Water vapor control at the tropopause by equatorial Kelvin waves observed over the Galápagos

M. Fujiwara, 1, 2 F. Hasebe, 3 M. Shiotani, 1, 2 N. Nishi, 4 H. Vömel, 5 and S. J. Oltmans 6

Abstract. Soundings of frost-point hygrometers, ozonesondes, and radiosondes at San Cristóbal Island (0.9°S, 89.6°W) in September 1998 provide an observational evidence that equatorial Kelvin waves around the tropopause act as a dehydration pump for the stratosphere. During the downward-displacement phase of a Kelvin wave, dry and ozone-rich stratospheric air is transported into the upper troposphere. During the upward-displacement phase, on the other hand, higher specific-humidity air moves up in the tropopause region, but at the same time, this upward motion causes cooling of the air that limits the water vapor amount entering the stratosphere. Also, wave breaking contributes to the irreversible transport of ozone across the tropopause. Considering their omnipresence at the equatorial tropopause, we suggest that Kelvin waves may be one of the important agents for maintaining the dryness of the tropical lower stratosphere.

1. Introduction

It has been known since the 1970s that large-scale eastward-moving disturbances are prominent around the equatorial tropopause. Madden and Julian [1972] noted the existence of an eastward-moving disturbance at the tropopause level, in association with the 40-50-day oscillation in the troposphere, the so-called Intra-Seasonal Oscillation (ISO) or Madden-Julian Oscillation (MJO). Parker [1973] found the existence of marked disturbances confined around the equatorial tropopause, which have the characteristics of equatorial Kelvin waves, one of the planetary-scale eastward-moving equatorial gravity waves [e.g., Andrews et al., 1987]. Before the early 1990s, however, there has been little discussion on the role of these disturbances in the variation and transport of minor constituents at the equatorial tropopause, i.e., in stratosphere-troposphere exchange (STE) (see section 1 of Fujiwara and Takahashi [2001]; see also section 7 of Holton et al. [1995], esp., p. 428). Tsuda et al. [1994] first suggested their role in STE by analyzing radiosonde data in Indonesia. An episode of stratospheric ozone transport into the upper troposphere associated with a breaking Kelvin wave and MJO activity below was first observed in Indonesia by Fujiwara et al. [1998].

2. Observation

Vertical profiles of water vapor from the middle troposphere to the middle stratosphere were measured using the NOAA/CMDL balloon-borne cryogenic frost-point hygrometers [Vömel et al., 2001]. The hygrometer is launched together with an electrochemical concentration cell ozonesonde and a Vaisala RS80-15H radiosonde equipped with a Humicap-H relative humidity (RH) sensor. The radiosonde measures pressure, temperature, and RH (PTU), and is used as data transmitter. Water vapor data are obtained during the controlled descent as well as during the ascent to minimize potential contamination problems. The water vapor measurements have a typical accuracy of ~10% in mixing ratio up to the middle stratosphere. The ozone measurements have an accuracy of 5-10% in the troposphere and ~5% in the lower stratosphere. Water vapor-ozone-PTU soundings were made on September 6, 10, and 14, but the sounding on September 6 did not provide water vapor data around the tropopause. Additional soundings of ozone and PTU were made on September 4, 8, and 12. We also launched Vaisala RS80-15G radiosondes (equipped with a Humicap-A RH sensor and a Global Positioning System (GPS) antenna for the horizontal wind measurement) once or twice daily in September 1998. The RH measurement by radiosondes is available up to ~11 km for Humicap-A sensors and up to ~12-13 km for Humicap-H sensors in the tropics.
with stratospheric high ozone concentrations. Here, we use 125 ppbv as the ozonopause value. On September 8, the tropopause was at its lowest altitude, \(~15\) km. While the ozonopause remained around 16 km during September 8-12, the tropopause moved upward from \(~15\) to 17-17.5 km, leaving a significant amount of stratospheric ozone in the upper troposphere. On September 14, the ozonopause and tropopause were located at nearly the same altitude again.

The characteristics of ozone and tropopause variations resemble the case observed by Fujiwara et al. [1998] (see their Figures 2 and 4).

Figure 3 shows the time-altitude distributions of ozone, temperature, potential temperature, and zonal wind at San Cristóbal in September 1998. We see a downward motion of ozone in the tropopause region, from \(~18\) km on September 4 to \(~14\) km on September 14. While isolines for mixing ratios greater than 125 ppbv recovered by September 14, the 75-ppbv isoline continued to move downward to as low as 14 km. Figures 3(b)-(d) utilize radiosonde data as well to investigate the disturbance in detail. Before September 8, the tropopause was colder and gradually moving downward. After the tropopause jump around September 9, the tropopause was again moving downward and getting colder. The temperature change associated with this disturbance was \(~7\) K at 16 km (from 194 K on September 7 to 201 K on September 10). The potential temperature plot indicates that before September 8, the isentropes near and just above the tropopause were moving downward and that after the tropopause jump, their downward motion continued and extended into the upper troposphere. We can see a downward-motion line from 17.5 km on September 2 to 14 km on September 15, although the motion of individual isentropes is smaller. At the same time, a zonal wind oscillation was observed in the 12-19-km region, with the period \((2\omega)^{-1}\), where \(\omega\) is the frequency, of \(~18\) days (e.g., from September 2 to 20, at 16 km). The downward-motion line for isentropes nearly corresponded to the zero zonal wind line, which indicates that the vertical phase speed of this disturbance, \(c(\epsilon)\), was \(-3.1 \times 10^{-3}\) m s\(^{-1}\). The background zonal wind in September 1998 was nearly zero at 15-19 km, and the amplitude of this disturbance, \(U\), was \(~15\) m s\(^{-1}\) at 16 km. There was no substantial meridional-wind component (not shown) corresponding to meridional wind oscillation. These meteorological characteristics again resemble the case observed by Fujiwara et al. [1998] (see their Figures 4 and 5 and Plate 1). If we focus only on the tropopause level, the water vapor-ozone sounding on September 10 measured the downward-displacement phase of this disturbance, and the sounding on September 14 measured the neutral or upward-displacement phase of this disturbance.

The equatorial longitude-time distribution of temperature...
Figure 3. Time-altitude distributions of (a) ozone (25-ppbv interval, pink for 75-125 ppbv, red for more than 125 ppbv), (b) temperature (2-K interval, blue for less than 200 K), (c) potential temperature (5-K interval), and (d) zonal wind from 10 to 20 km at San Cristóbal in September 1998. Vertical resolution here is set to 50 m. Stars indicate the location of the tropopause. Blue and red arrows in (a)-(c) indicate ozonesonde soundings and hygrometer-ozonesonde soundings, respectively.

Figure 4. Longitude-time distribution of temperature at 100 hPa along the equator from the ECMWF global analysis data (twice daily, 2.5°×2.5°). The vertical line indicates the location of San Cristóbal, and the slanted line indicates the warm anomaly moving eastward and passing over San Cristóbal around September 10.
wavelength \((2\pi \omega^{-1})^{2}/2\). Nearly constant ozone concentrations around 18 km on September 6-8, around 17 km on September 8-12, and around 15-16 km on September 14 (Figures 2 and 3(a)) may indicate this vertical mixing.

Finally, we briefly discuss potential contributions of horizontal advection and convection. Similar to the estimation of the vertical displacement, the maximum zonal displacement by this wave can be estimated from \(2U/\omega\) to be \(\sim 7.4 \times 10^3\) km. We also made trajectory calculations with the ECMWF data. Seven-day isentropic backward trajectories from the tropopause region at San Cristóbal on September 10 showed that the air was mostly influenced by transport from tropical South America and the Atlantic within 0-10ºN. During the observation period, the region was sometimes influenced by subtropical air, but the enhanced ozone never originated from midlatitude stratosphere. As for the convective activity during the observation period, the radiosonde RH data show that wet air (60-90% RH with respect to liquid water) appeared during September 5-12 from the top of the boundary layer to 7 km but that a dry layer (<30% and even <10%) existed above the wet air mass, from ~7 to ~11 km. Thus, there was no direct influence of cumulus convection on the variation of minor constituents in the tropopause region. Satellite infrared cloud images confirm that there was no significant cloud activity along the equator in the central and eastern Pacific during the period, although some active convection was present around 10ºN in the eastern Pacific.

These observational results suggest that Kelvin waves around the tropopause include the following processes that cause stratosphere-troposphere exchange and maintain the dryness of the tropical lower stratosphere. During the downward-displacement phase of a Kelvin wave (September 10 at San Cristóbal), dry and ozone-rich stratospheric air is transported into the upper troposphere. During the upward-displacement phase (September 14, at the tropopause level), higher specific-humidity air moves up, but this upward motion causes adiabatic cooling, which at the same time limits the water vapor amount entering the stratosphere. When the wave amplitude becomes large enough to meet the breaking condition, irreversible mixing occurs at the maximum eastward-wind phase, resulting in net transport of ozone across the tropopause.

4. Conclusion

The soundings of water vapor, ozone, and meteorological variables at San Cristóbal in September 1998 demonstrated the role of equatorial Kelvin waves as a dehydration pump for the stratosphere. In other words, Kelvin waves "open" the tropopause for upward transport of water vapor from the dry stratosphere into the upper troposphere, but "close" the tropopause for upward transport of water vapor from the wet upper troposphere into the stratosphere when the cooling by the upward motion is strong enough. Wave breaking contributes to the irreversible transport of ozone across the tropopause, but even if the breaking does not occur, Kelvin waves can limit the water vapor amount entering the stratosphere. The strength of the cooling due to the upward motion by the wave is the critical factor. We also see that shorter-period, smaller-amplitude waves were embedded in the Kelvin wave (Figure 3(d), for example), which might also play a role in the dehydration as suggested by Potter and Holton (1995). The present study highlights the role of Kelvin waves in tropospheric stratosphere-troposphere exchange. Intensive, coordinated observation campaigns are needed to further investigate a possible dynamical-radiative-physical-chemical coupling in association with these large-scale tropopause-level waves.

Acknowledgments. We thank M. Agama, J. Cornejo, F. Paredes, and H. Enriquez of the Instituto Nacional de Meteorología e Hidrología (INAMHI), Ecuador for assisting us in making the soundings at San Cristóbal Island. The observations were financially supported by Sumitomo Foundation, Monbusho International Scientific Research Program, and Asahi Breweries Foundation. M.F. was supported by research fellowships of the Japan Society for the Promotion of Science for Young Scientists. Comments on the manuscript by reviewers were greatly appreciated. The figures were produced with the GFD-DENNOU Library.

References


M. Fujiwara, and M. Shiotani, Radio Science Center for Space and Atmosphere (RASC), Kyoto University, Kyoto 611-0011, Japan. (e-mail: fujii@kurasc.kyoto-u.ac.jp)
F. Hasebe, Department of Environmental Sciences, Ibaraki University, Ibaraki 310-8512, Japan.
N. Nishi, Department of Earth and Planetary Sciences, Kyoto University, Kyoto 606-8502, Japan.
H. Vömel, CIRES, University of Colorado, Boulder, CO 80309-216.
S. J. Ottavans, NOAA/CMDL, Boulder, CO 80305.

(Received April 17, 2001; revised June 6, 2001; accepted June 14, 2001.)