Efficient Synthesis of Photoreactive 2-Propoxyaniline Derivatives as Artificial Sweeteners

Hashimoto, Makoto; Murai, Yuta; Yoshida, Takuma; Wang, Lei; Masuda, Katsuyoshi; Hashidoko, Yasuyuki; Monde, Kenji; Hatanaka, Yasumaru

Synlett, 27(06), 946-950

https://doi.org/10.1055/s-0035-1561275

This is the accepted manuscript.
Efficient Synthesis of Photoreactive 2-Propoxyaniline Derivatives as Artificial Sweeteners

Yuta Muraia\textasteriskcenteredc, Takuma Yoshidaab, Lei Wanga, Katuyoshi Masudaa, Yasuyuki Hashidokoa, Kenji Mondeab, Yasumaru Hatanakaa, Kenji Yasuyukia, Yuta Muraia\textdagger, Makoto Hashimotoa\textdagger

aFaculty of Advanced Life Science, Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo 001-0021.
bDivision of Applied Science, Graduate School of Agriculture, Hokkaido University; Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589.
cSuntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618-8503.
dGraduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194.
E-mail: ymurai@mail.sci.hokudai.ac.jp
E-mail: hasimoto@abs.agr.hokudai.ac.jp

Abstract 5-Nitro-2-propoxyaniline is one of the strongest artificial sweeteners. However, little is known about the detailed relationship of the structure and biological activity between 5-nitro-2-propoxyaniline and its sweet receptor. Photoaffinity labeling is a useful method for revealing interactions of a small bioactive compound with molecules. Therefore, we synthesized photoreactive 2-propoxyaniline derivatives as useful tools for revealing the interactions by photoaffinity labeling.

Key words photoaffinity labeling, chemical biology, photophore, artificial sweetener, sweet receptor

Introduction:

5-Nitro-2-propoxyaniline (1, Figure 1), named P-4000, has a sweetness intensity that is approximately 4000-times greater than that of sucrose and is well known as one of the strongest artificial sweeteners.1 On the other hand, it was once used as an artificial sweetener, but its use has been banned because of its possible toxicity.2 It is known that sweet taste is recognized by a sweetener binding with the sweet receptor, which is a heterodimeric receptor consisting of T1R2 and T1R3 subunits.3 However, the mechanism of sweetness and toxicity of 5-nitro-2-propoxyaniline has still not been elucidated. Elucidation of the interactions between artificial sweeteners and their sweet receptor has attracted much interest and many researchers have studied the interactions by using NMR spectroscopy4 and X-ray crystallography.5 There have been only a few studies using homology modeling to determine the mechanism of action of 5-nitro-2-propoxyaniline for the gustatory receptor.6

However, satisfactory results have not been obtained, the detailed mechanism of action of 5-nitro-2-propoxyaniline for the receptor has not been elucidated. Identification of the biological mechanism as well as that of the target protein is a crucial point in the field of chemical biology. Photoaffinity labeling is one of the most powerful chemical tools to reveal interactions of bioactive compounds with biomolecules instead of X-ray crystallography and the solution-state NMR method, which are difficult to apply to a membrane protein such as the gustatory receptor. It is suitable for the analysis of biological interactions based on the affinity of biological active compounds for biomolecules. Therefore we have reported that synthesis of several photoaffinity labeling reagent for gustatory receptor.7

Figure 1 Structure of 5-nitro-2-propoxyaniline (1) and 5-cyano-2-propoxyaniline (2). The nitro group of 5-nitro-2-propoxyaniline was converted to photoreactive groups in this study

To the best of our knowledge, synthesis of photoreactive-2-propoxyaniline derivatives for photoaffinity labeling has not been reported yet. According to a previous report8, even though the nitro group of 5-nitro-2-propoxyaniline was converted to a cyano group, there was almost no decrease in sweetness activity (2, Figure 1). Modification at the 5-position of 2-propoxyaniline might be useful for the introduction of photophores into the ligand skeleton. Therefore, we decided to synthesize 2-propoxyaniline-substituted photophores at the 5-position. Photophores, typically three types, azide, benzophenone and aryldiazirine, are used in photoaffinity labeling. To obtain good results using photoaffinity labeling,
from compound (7) or (8) by Friedel-Crafts acylation. Therefore, we selected alternative starting material (11), and it was subjected to demethylation by lithium chloride under a reﬂux condition to give (12), and this was followed by Williamson ether synthesis to produce (15). Compound (15) was able to be prepared in another way; commercially available 4-propoxybenzaldehyde (13) was treated with CF₃-TMSI and worked up with 1 M HCl to obtain (14) in good yield. Compound (14) was oxidized with Dess-Martin periodinane under an acidic condition in excellent yield. (Scheme 3)

Nitrilation of compound (15) with fuming HNO₃ in acetic anhydride at 0 °C proceeded selectively (16). The trifluorocetyl moiety was converted to the (trifluoromethyl)diazirinyl moiety using a general method. However, the diazirinyl moiety could not tolerate the condition in which the nitro group was reduced by Na₂S₂O₄, and we therefore previously had the compound (19) reduced without breaking the diazirinyl moiety and obtained (21) in moderate yield. Subsequently, the diazirinyl moiety was converted to diazirinyl moiety (22) with activated MnO₂ under a mild condition. (Scheme 4)

The activities of compound (6) and (22) were measured by a cell-based assay, which determines the changes of intracellular calcium ion levels in the human sweet taste receptor hT1R2-hT1R3-expressing HEK293T cells by the fluorescent calcium indicator
2 acetoxyethyl ester] as described by Imada et al.24 Both the photoactive 2-propoxaniline, (6) and (22) have enough affinity with the sweet group presumably. These results indicated that photoreactive 2-(10) did not appreciably show the activity due to a bulky benzoyl group presumably. The same sweetness activity as sucrose. On the other hand, compound (6) and (22) have enough affinity with the sweet taste receptor to elucidate the binding site for the ligands in the sweet taste receptor.

Conclusion:

In summary, we have achieved for the first time a comprehensive synthesis of photoactive (an arylazole, a benzophenone, and an arylidiazine) 2-propoxanilines for investigation of the sweet receptor by photoaffinity labeling. These derivatives are expected to be able to elucidate the detailed bioactive mechanism of 5-nitro-2-propoxyaniline for gustatory and toxic responses.

Acknowledgment

MH thanks the Suhara Memorial and Mishima Kaiun Foundation for financial support. Part of this work was performed under the Cooperative Research Program of “Network Joint Research Center for Materials and Devices”. This research was partially supported by Grants-in-Aid for Young Scientist B from the Japan Society for Promotion of Science (JSPS) (KAKENHI Grant No. 15K16552).

Supporting Information

YES (this text will be updated with links prior to publication)

Primary Data

NO (this text will be deleted prior to publication)

References and Notes

CDCl₃: δ = -65.2. HRMS (ESI) m/z [M + H]+ calc for C₁₁H₁₃F₃N₃O
260.1011, found 260.1010.

(23) **Cellular Responses with Cell-Based Assay**

The hT1R2-hT1R3 and G16-gust44 cell lines (approx 80,000 cells) were treated in 96-well black-wall plates with a calcium indicator dye (FLIPR Calcium 4) for 1 hour at 37 °C. Fluorescence changes by excitation at 485 nm, emission at 525 nm, were monitored at 2 seconds intervals. The photoreactive compounds (6, 10, 22) and sucrose (as positive control) were added at 20 seconds, and scanning was continued for an additional 4 minutes.