ þX̂

4
P̂x �

3

2

P̂
2

x

qBLB
�

P̂
2

y � P̂
2

x

qBLB

 !
þ 4 2X̂ð Þ4 P̂

2

y � P̂
2

x

qBLB
; (17d)

and so on. The derivations of time derivative of for operator X̂ of the higher orders are obtained and combined together using

the Heisenberg picture. Later on, the expressions are simplified by using Taylor expansion and the time derivative for operator

X̂ðtÞ obtained as

X̂ tð Þ ¼ P̂x �
3

2

P̂
2

x

qBLB
�

P̂
2

y � P̂
2

x

qBLB

 !
cos X̂tþ P̂y þ

1

2

P̂yP̂x þ P̂xP̂y

qBLB

 !
sin X̂tþ 4

P̂
2

y � P̂
2

x

qBLB
cos 2X̂t� 4

P̂xP̂y þ P̂yP̂x

qBLB
sin 2X̂t:

(18)

Substituting back the expression for the time derivative for operator X̂ðtÞ into Eq. (16), and the expression for time dependent

operators P̂xðtÞ and P̂xðtÞ, to first order in L�1
B , are

P̂xðtÞ ¼ P̂x; (19)

P̂x tð Þ ¼
3P̂

2

y þ 3P̂
2

x

4qBLB
þ P̂x�

2P̂
2

y þ P̂
2

x

2qBLB

 !
cos X̂tþ P̂yþ

P̂yP̂xþ P̂xP̂y

2qBLB

 !
sin X̂tþ

P̂
2

y � P̂
2

x

4qBLB
cos2X̂t� P̂xP̂yþ P̂yP̂x

4qBLB
sin2X̂t:

(20)

Note that the operator P̂xðtÞ ¼ P̂x does not change with time, since the Hamiltonian Ĥ in Eq. (7) does not include the position

operator x̂.

Using the results above, the time dependent operator of position x̂ðtÞ and ŷðtÞ is obtained. From operator P̂x Eq. (8), the

time dependent operator ŷðtÞ is found and shown, to first order in L�1
B as

qBŷ tð Þ ¼ 1� P̂x

qBLB

 !
P̂x tð Þ � 1� P̂x

2qBLB

 !
P̂x; (21)

which leads to

y tð Þ ¼ � 1

qB
� P̂x

2q2B2LB

 !
P̂x þ

3P̂
2

y þ 3P̂
2

x

4q2B2LB
þ P̂x

qB
�

2P̂
2

y þ P̂
2

x

2q2B2LB
� P̂xP̂x

q2B2LB

 !
cos X̂t

þ P̂y

qB
þ P̂yP̂x þ P̂xP̂y

2q2B2LB
� P̂xP̂y

q2B2LB

 !
sin X̂tþ

P̂
2

y � P̂
2

x

4q2B2LB
cos 2X̂t� P̂xP̂y þ P̂yP̂x

4q2B2LB
sin 2X̂t : (22)

On the other hand, the time dependent operator x̂ðtÞ is obtained by integrating ûðtÞ form Eq. (9b) with time t

x̂ðtÞ ¼ x̂ þ
ðt

0

ûðtÞdt; (23)

which leads to
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x̂ tð Þ ¼ x̂ þ 1

qB
� P̂x

q2B2LB

 !
P̂y þ

P̂xP̂y þ P̂yP̂x

4q2B2LB
þ

P̂
2

y þ P̂
2

x

2mqBLB
t� P̂y

qB
þ P̂yP̂x þ P̂xP̂y

2q2B2LB

 !
cos X̂t

þ P̂x

qB
�

2P̂
2

y þ P̂
2

x

2q2B2LB

 !
sin X̂tþ P̂xP̂y þ P̂yP̂x

4q2B2LB
cos 2X̂tþ

P̂
2

y � P̂
2

x

4q2B2LB
sin 2X̂t: (24)

From the operator mû in Eqs. (9), together with the operator P̂xðtÞ in Eq. (20), the time dependent momentum operator mû ðtÞ
along x-axis is obtained as

mû tð Þ ¼
P̂

2

y þ P̂
2

x

2qBLB
þ P̂x �

2P̂
2

y þ P̂
2

x

2qBLB

 !
cos X̂tþ P̂y þ

P̂yP̂x þ P̂xP̂y

2qBLB

 !
sin X̂tþ

P̂
2

y � P̂
2

x

2qBLB
cos 2X̂t� P̂xP̂y þ P̂yP̂x

2qBLB
sin 2X̂t:

(25)

Since the time dependent momentum operator mû ðtÞ is

obtained, the grad-B drift operator is obtained

straightforwardly as

ûrB � û tð Þ ¼
P̂

2

y þ P̂
2

x

2mqBLB
¼ Ĥ

qBLB
þ O L�2

B

	 

: (26)

The expectation value of the grad-B drift velocity operator

urB � hûrBi is given as follows:

urB ¼
1

pr2
B

ð
R

e
� r�r0ð Þ2

2r2
B

�ik0�r
ûrBe

� r�r0ð Þ2

2r2
B

þik0�r
d2r

¼ mv0
2

2qBLB
þ 1

2qBLB

�h2

mr2
B

þ mx2r2
B

2

 !
; (27)

where mv0 � hmv̂i ¼ hP̂ � qÂi. When we use the magnetic

length of
ffiffiffiffiffiffiffiffiffiffiffi
�h=qB

p
as rB,26 then we have

urB ¼
mv0

2

2qBLB
þ 3�h

4mLB
: (28)

Note that the first term of urB coincides with the classical

formula for the grad-B drift, and the second term represents

the quantum mechanical drift due to the uncertainty.

IV. NUMERICAL CONFIRMATION

In order to confirm the theoretical grad-B drift velocity

Eq. (28), the numerical calculation is performed and the results

are shown in Fig. 1. Numerical grad-B drift velocity is obtained

by subtracting the position of the particle in the x-direction of a

non-uniform magnetic field case from the uniform magnetic

case. The subtracted value is the drifted position of the particle

in the presence of a non-uniform magnetic field. Note that the

constant ð1þ eÞ from Eq. (29) is the gradient of the increment

of the graph in Fig. 1 with e being the numerical error.

In these numerical calculations, the parameters are nor-

malized as mass of the particle m ¼ 1:6722� 10�27 kg,

charge q ¼ 1:602� 10�19 C, magnetic flux density B ¼ 10 T,

velocity �v ¼ 10 m/s, length �q ¼ 1:04382� 10�8 m, and time
�t ¼ 1:04382� 10�9 s. Lengths are normalized by cyclotron

radius of a proton with a speed of 10 m/s in a magnetic field

of 10 T. The cyclotron frequency in such a case is used for

normalization of the time. This normalization leads to the

normalized initial standard deviation given as rB ¼
ffiffiffiffiffiffiffiffiffiffi
�h=eB

p
ffi 0:777. Let us make the affirmation between theoretical der-

ivation and numerical results by using the deviation analysis

below

urB ¼ 1þ eð Þ mv2
0

2qBLB
þ 3�h

4mLB

 !
; (29)

where e is the numerical error. For analytical solution, since

it is exact, the numerical error e ¼ 0 and we will get the

exact solution as in Eq. (28). Comparisons between analyti-

cal solutions with numerical calculation are conducted. With

various combinations of physical parameters, such as m, q,

v0, B, and LB, the numerical results of grad-B drift velocity

are shown in Fig. 2 and the expression is shown in Eq. (30)

urB ¼ 1:0044
mv2

0

2qBLB
þ 3�h

4mLB

 !
: (30)

Note that Fig. 2 is the combination of 8 sets of data in Fig. 1.

Comparing between the numerical results Eq. (30) and

analytical solutions Eq. (28), it is concluded that the

FIG. 1. Numerical time evolution of particle drift in x-direction Dx for 5

gyrations.
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analytical solutions have good agreement with theoretical

analysis, with 0.44% error. This error is due to the limitation

of the analytical grad-B drift velocity operator being solved

to the first order in magnetic gradient scale length L�1
B .

V. SUMMARY

In the presence of a weakly non-uniform magnetic

field or Landau gauge-like quadratic vector potential of

A ¼ �Bŷð1� ŷ=2LBÞex, a charged particle, i.e., a proton,

will encounter drift effect. In this paper, grad-B drift velocity

of a charged particle is solved with considering the quantum

mechanical effect by using the Heisenberg equation of

motion. It is shown that the grad-B drift velocity operator

obtained in this study agrees with the classical counterpart

when the uncertainty is ignored. The time evolution of the

position and momentum operators are also analytically

obtained for the non-relativistic spinless charged particle.

The theoretical derivation solutions do agree with the

numerical results on the grad-B drift velocity in the presence

of a non-uniform magnetic field. The quantum mechanical

grad-B drift velocity formulations clearly show the drift ve-

locity dependence on mass m and gradient scale length LB.

The result implies that light particles with low energy would

drift faster than classical drift theory predicts.

Here, the analytical solution of the operator in position

is obtained. Thus, it is possible to derive the operator for

uncertainty in position, and we are able to analyze the quan-

tum mechanical expansion of the particle. In a future paper,

the theoretical derivation on the quantum mechanical expan-

sion of variance of a particle in an inhomogeneous magnetic

field will be conducted.
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