Title: Evapotranspiration of tropical peat swamp forests

Running title: Evapotranspiration of tropical PSFs

Takashi Hirano*, Kitso Kusin**, Suwido Limin* and Mitsuru Osaki*

*Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan

**CIMTROP, University of Palangkaraya, Palangkaraya 73112, Indonesia

Correspondence: Takashi Hirano, tel/fax +81-11-706-3689, e-mail:

hirano@env.agr.hokudai.ac.jp

Keywords: disturbances, drainage, eddy covariance, energy balance, ENSO, fire, groundwater

level, smoke, Southeast Asia
Abstract

In Southeast Asia, peatland is widely distributed and has accumulated a massive amount of soil carbon, coexisting with peat swamp forest (PSF). The peatland, however, has been rapidly degraded by deforestation, fires and drainage for the last two decades. Such disturbances change hydrological conditions, typically groundwater level \((\text{GWL})\), and accelerate oxidative peat decomposition. Evapotranspiration \((\text{ET})\) is a major determinant of \(\text{GWL}\), whereas information on the \(\text{ET}\) of PSF is limited. Therefore, we measured \(\text{ET}\) using the eddy covariance technique for four to six years between 2002 and 2009, including El Niño and La Niña events, at three sites in Central Kalimantan, Indonesia. The sites were different in disturbance degree: a PSF with little drainage (UF), a heavily drained PSF (DF) and a drained burnt ex-PSF (DB); \(\text{GWL}\) was significantly lowered at DF, especially in the dry season. The \(\text{ET}\) showed a clear seasonal variation with a peak in the mid-dry season and a large decrease in the late dry season, mainly following seasonal variation in net radiation \((\text{R}_n)\). The \(\text{R}_n\) drastically decreased with dense smoke from peat fires in the late dry season. Annual \(\text{ET}\) forced to close energy balance for four years was 1636 ± 53, 1553 ± 117 and 1374 ± 75 mm yr\(^{-1}\) (mean ± 1 standard deviation), respectively, at UF, DF and DB. The undrained PSF (UF) had high and rather stable annual \(\text{ET}\), independently of El Niño and La Niña events, in comparison with other tropical rainforests. The minimum monthly-mean \(\text{GWL}\) explained 80% of interannual variation in \(\text{ET}\) for the forest sites (UF and DF); the positive relationship between \(\text{ET}\) and \(\text{GWL}\) indicates that drainage by a canal decreased \(\text{ET}\) at DF through lowering \(\text{GWL}\). In addition, \(\text{ET}\) was decreased by 16% at DB in comparison with UF chiefly because of vegetation loss through fires.
Introduction

In Southeast Asia, mainly Indonesia and Malaysia, peatland is widely distributed, coexisting with swamp forest, over an area of 2.48×10^5 km2 and accumulating up to 68.5 Pg of soil organic carbon, which accounts for 11-14% of global peat carbon (Page et al., 2011). These peatlands, however, have been rapidly devastated by deforestation and drainage for logging and land-use change, with such disturbances often causing frequent large-scale peat fires (Miettinen et al., 2012b; Page et al., 2002). As a result, the proportion of forest cover in the peatlands of Peninsular Malaysia, Sumatra and Borneo fell from 77% to 36% from 1990 to 2010 (Miettinen et al., 2012b). In these regions, 20% of peatlands had been also converted to plantations of oil palm and Acacia by 2010 (Miettinen et al., 2012a). These human pressures have increased the vulnerability of the huge peat carbon pool and increased the risk for the pool to be a large carbon source to the atmosphere chiefly because of peat fires and lowered groundwater level (GWL) which stimulates the rate of biological oxidation (e.g. Hirano et al., 2012; Page et al., 2002).

The carbon balance of peatland is chiefly controlled by local hydrology (e.g. Bozkurt et al., 2001; Limpens et al., 2008), which determines the water regime of surface peat. Under unsaturation conditions, peat is aerated, and its soil organic compounds are easily oxidized into carbon dioxide (CO$_2$). Therefore, theoretically, drainage to lower GWL enhances oxidative peat decomposition and its resultant CO$_2$ emissions. Field studies have illustrated such relationship with GWL from studies of peat subsidence (Couwenberg et al., 2009; Hooijer et al., 2010; Hooijer et al., 2012) and soil CO$_2$ efflux (Hirano et al., 2014; Jauhiainen et al., 2012; Sundari et al., 2012) in tropical peatlands. Also, Hirano et al. (2012) showed that the CO$_2$ balance of tropical peat ecosystems was clearly related to GWL on both monthly and annual bases.

The GWL results from water balance. Because tropical peatland is typically
ombrotrophic (Dommain et al., 2011; Page et al., 2004), GWL varies according to residuals (storage change) between precipitation as input and evapotranspiration (ET) and discharge as output. Although precipitation can be also affected by large-scale deforestation (Spracklen et al., 2012), ET and runoff are directly affected by deforestation, fires and drainage, respectively (e.g. Bosch & Hewlett, 1982; Dore et al., 2010; Sun et al., 2001). For example, conversion from tropical forest to pasture decreased ET in Amazonia, especially in the dry season (von Randow et al., 2004). To predict GWL under human pressures and thereby assess the carbon balance of tropical peatland, it is crucial to quantify ET and elucidate the effects of disturbances on ET. In addition, tropical forest plays an important role in hydrologic and atmospheric circulations, which drive climate systems, both on regional and global scales by massive ET and its resultant strong evaporative cooling (Bonan, 2008). Although peat swamp forest in Malaysia and Indonesia except Papua (7.00 × 10^4 km^2, Miettinen et al., 2012b) accounts for only 5% of the forest area in the two countries (1.29 × 10^6 km^2, Harris et al., 2012) in 2000, it is important to investigate the energy balance of tropical peat swamp forest for better understanding of the ecosystem function of tropical forest, because its ground water condition is different from that of other upland forest. Information on the energy balance and ET of tropical peatland is still quite limited (Hirano et al., 2005).

We measured fluxes of sensible heat (H) and latent heat (LE) using the eddy covariance technique and determined ET and energy balance at three sites within 15 km of each other on tropical peatland near Palangkaraya, Central Kalimantan, Indonesia (Hirano et al., 2012). The sites were different in disturbance degree: a peat swamp forest (PSF) with little drainage (UF), a heavily drained PSF (DF) and a drained burnt ex-PSF with limited vegetation (DB). Here we show the results of field measurement for four to six years between 2002 and 2009, including El Niño and La Niña events and discuss seasonal and interannual variations in the ET of PSF and the effects of anthropogenic disturbances due to drainage and fires on the ET.
Materials and Methods

Study site

The study was conducted in tropical peatlands near Palangkaraya, Central Kalimantan province, Indonesia. A large peatland area was deforested and drained in this province during the late 1990s according to a national project: the Mega Rice Project. Although the project was terminated in 1999, it left vast degraded peatland. Three sites were located on flat terrain within 15 km (Hirano et al., 2012): a PSF with little drainage (UF; 2.32°S, 113.90°E), a drained PSF (DF; 2.35°S, 114.14°E) and a drained burnt ex-PSF with re-growing vegetation (DB; 2.34°S, 114.04°E), which was dominated by fern plants. The DF and DB have been drained by a large canal (25 m wide × 3.5-4.5 m deep) excavated in 1996 and 1997. Information of each site was detailed by our previous paper (Hirano et al., 2012).

Flux measurement

Eddy fluxes of sensible heat (H) and latent heat (lE) were measured on towers since July 2004 at a height of 36.5 m, November 2001 at 41.3 m and April 2004 at 3.0 m, respectively, at UF, DF and DB using the eddy covariance technique with a sonic anemometer-thermometer (CSAT3; Campbell Scientific Inc., USA) and an open-path CO$_2$/H$_2$O analyzer (LI7500; Li-Cor Inc., USA) (Hirano et al., 2012). Sensor signals were recorded using a datalogger (8421; Hioki E. E. Corp., Japan) at 10 Hz. Net radiation (R_n) and albedo were measured with a radiometer (CNR-1; Kipp & Zonen, the Netherlands) at a height of 36.3, 40.6 and 3.3 m, respectively, at UF, DF and DB. Air temperature and relative humidity were measured with a platinum resistance thermometer and a capacitive hygrometer (HMP45; Vaisala, Finland) installed in a non-ventilated radiation shield (DTR503A; Vaisala) at a height of 36.3, 41.7 and 1.5 m, respectively, at UF, DF and DB. Precipitation was measured with a tipping-bucket rain gauge (TE525; Campbell Scientific Inc.) at a height of 41.0 m at DF. Sensor signals were
measured every 30 s; their half-hourly means were recorded using a datalogger (CR10X; Campbell Scientific Inc.). Groundwater level (GWL), which was shown as a distance between the ground (reference) and groundwater surfaces, was measured every 30 min with a water level logger (DL/N; Sensor Technik Sirmach AG, Sienach, Switzerland or DCX-22 VG; Keller AG, Winterthur, Switzerland) within 5 m from towers at the three sites.

Flux calculation

Half-hourly mean H and lE were calculated according to the following procedures: 1) removal of noise spikes (Vickers & Mahrt, 1997), 2) planar fit rotation (Wilczak et al., 2001), 3) water vapor correction for H (Hignett, 1992), 4) correction for high- and low-frequency losses using a theoretical transfer function (Massman, 2000, Massman, 2001), 5) covariance calculation using a block average and 6) density fluctuation correction for lE (Webb et al., 1980).

The sensitivity of an open-path analyzer (LI7500) for water vapor density was calibrated by comparing half-hourly mean water vapor densities from the LI7500 and a slow-response thermometer/hygrometer (HMP45) (Iwata et al., 2012), because the sensitivity directly affects the covariance of water vapor density and vertical wind velocity. The sensitivity was calculated every day as the slope of correlation between two water vapor densities (y: LI7500, x: HMP45) using a moving window of 31 days, and then the daily variation of the slope was smoothed by fitting a tenth-order spline curve. If correlation was not significant ($p > 0.05$), the slope data were excluded from the fitting. Before the correlation analysis, data were excluded in the rain and in the nighttime to avoid outliers due to raindrops or dew condensation on the LI7500’s window. In addition to such data screening, data were only used under the neutral condition of atmospheric stability for DB, because the LI7500 was installed 1.5 m higher than the HMP45. The reciprocal of the daily slope was applied as a correction coefficient for the covariance.
We used flux data from July 2004 to August 2008, December 2001 to July 2008 and April 2004 to September 2009, respectively, for UF, DF and DB. To calculate annual sums, we defined the annual period of 365 or 366 days starting on July 10 or 11 (DOY192) and ending on July 9 or 10 (DOY191) (Hirano et al., 2012). The whole rainy season was captured in each annual period, because the rainy season usually starts in October and lasts until June in this area (Hirano et al., 2012). In the period, annual sums were calculated for the four year periods of 2004–2008, the six year periods of 2002–2008 and the five year periods of 2004–2009, respectively, for UF, DF and DB.

Quality control and gap filling of flux data

We first excluded flux data obtained during rain and when the mean wind direction was within ±30°, ±35° and ±20° from the north, respectively, for UF, DF and DB, thereby avoiding flow distortion caused by the tower. The azimuth angles were determined from tower dimensions. Next, we calculated the difference between covariances determined from the whole interval of 30 min and six intervals of 5 min. Flux data were excluded, if covariance difference was larger than 250% (Foken & Wichura, 1996). Consequently, the survival rates of \(H \) and \(LE \) data available for annual summations were 49% and 51%, 50% and 50%, and 46% and 64%, respectively, for UF, DF and DB. Data gaps were filled by the look-up table (LUT) method using \(R_n \) and vapor pressure deficit (VPD) as predictors on a half-hourly basis. The \(R_n \) and VPD were grouped into ten and three classes, respectively. The LUT was created every three months: November–January, February–April, May–July and August–October, considering climate conditions (Hirano et al., 2007). After gap filling, to correct annual ET for the energy imbalance (Table S1), \(H \) and \(LE \) were forced to balance with \(R_n \) (adjustment) using a ratio of \(H \) and \(LE \) (Bowen ratio) on a daily basis (Twine et al., 2000).
Calculation of bulk parameters

Bulk parameters of surface conductance \((G_s) \) (Monteith, 1965), decoupling factor \((\Omega) \) (Jarvis & McNaughton, 1986) and Priestley-Taylor coefficient \((\alpha) \) (Priestley & Taylor, 1972) were calculated to interpret the seasonal variation and environmental response of \(ET \). To avoid instability and divergence, the bulk parameters around midday from 1000 to 1400 in no-rain conditions were only used to calculate monthly means for the analysis (Ryu et al., 2008). Also, albedo for shortwave radiation was calculated for the midday period when global radiation was larger than 700 W m\(^{-2}\) (Hirano et al., 2007).

The \(G_s \) (m s\(^{-1}\)) stands for the integration of individual leaf’s stomatal conductance for transpiration and surface wetness for evaporation, which was calculated backward from the Penman-Monteith equation by replacing \(R_n – G \) with \(H + lE \), because \(G \) was unavailable (Eqn. 1). This substitution would overestimate \(G_s \) because of energy imbalance (Table S1).

\[
\frac{1}{G_s} = \frac{1}{G_a} \left[\frac{\epsilon (H + lE) + \rho C_p G a VPD}{lE} - \frac{\epsilon}{\gamma} - 1 \right]
\]

(1)

where \(G_a \) is bulk aerodynamic conductance (m s\(^{-1}\)), \(\epsilon \) is \(s/\gamma \), \(s \) is the slope of relationship between saturation vapor pressure and temperature (kPa K\(^{-1}\)), \(\gamma \) is psychrometric constant (= 0.067 kPa K\(^{-1}\)), \(\rho \) is air density (kg m\(^{-3}\)), \(C_p \) is specific heat of air at constant pressure (= 1007 J kg\(^{-1}\) K\(^{-1}\)), \(VPD \) is vapor pressure deficit (kPa). The \(G_a \) was calculated using the following equation (Humphreys et al., 2006).

\[
G_a = \left[\frac{2}{\kappa u^*} \left(\frac{dh}{dv} \right)^2 + \frac{u}{u^*} \right]^{-1}
\]

(2)

where \(\kappa \) is von Karman constant (=0.4), \(u^* \) is friction velocity (m s\(^{-1}\)), \(dh \) is thermal diffusivity, \(dv \) is molecular diffusivity of water vapor and \(u \) is mean wind velocity (m s\(^{-1}\)). The ratio of \(dh \) and \(dv (dh/dv) \) was set at 0.89 (Humphreys et al., 2006).

The \(\Omega \) is an index (0 to 1) of decoupling between vegetation and the atmosphere for \(ET \), which was defined as follows:
The Ω approaches 0 when ET is controlled by G_s and VPD (coupling), and approaches one when ET is controlled by available energy (decoupling).

The α is the ratio of measured lE and equilibrium lE (lE_{eq}), which is the lE of an extended wet surface (Priestley & Taylor, 1972). The α was calculated using the following equation (Flint & Childs, 1991).

$$\alpha = \frac{lE}{lE_{eq}} = \frac{lE}{(R_n - G_s)\frac{R_n - G_s}{s+\gamma}} \approx \frac{lE}{(H+lE)\frac{H+lE}{s+\gamma}} = \frac{s+\gamma}{(1+\beta)s}$$

where β is Bowen ratio.
Results

Seasonal variation

Monthly values of environmental elements, energy fluxes and bulk parameters are shown in time sequence in Fig. 1. Precipitation shows seasonality with fluctuations due to El Niño and La Niña events. According to sea surface temperature (SST) anomaly in the Niño 3.4 region, El Niño and La Niña events occurred in the 02-03, 04-05 and 06-07 periods and the 05-06, 07-08 and 08-09 periods, respectively (NOAA, http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml).

Following the precipitation variation, GWL and VPD varied seasonally. In 2004 and 2005, the less-vegetated ground surface at DB was studded with open water, which lowered albedo. A large increase in albedo in 2006, especially at DB, was due to strong surface desiccation caused by El Niño drought (Hirano et al., 2007). A massive amount of smoke emitted from large-scale peat fires, which often occurs during El Niño drought, led to sudden reduction in R_n in 2002 and 2006 (Hirano et al., 2007; Hirano et al., 2012; Hirano et al., 2005).

To clarify seasonal variation, monthly values were ensemble averaged for each site for the common period of four years from August 2004 through July 2008 (Fig. 2). In addition, monthly values were averaged for the rainy and dry seasons, respectively (Table 1); the threshold to separate the two seasons was monthly precipitation of 100 mm (e.g. Malhi et al., 2002). As a result, 10 months out of a total (48 months) were classified as the dry season. On average for the four years, August and September were in the dry season, and July with monthly precipitation of 102 mm was the transition between the two seasons (Fig. 2). The GWL reached its minimum of -0.55, -1.05 and -0.52 m at UF, DF and DB, respectively, in October and was significantly lower in the dry season than in the rainy season. Midday VPD began to increase in April and peaked in September at UF (1.84 kPa) and DF (1.92 kPa) and in October at DB (2.28 kPa); it was significantly higher in the dry season. Albedo showed
seasonality similar to that of \(VPD \) with a peak in October at UF and DF and in November at DB, which differed significantly between the two seasons except for DB. The \(R_n \) showed an opposite peak in October because of shading due to dense smoke in 2006 (Fig. 1). However, seasonal difference in \(R_n \) was not significant, because \(R_n \) is usually larger in the dry season if no fires occur. Smoke from peat fires is critical for the radiation environment in the dry season \(\text{(Hirano et al., 2012)} \). The \(H \) increased significantly in the dry season at DB, whereas its seasonality was obscure at UF and DF. The \(IE \) or \(ET \) increased gradually from April through August and decreased during September and October; the decrease would correspond to \(R_n \) decrease. Seasonal difference in \(IE \) was significant only at UF. Similarly with \(H \), Bowen ratio increased significantly in the dry season only at DB. The ratio of \(IE \) and \(R_n \) increased significantly in the dry season at UF and DF, except for DB. The \(G_s \) began to decrease in July and reached an opposite peak in October at UF and DF and in November at DB, which resembles \(GWL \) or the mirror image of midday \(VPD \) in seasonal variation, whereas significant seasonal difference was detected only at DF, at which seasonal variation in \(GWL \) was the largest. The \(\Omega \) continued to decrease from July through October and showed significant differences between the two seasons at the all sites. Although \(\alpha \) showed a decreasing tendency from July through October at DB, no significant seasonal variation was detected at all the sites.

Interannual variation

Annual values of environmental elements, energy fluxes and bulk parameters are listed in Table 2. Annual precipitation was \(2446 \pm 50 \text{ mm yr}^{-1} \) (mean \(\pm 1 \text{ SD} \)) on average for four annual periods from the 04-05 through 07-08 periods; its interannual variation was small with a coefficient of variance (CV) of 2.1%. Thus, the PSF is categorized into “tropical rainforest” or “humid tropical forest” by the definition of annual precipitation \(> 1500 \text{ mm yr}^{-1} \) and dry
season length < 6 months (Lewis, 2006). Annual dry period length (DPL), which is defined as the number of days with 30-day moving total of precipitation less than 100 mm (Kume et al., 2011), averaged out at 90 ± 33 days yr\(^{-1}\) with a CV of 34.2% for the same period. For the seven years from the 02-03 period, annual precipitation was 2445 ± 90 mm yr\(^{-1}\) (CV: 3.8%). On the other hand, seven-year mean annual precipitation was calculated at 2411 ± 393 mm yr\(^{-1}\) (CV: 16.3%), if precipitation was summed following the solar calendar from 1 January 2002. Although the two means of annual precipitation were very similar each other independently of summation periods, their SD values differed by a factor of 4.4. The annual period starting on DOY 191, which can include almost the whole of one continuous rainy season (Fig. 2), had much smaller interannual variation in precipitation than the solar calendar period, because total precipitation in the rainy season was independent of its duration in Indonesia (Hamada et al., 2002). This comparison reveals that annual precipitation depends on its summation period.

The annual precipitation was rather stable, whereas DPL increased in the 02-03 and 6-07 periods because of the prolonged dry season due to El Niño drought. Following the interannual variation in the precipitation pattern, GWL, midday VPD and \(R_n\) showed significant interannual difference (Table 3), whereas \(R_n\) was strongly affected by smoke from peat fires. Also, there was significant interannual difference both in adjusted and unadjusted \(ET\) to close energy balance, although their CVs were relatively small (<7.5%). Adjusted \(ET\) was the highest in the 07-08 period (La Niña) and the lowest in the 06-07 period (El Niño), which corresponds to the order of annual \(R_n\). Among bulk parameters, only \(\Omega\) differed significantly.

Environmental response of ET
The relationship of ET with environmental elements was analysed using daily values of IE and H under the condition that the gap ratio of half-hourly IE or H was lower than 20% for the daytime from 600 through 1800 (Fig. 3). Both IE and H showed a significant linear relationship, respectively, with \(R_n \) at the all sites. At DB, however, IE and H were apart from the lines downward and upward, respectively, in the dry season in 2004 (Fig. 1), when vegetation was still sparse and surface soil was desiccated. The IE / \(R_n \) averaged out at 0.84, 0.75 and 0.68, respectively, at UF, DF and DB. The IE showed a significant quadratic relationship with GWL, which is a principal hydrological variable with a large annual amplitude. The \(r^2 \) value was the largest at DF with the largest GWL range. The IE normalized by \(R_n \) (IE / \(R_n \)) showed a weak negative linear relationship with GWL at the all sites. On the other hand, there was no relationship between IE / \(R_n \) and midday VPD (data not shown), which is related to evaporative demand.

Adjusted annual ET showed a significant positive linearity \((p < 0.01) \) with the minimum monthly-mean GWL at each site with \(r^2 \) values of 0.98, 0.85 and 0.97, respectively, at UF, DF and DB (data not shown). The \(r^2 \) values were much larger than against annual mean GWL. The strong linearity suggests that the minimum monthly-mean GWL drawdown by 10 cm decreases annual ET by 19, 33 and 26 mm, respectively, at UF, DF and DB. Moreover, as a whole, adjusted annual ET at the two forest sites showed a significant combined correlation \((r^2 = 0.80, p < 0.01) \) (Fig. 4). Therefore, we can say that the minimum monthly-mean GWL is a robust total predictor of annual ET of PSF, because the minimum GWL determines not only the water regime in the dry season but also peat fire occurrence (Takahashi & Limin, 2011), which drastically affects the radiation environment (Fig. 1).

For a further analysis, bulk parameters of \(G_s \) were plotted against GWL (Fig. 5). Data were classified into three groups according to VPD, and quadratic curves were fitted to all data groups, because many tree species decrease stomatal conductance in flooding (e.g.
Kozlowski, 1997). Significant convex curves ($p < 0.05$), except for a high VPD group at DB, show that G_s didn’t decrease simply as GWL decreased. At UF, the curves suggest that G_s peaked at GWLs of -0.10, -0.14 and -0.13 m, respectively, for VPD of <1.4, 1.4-1.9 and >1.9 kPa. Although G_s was lower at higher VPD, it was almost identical independently of VPD in flooding conditions at DB, suggesting weak stomatal control on G_s. It was reported that some flooding-tolerant trees acclimated to flooding and stomatal conductance recovered within a flooding period (Herrera, 2013). At UF, however, there was no significant difference in G_s (16.8 ± 6.2 vs. 16.5 ± 6.9 mm s$^{-1}$ (mean ± 1 SD)) under the flooding condition ($GWL > 0.0$ m) between the early (until February) and late (after March) rainy seasons. To compare the response of G_s to GWL variation, data of the three sites were plotted together under the high VPD condition (> 1.9 kPa) (Fig. 5d). The G_s began to decrease when GWL lowered below a threshold at each site. The GWL threshold for G_s decrease was the lowest at DF, followed by UF and DB in order.

Inter-site comparison

Seasonal means and annual values were compared among the three sites (Tables 1 to 3). The GWL, which was measured as a distance between the ground and groundwater surfaces, was significantly lower at DF because of drainage, whereas GWL at DB was very close to that of UF in spite of the fact that DB was drained at the same time as DF. The relatively high GWL at DB was chiefly caused by large ground subsidence due to peat fires (Hirano et al., 2014). The R_n was significantly smaller at DB only in the rainy season probably because of scattering open water surfaces. Midday VPD was significantly higher at DB chiefly owing to lower IE and higher air temperature (data not shown). Albedo was significantly lower at DB than UF only in the rainy season. The H was significantly larger at DB both in the rainy and dry seasons.
Mean annual ET before adjustment to the energy balance for the four annual periods was 1529 ± 65, 1365 ± 68 and 1197 ± 52 mm yr$^{-1}$ (mean \pm 1 SD), respectively, for UF, DF and DB. Uncertainties shown as one SD in annual ET due to random errors, which were assessed according to our previous study (Hirano et al., 2012), were estimated to be 16 ± 3, 17 ± 2 and 10 ± 1 mm yr$^{-1}$, respectively, for UF, DF and DB. The annual ET was the largest at UF, followed by DF and DB in order, whereas lE showed no significant difference between DF and DB in the dry season. After the adjustment, annual ET increased to 1636 ± 53, 1553 ± 117 and 1374 ± 75 mm yr$^{-1}$, respectively, for UF, DF and DB; ET was significantly smaller at DB than at UF and DF. As a result, Bowen ratio was the highest at DB both in the rainy and dry seasons; it was significantly higher at DF than UF only in the rainy season. The G_s was the highest at UF, followed by DF and DB in order, whereas no significant difference was found between DF and DB in the dry season. The Ω was significantly higher at UF only in the rainy season. The α was significantly lower at DB.
Discussion

Comparison of annual ET between PSF and other tropical forests

Unadjusted and adjusted annual ETs of an almost undrained PSF (UF) were 1529 ± 65 and 1636 ± 53 mm yr\(^{-1}\), respectively, which accounted for 63% and 67% of annual precipitation (P: 2446 ± 50 mm yr\(^{-1}\)), respectively. The CV was 3.2% and 2.0%, respectively, for adjusted ET and precipitation. Although the interannual variation of ET shown as CV was larger than that of precipitation, it was smaller than those of tropical rainforests in Malaysian Borneo (5.6%, Kume et al., 2011) and Peninsular Malaysia (4.0%, Kosugi et al., 2011). The annual ET of UF was more than those of upland tropical rainforests in Malaysian Borneo (estimated ET using a big-leaf model: 1323 ± 74 mm yr\(^{-1}\), P: 2600 ± 272 mm yr\(^{-1}\), ET / P: 0.51; Kume et al., 2011), Peninsular Malaysia (adjusted ET: 1287 ± 52 mm yr\(^{-1}\), P: 1865 ± 288 mm yr\(^{-1}\), ET / P: 0.69; Kosugi et al., 2011), central Amazonia (unadjusted ET: 1123 mm yr\(^{-1}\), P: 2089 mm yr\(^{-1}\), ET / P: 0.54; Malhi et al., 2002), central Amazonia (unadjusted ET: 1123 ± 9 mm yr\(^{-1}\), P: 2091 ± 215 mm yr\(^{-1}\), ET / P: 0.54; Hutyra et al., 2007) and southwest China (adjusted ET: 1029 ± 29 mm yr\(^{-1}\), P: 1322 ± 78 mm yr\(^{-1}\), ET / P: 0.78; Li et al., 2010), a floodplain forest in Amazonia (adjusted ET: 1332 ± 21 mm yr\(^{-1}\), P: 1692 ± 181 mm yr\(^{-1}\), ET / P: 0.79; Borma et al., 2009), a wet montane cloud forest in Hawaii (adjusted ET: 1232 mm yr\(^{-1}\), P: 2401 mm yr\(^{-1}\), ET / P: 0.51; Giambelluca et al., 2009) and the average of tropical forests in Asia and Oceania regions (20°S-20°N) (ET: 1255 ± 329 mm yr\(^{-1}\), P: 2577 ± 1057 mm yr\(^{-1}\), ET / P: 0.49 (n = 57); Komatsu et al., 2012), whereas it was less than that of a wet tropical forest in Costa Rica (estimated ET using the Priestley-Taylor model: 2139 ± 176 mm yr\(^{-1}\), P: 3732 ± 281 mm yr\(^{-1}\), ET / P: 0.57; Loescher et al., 2005). Although the evaporative fraction to precipitation (ET / P) was lower in UF than in tropical rainforests in Peninsular Malaysia (0.69) and southwest China (0.78) and an Amazonian floodplain forest (0.79), the PSF with high GWL is ranked high among moist tropical forests with annual precipitation more than 2000 mm yr\(^{-1}\) (Kume et
In comparison with a tropical rainforest in Malaysian Borneo (Kume et al., 2011), the PSF at UF had 13% more R_n and 52% higher VPD (0.76 kPa) on an annual basis. This higher evaporative demand is a potential reason of the higher ET of the PSF, together with high GWL.

Environmental response of ET

The ET was chiefly controlled by R_n at all the sites, because the relationship between ET and GWL or VPD was weak. The R_n determined the temporal variation of lE by 54, 65 and 59% (r^2), respectively, at UF, DF and DB on a daily basis (Fig. 3). Evaporative fractions (lE / R_n) were on average 0.84, 0.75 and 0.68, respectively, at UF, DF and DB. Fisher et al. (2009) showed a positive relationship between lE and R_n with high r^2 of 0.87 and an evaporative fraction of 0.72 from a synthesis analysis of 21 pan-tropical eddy covariance sites. We can say that the PSF at UF with a higher evaporative fraction has a high evaporative ability among tropical ecosystems. As a result, the PSF showed a low Bowen ratio of 0.19 in comparison with an average (0.30) of the 21 tropical sites (Fisher et al., 2009).

The lE showed relatively clear seasonal variation (Fig. 2); lE continued to increase from the late rainy season to the mid-dry season and decreased in the late-dry season. The annual amplitudes of the seasonal variation in lE were 2.6, 2.2 and 2.7 MJ m$^{-2}$ day$^{-1}$ on a monthly basis, respectively, at UF, DF and DB, which were equivalent to ETs of 1.07, 0.92 and 1.10 mm day$^{-1}$, respectively. A similar ET increase in the dry season was also reported for tropical forests in Amazonia (da Rocha et al., 2004; Hasler & Avissar, 2007; Hutyra et al., 2007) and Thailand (Tanaka et al., 2008), which was attributed to increased R_n and the lack of drought stress due to deep root systems. The lE decrease in the late dry season was enhanced during El Niño drought in 2002 and 2006, when peat fires occurred and consequently R_n decreased sharply (Fig. 1). However, lE / R_n increased conversely even during the peat fires, except for
at DB in 2004. These facts indicate that the ℓE decrease in the late dry season was chiefly caused by R_n decrease due to smoke or haze and evaporative efficiency on R_n didn’t decrease even in such drought conditions. As a result, $\ell E / R_n$ remained high during the late rainy season and the dry season (Fig. 2). On the other hand, G_s continued to decrease during the dry season probably because of stomatal closure due to water stress by GWL decrease and VPD increase (Fig. 5). The decreases from July to October or November were 5.3, 6.5 and 4.3 mm s$^{-1}$, respectively, at UF, DF and DB. Thus, relatively stable $\ell E / R_n$ during the dry season was probably attributed to the compensation of G_s decrease and VPD increase. Severe drought in 2006 decreased G_s remarkably (Fig. 1). Correspondingly, Ω largely decreased during the dry season, especially at DB with sparse, low vegetation. Although many tree species decrease stomatal conductance in flooding (e.g. Kozlowski, 1997), the effect of flooding on G_s was limited (Fig. 5) and was not reflected on the seasonal variation of G_s (Fig. 2), because enhanced evaporation from the flooded ground would compensate the decrease of transpiration due to stomatal closure.

Effects of drainage and fires

The ET measurement started at DF about five years after the excavation of a large canal, which has functioned as effective drainage. Thus, GWL was significantly lower at DF than at UF (Table 3). The difference in GWL between the two forest sites was larger in the dry season than in the rainy season; GWL difference was on average 0.37 m in February-April and 0.50 m in October (Fig. 2). As a result, the annual range of GWL was larger at DF (0.79 m) than at UF (0.66 m). Especially in El Niño years, the GWL difference increased in the late dry season (Fig. 1). The lowering of the minimum GWL decreased annual ET linearly (Fig. 4). However, no significant difference in adjusted annual ET was found between DF and UF by paired t-test ($p = 0.085$), although mean annual ET was 5% less at DF (Table 2).
Although G_s was significantly lower at DF than UF both in the rainy and dry seasons (Table 1), a GWL threshold, at which G_s began to decrease, was much lower at DF than at UF (Fig. 5d), suggesting the adaptation of tree species at DF to the low GWL environment during more than five years after canal excavation. There is a report that 83% of root biomass of a PSF in the same area as UF was distributed in the surface soil layer of 0-0.25 m in depth and remaining 17% was in the underlying layer of 0.25-0.50 m (Sulistiyanto, 2004). Roots of PSF trees are concentrated in the surface peat level in comparison with deeply-rooted upland tropical forests (e.g. Davidson et al., 2011; Nesptad et al., 1994). Tree roots probably penetrated deeper into seasonally unsaturated soil following GWL lowering. Annual evaporative fraction (I_E / R_n) increased linearly ($r^2 = 0.88$) for six years from the 02-03 to 07-08 periods at DF. In addition, G_s at DF was averaged in a drought condition (GWL: -1.4 to -1.2 m, VPD: 2.0 to 2.5 kPa) for each of three El Niño events in 2002, 2004 and 2006; the means were 6.3 ± 2.5, 8.5 ± 3.9 and 7.8 ± 2.8 mm s⁻¹, respectively, for 2002, 2004 and 2006. As a result, mean G_s in 2002 was significantly lower than those in 2004 and 2006 (Tukey’s HSD, $p < 0.05$). These facts support the hypothesis of adaptation. The G_s and ET most probably decreased by GWL lowering due to drainage at DF, because G_s was significantly lower in the dry season only at DF (Table 1) and annual ET showed a positive correlation with the minimum GWL (Fig. 4). However, the drainage effect would be eased gradually because of the adaptation through root redistribution.

The DB, a burnt site with regrowing vegetation, was drained together with DF by a canal running between the two sites, whereas GWL at DB was very close to that at UF, because the ground subsided largely owing to peat fires (Hirano et al., 2014). Adjusted annual ET of 1374 ± 75 mm yr⁻¹, which accounted for 56% of annual precipitation, was significantly lower than those of the other two forest sites because of low tree density; the annual ET was equivalent to 84% and 88% of UF and DF, respectively (Tables 2 and 3). However, the annual ET was
compatible with that of a tropical rainforest in Malaysian Borneo (Kume et al., 2011). Conversely, annual H was significantly higher than those at UF and DF, and consequently Bowen ratio was significantly higher. Generally, albedo is higher in unforested areas with short vegetation than in forest (e.g. Bonan, 2008), which can result in lower R_n in unforested areas. In Amazonia, land conversion from forest to pasture increased albedo by 55% and decreased R_n by 13% (von Randow et al., 2004). Midday albedo at a pasture and an upland rice field in Amazonia were reported to be 0.15-0.17 (Sakai et al., 2004). At DB, however, annual mean midday albedo was 0.087 ± 0.007 and showed no significant difference with the forest sites. Also, annual R_n showed no significant difference, whereas it was smaller by 6% than that at UF. The unexpected lower albedo at DB was attributable to dark color of burnt peat and scattered open water. On the other hand, annual mean G_s was less than 50% of that at UF (Table 2) chiefly owing to low leaf area index. Although G_s showed no significant difference between the rainy and dry seasons (Table 1), inter-site difference between DB and UF increased by 50% in the dry season. The G_s responded to GWL lowering more sensitively than those of UF and DF (Fig. 5); G_s began to decrease at about -0.1 m. This sensitive response could be due to the shallow rooting depth (von Randow et al., 2012) of the regrowing vegetation, which was dominated by fern and sedge plants (Hirano et al., 2012). Tree loss due to fires and subsequent vegetation succession decreased G_s and consequently ET, whereas the decrease in ET was less than expected by G_s decrease, because albedo didn’t decrease, midday VPD increased and GWL remained high owing to large subsidence (Fig. 2).

Annual discharge can be calculated from precipitation and ET to be 810 ± 53, 893 ± 105 and 1072 ± 71 mm yr$^{-1}$, respectively, at UF, DF and DB, on the assumption that storage change is negligible on an annual basis. Although no significant difference was found between UF and DF, annual discharge tended to increase by drainage and significantly increased by tree loss due to fires. A negative linear relationship was found between inter-site
difference in annual discharge (DF minus UF) and the minimum monthly \(GWL\) at DF \(p < 0.05\) (data not shown). The increase of discharge potentially increases fluvial organic carbon outflow (Moore et al., 2013). Our results indicate that disturbances due to drainage and fires decreased \(ET\) and increased discharge; the effect of drainage was remarkable in El Niño years with lower \(GWL\). This study can contribute to a better assessment of the water balance of PSF by providing reliable information on \(ET\) to hydrological models and improve our knowledge of the carbon dynamics of PSF through a better prediction of \(GWL\) which is determined as a result of water balance.
Acknowledgements

This work was supported by JSPS Core University Program, JSPS KAKENHI (Nos. 13375011, 15255001, 18403001, 21255001 and 25257401) and the JST-JICA Project (SATREPS) (Wild Fire and Carbon Management in Peat-Forest in Indonesia).
References

Supporting Information

Additional Supporting Information is available in the online version of this article:

Data S1. Supporting text describing energy imbalance, including references and summary table (Table S1).
Table 1 Comparison of environmental elements, energy fluxes and surface parameters between the rainy and dry seasons (mean ± 1 standard deviation).

<table>
<thead>
<tr>
<th>Site</th>
<th>GWL (m)</th>
<th>Midday VPD (kPa)</th>
<th>R_n (MJ m$^{-2}$ day$^{-1}$)</th>
<th>Albedo</th>
<th>H (MJ m$^{-2}$ day$^{-1}$)</th>
<th>I_E (MJ m$^{-2}$ day$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rainy</td>
<td>Dry</td>
<td>Rainy</td>
<td>Dry</td>
<td>Rainy</td>
<td>Dry</td>
</tr>
<tr>
<td>UF</td>
<td>-0.06±0.25a</td>
<td>-0.43±0.26**, a</td>
<td>1.41±0.18a</td>
<td>1.77±0.14**</td>
<td>13.1±0.8a</td>
<td>12.9±2.2</td>
</tr>
<tr>
<td>DF</td>
<td>-0.45±0.30b</td>
<td>-0.94±0.35**, b</td>
<td>1.43±0.20a</td>
<td>1.84±0.14**</td>
<td>13.0±0.8a</td>
<td>12.4±2.5</td>
</tr>
<tr>
<td>DB</td>
<td>-0.05±0.20a</td>
<td>-0.42±0.29**, a</td>
<td>1.71±0.31b</td>
<td>1.97±0.31*</td>
<td>12.4±0.7b</td>
<td>11.9±2.3</td>
</tr>
</tbody>
</table>

p^2 | <0.01 | <0.01 | <0.01 | 0.11 | <0.01 | 0.63 | 0.04 | 0.84 | <0.01 | <0.01 | <0.01 | <0.01

<table>
<thead>
<tr>
<th>Site</th>
<th>ET (mm day$^{-1}$)</th>
<th>Bowen ratio</th>
<th>I_E / R_n</th>
<th>G_s (mm s$^{-1}$)</th>
<th>Ω</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rainy</td>
<td>Dry</td>
<td>Rainy</td>
<td>Dry</td>
<td>Rainy</td>
<td>Dry</td>
</tr>
<tr>
<td>UF</td>
<td>4.09±0.33a</td>
<td>4.60±0.71**, a</td>
<td>0.20±0.03a</td>
<td>0.19±0.03a</td>
<td>0.76±0.07a</td>
<td>0.88±0.12**, a</td>
</tr>
<tr>
<td>DF</td>
<td>3.73±0.28b</td>
<td>3.78±0.65b</td>
<td>0.24±0.05b</td>
<td>0.27±0.08a</td>
<td>0.70±0.04b</td>
<td>0.75±0.06**, b</td>
</tr>
<tr>
<td>DB</td>
<td>3.27±0.30c</td>
<td>3.35±0.75b</td>
<td>0.32±0.06c</td>
<td>0.42±0.18**, b</td>
<td>0.64±0.06c</td>
<td>0.69±0.11b</td>
</tr>
</tbody>
</table>

p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01

1) Mean for midday from 1000 to 1400.
2) The p-value of ANOVA among the sites in each column.
3) Different alphabet letters in each column denote significant difference among the sites at a significance level of 0.05 according to Tukey’s HSD.
4) The symbol of * or ** denote significant difference between the rainy and dry seasons at a significant level of 0.05 or 0.01, respectively, according to Student’s t-test.
Table 2 Annual values of environmental elements, energy fluxes and bulk parameters

<table>
<thead>
<tr>
<th></th>
<th>02-03</th>
<th>03-04</th>
<th>04-05</th>
<th>05-06</th>
<th>06-07</th>
<th>07-08</th>
<th>08-09</th>
<th>Mean(^1)</th>
<th>1 SD</th>
<th>CV (%(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global radiation (GJ m(^-2) yr(^-1))</td>
<td>6.22</td>
<td>6.29</td>
<td>6.29</td>
<td>6.24</td>
<td>6.01</td>
<td>6.44</td>
<td>6.20</td>
<td>6.24</td>
<td>0.18</td>
<td>2.8</td>
</tr>
<tr>
<td>Precipitation (mm yr(^-1))</td>
<td>2287</td>
<td>2459</td>
<td>2506</td>
<td>2456</td>
<td>2384</td>
<td>2438</td>
<td>2582</td>
<td>2446</td>
<td>50</td>
<td>2.1</td>
</tr>
<tr>
<td>DPL (days(^3))</td>
<td>146</td>
<td>105</td>
<td>105</td>
<td>53</td>
<td>123</td>
<td>78</td>
<td>139</td>
<td>90</td>
<td>31</td>
<td>34.2</td>
</tr>
</tbody>
</table>

Mean GWL (m) | -0.15 | -0.07 | -0.25 | -0.08 | -0.14 | 0.08 | 61.2 |
Minimum GWL (m) | -0.67 | -0.51 | -0.98 | -0.33 | -0.62 | 0.27 | 43.8 |
\(R_e\) (GJ m\(^2\) yr\(^-1\)) | 4.78 | 4.77 | 4.58 | 4.92 | 4.76 | 0.14 | 2.9 |
Midday VPD (kPa) | 1.46 | 1.41 | 1.59 | 1.50 | 1.49 | 0.07 | 5.0 |
\(H\) (GJ m\(^2\) yr\(^-1\)) | 0.70 | 0.72 | 0.73 | 0.73 | 0.72 | 0.02 | 2.1 |
\(\text{IE}\) (GJ m\(^2\) yr\(^-1\)) | 3.51 | 3.84 | 3.69 | 3.86 | 3.73 | 0.16 | 4.3 |

<table>
<thead>
<tr>
<th></th>
<th>UF</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowe ratio</td>
<td>0.20</td>
<td>0.19</td>
<td>0.20</td>
<td>0.19</td>
<td>0.19</td>
<td>0.01</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unadjusted ET (mm yr(^-1))</td>
<td>1442</td>
<td>1577</td>
<td>1515</td>
<td>1582</td>
<td>1529</td>
<td>65</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted ET (mm yr(^-1))(^3))</td>
<td>1634</td>
<td>1648</td>
<td>1566</td>
<td>1695</td>
<td>1636</td>
<td>53</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G_e) (mm s(^-1))</td>
<td>14.2</td>
<td>17.6</td>
<td>15.1</td>
<td>16.1</td>
<td>15.7</td>
<td>1.4</td>
<td>9.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Omega)</td>
<td>0.61</td>
<td>0.62</td>
<td>0.55</td>
<td>0.57</td>
<td>0.59</td>
<td>0.04</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>1.00</td>
<td>1.03</td>
<td>1.00</td>
<td>1.03</td>
<td>1.01</td>
<td>0.02</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>albedo</td>
<td>0.094</td>
<td>0.090</td>
<td>0.092</td>
<td>0.091</td>
<td>0.091</td>
<td>0.002</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>DF</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowe ratio</td>
<td>0.28</td>
<td>0.22</td>
<td>0.26</td>
<td>0.22</td>
<td>0.29</td>
<td>0.20</td>
<td>0.24</td>
<td>0.04</td>
<td>17.8</td>
<td></td>
</tr>
<tr>
<td>Unadjusted ET (mm yr(^-1))</td>
<td>1299</td>
<td>1364</td>
<td>1320</td>
<td>1386</td>
<td>1304</td>
<td>1453</td>
<td>1365</td>
<td>68</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Adjusted ET (mm yr(^-1))(^3))</td>
<td>1471</td>
<td>1601</td>
<td>1529</td>
<td>1611</td>
<td>1401</td>
<td>1671</td>
<td>1553</td>
<td>117</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>(G_e) (mm s(^-1))</td>
<td>9.9</td>
<td>12.5</td>
<td>11.8</td>
<td>13.3</td>
<td>9.7</td>
<td>14.2</td>
<td>12.3</td>
<td>1.9</td>
<td>15.8</td>
<td></td>
</tr>
<tr>
<td>(\Omega)</td>
<td>0.51</td>
<td>0.57</td>
<td>0.55</td>
<td>0.57</td>
<td>0.49</td>
<td>0.47</td>
<td>0.52</td>
<td>0.05</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.96</td>
<td>0.99</td>
<td>0.95</td>
<td>1.00</td>
<td>0.95</td>
<td>1.02</td>
<td>0.98</td>
<td>0.04</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>albedo</td>
<td>0.089</td>
<td>0.088</td>
<td>0.087</td>
<td>0.083</td>
<td>0.091</td>
<td>0.090</td>
<td>0.088</td>
<td>0.003</td>
<td>3.9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>DB</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowe ratio</td>
<td>0.38</td>
<td>0.30</td>
<td>0.36</td>
<td>0.32</td>
<td>0.31</td>
<td>0.34</td>
<td>0.34</td>
<td>0.03</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td>Unadjusted ET (mm yr(^-1))</td>
<td>1150</td>
<td>1267</td>
<td>1165</td>
<td>1206</td>
<td>1194</td>
<td>1197</td>
<td>1197</td>
<td>52</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>Adjusted ET (mm yr(^-1))(^3))</td>
<td>1359</td>
<td>1404</td>
<td>1277</td>
<td>1454</td>
<td>1436</td>
<td>1374</td>
<td>1374</td>
<td>75</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>(G_e) (mm s(^-1))</td>
<td>7.07</td>
<td>8.01</td>
<td>6.68</td>
<td>7.67</td>
<td>7.52</td>
<td>7.36</td>
<td>7.36</td>
<td>0.60</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>(\Omega)</td>
<td>0.64</td>
<td>0.58</td>
<td>0.43</td>
<td>0.47</td>
<td>0.56</td>
<td>0.53</td>
<td>0.53</td>
<td>0.10</td>
<td>18.2</td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.87</td>
<td>0.91</td>
<td>0.86</td>
<td>0.87</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>0.02</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>albedo</td>
<td>0.078</td>
<td>0.088</td>
<td>0.096</td>
<td>0.088</td>
<td>0.087</td>
<td>0.087</td>
<td>0.087</td>
<td>0.007</td>
<td>8.3</td>
<td></td>
</tr>
</tbody>
</table>

1) Mean for four annual periods from 04-05 through 07-08.
2) Coefficient of variance.
3) Dry period length, which is defined as days having a 30-day moving precipitation total of < 100 mm (Kume et al., 2011).
4) The minimum monthly-mean GWL.
5) ET forced to close energy balance using Bowen ratio on a daily basis.
Table 3 The p-values from two-way ANOVA for sites and years without replication based on the data in Table 3.

<table>
<thead>
<tr>
<th></th>
<th>Site</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWL</td>
<td>UF a</td>
<td>b 0.001</td>
</tr>
<tr>
<td></td>
<td>DF b</td>
<td>a</td>
</tr>
<tr>
<td>R_a</td>
<td>UF 0.001</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>DF a</td>
<td>0.016</td>
</tr>
<tr>
<td>Midday VPD</td>
<td>UF a</td>
<td>b</td>
</tr>
<tr>
<td>H</td>
<td>UF a</td>
<td>b 0.151</td>
</tr>
<tr>
<td></td>
<td>DF a</td>
<td>b</td>
</tr>
<tr>
<td>lE or unadjusted ET</td>
<td>UF a</td>
<td>b 0.014</td>
</tr>
<tr>
<td></td>
<td>DF b</td>
<td>c</td>
</tr>
<tr>
<td>Bowen ratio</td>
<td>UF a</td>
<td>b 0.057</td>
</tr>
<tr>
<td></td>
<td>DF a</td>
<td>b</td>
</tr>
<tr>
<td>Adjusted ET</td>
<td>UF a</td>
<td>b 0.002</td>
</tr>
<tr>
<td></td>
<td>DF a</td>
<td>b</td>
</tr>
<tr>
<td>G_s</td>
<td>UF a</td>
<td>b 0.054</td>
</tr>
<tr>
<td></td>
<td>DF b</td>
<td>c</td>
</tr>
<tr>
<td>Ω</td>
<td>UF 0.100</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>DF a</td>
<td>b</td>
</tr>
<tr>
<td>α</td>
<td>UF a</td>
<td>b 0.068</td>
</tr>
<tr>
<td></td>
<td>DF a</td>
<td>b</td>
</tr>
<tr>
<td>albedo</td>
<td>UF 0.424</td>
<td>0.365</td>
</tr>
<tr>
<td></td>
<td>DF a</td>
<td>b</td>
</tr>
</tbody>
</table>

1) Different alphabet letters in each column denote significant difference among the sites at a significance level of 0.05 according to Tukey’s HSD.
Fig. 1. Time series of monthly values of environmental elements, energy fluxes and bulk parameters at the three sites (UF, DF and DB) between 2001 and 2009. The 3-month running mean of sea surface temperature anomalies in the Niño 3.4 region is shown (a). El Niño and La Niña events are characterized by a five consecutive 3-month means with thresholds above +0.5 and below -0.5°C, respectively (NOAA, http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.stml).

Fig. 2. Mean seasonal variations in monthly values of environmental elements, energy fluxes and bulk parameters at the three sites (UF, DF and DB) from August 2004 to July 2008. GWL: groundwater level, midday VPD: vapor pressure deficit between 1000 and 1400, R_n: net radiation, H: sensible heat flux, lE: latent heat flux, G_s: bulk surface conductance, Ω: decoupling coefficient, α: Priestley-Taylor coefficient.

Fig. 3. Relationships between energy fluxes and environmental elements at the three sites (UF, DF and DB) on a daily basis. Lines (a, b, c, g, h and i) and quadratic curves (d, e and f) were fitted ($p < 0.05$). Grey symbols at DB (c) were measurements in the dry season in 2004, which were excluded from the fitting. H: sensible heat flux, lE: latent heat flux, R_n: net radiation, GWL: groundwater level.

Fig. 4. Combined relationship between annual evapotranspiration (ET) and the minimum monthly- mean groundwater level (GWL) for UF and DF. A significant line was fitted ($p < 0.01$).
Fig. 5. Relationships between bulk surface conductance (G_s) and groundwater level (GWL) at UF (a), DF (b) and DB (c). Data were divided into three groups according to vapor pressure deficit (VPD) and a quadratic curve was fitted to each group ($p < 0.05$). Data in each VPD group were binned into deciles by GWL. The relationships are compared among the three sites using the deciles in a high VPD condition (> 1.9 kPa) (d). Dark grey symbols at DB (c) were measurements in the dry season in 2004, which were excluded from the fitting.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5