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Abstract: Information flow in adaptively interacting stochastic processes is studied. We give
an extended form of game dynamics for interacting Markovian processes and compute a measure
of causal information flow, which is different from the transfer entropy. In the game theoretic
situation, causal information flow can show oscillatory behavior through reward-maximizing
adaptation of two players. The adaptive dynamics for the coin-tossing game is exemplified and
the causal information flow therein is investigated.
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1. Introduction
When studying the interaction and evolution of many stochastic processes that are endowed with the
ability to adapt to their environment, a natural question arises: how does information flow though the
system and, moreover, how can we measure the information flow? From the viewpoint of networks of
stochastic elements, flow of information in the network has been studied [2, 16]. In general, mutual
information is not a representative measure of information flow in adaptive dynamics as its causal
structure forms a complex network, making the concept of information flow unclear. To address
this problem, we give an example of game dynamics for interacting Markovian processes [3–6] and
investigate information flow quantitatively. Suppose that N stochastic processes X1, . . . , XN are
interacting with each other. At each time step τ , the unit n sends a symbol sn ∈ {0, 1} to the other
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units and receives at most N − 1 symbols from the other units. We denote the global system state as
s = s1 · · · sN . The next symbol sent by the unit n, s′n, is dependent on the symbol received from the
previous global state, s. Local transition probabilities for n-th unit are described as

x
(n)
sn

′|s = P (Xn(τ + 1) = sn
′|X1(τ) = s1, . . . , XN (τ) = sN ), (1)

where n = 1, . . . , N and x
(n)
0|s + x

(n)
1|s = 1. The transition probabilities (x(n)

0|s , x
(n)
1|s ) is an element of N

simplices denoted by Δ(n)
s .

We introduce a local adaptation process to change transition probabilities x
(n)
sn

′|s, assuming that
adaptation is very slow compared with relaxation time of the global Markovian process. After the
system reaches a stationary state, each unit independently changes its stochastic structure by changing
its transition probabilities. Assuming strong connectivity of the global Markovian kernel, we study
dynamics with strictly positive transition probabilities. This assumption corresponds to persistency
of dynamics of transition probabilities x

(n)
s′

n|s in the state space. Time evolution of x
(n)
s′

n|s is driven
by simple stochastic learning through interaction: reinforcements for transition probabilities of the
unit n to send 0 and 1 in the previous global state s are given by the constants a

(n)
0|s and a

(n)
1|s . The

conditional expectation reinforcements R
(n)
sn

′|s to choose each symbols sn
′ given the previous state s

are calculated with a
(n)
sn

′|s, x
(n)
sn

′|s, and the unique stationary distribution. For Xn, we give adaptive
dynamics for probabilities of s′n given s for τ + 1

x
(n)
sn

′|s(τ + 1) =
x

(n)
sn

′|s(t)e
β(n)(R

(n)
sn′|s(τ+1)−R

(n)
sn′|s(τ))

∑N
s′

n
x

(n)
sn

′|s(t)e
β(n)(R

(n)
sn′|s(τ+1)−R

(n)
sn′|s(τ))

, (2)

where β(n) is the learning rate for the unit n. We assume that the time scale of the update is larger
than the relaxation time of the global Markovian process. The continuous time model by letting
τΔt → t with τ → ∞ and Δt → 0 is given as

˙
x

(n)
sn

′|s(t)

x
(n)
sn

′|s(t)
= β(n)(R(n)

sn
′|s(t) − R

(n)
|s (t)), (3)

for n = 1, . . . , N , where R
(n)
|s =

∑
sn

′ x
(n)
sn

′|sR
(n)
sn

′|s is the conditional expectation of reinforcements over

all possible symbols given the previous system state s [1, 7]. Intuitively, when (R(n)
sn

′|s(t) − R
(n)
|s (t)) is

positive, that is, the conditional expectation reinforcement for a symbol sn
′ given s is greater than

the average of the expectation reinforcement given s, the logarithmic derivative of x
(n)
sn

′|s(t) increases,
and when negative, it decreases. The learning rate, β(n), controls the time scales of the adaptive
dynamics of each unit n.

2. Model dynamics
Suppose that two biased coin tossing processes X and Y adaptively interact with each other. They
produce a pair of symbols ij at each time step, where i and j are either heads (0) or tails (1). At
the next time step, X sends a symbol i′ to Y based on the previous pair of symbols ij, and vice
versa. If there is a causal interaction with one step memory, the global stochastic process becomes a
simple Markovian process. When X’s and Y ’s behaviors are causally separated, the whole system is
a product of two biased coin tossing processes (case 10 in Fig. 1).

Considering Fig. 1, the extreme cases are 1 and 10. Case 1 corresponds to the situation, “each
unit has one step memory of the previous global state s,” and case 10 to, “no information of s.”
Local transition probabilities of X and Y are given as (xi′|ij) = P (X ′ = i′|X = i, Y = j), and
(yj′|ij) = P (Y ′ = j′|X = i, Y = j), where

∑
i′ xi′|ij =

∑
j′ yj′|ij = 1. The global Markovian kernel

is given with (xi′|ijyj′|ij) where
∑

i′,j′ xi′|ijyj′|ij = 1. When X and Y match heads (0) or tails (1)
of coins (00 or 11), Y reinforces the choice, and when they don’t (01 or 10), X reinforces the choice.
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Fig. 1. Possible causal structure (case 1-10): X → Y indicates that Y re-
ceives symbols sent by X (information flow from X to Y). Dashed arrows
indicate ignorance of received symbols (no information flow).

This interaction is called the matching pennies game in game theory. The reinforcements are given
by a bi-matrix

(A,B) =
([ −εX εX

εX −εX

]
,

[
εY −εY

−εY εY

])
, (4)

where 0 < εX , εY < 1. The interaction matrices, A = (aij) and B = (bji), are the reinforcements for
X and Y for the global state ij. The Nash equilibrium of the game (4) in terms of game theory is an
uniformly random state (1/2, 1/2). The conditional expectation reinforcements are given by RX

i′|ij =
(Ay|ij)i′ and RY

j′|ij = (Bx|ij)j′ , where x|ij = (x0|ij , x1|ij)T , and y|ij = (y0|ij , y1|ij)T . Equation (3)
reduces to

˙xi′|ij
xi′|ij

= βX [(Ay|ij)i′ − x|ij · Ay|ij ],

˙yj′|ij
yj′|ij

= βY [(Bx|ij)j′ − y|ij · Bx|ij ]. (5)

Equation (5) corresponds to adaptive dynamics for an interacting Markovian processes in an 8-
dimensional state space Πi,jΔX

ij × ΔY
ij , which is in the form of standard game dynamics.

Similarly, for case 10, we have

˙xi′|∗∗
xi′|∗∗

= βX [(Ay|∗∗)i′ − x|∗∗ · Ay|∗∗],

˙yj′|∗∗
yj′|∗∗

= βY [(Bx|∗∗)j′ − y|∗∗ · Bx|∗∗], (6)

where x|∗∗ = (x0|∗∗, x1|∗∗)T , and y|∗∗ = (y0|∗∗, y1|∗∗)T . Here, the ∗ is either 0 or 1, that corresponds
to ignorance of received symbols. Equation (6) is, again, standard game dynamics in a 2-dimensional
state space ΔX ×ΔY . It is known that the dynamics of Eq. (6) is Hamiltonian with a constant of mo-
tion H = 1/βXD(x∗||x)+1/βY D(y∗||y), where D is Kullback-Leibler divergence, and where (x∗,y∗)
is the Nash equilibrium of the game (A,B). The dynamics are neutrally stable periodic orbits for all
range of parameters εX , εY [6, 7]. When the degree of freedom of the Hamiltonian systems is more
than 2, the dynamics may be chaotic [11–13]. Summarizing, if all units have complete information of
the previous global state s (case 1), or they are all causally separated with no information of s (case
10), the family of standard game dynamics recovers.

For intermediate cases 2–9, showing in Fig. 1, where units have partial information of s, we have ex-
plicit stationary distribution terms in the adaptive dynamics. Assuming through adaptation process,
the transition probabilities are strictly positive, 0 < xi′|ij , yj′|ij < 1, an unique stationary distribution
(p(i, j)) exists. We denote the marginal stationary distributions pX = (P (X = 0), P (X = 1))T ,
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pY = (P (Y = 0), P (Y = 1))T . The conditional stationary distribution of i, given the previous state
j, is denoted as p(i|j) = p(i, j)/p(j), and those of j, given the previous state i, as p(j|i) = p(i, j)/p(i).
For case 2, with RX

i′|ij = (Ay|i∗)i′ and RY
j′|i∗ =

∑
j p(j|i)(Bx|ij)j′ , Eq. (3) reduces to

˙xi′|ij
xi′|ij

= βX [(Ay|i∗)i′ − x|ij · Ay|i∗], (7)

˙yj′|i∗
yj′|i∗

= βY [(
∑

j

p(j|i)Bx|ij)j′ − y|ij · (
∑

j

p(j|i)Bx|ij)].

Similarly, for case 5, with RX
i′|∗j = (ApX)i′ and RY

j′|i∗ = (BpY )j′ , we obtain

˙xi′|∗j

xi′|∗j
= βX [(ApY )i′ − x|∗j · ApY ],

˙yj′|i∗
yj′|i∗

= βY [(BpX)j′ − y|i∗ · BpX ]. (8)

Note that (p(i, j)) are given as a function of (xi′|ij) and (yj′|ij), thus the equations of motion are
in a closed form. For cases 2–9, we have nonlinear couplings with a stationary distribution, which
is in contrast to the quasi-linear coupling of standard game dynamics. Eqs. (6)–(8) are both in an
extended form of standard game dynamics.

When the parameters are fixed to βX = βY and εX = εY = 0.5, we have four types of dynamics
for all 10 cases in Fig. 1;

1. neutrally stable periodic motion of Markovian kernel,

2. convergence to a fixed Markovian kernel that gives a uniform stationary distribution,

3. sharp switching among almost deterministic Markovian kernel,

4. a combination of (1)–(3).

In contrast to the matching pennies game dynamics which shows only neutrally stable periodic orbits,
it shows new types of dynamics naturally given by the Markovian structure. They are exemplified by
case 1, 2, and 5.

Case 1 (Eq. (5)): Neutrally stable quasi-periodic tori are observed. They are simply a product
of periodic orbits in the matching pennies game dynamics. The dynamics of Eq. (6) is embedded in a
subspace in the state space, given by xi′|00 = xi′|01 = xi′|10 = xi′|11 and yj′|00 = yj′|01 = yj′|10 = yj′|11
(Fig. 2, top).

Case 2 (Eq. (6)): A combination of the dynamics of Eq. (5), quasi-periodic tori, and the dynamics
of Eq. (8), transients to a heteroclinic cycle, are observed (Fig. 2, middle). One of the infinitely many
attracting periodic orbits, that corresponds to periodic orbits in Eq. (5), is selected depending on
initial conditions (Fig. 2, middle).

Case 5 (Eq. (8)): Bi-stable dynamics is observed. A manifold which gives uniform stationary
distribution p(i, j) = 1/4, is an attracting set. Fixed points on this attracting manifold are all
neutrally stable. Heteroclinic cycles which consists of several vertex saddles are also attracting sets.
Depending on initial conditions, convergence to one of the fixed points on the attracting manifold or
one of the heteroclinic cycles are observed (Fig. 2, bottom).

3. Causal information flow
In the standard game dynamics which describes a causally separated stochastic process, information
flow is always 0. By using the Markovian extension of game dynamics, we can now quantify bi-
directional information flow between stochastic units.
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Fig. 2. (Top) Case 1: Neutrally stable quasi-periodic tori. (Middle) Case
2: A combination of quasi-periodic tori and transients to a heteroclinic cycle.
(Bottom) Case 5: (a) Transients to a heteroclinic cycle which consists of vertex
saddles (x0|∗0, x0|∗1, y0|0∗, y0|1∗) = (0, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1), (1, 1, 1, 1)
and (b) convergence to one of infinitely many neutrally stable fixed points
which gives a uniform stationary distribution p(i, j) = 1

4 ; (in this case, con-
verging to (x0|∗0, x0|∗1, y0|0∗, y0|1∗) = (0.539057, 0.460943, 0.671772, 0.328228))
are attracting sets.
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Equation (9) gives a measure of information flow which is conditional mutual information of Y and
X ′ given X. It is a measure of deviation of two random variables from stochastic independence of X ′

and Y , given X, and is sometime called transfer entropy [8, 9, 14, 15];

I(Y : X ′|X)

=
∑
i′,i,j

p(i′, i, j) log
xi′|ij∑

j p(j|i)xi′|ij

= −
∑
i′,i

p(i)(
∑

j

p(j|i)xi′|ij) log(
∑

j

p(j|i)xi′|ij) +
∑
i,j

p(i, j)[
∑
i′

xi′|ij log(xi′|ij)]. (9)

Another measure of information flow which describes deviation of two random variables from causal
independence, is formulated in [2], which is based on causality theory [10]. This causal information
flow from Y to X ′, given X, is defined by Eq. (10);

I(Y → X ′|X)

=
∑
i′,i,j

p(i)p(j)xi′|ij log
xi′|ij∑

j p(j)xi′|ij

= −
∑
i′,i

p(i)(
∑

j

p(j)xi′|ij) log(
∑

j

p(j)xi′|ij) +
∑
i,j

p(i)p(j)[
∑
i′

xi′|ij log(xi′|ij)]. (10)

As a result, we have either stationary constant causal information flow or oscillatory causal infor-
mation flow for all 10 cases in Fig. 1.

If Y is a fixed information source, such as

(y0|00, y0|01, y0|10, y0|11) = (1, 0, 1, 0), (11)

the dynamics (5) with βY = 0 monotonically converges to an optimal

(x0|00, x0|01, x0|10, x0|11) = (0, 1, 0, 1). (12)

The system state s is either 00 or 11 and X is always rewarded. In this case, the transfer entropy
defined by (9) eventually decreases to 0;

I(X : Y ′|X) = 0,

I(Y : X ′|Y ) = 0. (13)

In contrast, the causal information flow from Y to X shows a positive value;

I(X → Y ′|X) = 0,

I(Y → X ′|Y ) = log 2. (14)

As we interpret the model, there should be information flow from Y to X because X receives symbols
sent by Y and extracts information from Y ’s behavior. Thus, X is not stochastically dependent on Y ,
but it is causally dependent on Y . The above measure defined by (10) clearly captures this property.
We can say that I(X → Y ′|X) is a more appropriate measure of the information flow.

In general game theoretic settings, causal information flow vanishes when the system state is on
a manifold M0 defined by xi′|ij =

∑
j p(j)xi′|ij and yj′|ij =

∑
i p(i)yj′|ij , and is maximized to log 2

when the system state is on a manifold M1 defined by the set of points which have maximal distance
from M0. The case 5, with this bi-stability between a fixed point and heteloclinic cycle, gives us
an example of stationary causal information flow, which is similar to the above ‘one-way’ interaction
example.

On the other hand, in the case 2, we have oscillatory dynamics between the manifold M0 and M1,
which emerges through reward-maximizing adaptation at each moment. In game theoretic situation,
X extracts information from Y and Y extracts information from X as well. As a result, oscillatory
behavior of information flow is observed (Fig. 4). This can be interpreted as the information flow in
the dynamics switching among quasi-stationary states.
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Fig. 3. I(Y → X ′|Y ) → log 2 which shows existence of causal information
flow caused from the phenomenon that X receives symbols sent by Y and
extracts information from Y . To the contrary, the transfer entropy, I(X :
Y ′|X), is always 0.

Fig. 4. (Top) Oscillatory behavior of causal information flow I(X → Y ′|X)
(top) and I(Y → X ′|X) (bottom), in case 2. Oscillation of causal information
flow emerges through reward-maximizing adaptation. These imply that the
player X extracts information from the player Y, and vice versa in the game
theoretic situation.

4. Conclusion
The presented model is an extension of game dynamics to interacting Markovian processes. If all units
have complete information of the previous global state s, or they are all causally separated without
information of s, a family of standard game dynamics recovers. For intermediate cases with partial
information of s, we have stationary distribution terms in the equations of motion. The extended
model shows different behavior compared with the standard game dynamics [5, 6], which arise from
underlying heterogeneous causal structure among players.

A measure of causal information flow [2] was applied to various of these structures, verifying its
consistency with the prescribed causal connections. In particular, at an intuitive level, there should
be no information flow from the player X to the player Y , if there is no corresponding causal link.
This intuition is perfectly captured by our measure. We also showed that, in more general situations,
the causal information flow displays oscillatory behaviours, which, in particular, reflects the flow of
information in both directions. In terms of dynamical systems theory, this oscillatory behaviour can
be interpreted as switching among quasi-stationary states, which remains for future studies. Also, it
is interesting to study adaptive dynamics for N units with heterogeneous game interaction, and with
various types of causal networks. The relationship individual reward structure and information flow
among units may also give us new insights for game dynamics with asymmetric information structure.
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