

HOKKAIDO UNIVERSITY

Title	Site-Selective and Stereoselective C(sp(3))-H Borylation of Alkyl Side Chains of 1,3-Azoles with a Silica-Supported Monophosphine-Iridium Catalyst
Author(s)	Murakami, Ryo; Iwai, Tomohiro; Sawamura, Masaya
Citation	Synlett, 27(8), 1187-1192 https://doi.org/10.1055/s-0035-1561599
Issue Date	2016-05
Doc URL	http://hdl.handle.net/2115/65194
Туре	article (author version)
File Information	Manuscript_revised_ver1.0_HUSCAP.pdf

Site-selective and Stereoselective C(sp³)–H Borylation of Alkyl Side Chains of 1,3-Azoles with a Silica-Supported Monophosphine-Ir Catalyst

Ryo Murakami Tomohiro Iwai Masaya Sawamura*

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan sawamura@sci.hokudai.ac.jp

Received: Accepted: Published on

Abstract Site-selective and stereoselective $C(sp^3)$ -H borylation of alkyl side chains of 1,3-azoles with bis(pinacolato)diboron was effectively catalyzed by a silica-supported monophosphine-Ir catalyst. The borylation occurred under relatively mild conditions (2 mol% Ir, 50–90 °C), affording the corresponding primary and secondary alkylboronates. This system was applicable to a variety of 1,3-(benzo)azoles such as thiazoles, oxazoles, and imidazoles.

Key words 1,3-azole, C–H activation, borylation, Iridium, heterogeneous catalyst

1,3-Azoles are common structures in many biologically active natural compounds, pharmaceuticals and organic functional materials, and many of these molecules have an alkyl substituent at the 2-position (Figure 1).¹ Therefore, functionalization of the alkyl side chain of 1,3-azoles is of great importance for construction of complex molecules containing 1,3-azole scaffolds.² Among the methods for functionalization of alkyl groups, C(sp³)-H borylation is attractive because alkylboron compounds are versatile synthetic intermediates with broad functional group compatibility, and air- and moisture stability.3,4 Despite recent significant progress in this area, the site-selective borylation of unactivated C(sp³)-H bonds over potentially more reactive C-H bonds such as C(sp²)-H bonds remains challenging.5-10 Moreover, the stereoselective borylation of C(sp3)-H bonds is underdeveloped.5e,5g,5h,7,10a

1,3-azole Scaffold.

Recently, we have reported the heteroatom-directed borylation of C(sp³)-H bonds bearing N-heteroarenes or carbonyl-based functional groups catalyzed by Rh- or Ir systems based on solid-supported monophosphines with mono-P-ligating features (Figure 2).¹⁰ This strategy allowed site-selective borylation of the N-adjacent10b or unactivated^{7b,10a,c,d} C(sp³)-H bonds located γ to N or O atoms on the directing groups. The regioselectivity was due to the proximity effect by the heteroatom-to-metal coordination. In fact, cyclic and acyclic alkyl substituents at the 2-position of pyridines underwent the C(sp3)-H borylation with excellent site- and stereoselectivities.10a Later, we found that 1,3-azoles also worked as suitable directing groups for the C(sp³)-H boylation of small-ring carbocycles such as cyclopropanes and cyclobutanes.7b However, its applicability for linear alkyl groups and normal-sized (five-to-seven membered) carbocycles has not been explored.

Figure 2. Solid-Supported Monophosphines.

Herein, we report a heteroatom-directed $C(sp^3)$ –H borylation of alkyl side chains of 1,3-azoles with a silicasupported monophosphine-Ir catalyst. Owing to the proximity effect by N-to-Ir coordination, the borylation occurred under relatively mild reaction conditions with high site- and stereoselectivities. This catalytic system was applicable for the reaction of primary and secondary $C(sp^3)$ –H bonds of linear and cyclic alkyl substituents in 1,3-azoles, including thiazoles, oxazoles, and imidazoles.

Initially, we examined the borylation of 2ethylbenzothiazole 0.6 (1a, mmol) with bis(pinacolato)diboron (B2pin2) (2, 0.2 mmol) in THF at 60 °C for 15 h in the presence of various Ir catalysts (2 mol% Ir), which were prepared in situ from [Ir(OMe)(cod)]₂ and different ligands. The results are summarized in Table 1.

In contrast to the C(sp³)-H borylation of 2-alkylpyridines reported previously,10a for which all solid-supported monophosphines shown in Figure 1 were effective ligands (Silica-SMAP,^{10a} Silica-TRIP,^{10b} Silica-TPP^{10c} and PS-TPP^{10d}), the borylation of **1a** was specifically promoted by commercially available Silica-SMAP, affording the terminal C(sp³)-H borylation product **3a** and the geminal bisborylation product 4a in 82% and 32% NMR yields, respectively (Table 1, entry 1).^{11,12} The reactivity of the alkyl side chain in 1a seems to be lower than that in the pyridine analogue. Indeed, 2-ethylpyridine underwent efficient C(sp3)-H borylation with the Silica-SMAP-Ir system at 25 $^{\circ}\text{C},^{10a}$ while 1a was intact under identical conditions (data not shown). The ligand specificity of Silica-SMAP in the present borylation reaction may suggest a requirement for the high electron density of the metal and/or sparse nature of the catalytic environment provided by the compact ligand. The total borylation yields over 100% based on B₂pin₂ (2) indicated that pinacolborane (HBpin), which was a byproduct of the reaction with B₂pin₂, also served as a borylating reagent, although it was less reactive than 2. The C(sp²)-H bonds of the benzothiazole ring and the C(sp³)–H bonds at the position α to the azole group were intact. A larger-scale reaction (5 mmol for 2) at 0.5 mol% Ir loading proceeded efficiently at 90 °C to give 3a in 54% isolated yield (entry 2). The geminal diborylation product 4a could be obtained as a major product in 89% isolated yield by the reaction with 2 equiv of 2 (2 mol% Ir, 60 °C) (entry 3).

Table 1 also shows the inefficiency of homogeneous catalytic systems. The use of monophosphines such as Ph-SMAP¹³ and PPh₃ did not promote the C(sp³)–H borylation (entries 7 and 8). Bipyridine-based ligands such as Dtbpy and Me₄Phen resulted in only aromatic C–H borylation with lower efficiencies (<4% yields of arylboronates, entries 9 and 10).¹⁴ No reaction occurred without an exogenous ligand (entry 11).

N S 1a (3 equ	Me + + + 0. BinB-B iv) (0.2 m	$\begin{array}{c} O \\ B \\ O \\ B \\ O \\ D \\ B \\ O \\ D \\ B \\ O \\ O \\ HF (1 mL) \\ 60 ^{\circ}C, 15 h \\ O \\$	$ \begin{array}{c} $
Entry	Ligand	Yield of 3a [%] ^b	Yield of 4a [%] ^b
1	Silica-SMAP	82 ^c (75) ^d	32
2 ^e	Silica-SMAP	71 (54)	12
3 ^f	Silica-SMAP	2	97 (89) ^g
4	Silica-TRIP	0	0
5	Silica-TPP	0	0
6	PS-TPP	0	0
7	Ph-SMAP	0	0
8	PPh₃	0	0
9 ^h	Dtbpy	0	0
10^{h}	Me ₄ Phen	0	0
11	none	0	0

^a Conditions: **1a** (0.6 mmol), **2** (0.2 mmol), $[Ir(OMe)(cod)]_2$ (2 mol% Ir), ligand (2 mol%), THF (1 mL), 60 °C, 15 h.

^{b 1}H NMR yield based on **2**. Isolated yields shown in parentheses.

^c The C=N reduction product of **1a** (4%) was formed.

 $^{\rm d}$ The isolated product ${\bf 3a}$ was contaminated with ${\bf 4a}$ (<1%) and traces of impurities.

^e 1a (15 mmol), 2 (5 mmol), [Ir(OMe)(cod)]₂ (0.5 mol% Ir), Silica-SMAP (0.5 mol%), THF (5 mL), 90 °C, 24 h.

 $^{\rm f}$ 1a (0.2 mmol), 2 (0.4 mmol), [Ir(OMe)(cod)]_2 (2 mol% Ir), Silica-SMAP (2 mol%), THF (1 mL), 60 °C, 24 h. Yields of 3a and 4a were based on 1a.

^g The isolated product **4a** was contaminated with **3a** (2%).

^h Arylboronates were formed in entries 9 and 10 (4% and 3%, respectively).

The Silica-SMAP-Ir system was applicable to various 1,3-(benzo)azoles **1**, including thiazoles, oxazoles, and imidazoles. Some of the borylation products **3** obtained in this manner were converted into the corresponding alcohols **5** through subsequent oxidation for facile product isolation.¹⁵ The results are summarized in Table 2.

The reaction with 2-ethylbenzoxazole (**1b**) proceeded smoothly at 60 °C to give the monoborylation product **3b** and the geminal diborylation product **4b** in 78% and 26% yields, respectively, with the formation of small amounts of $C(sp^2)$ –H borylation products (5%) (Table 2, entry 1). 2-

ĸ

Ethylbenzimidazole (1c) was borylated at 50 °C, affording the monoborylation product 3c and the diborylation product 4c in 38% and 19% yields, respectively (entry 2). However, the formation of a significant amount of a C=N reduction product of 3c (structure not determined, ca. 20%) was observed in the ¹H NMR spectrum of the crude reaction mixture. The use of cyclooctene as an additive effectively suppressed the C=N reduction of 3c, resulting in an increase in yields of 3c and 4c to 60% and 31%, respectively (entry 3).¹⁶ Benzimidazoles bearing bulky alkyl groups, such as isopropyl (1d) and tert-butyl (1e) groups, at their 2-positions were successfully borylated at the terminal C(sp3)-H bonds (entries 4 and 5). The methyl C(sp³)-H borylation of polycyclic compound **1f** gave primary alkylboronate **3f** as a sole product (entry 6). Monocyclic 1,3-thiazole 1g was also a suitable substrate for the terminal C(sp³)-H borylation (entry 7).¹⁷

Internal C(sp³)–H bonds in 2-alkyl-1,3-azoles successfully participated in the borylation with the Silica-SMAP-Ir

system under relatively mild conditions (2 mol% Ir, 70– 90 °C), affording the corresponding secondary alkylboronates (Table 2, entries 8–13). For example, the reactions of **1h** or **1i** containing a phenyl substituent proceeded with excellent site-selectivity at the C(sp³)–H bonds located γ to the directing sp²-hybridized N atoms (entries 8 and 9). The site-selective borylation occurred efficiently with 2-pentylbenzimidazole (**1j**) to provide alkylboronate **3j** (entry 10).

As was the case for the small-sized carbocycles,^{7b} normalsized ring compounds were also borylated site- and stereoselectively. Specifically, the reaction of 2-cyclopentyl-*N*-methylbenzimidazole (**1k**) at 90 °C afforded the borylation product **3k** as a mixture of *cis* and *trans* isomers in a 4:1 ratio (Table 2, entry 11). The cyclohexyl and cycloheptyl groups in **1l** and **1m**, respectively, reacted at 70–80 °C with exceptional *trans* selectivity (entries 12 and 13).

Table 2. Silica-SMAP–Ir Catalyzed C(sp ³)–H Borylation of 2-Alkyl-1,3-azoles 1 with Diboron 2 Followed by Oxidation ^a									
	N R ¹ R ² 1 (3 equiv)	$\mathbb{R}^{3} + + \underbrace{+ \underbrace{+ \underbrace{+ \underbrace{+ \underbrace{+ \underbrace{+ \underbrace{+ \underbrace{+ \underbrace$	e)(cod)] ₂ hol%) SMAP %) 5 h	NaBO3-4H X NaBO3-4H R ¹ R ² R ¹ R ² 3 X R ¹ R ² R ¹ R ² THF/H ₂ O (rt, 5 h	$ \begin{array}{c} $				
Entry	Substrate 1	Borylation Product 3	Temp (°C)	Yield of 3 (%) ^b	Oxidation Product 5^{c}	Yield of 5 (%) ^b			
1	N Me 1b	Bpin 3b	60	78 ^{c,d,e} (48) ^f	_	_			
2 3 ^h	N Me 1c	N Me Bpin 3c	50 50	38 ^{c,d,g} 60 ^{c,d} (54) ⁱ	_	-			
4	Me Me 1d	N Bpin Me Me 3d	80	83 ^d	Me Me 5d	(59)			
5	Me Me Me 1e	N N Me Me Me 3e	80	87	Me Me Me 5e	(68)			
6	N N Me 1f	Sf	70	86	С N OH 5f	(71)			
7	Me N Me s Me 1g	Me Me S Bpin 3g	60	80 [°] (63)	-	_			
8	N Me 1h	N Bpin N' Bpin Me' 3h	80	81 ^{d,e}	N OH N H Sh	(69)			
9		Me Bpin 3i	80	89 ^{d,e}	N OH Me 5i	(70)			

ĸ

^a Conditions for C–H borylation: **1** (0.6 mmol), **2** (0.2 mmol), $[Ir(OMe)(cod)]_2$ (2 mol% Ir), Silica-SMAP (2 mol% P), THF (1 mL), 15 h. Conditions for oxidation: the crude products of the C(sp³)–H borylation (**3**), NaBO₃·4H₂O (1 mmol), THF (1 mL), H₂O (1 mL), rt, 5 h.

 $^{^{b}1}$ H NMR yield based on **2**. Isolated yields shown in parentheses.

 $^{\circ}$ Geminal diborylation products f 4 were formed in entries 1, 2, 3 and 7 (26%, 19%, 31%, and 34%, respectively).

^d The C=N reduction products of **1** were formed in entries 1, 2, 3, 4, 8, 9, 10, 11, 12 and 13 (30%, 64%, 42%, 85%, 40%, 59%, 84%, 35%, 83%, and 41%, respectively).

^e Arylboronates were formed in entries 1, 8, 9, 10, 11, 12 and 13 (5%, 7%, 6%, 11%, 4%, 8%, and 2%, respectively).

^f Isolated product was contaminated with arylboronates (9%) and the diborylation product (1%).

^g The C=N reduction product of **3c** (structure not determined, ca. 20%) was formed.

^h Cyclooctene (0.2 mmol) was used as an additive.

¹ Isolated product was contaminated with the diborylation product (<1%).

¹ Isolated products in entries 11, 12, and 13 were contaminated with phenol derivatives (1%, 5%, and 2%, respectively), which were derived from the corresponding arylboronates.

To demonstrate the synthetic utility of the present borylation reaction, transformations of alkylboronate **3a** were performed as shown in Scheme 1. The boronate **3a** was converted into tertiary amine **6** through a Cu-catalyzed reaction with *N*-methylaniline in the presence of Ag₂CO₃ as an oxidant.¹⁸ The Suzuki–Miyaura cross-coupling of 4chloroanisole with a RuPhos-ligated palladacycle precatalyst provided the sp³–sp² coupling product **7**.^{19–21} The onecarbon-homologation-oxidation sequence afforded the corresponding primary alcohol **8**.²²

In summary, a heterogeneous Ir catalyst system with silicasupported cage-type trialkylphosphine Silica-SMAP enabled C(sp³)-H borylation of alkyl side chains of 1,3-azoles, including thiazoles, oxazoles, and imidazoles, under relatively mild conditions with high siteand stereoselectivities. The borylation occurred not only at terminal C(sp³)-H bonds but also at internal secondary C(sp³)–H bonds in linear alkyl groups or carbocyclic rings. The obtained alkylboronates serve as precursors for C-N and C-C bond formation reactions. Thus, this heterogeneous Ir catalysis offers a useful method for rapid access to functionalized molecules with 1,3-azole scaffolds.

Acknowledgments

This work was supported by Grants-in-Aid from CREST and ACT-C (JST) to M.S. and Grants-in-Aid for Young Scientists (B) from JSPS to T.I. R.M. thanks JSPS for scholarship support.

Supporting Information

Experimental details and characterization data for new compounds is available online at [...].

References and Notes

ĸ

- (a) Joule, J. A. and Mills, K. *Heterocyclic Chemistry*, 5th ed.; John Wiley & Sons: Chicester, 2010. (b) Joule, J. A. and Mills, K. *Heterocyclic Chemistry at a Glance*, 2nd ed.; John Wiley & Sons: Chicester, 2013; DOI: 10.1002/9781118380208. (c) Turchi, I. J.; Dewar, M. J. S. *Chem. Rev.* **1975**, 75, 389–437. (d) Bansal, Y.; Silakari, O. *Bioorg. Med. Chem.* **2012**, *20*, 6208– 6236. (e) Contreras, R.; Flores-Parra, A.; Mijangos, E.; Téllez, F.; López-Sandoval, H.; Barba-Behrens, N. *Coord. Chem. Rev.* **2009**, *253*, 1979–1999.
- (2) Zificsak, C. A.; Hlasta, D. J. Tetrahedron 2004, 60, 8991–9016.
- (3) Selected recent reviews on transition-metal-catalyzed C-H borylation: (a) Mkhalid, I. A. I.: Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890–931.
 (b) Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992–2002. (c) Ros, A.; Fernández, R.; Lassaletta, J. M. Chem. Soc. Rev. 2014, 43, 3229–3243.
- (4) (a) Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials; Hall, D. G., Ed.; Wiley-VCH: Weinheim, 2011, 2nd revised ed. (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483. (c) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417–1492. (d) Leonori, D.; Aggarwal, V. K. Acc. Chem. Res. 2014, 47, 3174–3183.
- (5) Heteroatom-directed C(sp3)-H borylation: (a) Cho, S. W.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 8157-8160. (b) Mita, T.; Ikeda, Y.; Michigami, K.; Sato, Y. Chem. Commun. 2013, 49, 5601-5603. (c) Zhang, L.-S.; Chen, G.; Wang, X.; Guo, Q.-Y.; Zhang, X.-S.; Pan, F.; Chen, K.; Shi, Z.-J. Angew. Chem. Int. Ed. 2014, 53, 3899-3903. (d) Cho, S. H.; Hartwig, J. F. Chem. Sci. 2014, 5, 694-698. (e) Miyamura, S.; Araki, M.; Suzuki, T.; Yamaguchi, J.; Itami, K. Angew. Chem. Int. Ed. 2015, 54, 846-851. (f) Murai, M.; Omura, T.; Kuninobu, Y.; Takai, K. Chem. Commun. 2015, 51, 4583-4586. (g) He, J.; Jiang, H.; Takise, R.; Zhu, R.-Y.; Chen, G.; Dai, H.-X.; Murali Dhar, T. G.; Shi, J.; Zhang, H.; Cheng, P. T. W.; Yu, J.-Q. Angew. Chem. Int. Ed. 2016, 55, 785-789. (h) Larsen, M. A.; Cho, S. H.; Hartwig, J. F. J. Am. Chem. Soc. 2016, 138, 762-765. See also ref 10. An example of C(sp³)-H borylation of aliphatic substrates without strong directing groups: (i) Ohmura, T.; Torigoe, T.; Suginome, M. Chem. Commun. 2014, 50, 6333-6336.
- (6) Borylation of C(sp³)-H bonds located α or β to heteroatoms:
 (a) Liskey, C. W.; Hartwig, J. F. *J. Am. Chem. Soc.* 2012, *134*, 12422-12425. (b) Ohmura, T.; Torigoe, T.; Suginome, M. *J. Am. Chem. Soc.* 2012, *134*, 17416-17419. (c) Ohmura, T.; Torigoe, T.; Suginome, M. *Organometallics* 2013, *32*, 6170-6173. (d) Li, Q.; Liskev, C. W.; Hartwig, J. F. *J. Am. Chem. Soc.* 2014, *136*, 8755-8765.
- (7) C(sp³)-H borylation of cyclopropanes, see: (a) Liskey, C. W.; Hartwig, J. F. *J. Am. Chem. Soc.* **2013**, *135*, 3375–3378. (b) Murakami, R.; Tsunoda, K.; Iwai, T.; Sawamura, M. *Chem. Eur. J.* **2014**, *20*, 13127–13131. See also refs 5e, g.
- [8] Borylation of benzylic C(sp³)-H bonds: (a) Shimada, S.; Batsanov, A. S.; Howard, J. A. K.; Marder, T. B. Angew. Chem. Int. Ed. 2001, 40, 2168–2171. (b) Ishiyama, T.; Ishida, K.; Takagi, J.; Miyaura, N. Chem. Lett. 2001, 30, 1082–1083. (c) Mertins, K.; Zapf, A.; Beller, M. J. Mol. Catal. A: Chem. 2004, 207, 21–25. (d) Boebel, T. A.; Hartwig, J. F. Organometallics 2008, 27, 6013–6019. (e) Larsen, M. A.; Wilson, C. V.; Hartwig, J. F. J. Am. Chem. Soc. 2015, 137, 8633–8643. (f) Palmer, W. N.; Obligacion, J. V.; Pappas, I.; Chirik, P. J. J. Am. Chem. Soc. 2016, 138, 766–799.
- (9) Borylation of allylic C(sp³)-H bonds: (a) Caballero, A.; Sabo-Etienne, S. Organometallics 2007, 26, 1191–1195. (b) Olsson, V. J.; Szabó, K. J. Angew. Chem. Int. Ed. 2007, 46, 6891–6893.
 (c) Olsson, V. J.; Szabó, K. J. J. Org. Chem. 2009, 74, 7715–7723.
 (d) Deng, H.-P.; Eriksson, L.; Szabó, K. J. Chem. Commun. 2014, 50, 9207–9210.
- (10) (a) Kawamorita, S.; Murakami, R.; Iwai, T.; Sawamura, M. *J. Am. Chem. Soc.* 2013, *135*, 2947–2950. (b) Kawamorita, S.; Miyazaki, T.; Iwai, T.; Ohmiya, H.; Sawamura, M. *J. Am. Chem.*

Soc. **2012**, *134*, 12924–12927. (c) Iwai, T.; Murakami, R.; Harada, T.; Kawamorita, S.; Sawamura, M. *Adv. Synth. Catal.* **2014**, *356*, 1563–1570. (d) Iwai, T.; Harada, T.; Hara, K.; Sawamura, M. *Angew. Chem. Int. Ed.* **2013**, *52*, 12322–12326.

- (11) Typical Procedure for the C(sp³)-H Borylation of Alkyl Side Chains on 1,3-Azoles with a Silica-SMAP-Ir Catalyst System (Table 1, Entry 1): In a glove box, Silica-SMAP (0.07 0.0040 mmol, 2 mmol/g, 57.1 mg, mol%), bis(pinacolato)diboron (2) (50.8 mg, 0.20 mmol), and anhydrous, degassed THF (0.3 mL) were placed in a 10 mL glass tube containing a magnetic stirring bar. A solution of $[Ir(OMe)(cod)]_2$ (1.3 mg, 0.0020 mmol, 1 mol%) in THF (0.7 mL) and 2-ethylbenzo[d]thiazole (1a) (97.9 mg, 0.60 mmol) were added successively. The tube was sealed with a screw cap and removed from the glove box. The reaction mixture was stirred at 60 °C for 15 h, and filtered through a glass pipette equipped with a cotton filter. The solvent was removed under reduced pressure. An internal standard (1,1,2,2-tetrachloroethane) was added to the residue. The yields of the products 3a and 4a were determined by ¹H NMR spectroscopy (82% and 32% yields, respectively). The crude material was then purified by Kugelrohr distillation (1 mmHg, 145 °C), to give the corresponding product 3a (43.1 mg, 0.15 mmol, 75% yield) contaminated with the diborylation product 4a (<1%) and traces of impurities, as estimated by ¹H NMR spectroscopy. Total yield over 100% based on 2 indicates that HBpin formed during catalytic turnover also served as a borylating reagent (theoretical maximum yield is 200%). ¹H NMR (CDCl₃): δ 1.24 (s, 12H), 1.38 (t, J = 7.6 Hz, 2H), 3.24 (t, J = 7.6 Hz, 2H), 7.32 (td, J = 8.4, 1.2 Hz, 1H), 7.42 (td, J = 7.6, 0.8 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H). ¹³C NMR (CDCl₃): δ 11.10 (br), 24.75 (4C), 28.85, 83.36 (2C), 121.42, 122.41, 124.42, 125.67, 135.19, 153.19, 173.81. ¹¹B NMR (CDCl₃): δ 32.6. IR (ATR): 2976, 2931, 1519, 1436, 1370, 1313, 1142, 1082, 967, 845, 758 cm⁻¹. HRMS-ESI (m/z): [M+H]⁺ Calcd for C₁₅H₂₁O₂N¹⁰BS, 289.14169; found, 289.14170.
- (12) The Silica-SMAP-Ir catalyst was easily separated from the reaction mixture by filtration. However, attempts to reuse the catalyst were unsuccessful.
- (13) Ochida, A.; Hamasaka, G.; Yamauchi, Y.; Kawamorita, S.; Oshima, N.; Hara, K.; Ohmiya, H.; Sawamura, M. Organometallics 2008, 27, 5494–5503.
- (14) The C(sp²)-H borylation of heteroarenes including 1,3benzazoles catalyzed by the Ir-Me₄Phen system: Larsen, M. A.; Hartwig, J. F. J. Am. Chem. Soc. **2014**, 136, 4287–4299.
- (15) In some cases, the formation of C=N reduction products of starting materials (1) was indicative by ¹H NMR analyses of the crude products. Similar C=N reduction was observed in the C(sp³)-H boylation of small-ring carbocycles bearing 1,3azoles with the Silica-SMAP-Ir catalyst system (ref. 7b). The desired products 3 or 5 could be isolated by bulb-to-bulb distillation or silica gel column chromatography.
- (16) Cyclooctene would act as a scavenger of H₂ or HBpin. The use of alkene derivatives as a H₂ or HBpin scavenger in an Ircatalyzed aromatic C-H borylation of aldimines was also reported: (a) Sasaki, I.; Amou, T.; Ito, H.; Ishiyama, T. Org. Biomol. Chem. 2014, 12, 2041–2044. (b) Sasaki, I.; Ikeda, T.; Amou, T.; Taguchi, J.; Ito, H.; Ishiyama, T. Synlett, 2016, in press (DOI: 10.1055/s-0035-1561578).
- (17) Methyl groups on the thiazole ring in **1g** were necessary for the C(sp³)-H borylation. In fact, the reaction of 2-ethylthiazole with **2** in the presence of the Silica-SMAP-Ir catalyst (2 mol%, 60 °C, 15 h) gave the corresponding arylboronates exclusively via the C(sp²)-H borylation.
- (18) Sueki, S.; Kuniobu, Y. Org. Lett. 2013, 15, 1544–1547.
- (19) Li, L.; Zhao, S.; Joshi-Pangu, A.; Diane, M.; Biscoe, M. R. J. Am. Chem. Soc. 2014, 136, 14027–14030.

K

- (20) Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. Chem. Sci. 2013, 4, 916–920.
- (21) Isolated product 7 was contaminated with 4,4'-dimethoxy-1,1'-biphenyl (2%), probably generated through homocoupling of 4-chloroanisole.
- (22) Matteson, D. S. Chem. Rev. **1989**, 89, 1535–1551.

K