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Numerical Analysis of Quantum-Mechanical
Non-uniformE ×B Drift: Non-uniform
electric field
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Abstract. We have numerically solved the two-dimensional time-dependent Schrödinger equation for a charged particle in the
presence of a non-uniform electric fieldE = E (1− y/LE)ey as well as a non-uniform magnetic fieldB = B (1− y/LB)ez. It
is shown that such a non-uniformity of the electric field does not affect the time rate of the variance, or uncertainty, changes in
position and momentum, while that of the magnetic field does.

Kewords: Schrödinger equation, uncertainty, non-uniform magnetic field, non-uniform electric field, quantum mechanical ef-
fect, expansion rate, GPU parallel computing

1. Introduction

The charged particles drift in the presence of a magnetic fieldB, the drifts include∇B drift, curvature
drift andE ×B drift if there exist an electric fieldE. The two-dimensional time-dependent Schrödinger
equation have been already solved for a charged particle in the presence of a non-uniform magnetic field
and a uniform electric field, in which it was shown that the variance, or the uncertainty, in positionσ2

r (t)
grows with time [1–5]. For the typical fusion plasma with a temperatureT ∼ 10 keV and a number
density ofn ∼ 1020 m−3, the standard deviationσr (t) would reach the interparticle separationn−1/3 in a
time interval of the order of 10−4 sec. After this time the wavefunctions of neighboring particles would
overlap, as a result the conventional classical analysis may lose its validity [1]. In Ref. [1] mentioned
above, the uniform electric field have been assumed. In this paper, quantum mechanical effects of a non-
uniform electric field and a non-uniform magnetic field will be studied. In section 2, methods of numer-
ical analysis of time-dependent Schrödinger equation is briefly described. In section 3, time evolution
of the variances and their dependence on physical parameters, e.g.m,q, v0, B, LB,E, andLE are shown.
Section 4 summarizes the study.

2. Schödinger equation

The unsteady Schrödinger equation for wavefunctionψ (r, t), at a positionr and a timet, is given by
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i~
∂ψ

∂t
=

[
1

2m

(
−i~∇ − qA

)2
+ qV

]
ψ, (1)

whereV = V(r) andA = A (r) stand for the scalar and vector potentials,m andq the mass and electric
charge of the particle, and i≡

√
−1 the imaginary unit,~ the reduced Planck constant.

2.1. Numerical analysis

In the Cartesian coordinate system(x, y, z), we assume the magnetic fieldB ∥ ez and the electric field
E ⊥ ez, whereez is z-direction unit vector. In this case, the wavefunctionψ (x, y, z, t) is decomposed
into ψ (x, y, t) which corresponds to cyclotron motion inx-y plane andψ (z, t) which corresponds to free
particle motion inz-direction.

We will solve Eq. (1) with an appropriate initial condition inx-y plane, using the finite difference
method (FDM) in space with the Crank-Nicolson scheme [1–5].

For the Crank-Nicolson scheme with the central difference method in space, partial differential equa-
tion Eq. (1) is reduced to the following matrix equation,(

I − ∆t
2i~

H

) {
ψn+1

}
=

(
I +
∆t
2i~

H

) {
ψn} . (2)

Here,{ψn} stands for the discretized wavefunction, the superscriptn represents the time-label,I andH are
the unit matrix and the numerical Hamiltonian matrix [1–5]. Assuming the Coulomb gauge∇ ·A = 0,
the numerical Hamiltonian matrixH ≡

{
Hi, j

}
is written as follows,

Hi, j =
1

2m

[
∇2

i, j + 2i~qAi, j · ∇i, j +
(
qAi, j

)2
]
+ qVi, j , (3)

whereAi, j and∇i, j represent the discretized operators, as

∇2
i, jψ =

ψi−1, j − 2ψi, j + ψi+1, j

∆x2
+
ψi, j−1 − 2ψi, j + ψi, j+1

∆y2
, (4)

and the subscriptsi and j representx- and y- node numbers. Equations (2) and (3) are quadratic in
accuracy over both the time step∆t and the grid size∆x and∆y.

The time integratorU is derived from Eq. (2) as,

U ≡
(

I − ∆t
2i~

H

)−1 (
I +
∆t
2i~

H

)
. (5)

It should be noted that the time integrator is not only unconditionally stable but also norm-conserving
for discretized wavefunction{ψ}. The latter leads to the strict particle conservation, irrespective of∆t, ∆x
and∆y, since the matrixH is Hermitian, so that the matrixU is unitary; the Euclidean norm∥ {ψ} ∥2 =
const with time [1].

We will also adopt the successive over relaxation (SOR) scheme for time integration in Eq. (2).{
ψn+1

}(k+1)
=

{
ψn+1

}(k)
+ ωSOR{R}(k) , (6)

where
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{R} = 1
α

[{
ϕn} − (

I − ∆t
2i~

H

) {
ψn+1

}]
, (7)

{
ϕn} = (

I +
∆t
2i~

H

) {
ψn} , (8)

{R} is the residual in Eq. (2),α stands for the diagonal element in LHS of Eq. (2), superscript(k) repre-
sents the number of iterations,ωSOR is the relaxation factor andωSOR = 1.01 is adopted in this study.
For the convergence criterion, we have used the following,

1
NxNy

Nx,Ny∑
i, j=1

∣∣∣Ri, j

∣∣∣2 ≤ ϵSOR, (9)

whereNx andNy represent the number of nodes inx- andy-direction, andϵSOR= 5×10−31 in this study.
Since Eq. (6) can be executed in parallel, we have used a graphics processing unit (GPU) [9] for this

purpose.

3. Numerical results

In the numerical results to be presented in the following, physical parameters are normalized as; mass
of the particlem = mp = 1.6722× 10−27 kg, chargeq = e = 1.602× 10−19 C, velocityv = 10 ms−1 and
magnetic fieldB = 10 T [1]. Thus, normalization constants of lengthρ, time t and electric fieldE are
ρ = mpv/eB= 1.0438×10−8 m, t = mp/eB= 1.0438×10−9 s andE = vB = 100 Vm−1. The Schrödinger
equation is solved in the presence of a scalar potential ofqV = −qEy (1− y/2LE) and a vector potential
of qA = −qBy (1− y/2LB) ey, whereLE andLB stand for a gradient scale length of a electric field and
magnetic field.

When the corresponding classical particle has a canonical momentump0 = mv0+qA (r0), wherev0 is
the initial velocity at a positionr = r0, initially at a timet = 0, the initial condition for the wavefunction
ψ (r, 0) can be given [6,7] by

ψ(r,0) =
1
√
πσB

exp

− (r − r0)2

2σ2
B

+ ik0 · r
 , (10)

wherek0 = p0/~ is the initial wavenumber vector, andσB ≡
√
~/qB is known as the magnetic length in

quantum mechanics [8].

3.1. Numerical errors

There are three invariants of motion, the energyE =
⟨
Ĥ

⟩
, the canonical momentum inx-direction

Px = ⟨−i~∂/∂x⟩ =
⟨
mv̂x − qÂx

⟩
, since the potentialsV andA do not depend onx, as well as particle

conservation
∫
Σ
|ψ|2dS = 1. Here,

⟨
f̂
⟩

stands for the expectation value of an operatorf̂ , i.e.
⟨

f̂
⟩
=∫

Σ
ψ∗ f̂ψdS. The absolute numerical errors in these invariants are quite small as shown Fig. 1.
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Fig. 1. Absolute errors for the invariants of a particle, energy andx-component of the canonical momentum forq = m= B = 1,
v0 = 5, E = 10−3 andLE = LB = 10−4. Their initial values are 1 (exact),∼5 and∼13.

3.2. Time evolution of variances

The time dependent variances in positionσ2
r (t) and mechanical momentumσ2

mv (t) oscillate with each
gyration period, such as 2π/ωc and π/ωc, whereωc is the cyclotron frequency, as shown Fig. 2. In
both uniform and non-uniform conditions, the variances slightly grow with time. Since the exact vari-
ances should not grow with time in the presence of a uniform electromagnetic field, these time evolution
σ2

non−uniform (t) are due purely to numerical errors. On the other hand, the time evolutionσ2
uniform (t) in

the presence of the non-uniform electromagnetic field consists of physical increment and about the same
numerical errors as the case of the uniform field. Thus, let us define the increment of variances,∆σ2 (t),
betweenσ2

non−uniform (t) andσ2
uniform (t) , as [1,2]

∆σ2 (t) = σ2
non−uniform (t) − σ2

uniform (t) . (11)

The increment∆σ2 (t) shows the physical time evolution of variances, as shown in Fig. 3. Also depicted
in the figure is a fitting line, which represents the time averaged evolution of variance. Let us also de-
fine the expansion rate in position dσ2

r /dt and mechanical momentum dσ2
mv/dt, using the fitting lines’

gradient.

3.3. Rate of changes in variances

For various combinations of physical parameters, such asm, q, v0, E, B, LB andLE, similar analyses to
that in the preceding section give us the relationship between the expansion rate of variances in position
dσ2

r (t) /dt as a function of~v0/qBLB, as shown in the left panel of Fig. 4, and in mechanical momentum
dσ2

mv (t) /dt as a function of~qBv0/LB in the right panel of Fig. 4. Also depicted are the fitting lines. It is
noted that the variances clearly on the respective fitting lines of

dσ2
r

dt
= (2.00± 0.03)

~

qB
v0
LB
, (12)

dσ2
mv

dt
= (1.030± 0.005) ~qB

v0
LB
, (13)
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Fig. 2. Time evolution of variance in positionσ2
r (t) =

⟨
r2

⟩
−⟨r⟩2 (left) and in mechanical momentumσ2

mv (t) =
⟨
(mv)2

⟩
−⟨mv⟩2

(right), for initial velocityv0 = 5, chargeq = 1, massm= 1, electric fieldE = 10−3 with LE = 10−4, magnetic fieldB = 1, thus
ωc = 1, with LB = 10−4 or∞.
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Fig. 3. Time evolution of increment of variance in position∆σ2
r (t) (left), and mechanical momentum∆σ2

mv (t) (right). Ave.
∆σ2

r (t) and Ave.∆σ2
mv (t) stand for the time average over the cyclotron period, for the case presented in Fig. 2.

both of which do not depend on the particle massm, the magnitude of electric fieldE nor the
gradient scale length of electric fieldLE. Therefore, it is shown that the non-uniform electric field
E = E (1− y/LE) ey does not affect the expansion rates while the non-uniform magnetic fieldB =

B (1− y/LB) ez does.
Let us apply the expansion rate to the typical fusion plasma with a temperatureT = 10 keV, number

densityn = 1020 m−3, a magnetic fieldB = 5 T and a gradient scale length of magnetic fieldLB = 3 m,
which is the major axis of a torus. When we take a proton for the charged particle and the thermal
velocity vth ∼ 1.352× 106 m/s for v0 in Eq. (13), the standard deviationσ2

r (t) of the proton reaches
the interparticle separationn−1/3 in a time interval 0.38 msec. In contrast, the ion-ion collision time is
about 20 msec [10]. Thus, overlapping of wavefunctions of neighboring protons would occur before the
conventional collision time.
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Fig. 4. Expansion rate of variance in position vs.~v0/qBLB (left) and in mechanical momentum vs.~qBv0/LB (right). Each
point shape, such aŝand�, corresponds to the same gradient scale length of electric fieldLE.

4. Summary

We have solved the two-dimensional time-dependent Schödinger equation for a charged particle in the
presence of a non-uniform electric fieldB = B (1− y/LB) ez and magnetic fieldE = E (1− y/LE) ey. It
is shown that the particle mass and the electric field do not affect the expansion rate as long as the electric
field has the uniform gradient.
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