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Abstract. We have numerically solved the two-dimensional time-dependent Schrédinger equation for a charged particle in the
presence of a non-uniform electric field = E (1 - y/Lg) e, as well as a non-uniform magnetic fiell = B(1 - y/Lg) e,. It

is shown that such a non-uniformity of the electric field does fiecathe time rate of the variance, or uncertainty, changes in
position and momentum, while that of the magnetic field does.

Kewords: Schrédinger equation, uncertainty, non-uniform magnetic field, non-uniform electric field, quantum mechanical ef-
fect, expansion rate, GPU parallel computing

1. Introduction

The charged particles drift in the presence of a magnetic Belthe drifts includevB drift, curvature
drift and E x B drift if there exist an electric field. The two-dimensional time-dependent Schrédinger
equation have been already solved for a charged patrticle in the presence of a hon-uniform magnetic field
and a uniform electric field, in which it was shown that the variance, or the uncertainty, in pesitfn
grows with time [1-5]. For the typical fusion plasma with a temperafure 10 keV and a number
density ofn ~ 10°° m~3, the standard deviatian, (t) would reach the interparticle separatiort’3 in a
time interval of the order of 1@ sec. After this time the wavefunctions of neighboring particles would
overlap, as a result the conventional classical analysis may lose its validity [1]. In Ref. [1] mentioned
above, the uniform electric field have been assumed. In this paper, quantum mechésstabéa non-
uniform electric field and a non-uniform magnetic field will be studied. In section 2, methods of numer-
ical analysis of time-dependent Schrodinger equation is briefly described. In section 3, time evolution
of the variances and their dependence on physical parametemn, 6,0, B, Lg, E, andLg are shown.
Section 4 summarizes the study.

2. Schoédinger equation

The unsteady Schrédinger equation for wavefuncfidn, t), at a position and a timet, is given by
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ih%’ _ [i(—ihv - qA)2 +qV

= . ®

whereV = V(r) and A = A (r) stand for the scalar and vector potentiatsandq the mass and electric
charge of the particle, ands V-1 the imaginary unitz the reduced Planck constant.

2.1. Numerical analysis

In the Cartesian coordinate systéryy, z), we assume the magnetic fiell || e; and the electric field
E 1 e, wheree;, is z-direction unit vector. In this case, the wavefunctip(x, y, z,t) is decomposed
into ¥ (X, y, t) which corresponds to cyclotron motion xay plane andy (z t) which corresponds to free
particle motion inz-direction.

We will solve Eqg. (1) with an appropriate initial condition iy plane, using the finite éfierence
method (FDM) in space with the Crank-Nicolson scheme [1-5].

For the Crank-Nicolson scheme with the centréfledtence method in space, partiaffdrential equa-
tion Eq. (1) is reduced to the following matrix equation,

_ ﬁ n+1| _ ﬁ n
(| 2ihH) {1t = (|+ ZihH){lﬁ }. )
Here,{y"} stands for the discretized wavefunction, the supersorippresents the time-labégndH are

the unit matrix and the numerical Hamiltonian matrix [1-5]. Assuming the Coulomb daugk = 0,
the numerical Hamiltonian matrid = {Hi’j} is written as follows,

1 . 2
Hij = == [Vﬁj + 2ihgqAij - Vi + (in,j) ] +qVi,j, 3)

2m
whereA; ; andV; ; represent the discretized operators, as

Vi1 — ij + Yisaj N Yij-1— i j + i jr1
AX2 Ay? ’

Vﬁjlﬁ = (4)
and the subscripts and j representx- and y- hode numbers. Equations (2) and (3) are quadratic in
accuracy over both the time stapand the grid sizé\x andAy.

The time integratob is derived from Eq. (2) as,

-1
At At
U=s|l-—H I+ —H]. 5
( 2ih ) ( 2ih ) ®)
It should be noted that the time integrator is not only unconditionally stable but also norm-conserving
for discretized wavefunctiofy}. The latter leads to the strict particle conservation, irrespective, afx
andAy, since the matript is Hermitian, so that the matrid is unitary; the Euclidean norih{y} ||, =

const with time [1].
We will also adopt the successive over relaxation (SOR) scheme for time integration in Eq. (2).

{¢n+1}(k+l) ={v n+1}(k) + wsor(RIY, ©)

where
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R= [{aﬁ”} - (I - %H){wl}], @)
07 =1+ g1 ) 0. ©

{R} is the residual in Eq. (2)y stands for the diagonal element in LHS of Eq. (2), supersékptepre-
sents the number of iterationsgor is the relaxation factor an@dspor = 1.01 is adopted in this study.
For the convergence criterion, we have used the following,

Ny.N,

Z |Ri,j|2 < €s0R, )

=1

1
NN,

whereN, andN, represent the number of nodesdnandy-direction, antsor = 5% 1073 in this study.
Since Eq. (6) can be executed in parallel, we have used a graphics processing unit (GPU) [9] for this
purpose.

3. Numerical results

In the numerical results to be presented in the following, physical parameters are normalized as; mass
of the particlem = mp = 1.6722x 1072’kg, chargeg = e = 1.602x 1071°C, velocitys = 10ms* and
magnetic fieldB = 10T [1]. Thus, normalization constants of lengthtime t and electric fieldE are
p = Mpu/eB=1.0438x108m,t = my/eB= 1.0438x 10~%s andE = vB = 100 Vmr L. The Schrédinger
eguation is solved in the presence of a scalar potentiaV/of —qEy (1 — y/2Lg) and a vector potential
of gA = —qBy (1 -y/2Lg) e,, WwhereLg andLg stand for a gradient scale length of a electric field and
magnetic field.

When the corresponding classical particle has a canonical momentenmug + A (rg), wherevg is
the initial velocity at a positiom = 7o, initially at a timet = 0, the initial condition for the wavefunction
¥ (r,0) can be given [6, 7] by

1 (r - ro)2
’0 = -
Ur.0)= o exn| -

wherekq = po/h is the initial wavenumber vector, amck = +/i/qBis known as the magnetic length in
guantum mechanics [8].

+iko- r] : (10)

3.1. Numerical errors

There are three invariants of motion, the enefyy <F|> the canonical momentum ix-direction
Py = (-ihd/0X) = <m‘)x - qAX>, since the potential¥ and A do not depend o, as well as particle
conservationf, [¢[?dS = 1. Here,(f) stands for the expectation value of an operafpi.e. (f) =
fz y* fydS. The absolute numerical errors in these invariants are quite small as shown Fig. 1.
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Fig. 1. Absolute errors for the invariants of a particle, energy>andmponent of the canonical momentumdpe m=B =1,
vo =5,E =102 andLg = Lg = 10™*. Their initial values are 1 (exacty,5 and~13.

3.2. Time evolution of variances

The time dependent variances in positigf(t) and mechanical momentuarg, (t) oscillate with each
gyration period, such asr2w; and n/we, Wherew is the cyclotron frequency, as shown Fig. 2. In
both uniform and non-uniform conditions, the variances slightly grow with time. Since the exact vari-
ances should not grow with time in the presence of a uniform electromagnetic field, these time evolution
a-ﬁowniform (t) are due purely to numerical errors. On the other hand, the time evohuﬁr%\rm (t) in
the presence of the non-uniform electromagnetic field consists of physical increment and about the same

numerical errors as the case of the uniform field. Thus, let us define the increment of varmﬁ%:@)s,

betweem_ﬁon—uniform (t) andO-ﬁniform (t) » as [l’ 2]
Ac? t) = o_ﬁon—uniform t) - O-ﬁniform ®). (11)

The incremento? (t) shows the physical time evolution of variances, as shown in Fig. 3. Also depicted
in the figure is a fitting line, which represents the time averaged evolution of variance. Let us also de-
fine the expansion rate in positionf)/dt and mechanical momentuna-fl, /dt, using the fitting lines’
gradient.

3.3. Rate of changes in variances

For various combinations of physical parameters, such, a&svg, E, B, Lg andLg, similar analyses to
that in the preceding section give us the relationship between the expansion rate of variances in position
do? (t) /dt as a function ofivp/qBLs, as shown in the left panel of Fig. 4, and in mechanical momentum
do2, (t) /dt as a function ofiqBuo/Lg in the right panel of Fig. 4. Also depicted are the fitting lines. It is
noted that the variances clearly on the respective fitting lines of

do? h v

— =(2.00+ 0.03) —— 12
@ (OO+003)qBLB’ (12)
do2,

M _ (1.030+ 0.005 7qB-2, (13)
dt s
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Fig. 2. Time evolution of variance in positiarf (t) = <r2>—(1°)2 (left) and in mechanical momentus?, (t) = ((rrw)2>—<mv>2
(right), for initial velocity vy = 5, chargeg = 1, massn = 1, electric fieldE = 1073 with Lg = 1074, magnetic fieldB = 1, thus
we =1, with Lg = 10 or co.

3

x1072 x10
35 ; ; 1.0 ; ;
A + ﬁ | AGE (D + b

30 b r o 9.0 my
= | Aveasn — " i‘i S 80 | Ave. A, () — e
g‘ 25 i 7 Ngz 70 Aﬁ %%'H#
g 20 ;Ei i + g 60 %ﬁ
e =
A% 15 ‘\% j: | '§ 50 A
ER T -+ !
% f/f T g 40 %%%F
£ 10 B i £ 30 ﬁ
g ot ot g 20 s
5 5.0 e =t | 5 2 R
2 Ein % 210 22

0.0 ¥ ‘ 0.0 ﬁ%@f

5.0 : -1.0

20 25 30 35 0 5 10 15 20 25 30 35
Time, ¢ Time, t

Fig. 3. Time evolution of increment of variance in positian? (t) (left), and mechanical momenturw2, (t) (right). Ave.
Ac? (t) and Ave.Ac?, (t) stand for the time average over the cyclotron period, for the case presented in Fig. 2.

both of which do not depend on the particle massthe magnitude of electric field nor the
gradient scale length of electric fielde. Therefore, it is shown that the non-uniform electric field
E = E(1-y/Lg)e, does not fect the expansion rates while the non-uniform magnetic figld-
B(1- y/Lg) e; does.

Let us apply the expansion rate to the typical fusion plasma with a tempefatarg0 keV, number
densityn = 10?°m=3, a magnetic field = 5T and a gradient scale length of magnetic fied= 3 m,
which is the major axis of a torus. When we take a proton for the charged particle and the thermal
velocity v, ~ 1.352x 10° m/s for vg in Eq. (13), the standard deviatiarf (t) of the proton reaches
the interparticle separatiam®/2 in a time interval B8 msec. In contrast, the ion-ion collision time is
about 20 msec [10]. Thus, overlapping of wavefunctions of neighboring protons would occur before the
conventional collision time.
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Fig. 4. Expansion rate of variance in position fiss/qBLg (left) and in mechanical momentum v&Buy/Lg (right). Each
point shape, such asandn, corresponds to the same gradient scale length of electridfield

4. Summary

We have solved the two-dimensional time-dependent Schoédinger equation for a charged particle in the
presence of a non-uniform electric fielgl = B(1 - y/Lg) e; and magnetic field® = E(1-y/Lg) e,. It
is shown that the particle mass and the electric field doflietethe expansion rate as long as the electric
field has the uniform gradient.
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