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Abstract: We propose an extended framework of two dimensional neural field with network
between distant cortical areas as a model of global brain dynamics, and the models whose
geometry of the neural field changes depending on the field dynamics as a model for growing
brains. As a characteristic pattern with non-local and network interactions in neural field,
pulser and memory are constructed. Possible applications to quantitative measurements of
cortical activities of mouse and human brain development are briefly discussed.
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1. Introduction

1.1 Two dimensional neural fields

A neural field model describes the dynamics of populational neuronal firing activities [5, 6], which is
a spatially continuous-limit of artificial neural networks [1-4]. Let u(x) and v(x) be excitatory and
inhibitory variables at position x = (z, ). The activation-inhibition dynamics is described as,

) — L 600 + L [0 1)
du(x)
o = Low [u(x)] + Loy ()] (2)

where L., Lyy, Ly, and L,, are operators representing interactions of the field variables. The
standard reaction-diffusion equation uses the linear Laplacian diffusion for L,, and L., together
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with pointwise interactions for L., and L., [8], whereas the equation of a neural field uses non-local
interactions for L., and L,, due to the synaptic connections of neurons, represented by a spatial
convolution of the type

Lo ()] = [ e ) flu ()] ¥’ 3)

where f is a nonlinear function. The typical equations for a two-dimensional neural field are as follows:
0

W09 = e o= %) Pl ) = W = [[wie (= %) FloG) — W' =), (4
0
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Here, u(x) and v(x) are the mean potentials of excitatory and inhibitory neurons, respectively, at
position x and time ¢. The convolutive functions w. (x — x’) represent the synaptic efficacies. The
functions f describe the activation functions of neurons together with the threshold h. The mean
potentials are activated by u(x) and in turn inhibited by v(x). The parameter 3 governs the time scale
of inhibitory neurons. The two dimensional neural field is homogeneous and rotationally invariant.

The neural field model can be regarded as a special case of the field equation with excitation and
inhibition mechanisms. While reaction-diffusion equations are restricted within local interactions due
to the diffusion term, the neural field model has a non-local interactions. We introduce inhomogeneous
network structure to the kernels w. in the later sections. In the two dimensional two-component
reaction-diffusion equation, the existence of spatially localized traveling objects has not been reported
with local operators [9]. Tt is known that global operators added to two-component systems may induce
a single stable traveling bump, but may not induce multiple bumps [10]. On the other hand, many
three component systems with local operators show multiple travelling bumps [12].

An example of multiple stable traveling bumps in a two dimensional neural field model is presented
in [7]. The spatial convolution term plays the role of the third component to stabilize the bump,
which supports existence of multiple bumps [7].

1.2 Stable traveling bumps and their collisions

Numerical experiments of the following simple equations [11] suggest that the field can be tri-stable,
admitting the quiescent state, a stable traveling bump with a characteristic length Fig. 1, and a
traveling band solution growing to infinite length [7].

ou(x
200 = e e = %) Flulo) = Wl —u(x) ()
) _ () — o), )
where o = 0.6, 5 = 0.8/3, h = 3.0, and
weelx) = 7326, flu) = e ®)
t=7 t=8 t=15

Fig. 1. A stable traveling bump (left) and controlling directions of motion of
it (right) in two dimensional neural field. When ¢ = 8, an external perturbation
added to change the direction of motion of the traveling bump. The bumps
may travel at arbitrary angle because of the radial symmetry of the system.

227



where the initial conditions at time t = 0 are given as

15e(@=05)*/5 (3 € [15,23.9])
u(x) = { 0 Otherwise.

9)

o(o) = 10e(@=0-3/5 (4 € [15,23.9])
N 0 Otherwise.

The parameter « represents the pointwise effect from an excitatory neuron to an inhibitory neuron
at point x.

The traveling bumps in this neural field is structurally and orbitally stable. Because the basin
measure to generate the traveling bump is positive without any boundary conditions, the bump is
a robust attracting set. A number of traveling bumps may coexist in the field, and they strongly
interact when they are close. When two bumps collide, they fuse into a single bump. The resulting
bump converges to one of the tri-stable states depending on the collision angle. When the angle is
small, the two bumps disappear after collision, when it is large, they merge to the band solution. The
numerically estimated critical threshold angle is ~ %w for which bumps survives after collision [7]. We
use external inputs to control directions of motion of traveling bumps to adjust the collision angle.
There are no standing patterns other than the traveling bumps in the parameter settings because
of the lack of diffusion terms, so that even with complex collisions, the resulting output is thought
to be only one of the following: (i) quiescent state, (ii) stable traveling bump, or (iii) growing band
solution, implying that the field is “clean” without complex after effects. As for complex transitory
collision phenomena, see [12] for the various collision and scattering phenomena of traveling spots in
the reaction-diffusion systems with three components. Multiple bumps in neural field can be applied
to study informational functions of brains such as working memory and fast learning [13, 14].

2. Neural field dynamics with network interactions

2.1 Pattern construction in neural fields

In the mammalian cortex such as mouse isocortex, a population of neurons in one cortical area receive
synaptic inputs from adjacent microcircuits, and from distant cortical and subcortical areas. To study
how such non-local and network interactions form mesoscale cortical dynamics, we here extend the
neural field model by adding long-range connection terms with a kernel K., and K.; as follows.

8U(X) - / / / / /

- —/wee(X—X)f[U(X)—h]de[v(X)—h}dx
+ / Koo (%,x) £ [u(x') = h] dx’ — u(x), (10)

dv(x) _ ) / no_ ’
) = qu(x) — o) +/Ke, (x,%') f [u (x) — ] dx. (11)

The networks K., (x,x’) and K,; (x,x) can be given based on the mice brain connectome data [15].
Also, the coarse-grained geometry of isocortex of mouse can be extracted from Allen Brain Atlas
(http://connectivity.brain-map.org/). In addition, neuronal activity at this spatial scale has been
observed in the mouse using millisecond-timescale imaging of voltage-sensitive dye [17] and genetically-
encoded voltage indicator [16]. The nonlinear wave phenomena observed in the experiments [16] can
be discussed with the detailed network models.

When we have the data-based detailed network model of neural field, what can be qualitative
change of spatio-temporal dynamics in the neural field? Here we consider this problem theoretically.
In general, mathematical framework of network interactions are given by designed kernels w. and K..
We discuss the effect of non-local coupling and networks. The schematic views of the type of the
kernels for (A) local, (B) global, (C) non-local, (D) non-local and network interactions are shown in
Fig. 2.

In Fig. 3, examples of pattern construction for pulser and memory are exhibited. The robust
information carriers are realized by the stable traveling bumps. The bumps may travel at arbitrary
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Fig. 2. The kernels for (A) local, (B) global, (C) non-local, (D) non-local
and network interactions.

— ) pDe—d

(i) Carrier (ii) Pulser (iif) Memory

Fig. 3. Possible pattern construction with non-local and network interac-
tions; (i) Robust information carriers, (ii) pulser, (iii) memory. The circle and
the arrows represent non-local and network interactions, respectively.

angle because of the radial symmetry of the system. The robust pulser of the traveling bumps can
be constructed by a feedback within the networks (Fig. 4, top). When the traveling bump passes an
area in the neural field connected to the other points, the initial conditions of the traveling bumps
is regenerated at that area. In this neural field, the bumps are sustainable if a bump in the u space
followed by a smaller bump in the v spaces. Thus, to generate a stable bump, we need the network
from the u space to the v and v spaces with network kernels K., and K;. If the network connections
is a feedback to an area on the pathway of the traveling bumps, they works as an autonomous pulser
which repeatedly generates the identical traveling bumps (Fig. 4, bottom).
We give an example of the pulser based on the Egs. (9) and (10) with

N ) 60 (x=(15,y), x' = (a,y), 2’ € [3,4], y € [15,26.9])
Kee (x,x') = { 0 Otherwise. (12)
4 n_ )1 (x=(15y), xX' = (2',y), 2’ € [1.8,2.8], y € [15,26.9])
Kei (x,x) = { 0 Otherwise. (13)

where the other parameters follows the Eqs. (6)—(8). The frequency of the pulser is governed by v/I,
where v is the velocity of the center of mass of bumps [7] and [ is the length of the feedback network.

In this neural field, we have no stable standing patterns without network structure. However, with
network structure, we can construct a standing oscillatory pattern by coupled pulsers with a head-on
collision which can work as “memory.” This oscillatory pattern is sustainable unless it is disturbed by
internal or external perturbations. Many other spatial pattern constructions were proposed in [18].
Other phenomenology based on local and global interactions was discussed, for instance, in the model
of muscle [19]. It is not possible to construct these patterns on neither cellular automata/reaction dif-
fusion systems which consist of only short range interactions, nor coupled dynamical systems/artificial
neural networks which do not have spatial structure.

3. Neural field dynamics for growing brains

3.1 Geometry of growing cortex

We extend the neural field model considering the geometry of brains with spherical coordinate. The
surface of human adult cortex is a highly folded sheet. The previous studies with the structural MRI
(magnetic resonance imaging) have demonstrated that the folded surface of each hemisphere can be
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Fig. 4. A construction of a network working as a pulser (top). If the network
connections are feedbacks to an area on the pathway of the traveling bumps,
they works as an autonomous pulser which repeatedly generates the identical
traveling bumps (bottom). The squares with dotted lines denote the connected
areas and the arrow represents the feedback networks.

Fig. 5. Neural field model on a sphere.

inflated and transformed onto a sphere [20,21]. This surface-based representation of the cortex will
have a great advantage to analyze spatio-temporal pattern of cortical activation on 2D sheet [22]. In
addition to the continuous short-range connectivity, separate regions of the cortex are connected by
the white matter fiber tracts, which can be visualized as a diffusion tensor imaging and represented
as a connectivity matrix [23]. Thus, the long-range connectivity between specific regions of the cortex
can be added in the neural field model on a spherical coordinate. Furthermore, the thalamo-cortical
connectivity can be added to the model in a form of another long range connectivity, thereby the
effect of sensory input to the cortex is examined.

3.2 Network formation in the brain

Gyrification is an important step for the development of the brain. The human cortical surface
grows from a smooth structure into a convoluted structure during the third trimester of fetal period.
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Although a number of hypotheses have been proposed on the mechanism of cortical folding during
fetal period [24,25], the neural field model will provide an useful framework for analyzing activity-
dependent structural development of the brain.

The neural field model can be extended to describe network formation underlying neuronal growth
and differentiation as well. We introduce new variables p.(x), ps(x), which represent two types of
neuron densities at position x. The density p.(x) is governed by an equation of growth V.(-) and
random migration Ap.(x) of neurons. We couple it with neural field through the kernel we,, w;. and
K.

o - [ e (= X000 9 )) £ [ () = ]

=[x = a0 ) £ 0 () — )

n / Koo (%, po(x), pe(x)) £ [ (x') — h] dx — u(x), (14)

do(x)
5 = au(x) — pu(x), (15)
O] pe(30) (), 1), 30)] + Deddpel), (16)
6[)571(;() = Vi[pe(x), ps(x), u(x), v(x)] + DsAps(x), (17)

This model could be consistent with early development of human fetal cortex. The cell density p.
and ps could represent the neuronal populations of cortical and subplate layers, respectively. The
subplate neurons show spontaneous electrical activity in human fetal cortex [26]. In addition, in
this developmental stage, subplate neurons are not only electrically connected, represented by the
excitatory and inhibitory non-local interaction, but also connected in a long range via the white
matter fibers, represented by the excitatory network interaction. Thus, we assume that these two
interaction strength depend on the cell density p. and ps, and that white matter fiber grows from one
area with a large p.(x) to other area with a large p.(x’).

Proliferation and differentiation between the cortical and the subplate neurons are regulated by
several genes, whose expression level can be localized in the cortex [27] by a reaction-diffusion mech-
anism. The functions Vi and V. are represented by the growth and the differentiation of neurons
depending on the gene activity. The feedback of neuronal activity into the growth and differentiation
dynamics can be introduced when V; and V, are the functions of u and v. The details depend on
the system, but these interaction nature are not negligible, and would rather be explicitly taken into
account to study developmental stages of brains. The schematic view of this model is given in Fig. 6.,
which will be studied based on further details elsewhere.

Sparse cortical White matter fiber
neurons area

Dense cortical
neurons area X’

Dense cortical
neurons area x

P —
=

Sparse cortical
neurons area

Fig. 6. White matter fiber grows from one area with a large p.(x) to other
area with a large p.(x').
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4. Summary

We presented a framework for a detailed network model of whole brains and a neural field model
for growing brains. As a characteristic pattern with non-local and network interactions in neural
field, pulser and memory are constructed. Possible applications to quantitative measurements of
cortical activities of mouse and human brain development are briefly discussed. The data driven
model implementations and its phenomenology will be studied elsewhere. The presented framework
for neural computation with spatial structure may shed light on the design principle of whole brains.
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