

Instructions for use

Title A Robust Self-Constructing Normalized Gaussian Network for Online Machine Learning

Author(s) Backhus, Jana Cathrin

Citation 北海道大学. 博士(情報科学) 甲第12624号

Issue Date 2017-03-23

DOI 10.14943/doctoral.k12624

Doc URL http://hdl.handle.net/2115/65449

Type theses (doctoral)

File Information Jana_Cathrin_Backhus.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

HOKKAIDO UNIVERSITY

DOCTORAL THESIS

A Robust Self-Constructing
Normalized Gaussian Network for

Online Machine Learning

Author:
Jana Cathrin BACKHUS

Supervisor:
Prof. Masanori SUGIMOTO

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Laboratory of Intelligent Information Systems
Division of Computer Science and Information Technology

February 14, 2017

http://www.hokudai.ac.jp/
http://aiwww.main.ist.hokudai.ac.jp/
https://www.csit.ist.hokudai.ac.jp/

iii

Declaration of Authorship
I, Jana Cathrin BACKHUS, declare that this thesis titled, “A Robust Self-
Constructing Normalized Gaussian Network for Online Machine Learn-
ing” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a re-
search degree at this University.

• Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this University or any other institu-
tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely
my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:

v

HOKKAIDO UNIVERSITY

Abstract
Graduate School of Information Science and Technology

Division of Computer Science and Information Technology

Doctor of Philosophy

A Robust Self-Constructing Normalized Gaussian Network for Online
Machine Learning

by Jana Cathrin BACKHUS

In this thesis, I aim to improve the robustness and applicability of Nor-
malized Gaussian networks (NGnet) in the context of online machine learn-
ing tasks. A challenging problem in online machine learning is the limited
domain knowledge provoked by restricted prior knowledge, while addi-
tional information are received only sequentially over time. The limited do-
main knowledge makes the application of artificial neural networks (ANN)
more difficult, and major challenges include negative interference and the
selection of an accurate model complexity. In this thesis, I consider these
challenges in regard to the NGnet, which belongs to a group of ANNs that
possess a certain grade of robustness against negative interference due to
the local properties of their network architecture. Yet, further improve-
ments of robustness are necessary in regard to the ANN’s learning algo-
rithm and model complexity selection. A recently proposed learning algo-
rithm with localized forgetting provides robustness against negative inter-
ference, but it is not applicable over the full numerical range of an implied
discount factor. Also, dynamic model selection was yet to be considered.
Therefore, I revise the localized forgetting approach and adapt dynamic
model selection to it in a self-constructing manner. Dynamic model selec-
tion has been considered for an earlier learning algorithm of the NGnet with
global forgetting, which however shows a non-robust behavior in negative
interference prone environments. Then, I propose localization of some of
the model selection mechanisms to improve their robustness and add a new
merge manipulation to deal with model redundancies. The effectiveness
of the proposed method is compared with earlier learning approaches of
the NGnet for several experiments. The proposed method possesses robust
and favorable performance in the different tested learning environments,
making it the better alternative when applied to online learning tasks with
proneness to negative interference.

HTTP://WWW.HOKUDAI.AC.JP/
http://www.ist.hokudai.ac.jp/
https://www.csit.ist.hokudai.ac.jp/

vii

Acknowledgements
First of all, I would like to express my special appreciation and thanks

to my advisor Professor Masanori Sugimoto, who has been a tremendous
support for me, especially in the last two years after becoming my main
supervisor. He was always supportive and encouraging, which helped me
a lot to go on with my research even in face of hardships.

Besides my advisor, I would like to thank the rest of my thesis commit-
tee: Prof. Mineichi Kudo, Prof. Hideyuki Imai, and Prof. Ichigaku Taki-
gawa, who took their time to read my paper drafts, answer my questions
and helped me to make my research better with their insightful comments
and encouragement during the last few years.

My sincere thanks also goes to Prof. Hidetoshi Nonaka and Prof. Takeshi
Yoshikawa, who could not walk this path to the end with me together, but
they were the ones who first welcomed me to this laboratory 5 years ago
and provided me with all the support that I needed to enter the degree pro-
grams and give me lots of insightful comments in my early learning stages
as a researcher.

I also want to thank my fellow labmates in for the stimulating discus-
sions, for the sleepless nights we were working together before deadlines
or had a game playing session, and for all the other fun we have had in the
last five years. Also, I thank my PhD. colleague Keigo Kimura, who was
always ready for discussions about research or other little PhD. problems.

Last but not the least, I would like to thank my family and friends, inside
and outside of Japan, for always being supportive of me and spending time
with me whenever I was ready for a break. Because without them, I would
not be who I am today and might never had the opportunity to study in
Japan in the first place. A special thanks goes to my mum who raised me
with all her might.

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

List of Figures xiii

List of Tables xv

List of Abbreviations xvii

1 Introduction 1
1.1 Contributions . 2
1.2 Thesis Structure . 4

2 Background and Related Work 5
2.1 Online Machine Learning . 5

2.1.1 Supervised Learning 6
2.1.2 Reinforcement Learning 7

Markov Decision Process 8
Online Q-Learning . 8

2.2 Artificial Neural Networks . 9
2.2.1 Negative Interference 10
2.2.2 Model Complexity Selection 13
2.2.3 Networks with a Receptive Field Based Architecture 15

Radial Basis Function Networks 16
Mixture of Experts . 20
Receptive Field Weighted Regression 22
Summary . 23

2.3 Normalized Gaussian Networks (NGnet) 23
2.3.1 Network Architecture 24
2.3.2 Online EM Algorithm 24

E (Estimation) Step: . 25
M (Maximization) Step: 25
Step-wise Updates with Time-Dependent Discount . 26
Step-wise Updates with Weight-Dependent Discount 27

2.3.3 Extension for NGnet’s Online EM 28
Avoiding Inverse Matrix Calculation 29
Regularization of Covariance Matrix 29

2.3.4 Dynamic Model Selection for the NGnet 30
Produce . 30
Delete . 31
Split . 31

x

3 Proposed Method 33
3.1 Re-Derivation of Localized Forgetting 33
3.2 Update Precision . 36
3.3 Dynamic Model Selection . 37

3.3.1 Unit Manipulation Mechanisms 38
Produce . 38
Delete . 39
Split . 40
Merge . 41

3.3.2 Self-Constructing Model Adaptation 44

4 Experiments 47
4.1 Preparations . 47

4.1.1 Compared Learning Methods 47
4.1.2 Model Selection Parameter Settings 48
4.1.3 Scheduling of Discount Factor 50

4.2 Function Approximation Tasks 51
4.2.1 Simple Regression Task with 5-Dimensions 51

Preparations . 51
Experimental Results 53

4.2.2 The Cross Function . 56
Preparations . 57
Comparison of Localized Forgetting Methods 58
Discussing the Update Precision 61
Balanced Testbed With Dynamic Model Selection . . 63
Imbalanced Testbed With Dynamic Model Selection . 67
Dynamic Testbed with Dynamic Model Selection . . 70

4.3 Chaotic Time Series Approximation Tasks 73
4.3.1 Preparations . 74
4.3.2 Lorenz Attractor . 74

Preparations . 75
Experimental Results 76

4.3.3 Mackey-Glass Chaotic Time Series 78
First Testbed: 6-step ahead prediction 79
Second Testbed: 50-step ahead prediction 80

4.4 Reinforcement Learning Task 81
4.4.1 Preparations . 83
4.4.2 First Testbed . 83
4.4.3 Second Testbed . 86

5 Discussion 89
5.1 Updates with Localized Forgetting 89

5.1.1 Comparison with the Previous Local Forgetting Method 89
5.1.2 Comparison of Local and Global Forgetting 90

Benefits . 90
Limitations . 91

5.2 Dynamic Model Selection . 92
5.2.1 Produce Mechanism 92

Benefits . 92
Limitations . 92

5.2.2 Delete Mechanism . 93

xi

Benefits . 93
Limitations . 94

5.2.3 Split Mechanism . 95
Benefits . 95
Limitations . 95

5.2.4 Merge Mechanism . 96
Benefits . 96
Limitations . 97

5.2.5 Self-Constructing Model Adaptation 98
Benefits . 98
Limitations . 99

6 Conclusion 101
6.1 Summary . 101
6.2 Future Work . 102

6.2.1 Improvement of Unit Production 102
6.2.2 Ease of Threshold Parameter Selection 102
6.2.3 Extension of Proposed Ideas to Other ANNs 103
6.2.4 Improvement of Learning Speed 103

6.3 Concluding Remarks . 104

Bibliography 105

xiii

List of Figures

4.1 Discount Scheduling for b=30 50
4.2 Cross Function . 56
4.3 Running Error for LF Methods 60
4.4 Running Error for Dynamic Testbed without Forgetting . . . 71
4.5 Running Error for Dynamic Testbed with Forgetting 72
4.6 Real attractor (a) compared with recursive predictions (b) - (d) 78
4.7 Control of a inverted pendulum with limited torque (inspired

by Doya (2000)) . 82
4.8 First Testbed with a = 0.001 and Different b for LF(Prop.) . . 84
4.9 First Testbed with a = 0.001 and Different b for GFdisc 85
4.10 Compare Best Performance for First Testbed 86
4.11 Compare Best Performance for Second Testbed 87

xv

List of Tables

4.1 Manipulation Parameter Settings for All Experiments 49
4.2 MSE Results for Simple Regression Task 54
4.3 Bias Results for Simple Regression Task 55
4.4 Variance Results for Simple Regression Task 55
4.5 Comparison of Localized Forgetting Methods 59
4.6 Update Precision Test for Cross Function with Noise Vari-

ance 0.01 (b = 30) . 61
4.7 Update Precision Test for Cross Function with Noise Vari-

ance 0.1 (b = 30) . 61
4.8 Update Precision Test for Cross Function with Noise Vari-

ance 0.01 (a = 0.0) . 63
4.9 Balanced Test without Forgetting 64
4.10 Balanced Test with Forgetting 66
4.11 Imbalanced Test without Forgetting 67
4.12 Imbalanced Test with Forgetting 69
4.13 Results for Dynamic Testbeds 70
4.14 Lorenz Attractor Testbed Results with b=150 76
4.15 Lorenz Attractor Testbed Results with b=1000 77
4.16 MG 6 steps ahead prediction accuracy 79
4.17 MG 50 steps ahead prediction accuracy 81
4.18 Physical Parameters for Simple Pendulum Dynamics 82

5.1 Sample Values for LF(Prev.) Update Factor 90

xvii

List of Abbreviations

ANN Artificial Neural Network
BC Bhattacharyya Coefficient
CD Correlation Dimension
CV Cross-Validation
EKF Extended Kalman Filter
ELM Extreme Learning Machine
FA Function Approximation
GF Global Forgetting
i.i.d. independent (and) identically distributed
LF Local Forgetting
MDP Markov Decision Process
ME Mixture (of) Experts
MG Mackey-Glass (Time Series)
ML Machine Learning
MRAN Minimum Resource Allocation Network
NGnet Normalized Gaussian Network
pdf probability density function
RAN Resource Allocation Network
RBFN Radial Basis Function Network
RL Reinforcement Learning
SD Standard Deviation

1

Chapter 1

Introduction

Online machine learning is one big area of machine learning, the study of al-
gorithms that learn from and make predictions on data. For online machine
learning, data samples are received sequentially over time and an applied
learning system has to update its estimator in an incremental manner. This
is opposing to batch learning algorithms that are applied to offline machine
learning tasks and train a learning system after observing the whole train-
ing data set. A challenging concern in online machine learning is the limited
domain knowledge provoked by the restricted prior knowledge about the
environment and the sequential observation of additional information. In
truly incremental learning schemes, one additionally assumes that training
data are not only observed one-by-one but immediately processed and then
discarded.

In this thesis, I mainly apply artificial neural networks (ANN) to online
learning tasks. ANNs are one important group of learning systems that ap-
proximate the unknown functional relationship of an underlying learning
task based on observed training data samples. In recent years, ANNs have
been applied to an ever growing field of different tasks, which include time
series prediction, dynamic systems, robotics and control. Yet, their applica-
tion is not straight-forward and several challenges have to be resolved: the
choice of a network architecture, a network model complexity and a learn-
ing algorithm (Wilamowski 2009). These selections highly influence the
learning performance of the ANN. Generally, one chooses a network archi-
tecture first and then decides on the learning algorithm for training, where
most of the times different learning approaches are possible for a network
architecture. Afterwards, a model complexity has to be chosen, and often
a trial-and-error search over different network sizes is necessary, trained
and evaluated on available data samples. This model selection approach is
however not applicable to online learning tasks.

Additional challenges arise for online learning tasks due to the limited
domain knowledge. One big concern is to choose a model complexity that
is able to represent the underlying learning problem well enough without
over- or under-fitting. Here, a common approach is to select the network

2 Chapter 1. Introduction

model size dynamically during learning "on-the-go" by increasing or de-
creasing it according to some network model manipulation mechanisms.
Another concern is the proneness of ANNs to negative interference when
training data are not identically and independently distributed in the in-
put space. Here, negative interference refers to the forgetting of previously
learned information in favor of newly received data samples, which then
leads to a decrease in learning performance. The prevention of negative in-
terference requires the availability of either validation data, memorizing of
all training data or strong prior knowledge about the learning tasks (Schaal
and Atkeson 1998). These options are however not available in online learn-
ing tasks.

It is necessary to consider these concerns for a successful application
of ANNs to online learning tasks. Therefore, ANNs with a robust behav-
ior against negative interference are more commonly considered. Negative
interference is less present in ANNs with local properties, and the local-
ity of the network architecture plays an important role in regard to the
robustness. ANNs with a receptive field based network architecture are
then a popular choice for online learning tasks, because their architecture
possesses a certain grade of local learning behavior imposed by the recep-
tive fields. Yet, a suitable network architecture alone is not enough to mit-
igate negative interference, and further possibilities need to be explored to
achieve robust learning behavior for ANNs. This concerns both learning
algorithm and model complexity selection, since both have potential to be
negatively influenced by the training data distribution and a stable learning
behavior cannot be ensured without preventive measures.

1.1 Contributions

In this thesis, I focus on the Normalized Gaussian network (NGnet) (Sato
and Ishii 2000) as one example of an ANN with a receptive field based
network architecture. The NGnet has been considered for online machine
learning tasks, and a recently proposed learning algorithm (Celaya and
Agostini 2015) shows high potential to deal with negative interference prone
environments by applying network updates based on localized forgetting.
Then, I propose several improvements to further increase robustness and
applicability of the NGnet for online machine learning tasks. My contribu-
tions are described in the following.

Revision of Update Method: I revise the previously proposed update
method with localized forgetting for the NGnet, because in its proposed
form it is not applicable over the full numerical range of an implied dis-
count factor. To eliminate this disadvantage, I revise the derivation of the

1.1. Contributions 3

localized forgetting method under the consideration of additional depen-
dencies. The revised update method can then be applied over the full range
of the implied discount factor, and performs equally well or better than the
previous method as shown in the experiments.

Discussion about Update Precisions: One interesting property of updates
with localized forgetting is that at each time step only a few network units
are updated largely. Both update and forgetting weights become very small
for units far from the currently observed data sample so that their updates
are dispensable, especially outside the computational accuracies. Even within
the computational accuracies, units only conduct minor updates the fur-
ther they are away from the observed data sample. Therefore, I discuss
the abandonment of updates with small weights under certain precision
limits, since these do not affect the learning performance very much. By
further decreasing the update precision even beyond computational accu-
racy, I achieve a reduction of computational complexity while the learning
performance stays approximately the same.

Self-Constructing Dynamic Model Selection: For the localized forget-
ting update approach, only static model selection was previously consid-
ered. To better deal with the problem of model complexity selection in en-
vironments where domain knowledge is limited, I apply some model ma-
nipulation mechanisms that dynamically increase and decrease the model
complexity during learning. These mechanisms are applied in a self-constructing
manner, where the initial size of the network model is set to zero and new
units are added when necessary after observing new data samples. This
helps to improve the applicability of the NGnet to online learning tasks,
since an initial choice of network complexity and parameters can be almost
omitted before training.

Improved Robustness of Model Selection: When dealing with negative
interference prone environments, it is important that the applied ANN pos-
sesses robustness against it. Furthermore, it is not enough to consider ro-
bustness only for one property of the ANN, but it should be present thor-
oughly for all performance influencing properties of the ANN. For the NGnet,
robustness has already been considered in regard to the network architec-
ture and the learning algorithm. Yet, it was not considered for the model
complexity selection approach, which remains an open problem. The NGnet
applies several dynamic model manipulation mechanisms and for some of
them further improvement of robustness is possible by localizing the ma-
nipulation decision. The experimental results show also that the localized

4 Chapter 1. Introduction

manipulation mechanisms help to improve the learning performance. Es-
pecially, the localization of a delete mechanism shows an improved stability
over all applied testbeds, which makes it the most important contribution
of this thesis. In addition, I also discuss shortly why an earlier delete ap-
proach is lacking this robust performance.

Dealing with Model Redundancies In addition to the adapted model
manipulation mechanisms, I propose a new merge mechanism to handle
redundancies in the network model. Dealing with model redundancies has
not been considered previously for the NGnet, although similar merging
mechanisms have been applied to other ANNs and learning systems. Be-
cause of the computational heaviness of this approach, I propose to change
its overlap calculation in order to improve the identification accuracy of re-
dundant units when the mechanism is applied only in time intervals. The
NGnet becomes then able to successfully deal with model redundancies.

1.2 Thesis Structure

The rest of the thesis is structured as follows. In Chapter 2, I give a de-
tailed overview about different related topics, starting with some general
background information about online machine learning and then discuss
artificial neural networks (ANN) and its challenges when applied to the
considered problem setting. Related work about ANNs with a receptive
field based architecture are explored and the Normalized Gaussian network
(NGnet) is introduced as one ANN, which I study more deeply in the con-
sidered context. In Chapter 3, I discuss my improvements for the NGnet
that are proposed to achieve better robustness in learning and deal with the
model complexity selection. Some experiments are conducted in Chapter
4 to evaluate the effectiveness of the proposed method in regard to earlier
NGnet approaches for different learning tasks, including function approx-
imation, chaotic time series approximation and reinforcement learning. In
Chapter 5, I discuss the benefits and limitations of each proposed contri-
bution based on the experimental results of Chapter 4. Finally, I draw an
overall conclusion and explore possible future work in Chapter 6.

5

Chapter 2

Background and Related Work

In this chapter, I explore necessary background information and related
work for this thesis, divided into three major sections. First, I discuss online
machine learning and what challenges have to be considered (Section 2.1).
Then in Section 2.2, I explore some related artificial neural networks that
are applicable to online learning tasks and also provide a theoretical basis
for the main focus of this thesis. Finally, I introduce the network architec-
ture and training method for the normalized Gaussian network (NGnet) in
detail in Section 2.3.

2.1 Online Machine Learning

Machine learning (ML) is the study of algorithms that are able to learn from
and make predictions on data by building a model from the sample inputs.
In the following, I will mainly refer to these models with learning systems.
One big sub-area of ML is online machine learning, where sample data are
observed sequentially over time, and the learning system has to be updated
incrementally after observing new data to improve its prediction model.
This is different from offline machine learning, where learning systems are
updated in a batch mode to learn the best model from the whole training
data set simultaneously. Although nowadays quite a huge amount of re-
search concentrates on offline ML methods, almost all of the earlier works
on ML have focused on online learning systems. This is mainly related to
the computational simplicity of online ML updates compared with offline
ones (Bottou 1998).

Incremental update approaches are preferable to batch updates in the
following two cases. In non-stationary tasks, it is assumed that not all
data samples are available at the begin of learning and additional data sam-
ples are observed over time that imply essentially new information for the
learning system. If batch updates are applied in these cases, then the learn-
ing system would need to continuously retrain its prediction model on the
whole data set each time a new data sample is observed. This implies also
the memorization of all formerly observed data and becomes computation-
ally infeasible with a growing number of data samples. On the other hand,

6 Chapter 2. Background and Related Work

incremental approaches can update the learning system for each newly re-
ceived data sample without retraining, eliminating also the necessity of
storing all previously received data samples. Therefore, incremental learn-
ing systems are applied more naturally to non-stationary tasks. Another
reason to prefer incremental update approaches is computational feasibility
when the number of data samples is so large that the update of the learning
system in one batch is infeasible. Then, incremental updates are necessary
and learning systems are normally updated with mini-batches of data. In
this thesis, I focus on the first case of non-stationary learning tasks and will
put a special focus on truly incremental learning tasks.

In truly incremental learning tasks (Schaal and Atkeson 1998), it is as-
sumed that only one data sample is observed at any time and directly dis-
carded after learning. Because of the small number of currently accessible
data samples, domain knowledge is very limited especially when no prior
knowledge about the environment is available. Additionally, it is assumed
that the total number of training data is unknown. Because of these limita-
tions, it is challenging for the learning systems to learn a good prediction
model, and special considerations are necessary to ensure a robust learning
performance. This also includes the choice of parameters for the learning al-
gorithm, since many learning systems are sensitive to it and a wrong choice
might result in a poor learning behavior (Saad 1998). I will further discuss
problems in truly incremental schemes in the context where artificial neural
networks are employed as learning systems in Section 2.2.

Depending on the learning tasks, ML knows different types of feedback
that can be broadly classified in three big categories of learning (Russell
and Norvig 2010, Chapter 18). The three categories include unsupervised
learning, supervised learning and reinforcement learning. In this thesis, I
consider supervised and reinforcement learning tasks.

2.1.1 Supervised Learning

Supervised learning is often described as learning from a teacher. Learning
systems receive a set of input-output training data pairs, where the output
represents the target for the input and the relationship between the inputs
and outputs has to be learned. Two types of supervised learning problems
are usually distinguished: classification and regression. For classification,
the target outputs are a finite set of values, and the goal is to learn which
inputs belong to which class. In this thesis, I will however mainly consider
regression tasks, where learning systems need to learn the relationship be-
tween inputs and continuous target outputs.

In regression tasks, the learning system maps the relationship as a func-
tion f : X → Y between an N -dimensional independent input x ∈ IRN

and a D-dimensional input-dependent output y ∈ IRD. Given T available

2.1. Online Machine Learning 7

training samples {(x(t), y(t)}Tt=1, the goal of the learning system is to ap-
proximate the underlying functional relationship so that it can predict the
output value y for unseen values of input x. For so called parametric regres-
sion, one assumes that the learning system is represented by a parametrized
model, for example a linear model f(x) = Ax. The learning task is then
to find appropriate values for the model parameters A (Stulp and Sigaud
2015). In the simplest case, an appropriate representation can be inferred
directly so that y = f(x). For more complicated cases, it is not possible to
learn the functional relationship directly for one or several of the follow-
ing reasons: the number of training samples is limited, training data might
contain some noise or the learning system’s representation capabilities are
limited. Therefore, learning systems often aim to model the predictive dis-
tribution p(y|x) to deal better with the uncertainty about value y for each
value x (Bishop 2006, Chapter 3). Then, the learning system tries to find a
good approximation y ≈ f(x) by minimizing the expected value of a suit-
ably chosen loss function. For the standard regression model, one generally
assumes that target output y is given by a deterministic function f(x) with
additive Gaussian noise ε so that

y = f(x) + ε. (2.1)

2.1.2 Reinforcement Learning

Reinforcement learning (RL) can be described as learning from rewards or
punishments that are received as feedback from an environment, which a
learning system has to act in. The goal of the learning system is to find
a good action policy to act optimal in regard to the different states of the
environment (Russell and Norvig 2010, Chapter 21). RL is inspired by be-
haviorist psychology and imitates a trial-and-error learning behavior that
is observed on humans amongst others, for example when an infant learns
how to walk. Infants receive reinforcements for their walking trials, either
reward in form of moving forward or punishment in form of falling down.
Learning is different than in the supervised case as correct input-output-
pairs are not readily available and the learning system has to find a good
action policy by trial-and-error interactions with the environment.

For each RL step, an environment state is observed and based on this
an action is chosen. Afterwards, the learning system observes a new en-
vironment state and receives a reward or punishment for its action in the
previous state. In addition, the search for a good policy includes the prob-
lem of finding a balance between exploration of unknown regions and ex-
ploitation of the current knowledge. If the learning system never explores,
then it will be stuck with the current probably sub-optimal policy. On the

8 Chapter 2. Background and Related Work

other hand, when it explores too much, for example by selecting all its ac-
tions randomly, then it will not be able to perform well for the learning
task. Furthermore, a taken action influences generally not only the current
but also all future reinforcements, which are therefore partially dependent
on past actions and called delayed rewards (Sutton and Barto 1998). The
overall goal of RL is then to find an action policy that maximizes not the
immediate but the long-term reward.

Markov Decision Process

A RL learning problem can be formalized as a solution of a Markov deci-
sion process (MDP). An MDP models the decision process in a mathemati-
cal framework that is defined by a tuple 〈S,A, T,R〉 and the environment is
assumed to be fully observable (van Otterlo and Wiering 2012). Here, S is
the state and A the action space of the environment. T : S × A× S → [0, 1]

is a state transition probability function, where T (s, a, s′) is the probability
to end up in a next state s′ when an action a is executed in state s. A reward
function R defines what reinforcement is received at each state in the envi-
ronment. The reward function can be described in several interchangeable
ways depending on what is most convenient for the applied learning prob-
lem. The possible descriptions include R : S → R when reward is given for
being in a state s, R : S × A→ R when reward is given for choosing an ac-
tion a in s andR : S×A×S → R when reward is given for a transition from
s to s′. I will mainly consider the reward function defined asR : S×A→ R.

Online Q-Learning

I then consider online RL, where a learning system has to choose an avail-
able action at at each time step t based on an action policy π(st) that is
dependent on the current state of the environment st. After executing the
selected action at, the environment changes to the new state st+1 and an
immediate reward rt = r(st, at) is received. The learning system aims to
maximize the accumulated sum of discounted rewards that is defined as

Rπ(s, a) =
∞∑
t=0

γrt. (2.2)

Here, γ ∈ [0, 1] is a discount factor that regulates the importance of earlier
rewards in respect to future rewards. A good prediction of the accumulated
sum is provided by the expected value

Qπ(s, a) = E[Rπ(s, a)]. (2.3)

2.2. Artificial Neural Networks 9

The so called Q-function Qπ(s, a) is well-known as the action-value func-
tion. It describes the expected return that a learning system receives when
it executes an action at in state st and then follows an action policy π (Sutton
and Barto 1998).

The Q-function is applied in one of the most effective and popular RL
algorithms, Q-learning, where the learning system has to find a good ac-
tion policy π(s) from delayed rewards when transition and reward function
are unknown. Q-learning was first proposed by Watkins (1989). Based on
the Bellman optimality equation, a learning system approximates an opti-
mal action-value function Q∗ by sampling values for a current estimation
Qπ(s, a) with

q(st, at) = r(st, at) + γmax
a

Qπ(st+1, a). (2.4)

Here, maxaQ
π(st+1, a) is the expected maximal return corresponding to the

next state st+1. Then, a current estimate of the optimal policy can be derived
from the approximated Q-function at some learning stage with

π(s) = arg max
a

Qπ(s, a). (2.5)

For simple learning problems, the estimated Q-function values can be rep-
resented by a look-up table. But for more complicated problems, it is com-
mon to use some function approximator for the representation of the Q-
function.

2.2 Artificial Neural Networks

There are different learning systems that can be applied to ML tasks, but
this thesis concentrates on the application of artificial neural networks (ANN)
in the context of online ML. ANNs are inspired by biological neural net-
works (especially the brain) imitating their behavior mostly in a simplified
manner. ANNs infer the unknown functional relationship of the learning
task by processing observed training data. Characteristics of ANNs can
be mainly divided into two categories, architecture and learning properties
(Jain et al. 2014), which have both a big influence on the learning perfor-
mance. With an appropriate choice of network architecture and learning
properties, ANNs are capable of approximating functional relationships
even in complex problems quite accurately.

Here, architecture refers to the topology of the network, which consists
of many interconnected processing units, often referred to as neurons, ar-
ranged in a layered structure. Generally, the network consists of an input
and output layer interjected by one or multiple hidden layers. Depending

10 Chapter 2. Background and Related Work

on the network topology, different layers can be sparsely or densely con-
nected to each other. One of the most popular ANN architectures is the
feed-forward ANN, where the processing units are arranged in successive
layers with an unidirectional information flow (Saad 1998). The main alter-
native architecture is the one of recurrent networks, where a bidirectional
information flow is established by additional feed-back connections. Yet, I
will consider only feed-forward networks in the following. Another archi-
tectural property is the number of processing units in each layer. While the
number of input and output processing units is equal to the dimensionality
of the responding data, the number of hidden units has to be chosen by the
user. The number of hidden units is also often referred to as model com-
plexity and plays a crucial role in the learning performance of the ANN.

The learning properties of an ANN refer mainly to the training algo-
rithm that influences how network parameters are updated in order to es-
timate a good prediction model for the learning task. This also includes
whether the network is updated in batch or incrementally. The learning
performance of ANNs is depending a lot on the selected training algorithm
and its parameters, especially for online learning tasks. For online regres-
sion tasks, many ANN training algorithms apply gradient based methods
in regard to a differentiable error measure. They can be incrementally up-
dated and have proven to be an efficient technique (Saad 1998).

In truly online learning schemes, data samples are received sequentially
over time and are discarded directly after learning. This implies a limited
prior knowledge about the task domain and makes tuning of the network
and learning parameters much more difficult. It also gives rise to several
problems as the proneness to negative interference and the difficult choice
of an appropriate model complexity. These problems are explained in more
detail in the following subsections 2.2.1 and 2.2.2 respectively. Finally, sev-
eral network architectures are considered in 2.2.3 that have the potential to
deal with the here described challenges in regard to online ML.

2.2.1 Negative Interference

Negative interference is a well known phenomenon that has been observed
frequently since the early days of neural network training (McCloskey and
Cohen 1989). Often also referred to as catastrophic interference or catas-
trophic forgetting, negative interference describes the phenomenon of pre-
viously learned information being forgotten in favour of new training sam-
ples that are processed at a later point of time. Although negative inter-
ference is recognized in different learning situations, it is especially a prob-
lem in truly online learning schemes. Here, data samples are received over
time, processed incrementally and directly discarded after learning. The
end objective of training is to estimate a model that reduces the error for

2.2. Artificial Neural Networks 11

all previously received sample data points. Yet, the ANN updates its pa-
rameters to reduce the prediction error for the observed training sample at
each time step, which does not necessarily imply that the error for all past
samples is also reduced. If the training objective is not achieved due to for-
getting effects, negative interference has occurred. Furthermore, the prop-
erties of truly online learning schemes make it difficult to ease the effects
of negative interference by common approaches, including the use of vali-
dation data sets, memorizing all data, retraining as well as the use of prior
knowledge about the learning environment (Schaal and Atkeson 1998). In
order to achieve good learning performance in these scenarios, it is then
important that the ANN itself possesses robust properties against negative
interference.

Negative interference can be considered as a natural side-effect of the
generalization ability of neural networks (Schaal and Atkeson 1998). Gen-
eralization refers to the network’s ability to generalize from training data
to unseen data samples by providing approximately accurate predictions
of the target output for a given input. Since it is infeasible to observe the
whole state space for continuous learning problems, generalization ability
is an important property of ANNs. It is a kind of positive interference that
is achieved by allowing parameters of the network to have non-local effects,
or in other words global behavior. Yet, when these non-local effects reduce
the overall learning performance more than they can help improve it, neg-
ative or even catastrophic interference occurs. Therefore, neural networks
with global learning properties are more prone to negative interference than
networks with local properties. If learning properties are local, then ANNs
are able to keep the negatively interfered areas of the network small.

In environments where negative interference is a problem, a trade-off
between global (potential generalization ability) and local (robustness against
negative interference) learning behavior is necessary. Completely local pre-
sentations, e.g. look-up tables, have no problems with negative interference
but also possess no ability to generalize. ANNs that employ local receptive
field based structures are a popular alternative. They provide a certain de-
gree of generalization ability within each receptive field but also localize
the learning problem providing better robustness against negative interfer-
ence in comparison with global basis function networks (e.g. multi-layer
perceptron with sigmoidal activation functions). Overall, ANNs with lo-
cal properties are robuster and preferable in online learning settings, where
networks with a distributed (global) nature might fail to perform well.

Major causes of negative interference can be found in the training data

12 Chapter 2. Background and Related Work

distribution, where ANNs are used to approximate a functional relation-
ship between received input-output data pairs. In the standard regres-
sion model, it is generally assumed that the input data are distributed ac-
cording to a probability density p(x) and the input-dependent outputs are
distributed according to a conditional probability p(y|x). It was stated in
Schaal and Atkeson (1998) that non-stationarity of the learning tasks is a
major cause for negative interference and two types can be distinguished: a
change in the functional relationship p(y|x) between an input x and output
y or a change in the input distribution p(x). Especially the second cause
is often reported as the reason for negative interference in online learning
schemes. This reasoning about causes can be extended by considering the
often made assumption of ANN training algorithms to receive training data
samples independently identically distributed (i.i.d.) from a stationary data
distribution. A changing input distribution p(x) over time is one exam-
ple of non-i.i.d. data. In real-world applications, data are often non-i.i.d.
and learning performance of ANNs is then affected by negative interfer-
ence when no preparative measurements are taken (Goodrich 2015; Celaya
and Agostini 2015). Other examples of non-i.i.d. data include distributions
where data samples are received as a succession of correlated inputs, e.g. in
time series, or imbalanced distributions where samples of one region of the
input space are observed much more often than in other regions. In case
of imbalanced data distributions, the dominant number of input data sam-
ples from one region causes the network to forget what has eventually been
learned in less frequently visited regions. This is also an issue in reinforce-
ment learning, where some regions of the input space become less visited
after learning a good policy. Yet, the network should not forget information
about these regions otherwise it will eventually start to visit them again af-
ter negative interference has occurred. So, even when ANNs possess a local
architecture, it is necessary to further improve the training algorithm when
dealing with non-i.i.d. data to avoid negative interference.

In negative interference prone environments, the adaptability of the net-
work model is also an important property of the ANN training algorithm
that ensures a successful learning performance. ANN models are often ini-
tialized randomly and its parameter updates depend a lot on the model
initialization at the first stage of training, where the learning error is still
high. Therefore, large updates are necessary for a rapid adaptation to the
received information. Yet, large updates lead to quick forgetting of previ-
ously received information. So, it becomes necessary to perform adaptation
more slowly in later stages of training. Then, old information can be re-
membered and learning converges. A trade-off between these two learning
modes is necessary, which becomes even more difficult to decide on in non-
stationary environments. In non-stationary environments, a fast adaptation

2.2. Artificial Neural Networks 13

of the network model is desirable for newly visited input regions, but on
the same time the previously learned information of other regions should
be remembered without catastrophic forgetting. In neuroscience, a similar
trade-off between adaptation to new information and remembering of old
information is known as the stability versus plasticity dilemma (Abraham
and Robins 2005). Here, stability refers to the ability of biological systems
to store knowledge for a long period of time without forgetting. On the
other hand, plasticity refers to the ability of the biological system to learn
new information. The knowledge about learning mechanisms in biological
systems is rather limited, but generally biological systems do not seem to
suffer much from negative interference. For ANNs, it is also desirable to
improve them so that they can deal better with negative interference prone
learning environments.

2.2.2 Model Complexity Selection

The ANN model complexity is another important factor that has a high
influence on the learning performance. It is determined by the number
of free parameters in the network architecture, where free parameters are
normally found in the hidden layers and connections of the network orga-
nized in processing units. The number of processing units is considered
optimal when the best possible learning performance is achieved (Bishop
2006, Chapter 1). Yet, the optimal model complexity of the network is usu-
ally unknown and approaches for model complexity selection have to be
considered.

A major concern is that a non-optimal model complexity will result in
either under- or over-fitting, where especially over-fitting is considered a
problem. When a network model has too many free parameters, it starts
to fit not only the underlying functional relationship but also noise in the
training data. Then, the generalization ability of ANNs decreases and the
accurate prediction of newly received samples becomes difficult. Over-
fitting is also a major reason, why it is bad practice to evaluate the learning
performance of an estimated ANN based on the training data, since this
does not give an accurate estimation of the generalization performance. On
the other hand, if the model complexity is too low, then the model will
under-fit and not be able to approximate the underlying relationship of the
data. Therefore, a trade-off between over- and under-fitting is necessary,
which is also known as the bias-variance dilemma (Geman et al. 1992). As-
suming that an ANN is trained separately on several data sets, bias refers
to how much the ANN’s average prediction over all data sets differs from
the target function. A high bias (implying a low variance) is then equal to
under-fitting, meaning that the ANN’s model complexity is too low to rep-
resent the learning problem appropriately. Over-fitting is represented by

14 Chapter 2. Background and Related Work

a high variance and low bias, where the variance measures to what extent
the predictions of the separately trained network models vary around the
average. A high variance also implies that the estimated network model is
sensitive to the applied training data set (Bishop 2006, Chapter 3). Overall,
over-fitting is often a bigger concern in the literature about model complex-
ity selection but in general model complexity selection considers the best
trade-off between over- and under-fitting.

The model complexity selection problem is a well-known issue when
dealing with ANNs, and many methods have been proposed to deal with
the problem. The simplest approach is an extensive trial-and-error search
over different model complexities, where the model complexity with the
best generalization performance is chosen. Yet, this approach is compu-
tationally expensive and difficult to apply to online learning scenarios be-
cause data sets need to be available in advance. Also, there is the possi-
bility of over-fitting in regard to the used training and test data. Another
solution is k-fold cross-validation, where k−1

k % of the training data are used
for the network estimation and the rest is used as a validation set to eval-
uate the generalization performance. This process is repeated k-times with
a changing fold used as validation set. Cross-validation (CV) can mitigate
the problem of choosing an over-fitted network model, but also increases
the computational expenses by a factor k. Also, k is an open parameter that
needs to be selected based on the judgment of the user. When the value of
k is too small or too large, high bias or variance becomes a problem and
the model selection might not be optimal (Florido et al. 2012). Another dif-
ficulty in k-fold CV is the appropriate distribution of the data in the folds,
especially when the data samples are not i.i.d. Furthermore, various crite-
ria, including Akaike information criterion (AIC) and Bayesian information
criterion (BIC), have been proposed for model selection that are theoreti-
cally founded in information theory and aim to provide an evaluation for
the goodness of fit of different model complexities based only on the train-
ing data. These criteria also attempt to penalize more complex models to
compensate for the tendencies of over-fitting. They do however not take
the uncertainty in the model parameters into account, which leads in prac-
tice often to overly simple models (Bishop 2006, Chapter 1). Although all of
these methods are commonly considered for ANN model complexity selec-
tion, they are not suited for online learning tasks since data samples have
to be observed in advance.

Alternatively, heuristic criteria can be applied for model complexity se-
lection in online learning tasks. Since only one data sample is observed
at each time step and prior knowledge is limited, it is difficult to decide

2.2. Artificial Neural Networks 15

on a static model complexity before training. Instead, the network com-
plexity is adapted dynamically during learning based on available infor-
mation, which consists only of the currently observed data sample and the
estimated network model. Mainly, two approaches can be distinguished
for dynamic model selection: constructive and pruning approaches. For
constructive approaches, the ANN model is initialized with a limited num-
ber of processing units that are then increased during learning. Based on a
heuristic criteria, it is judged whether increasing the model complexity can
bring any major improvement. A new processing unit is added either by
producing a new one or by splitting a relevant unit into two. A difficulty
with pure constructive approaches is to find an appropriate stopping cri-
teria, because networks tend to increase the number of units steadily with
increasing number of processed data. Also, it is not possible to delete units
that have been created but became unnecessary at a later point of train-
ing, which then leads to unnecessarily high model complexities. For prun-
ing approaches, ANNs are initialized with a large number of units at the
beginning and unnecessary units are deleted during the training process.
One disadvantage of pruning approaches is that some prior knowledge
about the learning task is necessary to ensure the initial number of units
is sufficient. Also, the high model complexity at the beginning introduces
a high computational burden until the model complexity starts to decrease.
A third possibility is a hybrid construction and pruning approach, which
aims to combine the strong points of both. All three approaches dynami-
cally adapt the ANN’s model complexity during learning. The ANN then
does not take a predetermined form but adjusts the number of free net-
work parameters accordingly. Learning with dynamically adaptive mod-
els is therefore sometimes referred to as nonparametric regression. These
approaches require generally larger sample sizes than parametric models
where the model complexity is fixed during learning, because the data must
supply enough information for the estimation of both model complexity
and model parameters. In online learning tasks, especially the hybrid ap-
proach is useful since the model complexity can be dynamically adapted
during training according to the needs of the learning tasks.

2.2.3 Networks with a Receptive Field Based Architecture

For online learning tasks, ANNs with local properties have a bigger poten-
tial to achieve robust learning performance since the local network struc-
ture helps to distribute the effects of negative interference. Therefore, I will
concentrate on ANNs with local properties in this thesis, where a special
focus is laid on networks with a receptive field based activation of network

16 Chapter 2. Background and Related Work

units in restricted regions of the input space. Similar localizing proper-
ties can also be found in actual biological nervous systems, for example so-
matosensory systems where regions of the skin behave like receptive fields.
Three types of receptive field based networks are considered in more detail
in the following.

Radial Basis Function Networks

Radial basis function networks (RBFN) are one popular type of feed-forward
neural networks that has been first proposed by Broomhead and Lowe
(1988). Its main ideas are based on the mathematical work into the the-
ory of approximating continuous functions by interpolating across known
lattice points (Micchelli 1984; Powell 1987). RBFN’s popularity is related
to the fact that while the network architecture is quite simple, it is possible
to apply it to a broad range of learning tasks (Lowe 2015). The RBFN ar-
chitecture has three layer with one hidden layer sandwiched between the
input and output layer. For RBFNs, received inputs are first transformed by
non-linear activation functions of the hidden units and then further trans-
formed linearly by some weight vectors to obtain the predicted network
output. For an input x, an output y is then given by a weighted linear com-
bination of non-linear basis functions

y =
M∑
i=1

ωiφ(||x− ci||), (2.6)

where M is the number of units in the hidden layer, ωi is a weight connect-
ing the i-th hidden unit with the output layer and φ(||x − ci||) is a radial
basis function (RBF) centered at some discrete point ci. || · || denotes some
distance, where the Euclidean norm is the most popularly used (Musavi et
al. 1992). There are many possible choices for the RBF, including e.g. Gaus-
sian, logistic, linear functions or thin-plate splines (Wu et al. 2012). Yet,
the most popular is the Gaussian RBF, because it is not only compact and
positive but also the only factorisable RBF. They are often termed Gaus-
sian RBFN and have been shown to be able to approximate any continuous
function to any degree of accuracy if the model complexity of the hidden
layer is sufficient (Park and Sandberg 1991). When RBFs have the property
that φ(r)→ 0 as distance r →∞, they possess local behavior with receptive
field like hidden units. This applies for Gaussian RBFs among others, and
its broad applicability makes Gaussian RBFNs a popular choice for online
learning tasks.

In the most fundamental approach, RBFNs are trained in a two-phase
strategy, where in the first phase RBF centers are chosen and in the second
phase network weights are adjusted. Additional parameters may have to

2.2. Artificial Neural Networks 17

be considered dependent on the RBF, for example there is a variance σ2 for
the Gaussian RBF. The appropriate selection of RBF centers is critical for the
learning performance of the network (Musavi et al. 1992). If training data
are available and representative of the learning problem, then it is sufficient
to apply a randomly selected subset of the input data as centers. Otherwise,
this leads however to an undesirable performance of the RBFN. Clustering
can be applied as an alternative selection approach for the centers. Here, the
training data are grouped into clusters and the prototypes of each cluster
are used as RBF centers. Clustering is one of the most popular approaches
for RBF center selection and many supervised and unsupervised clustering
algorithms have been applied (Du and Swamy 2006). In case of Gaussian
RBFs, an additional variance parameter σ2 has to be chosen that represents
the width of each RBF. Usually, some heuristics are applied to choose accu-
rate widths and one popular option uses the same value for all RBFs, which
has already universal function approximation capabilities (Park and Sand-
berg 1991). After the determination of the RBF parameters, the training of
the network weights reduces to a linear optimization problem, which can
be solved with methods based on the least squares or gradient-descent ap-
proaches (Wu et al. 2012). In both cases, the goal is to minimize the mean
square error (MSE) of the RBFN in regard to the training data. This pa-
rameter selection then provides a fast learning procedure with sufficient
accuracy for the RBFN in stationary learning tasks.

RBFN is still a subject of active research and many different training
methods and extensions have been proposed over the years to fit different
learning problems. The most fundamental training approach is the above
described two-phase strategy. Yet, it is also possible to train RBFNs in an
one-phase strategy, where supervised learning is employed for the estima-
tion of all RBFN parameters. The simplest approach is gradient-descent
(Wu et al. 2012), where the network is initialized randomly and then im-
proved gradually during training. Another option is to base the initializa-
tion on clustering for RBF centers and least squares for the weights, and
then use gradient-descent only to refine the learning results. The gradient-
descent method can also be applied incrementally, which makes the appli-
cation of RBFNs to online learning tasks possible and often increases the
learning speed compared to batch updates. Yet, gradient-descent tends to
be slow in convergence. There are many other options to train the RBFN,
and basically all general purpose unconstrained optimization methods are
applicable with almost no modification (Wu et al. 2012). One of them is the
expectation-maximization (EM) algorithm (Dempster et al. 1977), an effi-
cient maximum likelihood-based approach for parameter estimation, whose
main idea is to split a complex problem into many separate subproblems
with smaller scale. It has been applied for example by Langari et al. (1997)

18 Chapter 2. Background and Related Work

together with another modification, applying linear regression weights in-
stead of constant weights. For regression weights, ωi = a′ix+ bi is an input
dependent linear function with an regression parameter vector ai and a bias
bi. Using regression weights can significantly reduce the number of hidden
units and has been applied for example to approximate nonlinear dynamic
systems (Langari et al. 1997; Rojas et al. 2002). A possibility to further gener-
alize the network is the use of arbitrary covariance matrices Σ instead of the
simple variance σ2 for Gaussian RBFs (Wu et al. 2012). Yet, extensions of the
network architecture also imply an increase in network parameters. There-
fore, depending on the learning problem a trade-off between using small
networks with many adjustable parameters and using large networks with
fewer adjustable parameters might be necessary. The here stated extensions
of the network architecture and training approaches have the potential to
improve learning performance when used in appropriate learning environ-
ments.

Another possible extension is the normalized RBFN, where the individ-
ual RBF responses are normalized by the sum of all RBFs. This was first
proposed shortly after the traditional RBFN by Moody and Darken (1989).
The network architecture is then described by

y =

M∑
i=1

ωi
φ(||x− ci||)∑M
j=1 φ(||x− ci||)

, (2.7)

where predicted output y is now obtained by the normalized weighted RBF
sum. This could also be reformulated so that the normalization is per-
formed in the output layer. In a normalized RBFN, the traditional roles
of weights and submodels (RBFs) are exchanged. While in the unnormal-
ized model the weights ωi determine how much each unit’s submodel (RBF)
contributes to the output, here the normalized RBF becomes the contribu-
tion determining weight of a submodel ωi (Stulp and Sigaud 2015). For
Gaussian RBF networks, normalized RBFNs are able to outperform the un-
normalized ones in terms of training and generalization errors. They ex-
hibit a more uniform error over the training data domain and less sensi-
tivity to the RBF widths (Bugmann 1998). It was also proven by Benaim
(1994) that normalized Gaussian RBFNs are capable of universal function
approximation. On the other hand, normalized RBFNs loose some of their
local characteristics, and there is even the danger of reactivation of RBFs
far away from their actual center under certain conditions (Shorten and
Murray-Smith 1996). Yet, it has also been reported that this generally does
not negatively affect the learning performance. For normalized RBFNs,
similar training approaches can be applied as to the traditional RBFN and
they are often considered an interesting alternative.

The model complexity selection problem has been widely considered

2.2. Artificial Neural Networks 19

for RBFNs with a main focus on constructive and pruning approaches or
a combination of both. For constructive approaches, the RBFN gradually
increases the number of units either according to a growing criterion or
until a stopping criterion is satisfied. One of the most famous approaches
is the forward orthogonal least squares (OLS) algorithm (Chen et al. 1991),
which can also be applied incrementally in its modified extension as recur-
sive OLS algorithm (Yu et al. 1997). Other approaches include for example
network learning based on the cascade-correlation algorithm, sensitivity
analysis, splitting of existing units or heuristics based on error-driven rules
(Wu et al. 2012). Yet, not all of these approaches are applicable to online
learning tasks. On the other hand, pruning approaches start with a large
network and then prune unnecessary units to decrease the model complex-
ity. Various pruning methods have been proposed for feed-forward net-
works, which are applicable to RBFNs. This includes weight-decay tech-
niques, the optimal brain damage (OBD) and optimal brain surgeon (OBS)
approaches as well as pruning based on regularization techniques (Wu et al.
2012). The third option are combined constructive and pruning approaches.
They have been often proposed as extensions of existing constructive ap-
proaches to deal with their biggest disadvantages: the unnecessarily large
model complexity resulting from unneeded units. In regard to online learn-
ing tasks, the most important work for RBFN is likely the Resource Allo-
cating Network (RAN) proposed by Platt (1991). The training of RAN is
started with zero units and new units are added every time the current
network is not able to present a newly observed data sample well. The
network parameters are updated with an incremental least mean square
method and the sequential properties enable RAN to model nonstationary
processes online. Many extensions have been proposed for RAN and some
of the most important ones are RAN with extended Kalman filter parame-
ter updates (RAN-EKF, Kadirkamanathan and Niranjan (1993)) and mini-
mal RAN that applies an additional pruning method to RAN-EKF (MRAN,
Lu et al. (1997)). The growing and pruning algorithm for RBFNs (GAP-RBF,
Huang et al. (2004)) and its generalization (GGAP-RBF, Huang et al. (2005))
are two other RAN-EKF-based sequential learning algorithms. Here, an ad-
ditional significance notion has been introduced to evaluate the importance
of each unit by its statistical contribution for all observed training data so
far. The significance notion was then used to decide on adding new units
or pruning older ones that became unnecessary. The (G)GAP-RBF algo-
rithms both outperform the original RAN as well as RAN-EKF and MRAN
in terms of learning speed, generalization performance and network com-
plexity. Yet, they require a certain number of input data points making
application in truly online learning schemes without prior knowledge dif-
ficult. Also, the significance calculation can become computationally heavy

20 Chapter 2. Background and Related Work

for input dimensions bigger than five (Bortman and Aladjem 2009). The
main idea of RAN and all its extension is the self-construction of the net-
work from scratch in an unknown environment, which eases the burden
of initialization, and they have been successfully applied to many different
application areas.

Mixture of Experts

The mixture of experts (ME) is a widely applied framework that was first
introduced by Jacobs et al. (1991). The framework’s main idea is that often
function approximation problems are decomposable into soft partitions of
the input space, where every partition is then approximated by a simpler
expert. The soft partition is managed through input-dependent gates that
put one or several experts in charge of small parts of the input space. The
experts can be either regression functions or classifiers making the appli-
cation to both types of learning tasks possible. The soft partition is based
on a principle of divide and conquer where experts compete for being put
in charge of certain regions of the input space. The individual experts are
then able to specialize on a smaller part of the learning problem, and ME
has shown powerful approximation properties by combining the knowl-
edge of these simpler experts together. The modular architecture of MEs
increases the locality of the learning behavior and makes it therefore a pos-
sible candidate for dealing with online learning tasks. In a broader sense,
the ME framework is often compared to decision trees, which also work
with localized subspaces, and an extension to hierarchical MEs is straight-
forward (Jordan and Jacobs 1994). Here, I will concentrate however on
single layered ME models since it is enough to explain the basic ideas of
the framework and it also builds the foundation for the mainly considered
Normalized Gaussian network, which will be introduced in more detail in
section 2.3.1.

A big advantage of MEs is its foundation in statistic, where experts and
gates are combined by a probabilistic model, enabling MEs to be trained
easily with well-known techniques including the expectation-maximization
(EM) algorithm as well as variational learning or Markov chain Monte Carlo
techniques (Yuksel et al. 2012). In the following, I discuss the basic proba-
bilistic model employed by the ME framework. The ME model parameters
are denoted by θ = {θg, θe}, where θg is the set of gate parameters and θe is
the set of expert parameters. The gates and experts can then be combined
by the likelihood of observing an output y for a given input x with

P (y|x, θ) =

M∑
i=1

P (y, i|x, θ) =

M∑
i=1

P (i|x, θg)P (y|i, x, θe), (2.8)

2.2. Artificial Neural Networks 21

where M is the total number of experts and P (y, i|x, θ) is the likelihood of
each expert i to represent the data sample (x, y). The ME model parameters
are estimated by maximizing the log-likelihood of the conditional probabil-
ity with one of the above mentioned training methods.

For the ME regression model, it is assumed that the experts are ex-
pressed by a Gaussian model, where P (y|i, x, θe) = N(y|ŷi(x),Γi) is the
probability density function (pdf) of the i-th expert with a mean ŷi(x) and
covariance Γi. The expectation of the likelihood is then used to obtain a
predicted output of the ME model for an input x by

ŷ =
M∑
i=1

gi(x, θg)ŷi(x), (2.9)

where gi(x, θg) is the i-th gating function. The gating functions influence
which experts are put in charge of a sample (x, y) and therefore function
like a weight. In the original proposal of ME, it is assumed that the ex-
perts ŷi(x) are simple linear functions dependent on input x. When experts
are nonlinear, it is not possible to solve the maximization in respect to the
expert’s parameter analytically and further considerations are necessary to
update them (Weigend et al. 1995).

In the original proposal by Jacobs et al. (1991), the gates are defined as
softmax functions. Yet, the nonlinearity of the softmax function makes the
maximum likelihood estimation of the gate parameters analytically unsolv-
able. For example, when the ME model parameters are estimated with the
EM algorithm, this leads to an additional inner loop of calculations for each
EM iteration. Therefore, Xu et al. (1995) proposed an alternative ME model
with a different gating function to avoid the inner loops at each iteration
and make the gate analytically solvable. The alternative ME uses para-
metric forms from the exponential family, e.g. Gaussians, and the gating
function gi(x, θg) is then given by

gi(x, θg) =
αiP (x|i, θg)∑
j αjP (x|j, θg)

,
∑
i

αi = 1, αi ≥ 0, (2.10)

where P (x|i, θg,i) are pdfs. For an analytical solution, they further have
proposed to work with the joint density P (y, x|θ) instead of the likelihood
P (y|x, θ). With this analytical solvable maximization in respect to both gate
and experts, the alternative ME model is then able to converge faster than
the original model (Yuksel et al. 2012). Another advantage of the alternative
model is the improved locality of the gating function. The softmax gating
function divides the input space into overlapping regions by soft hyper-
planes. This can lead to difficulties for nontrivial function approximation
tasks, because inputs that are not close to any of the hyperplanes activate

22 Chapter 2. Background and Related Work

many of the gates substantially larger than zero. This makes the parameter
estimation much more difficult (Ramamurti and Ghosh 1999). On the other
hand, if for example Gaussian densities are applied for the alternative ME
model, then the input space is partitioned softly by hyper-ellipsoids which
possess a more local behavior with each experts’ influence concentrating
elliptically around their center. This is then another network architecture
with a receptive field based concept.

It is possible to apply ME models to online learning tasks by reformu-
lating training algorithms like the EM algorithm to apply updates incre-
mentally instead of batches. For the alternative ME model, this has been
considered separately by Xu (1998) and Ramamurti and Ghosh (1999). The
former work has also established a connection of the ME framework to the
normalized RBFN, while the later work claims to introduce some growing
and pruning methods to the alternative ME model for the first time. In
the literature, most of the model selection approaches for ME are however
based on the original ME model and ideas are mainly extended from other
tree-based algorithms, aiming to find an optimal structure of the tree by
growing, pruning, exhaustive search or Bayesian model approaches (Yuk-
sel et al. 2012).

Receptive Field Weighted Regression

Receptive field weighted regression (RFWR), first proposed by Schaal and
Atkeson (1997), is an incremental variant of the locally weighted regression
algorithm (Atkeson and Schaal 1995), another learning method that pos-
sesses local properties by combining linear models with weighting func-
tions. RFWR additionally uses some ideas of nonparametric statistics as it is
allocating or pruning processing units dynamically as necessary, making its
model complexity easily adaptable in online learning tasks. The main dif-
ference compared with the previously discussed approaches is that each of
the local receptive fields, here presented by Gaussian kernels, is trained in
isolation without possessing any knowledge about the other local models in
the network. For training, the local experts are updated independently and
incrementally by minimizing a locally weighted leave-one-out cross vali-
dation error with the recursive least squares method. The isolated training
of the experts makes them truly local learning systems and therefore the
network is especially robust against negative interference (Nakanishi et al.
2005). In addition, the number of updated experts is limited for each time
step resulting in fast learning speed.

The properties of its network training make RFWR a popular choice in
robot learning and control tasks. On the down side, the learning method re-
quires tuning of several meta-parameters, which are highly data dependent
and can easily lead to over-fitting when not sufficiently identified (Meier et

2.3. Normalized Gaussian Networks (NGnet) 23

al. 2014). This is also a result of the non-cooperative nature of the learning
method. RFWR can be interpreted in relation to other learning methods,
e.g. as an ME model where the experts are trained in isolation instead of a
competitive environment (Schaal and Atkeson 1998). Only when new pre-
dictions are made by the trained network model, its outputs are calculated
in a similar manner to the ME framework employing normalized weighted
sums of the Gaussian kernels as gates.

Summary

All of the discussed network types are based on a common theme by em-
ploying receptive field based network architectures. Yet, the receptive fields
do not possess always the same role inside the network architecture. While
it takes the role of a sub-model for RBFNs, it can also be the weight of the
sub-model as for the ME model and RFWR. Although, this requires a shift
of interpretation, the structure of the discussed networks is in general the
same. Therefore seen from a model-based perspective (Stulp and Sigaud
2015), it is possible to describe all of these network types with the same
generic model

f(x) =
M∑
i=1

φ(x, θi)ωi. (2.11)

Here, φ(x, θi) is some arbitrary basis function and ωi = aix + bi is a linear
model, where in special cases ai = 0 as for example for the original defi-
nition of RBFNs in Eq. 2.6. So, the main differences between the network
types reduce to the interpretation of sub-models and weights and the cho-
sen learning algorithms that is used to train the network.

A broad range of learning algorithms has been proposed in the litera-
ture. Although, I did not discuss them in much detail, they can broadly
be divided into local and global training approaches. Local learning algo-
rithms are more robust against negative interference, especially when inter-
ference is explicitly considered as for example it is the case for the RFWR
network. These discussions show that the robustness of an ANN is influ-
enced not only by the network architecture but by all learning properties
and it is necessary to consider them to ensure favorable performance in neg-
ative interference prone environments. Interestingly, robustness has never
been discussed much in regard to the applied model selection approaches.

2.3 Normalized Gaussian Networks (NGnet)

In this thesis, I lay the main focus on the normalized Gaussian network
(NGnet) as proposed by Sato and Ishii (2000), which can be interpreted in

24 Chapter 2. Background and Related Work

regard to the explanations in 2.2.3 as a normalized RBFN with linear re-
gression weights and training based on the alternative ME framework. In
the following, I will explain the network architecture and training method
based on the online EM algorithm in detail. In addition, several extensions
that have been proposed to improve learning stability of the NGnet are also
explained.

2.3.1 Network Architecture

The Normalized Gaussian network (NGnet) transforms an N -dimensional
input vector x to a D-dimensional output vector y with

y =
M∑
i=1

Ni(x)W̃ix̃. (2.12)

Ni(x) ≡ Gi(x)/
M∑
j=1

Gj(x) (2.13)

Gi(x) ≡ (2π)−N/2|Σi|−1/2 exp

[
−1

2
(x− µi)′Σ−1i (x− µi)

]
(2.14)

The model softly partitions the input space into M local units with the nor-
malized Gaussian functions Ni. W̃i ≡ (Wi, bi) is a D× (N + 1)-dimensional
linear regression weight matrix with x̃′ ≡ (x′, 1) where prime (′) denotes a
transpose. Interpreting this architecture based on the ME framework,Ni(x)

is then equal to the i-th gating function of the ME model while W̃i is the i-th
units expert.

2.3.2 Online EM Algorithm

A stochastic interpretation has been first proposed for an alternative ME
framework by Xu et al. (1995) that can be used to interpret normalized
RBFNs as ME model. The unknown model parameters are then estimated
by maximum likelihood estimation based on the log-likelihood of the ob-
served in- and output data (x, y). Here, the Expectation-Maximization (EM)
algorithm is applied for parameter estimation. An offline approach has
been proposed by Xu et al. (1995) that was later adopted to an online EM
algorithm by Sato and Ishii (2000).

2.3. Normalized Gaussian Networks (NGnet) 25

For the NGnet, a stochastic model is defined by the following probabil-
ity distribution for a complete event (x, y, i) (Xu et al. 1995)

P (x, y, i|θ) = (2π)−
D+N

2 σ−Di |Σi|−
1
2M−1×

exp

[
−1

2
(x− µi)′Σ−1i (x− µi)−

1

2σ2i
(y − W̃ix̃)2

]
,

(2.15)

where θ ≡ {µi,Σi, σ
2
i , W̃i|i = 1, ...,M} is the set of model parameters that

have to be estimated. The prior probability αi of the ME framework is rep-
resented here by an equal selection probability of each unit P (i|θ) = 1

M .
For the online EM, the parameters are updated with the following E- and
M-step.

E (Estimation) Step:

Given the current estimator θ(t−1), the posterior probabilityPi(t) ≡ P (i|x(t), y(t), θ(t−
1)) evaluates how likely the i-th unit generates the current observation
(x(t), y(t)):

Pi(t) ≡ P (i|x(t), y(t), θ(t− 1)) =
P (x(t), y(t), i|θ(t− 1))∑M
j=1 P (x(t), y(t), j|θ(t− 1))

. (2.16)

M (Maximization) Step:

The expected log-likelihood has to be maximized with respect to the model
estimation θ, which can be done by updating the model parameters θ at
each time step t with

µi(t) = 〈〈x〉〉i(t)/〈〈1〉〉i(t) (2.17)

Σ−1i (t) = [〈〈xx′〉〉i(t)/〈〈1〉〉i(t)− µi(t)µ
′
i(t)]

−1 (2.18)

W̃i(t) = 〈〈yx̃′〉〉i(t)[〈〈x̃x̃
′〉〉i(t)]

−1 (2.19)

σ2i (t) =
[〈〈|y|2〉〉i(t)− Tr(W̃i(t)〈〈x̃y′〉〉i(t))]

D〈〈1〉〉i(t)
(2.20)

The parameter updates in Eq. (2.17)-(2.20) include symbols 〈〈·〉〉i(t) that de-
note weighted accumulated observations (x(t), y(t)) until the current time
step t.

26 Chapter 2. Background and Related Work

Step-wise Updates with Time-Dependent Discount

The online EM is derived from a batch update approach (Xu et al. 1995) for
that the parameters θ are updated after seeing all observed data samples
(x, y), where the total number of data samples is T . For the batch updates,
the weighted accumulators were originally formulated as weighted means
over all data samples

〈〈f〉〉i(T) ≡ 1

T

T∑
t=1

ftP (i|x(t), y(t), θ̄), (2.21)

where f ≡ f(x, y) and ft ≡ f(x(t), y(t)) are used as abbreviations and θ̄ are
the estimated model parameters. This has been reformulated for incremen-
tal updates to a weighted mean where the estimator is changed after each
observation and a current parameter estimation is represented by θ(t). The
weighted mean is then replaced by

〈〈f〉〉i(T) ≡ η(T)
T∑
t=1

(
T∏

s=t+1

λ(s)

)
ftP (i|x(t), y(t), θ(t− 1)) (2.22)

η(T) ≡

(
T∑
t=1

(
T∏

s=t+1

λ(s)

))−1
. (2.23)

Additionally, a time-dependent discount factor λ(t) has been introduced
where (0 ≤ λ(t) ≤ 1). It plays an important role in discarding the effect of
old learning results that were employed to an earlier inaccurate estimator.
The factor has to be chosen so that λ→ 1 when t→∞ to fulfill the Robbins-
Monro condition for convergence of stochastic approximations (Kushner
and Yin 1997). It has been shown that the discount factor helps to improve
convergence speed (Sato 2000). η(T) is a normalization coefficient that has
a similar function to 1

T in the batch update above. A step-wise equation of
the weighted mean can then be obtained for every time step t with respect
to the posterior probability Pi(t) ≡ P (i|x(t), y(t), θ(t− 1)):

〈〈f〉〉i(t) = (1− η(t))〈〈f〉〉i(t− 1) + η(t)Pi(t)ft, (2.24)

η(t) =

(
1 +

λ(t)

η(t− 1)

)−1
. (2.25)

I will often refer to the discount factor λ(t) as global forgetting (GF) in the
thesis, since all units forget the same amount of information at each time
step t with no further consideration of how far they are actually from the

2.3. Normalized Gaussian Networks (NGnet) 27

received training data sample (x(t), y(t)).

Step-wise Updates with Weight-Dependent Discount

In Celaya and Agostini (2015), it was observed that all the parameter up-
dates in Eq. (2.17)-(2.20) cancel out the normalizations of the weighted
means 〈〈f〉〉i(t). It is possible to eliminate the normalization and accumulate
observed information in weighted sums instead of weighted means with

〈〈f〉〉i(t) = λ(t)〈〈f〉〉i(t− 1) + Pi(t)ft, (2.26)

omitting the normalization coefficient η(t). The weighted sums are then
only dependent on the discount factor λ(t) and can be used as basis to de-
rive a step-wise update equation with a weight-dependent discount fac-
tor instead of the time-dependent one. The time-dependent discount factor
λ(t) can be problematic in applications where data are not i.i.d., because the
network model updates only units in the same region as the received data
sample while it forgets old learning results over the whole input space. This
can lead to problems with negative interference. Therefore, a new weight-
dependent discount factor has been derived to localize the forgetting of old
learning results in regard to updates with new information (Celaya and
Agostini 2015).

The derivation of the weight-dependent discount factor is reviewed shortly
in the following. For a weight-dependent discount, learned information
should be forgotten only as much as new updates are received. There-
fore, the model updates have been based exclusively on weights, and the
notation of Eq. (2.26) is changed to use a weight-dependent index with
ωk = Pi(t) as the k-th received weight:

〈〈f〉〉(ωk−1 + ωk) = Λ(ωk)〈〈f〉〉(ωk−1) + Ω(ωk)ft. (2.27)

Here, Λ(ωk) and Ω(ωk) are a weight-dependent forgetting and update factor
respectively. The two factors are unknown functions of ωk that have been
determined based on the following conditions. For a full update, Λ(ωk) and
Ω(ωk) should be Λ(1) = λ(t) and Ω(1) = 1, reducing to the same values as
for a full update of Eq. (2.26). On the other hand, a weighted sum 〈〈f〉〉
should remain unaltered when ωk = 0. Additionally, a consistency condi-
tion need to be fulfilled, imposing that a weighted sum 〈〈f〉〉 updated once
with value ft and weight (ωk + ωk+1) must be the same as 〈〈f〉〉 updated
twice with ft and weights ωk and ωk+1. In the following, the two cases are
expressed based on Eq. (2.27):

〈〈f〉〉(ωk−1 + (ωk +ωk+1)) = Λ (ωk + ωk+1) 〈〈f〉〉(ωk−1) + Ω (ωk + ωk+1) ft

28 Chapter 2. Background and Related Work

(2.28)

〈〈f〉〉((ωk−1 + ωk) + ωk+1) = Λ(ωk+1)〈〈f〉〉(ωk−1 + ωk) + Ω(ωk+1)ft

= Λ(ωk+1)Λ(ωk)〈〈f〉〉(ωk−1) + (Λ(ωk+1)Ω(ωk) + Ω(ωk+1)) ft.
(2.29)

Based on Eq. (2.28) and (2.29), the following functional equations were ob-
tained

Λ(ωk + ωk+1) = Λ(ωk+1)Λ(ωk), (2.30)

Ω(ωk + ωk+1) = Λ(ωk+1)Ω(ωk) + Ω(ωk+1). (2.31)

With the additional full update condition, it is possible to obtain a weight-
dependent forgetting and update factor from these functional equations,
where Λ(ωk) = λ(t)ωk and Ω(ωk) = 1−λ(t)ωk

1−λ(t) . Finally, the notation has been
returned to a time based index, and ωk was replaced with Pi(t). The weight-
dependent stepwise update becomes

〈〈f〉〉i(t) = λ(t)Pi(t)〈〈f〉〉i(t− 1) +

(
1− λ(t)Pi(t)

1− λ(t)

)
ft. (2.32)

In this thesis, I will often refer to the weighted discount factor λ(t)Pi(t) as lo-
calized forgetting (LF), because the additional weight Pi(t) prevents units far
from a current data sample (x(t), y(t)) to forget when no new information
is received.

2.3.3 Extension for NGnet’s Online EM

A few extensions have been proposed by Sato and Ishii (2000) for the NGnet’s
online EM-algorithm to deal with problems that can occur during learning.
One problem is the computational heaviness of the necessary inverse ma-
trix calculations and another problem is that the NGnet’s input covariances
can become singular. For both problems, some solutions have been pro-
posed which I will also employ in this thesis and explain in the following.
Yet, because a different update approach with weighted sums is considered
here instead of the weighted means in Sato and Ishii (2000), I will refor-
mulate the necessary equations so that they generalize to both update ap-
proaches that have been explained in the last subsection. Therefore, I use a
general notation where the forgetting factor is denoted Λi(t) and the update
factor is Ωi(t). In the time-dependent discount case, the forgetting factor is
either Λi(t) = 1 − η(t) when normalization is applied or else Λi(t) = λ(t),

2.3. Normalized Gaussian Networks (NGnet) 29

and the update factor is Ωi(t) = Pi(t). For the weight-dependent discount
factor, the forgetting factor becomes Λi(t) = λ(t)Pi(t) and the update factor
is Ωi(t) = 1−λ(t)Pi(t)

1−λ(t) . Both extensions are then explained below with the
generalized notation.

Avoiding Inverse Matrix Calculation

The online parameter updates in Eq. (2.18) for Σ−1i and Eq. (2.19) for
W̃i include inverse matrix calculations at every time step t. This can be-
come computationally heavy with increasing input dimension, but can be
avoided by employing a recursive formula derived from standard meth-
ods. An additional weighted inverse covariance matrix of x̃ is defined as
Ψ̃i(t) ≡ (〈〈x̃x̃′〉〉i(t))−1, where Ψ̃i(t) can be recursively obtained by the fol-
lowing step-wise equation:

Ψ̃i(t) =
1

Λi(t)

[
Ψ̃i(t− 1)− Ωi(t)Ψ̃i(t− 1)x̃x̃′Ψ̃i(t− 1)

Λi(t) + Ωi(t)x̃′Ψ̃i(t− 1)x̃

]
. (2.33)

Then, Σ−1i (t) can be obtained from the following relation with Ψ̃i(t).

Ψ̃i(t)〈〈1〉〉i(t) =

(
Σ−1i (t) −Σ−1i (t)µi(t)

−µ′i(t)Σ
−1
i (t) 1 + µ′i(t)Σ

−1
i (t)µi(t)

)
. (2.34)

Also, the linear regression matrix W̃i(t) can be calculated with Ψ̃i(t) by

W̃i(t) = 〈〈yx̃′〉〉i(t)Ψ̃i(t) = W̃i(t−1)+Ωi(t)(y(t)−W̃i(t−1)x̃)x̃′Ψ̃i(t). (2.35)

Regularization of Covariance Matrix

It has been assumed for the derivation of the parameter updates with the
EM-algorithm that the input covariance matrix is always a positive semi-
definite matrix and does not become singular so that its matrix inverse does
exits. Yet, this can not always be ensured when the learning algorithm is ap-
plied to a learning tasks, especially real testbeds. In Sato and Ishii (2000),
a regularization method has been proposed for the covariance matrix to
deal with this problem. It has been derived based on the offline updates
and then applied to the online EM-algorithm, but for keeping the expla-
nation short only the necessary changes for the online EM-algorithm are
explained.

For the online EM-algorithm, the regularization can be performed with
the following changes. A regularized Σ−1i is obtained from the relation
(2.34) by using a regularized Ψ̃i.

Ψ̃i(t) =
(
〈〈x̃x̃′〉〉i(t) + α〈〈∆2

i 〉〉i(t)ĨN
)−1

, (2.36)

30 Chapter 2. Background and Related Work

where ĨN is an ((N + 1)× (N + 1))-dimensional matrix defined by

ĨN ≡

(
IN 0

0 0

)
=

N∑
n=1

ẽnẽ
′
n. (2.37)

Here, ẽn is an (N+1)-dimensional unit vector with its n-th element equal to
1 and all other elements equal to 0. A data variance ∆2

i (t) can be obtained
for the current time step t by

Ωi(t)∆
2
i (t) = Ωi(t)|x(t)−µi(t)|2/N+Λi(t)|µi(t)−µi(t−1)|2〈〈1〉〉i(t−1)/N.

(2.38)

Using data variance ∆2
i and a small constant α, I can obtain the virtual data

υ̃n(t)|{n = 1, . . . , N}with

υ̃n(t) ≡
√
α∆i(t)ẽn, (2.39)

which is then used to regularize the weighted covariance matrix Ψ̃i(t) after
the update with Eq. (2.33) by

Ψ̃i(t) := Ψ̃i(t)−
Ωi(t)Ψ̃i(t)υ̃n(t)υ̃′n(t)Ψ̃i(t)

1 + Ωi(t)υ̃′n(t)Ψ̃i(t)υ̃n(t)
. (2.40)

After regularization, the linear regression matrix W̃i is obtained by using
Eq. (2.35).

2.3.4 Dynamic Model Selection for the NGnet

Some unit manipulation mechanisms have been introduced for the time-
dependent update approach (Sato and Ishii 2000) that enable the NGnet
to dynamically add or prune units during learning and therefore adapt to
non-stationary environments. The mechanisms include two types of unit
adding, produce and split, and one type of pruning as introduced in the
following. When adding new units by production or splitting, it is neces-
sary to initialize these units. In this thesis, I propose some changes to the
manipulation decisions, which is explained in chapter 3, but use the new
unit initializations as explained below.

Produce

When the current network model cannot accurately represent a newly re-
ceived data sample (x(t), y(t)), then a new unit should be created with the
initialization stated below.

µM+1 = x(t) (2.41)

2.3. Normalized Gaussian Networks (NGnet) 31

Σ−1M+1 = χ−2M+1IN , χ2
M+1 = β1min

M
i=1|x(t)− µi|2/N (2.42)

σ2M+1 = β2max
M
i=1σ

2
i (2.43)

W̃M+1 ≡ (WM+1, bM+1) = (0, y(t)), (2.44)

where β1 and β2 are chosen to be appropriate positive constants. I will use
β1 = β2 = 1.0 for my approach.

Delete

When a unit is rarely used, it should be deleted. An indicator for this is the
weighted mean of one� 1�i (t) that accumulates information about how
much the i-th unit has been used to represent data samples until the current
time step t.

Split

The output variance σ2i (t) is representing the accumulated squared error
between the i-th unit’s predictions and the real outputs. High variance val-
ues are often related to the unit being in charge of a too large partition of
the input space and not being able to represent the data accurately. When
the output variance is bigger than a split threshold, the unit should be split
into two to reduce the size of the partition in charge.

µM+1(new), µi(new) = µi(old)± β3
√
ξ1ψ1 (2.45)

Σ−1M+1(new),Σ−1i (new) = 4ξ−11 ψ1ψ
′
1 +

N∑
n=2

ξ−1n ψnψ
′
n (2.46)

σ2M+1(new), σ2i (new) = σ2i (old)/2 (2.47)

W̃M+1(new), W̃i(new) = W̃i(old), (2.48)

32 Chapter 2. Background and Related Work

where ξn and ψn denote the n-th eigenvalue and eigenvector of the covari-
ance matrix Σi(old) with ξ1 = ξmax. β3 is an appropriate positive constant
that regulates the overlap between the split units and is set to β3 = 0.5 for
my approach.

33

Chapter 3

Proposed Method

In this chapter, I propose several improvements for the NGnet to achieve
better robustness and applicability to online learning tasks (Backhus et al.
2017). In Section 2.3.2, I have discussed a learning algorithm with localized
forgetting, which has been recently proposed by Celaya and Agostini (2015)
and provides an improved robustness of the NGnet’s update method in re-
gard to negative interference. This makes it an interesting alternative to
a more established update method with global forgetting, which has been
shortly introduced in Section 2.3.2. Yet, further improvements are possi-
ble for the localized forgetting update method to achieve better robustness
and applicability. When network parameters are estimated with the pre-
vious localized forgetting update method (Eq. (2.32)), then the discount
factor λ(t) is not applicable over its full numerical range. Therefore, I re-
discuss the derivation of localized forgetting updates in Section 3.1. Fur-
thermore, localized forgetting offers the possibility to reduce the compu-
tational complexity of updates, since many units become computationally
irrelevant at each time step. I discuss this matter more deeply in Section 3.2.
Finally, it is difficult to apply localized forgetting to online learning tasks,
where domain knowledge is limited or the environment is non-stationary,
since previously only static model selection has been considered. There-
fore, I discuss the application of dynamic model selection and additional
improvements for it in regard to negative interference in Section 3.3. This
also includes the proposal of a new merge mechanism to deal with model
redundancies.

3.1 Re-Derivation of Localized Forgetting

In the following, I re-discuss the derivation of an update approach with lo-
calized forgetting (Backhus et al. 2016a), where localized forgetting has been
proposed earlier by Celaya and Agostini (2015) and was already shortly
discussed in Section 2.3.2. This discussion is motivated by the dependency
of an update factor Ω(Pi(t)) on the discount factor λ(t) in Eq. (2.32) with
Ω(Pi(t)) = 1−λ(t)Pi(t)

1−λ(t) . I believe this to be bad practice, because the discount
λ(t) controls forgetting of previously learned information and should not

34 Chapter 3. Proposed Method

influence the update weight of new information. Originally, the discount
factor has been introduced to speed up convergence by partially forgetting
older inaccurate estimations of a network parameter (Sato 2000). The dis-
count factor takes values in the range 0 ≤ λ(t) ≤ 1. When the localized for-
getting update method employs a discount λ(t) = 1, the update factor be-
comes however 1−1Pi(t)

1−1 = 0
0 and no new information can be learned. There-

fore, I derive the update approach with localized forgetting anew from the
global forgetting approach in Eq. (2.26). While the previous derivation, ex-
plained in Section 2.3.2, has emphasized only weight dependencies, I con-
sider a derivation with dependencies on weight and time.

The new derivation follows the same flow as the previous one, but I
keep a time index notation over the whole derivation to emphasize the ad-
ditional time dependency. The stepwise update in Eq. (2.26) is then rewrit-
ten to

〈〈f〉〉i(t) = Λ(Pi(t))〈〈f〉〉i(t− 1) + Ω(Pi(t))ft, (3.1)

where a new forgetting factor Λ(Pi(t)) and update factor Ω(Pi(t)) have to
be determined by considering a full update and consistency condition.

I consider a full update condition, where Λ(1) = λ(t) and Ω(1) = 1,
and implying a dependency on time t and the competitive sharing of a
data sample by several units. The units divide the responsibility for each
data sample (x(t), y(t)) between each other according to their representa-
tion ability of (x(t), y(t)). A full update can therefore only happen at a same
time step t for a weighted sum 〈〈f〉〉M that accumulates information over all
M units, or when only one unit represents the data sample to 100% which
is rarely happening. If the batch update equation (2.22) is rewritten to an
update without normalization and accumulated over allM units, then I get

〈〈f〉〉M (T) =
T∑
t=1

(
T∏

s=t+1

λ(s)

)
M∑
i=1

Pi(t)ft =
T∑
t=1

(
T∏

s=t+1

λ(s)

)
ft (3.2)

as the full update for global forgetting. Considering the same for local for-
getting, I would get

〈〈f〉〉M (T) =
T∑
t=1

 T∏
s=t+1

 M∏
j=1

Λ (Pj(s))

 M∑
i=1

Ω(Pi(t))ft =
T∑
t=1

(
T∏

s=t+1

λ(s)

)
ft.

(3.3)

Here, global and local forgetting reduce to the same full update as the right
terms of the equation show.

Additionally, I have to consider a consistency condition for a shared

3.1. Re-Derivation of Localized Forgetting 35

weighted sum 〈〈f〉〉i+j(t− 1) by unit i and j. Here, an update with value ft
should be the same when updated once with weight (Pi(t)+Pj(t)) or twice
with weights Pi(t) and Pj(t) at one time step t. For a single update with
(Pi(t) + Pj(t)), I get

〈〈f〉〉i+j(t) = Λ (Pi(t) + Pj(t)) 〈〈f〉〉i+j(t− 1) + Ω (Pi(t) + Pj(t)) ft. (3.4)

On the other hand, if 〈〈f〉〉i+j(t − 1) is updated twice with Pi(t) and Pj(t),
then I get

〈〈f〉〉i+j(t) = Λ(Pi(t))〈〈f〉〉i+j(t− 1) + Ω(Pi(t))ft (3.5)

〈〈f〉〉i+j(t+ 1) = Λ(Pj(t))〈〈f〉〉i+j(t) + Ω(Pj(t))ft. (3.6)

By inserting Eq. (3.5) into Eq. (3.6), I get

〈〈f〉〉i+j(t+ 1) = Λ(Pj(t))Λ(Pi(t))〈〈f〉〉i+j(t− 1)

+ (Λ(Pj(t))Ω(Pi(t)) + Ω(Pj(t)))ft, (3.7)

which is similar to Eq. (2.29) but uses a time index notation instead. This
time index notation helps to observe that Eq. (3.7) results in an update that
is one step ahead of time and therefore also ignores that units actually di-
vide the update weights for each training data sample (x(t), y(t)) at one
time step t. Furthermore, the update Ω(Pi(t))ft is already partially forgot-
ten by Λ(Pj(t)). I want however update twice on the same time step t, so I
have to prevent forgetting of partial updates which reduces Eq. (3.7) to

〈〈f〉〉i+j(t) = Λ(Pj(t))Λ(Pi(t))〈〈f〉〉i+j(t−1)+(Ω(Pi(t))+Ω(Pj(t)))ft. (3.8)

The same equation can also be derived from the batch update in Eq. (3.3),
when it is rewritten to a stepwise update equation and considered as a
weighted sum shared by two units i and j instead of M units.

Finally, I obtain the following two functional equations based on Eq.
(3.4) and Eq. (3.8):

Λ(Pi(t) + Pj(t)) = Λ(Pj(t))Λ(Pi(t)) (3.9)

Ω(Pi(t) + Pj(t)) = Ω(Pi(t)) + Ω(Pj(t)). (3.10)

36 Chapter 3. Proposed Method

For the functional relationship of the forgetting factor in Eq. (3.9), the so-
lution is well known to be of the form Λ(Pi(t)) = cPi(t), where c can be
determined by using Λ(1) = λ(t). The same forgetting factor is derived as
for the previous localized forgetting approach with Λ(Pi(t)) = λ(t)Pi(t). Yet,
I derive a new update factor from Eq. (3.10) with Ω(Pi(t)) = Pi(t), which is
actually the same as for the global forgetting approach. The newly derived
localized forgetting update approach then complies with all considered de-
pendencies and can add new information to units independently from λ(t).
The new stepwise update equation for local forgetting becomes

〈〈f〉〉i(t) = λ(t)Pi(t)〈〈f〉〉i(t− 1) + Pi(t)ft. (3.11)

3.2 Update Precision

The local forgetting update method possesses some properties, which the
global forgetting method does not, that make a reduction of the computa-
tional complexity possible. In a training approach with global forgetting
as proposed by Sato and Ishii (2000), all units have to be updated at ev-
ery time step because even when a unit’s update with new information
almost equals zero and therefore could be omitted, each unit definitely for-
gets a fixed amount of previously learned information. This then results
in a change in the unit’s parameters. On the other hand, the local forget-
ting approach sets the forgetting of old information in relation to the actual
learned new information. This implies that a unit with a very small update
weight at a time step also applies a very small discount, where λ(t)Pi(t) → 1

for updates weights Pi(t) → 0. While mathematically seen updates can
become very small, the computational precision is limited. When update
weights are so small that they are outside of these computational precision
limits, the discount factor will equal one and the update weights zero so
that the units parameter are the same before and after the update. This
raises then the possibility to reduce the computational complexity of the
parameter updates by ignoring units whose updates are computationally
irrelevant.

Updates with localized forgetting provide a natural approach to reduce
the computational complexity for the NGnet. The number of updated units
can be reduced according to the precision limits of the implementation en-
vironment, which is approximately 1.0E − 17 in this case. Yet, even when
update weights are slightly bigger than 1.0E − 17, the influence of these
updates is very low for the overall estimation of the unit’s parameters and
also for the learning performance. In addition, the applied forgetting factor
eliminates changes made for very small parameter updates easily with the
next larger update. Therefore, it would be interesting to discuss how much

3.3. Dynamic Model Selection 37

the actual update precision can be reduced without resulting in any larger
change of the NGnet’s learning performance. If it is possible to reduce the
update precision further, then this would result in additional ease of com-
putational complexity while learning performance stays approximately the
same. Because it is difficult to decide on an appropriate update precision
based on a theoretical discussion only, I will further discuss this matter for
experimental results presented in Section 4.2.1 and 4.2.2 of Chapter 4.

Aside from computational complexity, I can also consider the update
precision reduction from the viewpoint of a global-local trade-off. The re-
duced number of updated units implies an increased locality of the update
since units with higher update weights are likely to be nearer to the cur-
rently observed training data sample. But an increasing locality also im-
plies a decreasing generalization ability, which can affect the learning per-
formance negatively in noisy environments. Local models tend to over-fit
more easily since the range of received information is reduced for each unit.
This effect has also been noted in the context of the ME framework by Jacobs
(1997). ME models softly partition the input space, which was then stated to
be an advantage in regard to noise robustness compared with other learn-
ing systems that apply a hard partition of the input space. So, when the
update precision is cut down too much, the NGnet’s learning performance
is likely to decrease. Yet, this probably only plays a role for quite aggressive
cuts in the update precision since smaller updates’ influence is generally
low. This additional viewpoint gives further insights into how to interpret
the experimental results discussed in Section 4.2.1 and 4.2.2 and based on it
how to decide on an appropriate update precision.

3.3 Dynamic Model Selection

Dynamic model selection is an important feature when applying ANNs to
online learning tasks, since it is difficult to choose an appropriate static net-
work model complexity and initialization of model parameters without in-
corporating domain knowledge. Also, learning performance can be highly
dependent on both factors. An accurate model selection in advance is nor-
mally only possible with extensive trial-and-error studies conducted by the
user. Therefore, the application of dynamic model selection can ease the
use of NGnets for learning tasks, where finding a good model by hand is
difficult. While dynamic model selection has not been considered for an
NGnet with localized forgetting, it was previously introduced to an NGnet
with global forgetting. In Section 3.3.1, I discuss therefore the adaptation of
some unit manipulation mechanisms that have been shortly introduced in
Section 2.3.4 and were previously applied to an NGnet with global forget-
ting. Furthermore, I aim to improve the robustness of the mechanisms in

38 Chapter 3. Proposed Method

regard to negative interference and introduce an additional merge mecha-
nism to reduce redundancies in the model.

Dynamic model selection is a popular model selection approach and has
been considered for many ANNs with a receptive field based network ar-
chitecture. It is normally achieved by employing some methods to increase
or reduce model complexity by adding or pruning units. In addition, it
is possible to apply these methods self-constructively so that the model is
build from scratch during learning and initialized with zero units before
training. This has the advantage that the initialization problem can be al-
most completely avoided. I discuss an self-constructing algorithm for the
NGnet in Section 3.3.2.

3.3.1 Unit Manipulation Mechanisms

Some unit manipulation mechanisms have been introduced for the NGnet
with global forgetting (Sato and Ishii 2000) and are adapted here to apply
dynamic model selection to the localized forgetting approach. The adapted
unit manipulation mechanisms include a produce, delete and split mech-
anism, which were discussed shortly in Section 2.3.4. Additionally, I pro-
pose a new merge mechanism to reduce redundancy of units and further
improve model compactness.

Produce

The probability distribution P (x(t), y(t)|θ(t−1)) =
∑M

i=1 P (x(t), y(t), i|θ(t−
1)) indicates how accurate the current model parameters θ(t − 1) can rep-
resent the newly observed data sample (x(t), y(t)). Then, this information
can be used to decide whether a new unit should be added or not. The
above stated probability distribution includes however the prior probabil-
ity P (i|θ(t − 1)) = 1

M , which implies a tendency to add new units more
easily with increasing model complexity M . To avoid this, I can omit the
prior probability and use only the input output probability distribution∑M

i=1 P (x(t), y(t)|i, θ(t− 1)) of the NGnet as an indicator for unit construc-
tion instead. When the indicator is smaller than a certain threshold TProduce,
the current network model is not able to represent the currently observed
data sample well enough and a new unit is created according to Eq. (2.41)-
(2.44).

While the initialization of the new unit’s parameters has been discussed
by Sato and Ishii (2000), any hints about the initialization of the weighted
sums were omitted, which is therefore shortly discussed in the following.
When a new unit is created at a time step t, this unit is the only respon-
sible unit for the current sample (x(t), y(t)). This can be expressed by an
update weight PM+1(t) = 1, which then is used to initialize the weighted

3.3. Dynamic Model Selection 39

mean of one to 〈〈1〉〉M+1(t) = PM+1(t) = 1. An initialization of 〈〈1〉〉M+1(t) is
then enough to calculate the initial values of all other weighted sums with
the available information according to the functional relationship between
weighted sums and unit parameters in Eq. (2.17)-(2.20).

Delete

The importance of an unit is indicated by the weighted sum of one 〈〈1〉〉i(t)
that accumulates information about how much the i-th unit has been in
charge of the observed data until the current time step t. When the delete
mechanism has been first proposed (Sato and Ishii 2000), 〈〈1〉〉i(t) was as-
sumed to be a weighted mean scaled between zero and one by a normal-
izer η(t) = (1 + λ(t)/η(t− 1))−1. The normalizer η(t) replaced a normalizer
1/T , which is used in the batch EM-algorithm and T is the total number of
samples. T is however unknown in online learning tasks and instead η(t)

represents an normalizer based on the current data count 1/t discounted by
λ(t).

For the NGnet with localized forgetting, 〈〈1〉〉i(t) is an unscaled weighted
sum and cannot be used directly as a reference for the delete mechanism.
Therefore, a normalizer has to be introduced before using 〈〈1〉〉i(t) as an indi-
cator and there are several possible candidates for the normalization. The
first candidate is the sum

∑M
i=1〈〈1〉〉i(t), which represents the current total

number of data samples represented by the trained NGnet. It is also an ap-
proximation of t with consideration of the received discounts, and in case
of λ(t) = 1 it would reduce to the same value as η(t). While this normalizer
evokes a similar effect as the normalizer η(t) in Eq. (2.24), it is unlikely to
work well in environments where the model complexity is dynamic. All
units are initialized with the weighted sum 〈〈1〉〉i(t) = 1, which represents
their presentation probability of the data sample that they have been added
for. The point of time t is not considered for the initialization of newly
produced units. With a normalizer as

∑M
i=1〈〈1〉〉i(t), later added units are

likelier deleted again soon after their production with increasing t, because
the normalization of 〈〈1〉〉i(t) with a large value of the approximated t results
in very small values. A second possible normalizer is a separate life time
counter for each unit. Then, the unit is only influenced by its own life time
and not by the current training time step t. This is however still a global
normalization that has similar tendencies as the global forgetting update
method. Yet, I want a normalization that performs well even for negative
interference prone environments and therefore localize the delete decision
further to achieve better robustness.

40 Chapter 3. Proposed Method

A third possible normalization candidate is introduced that only incre-
ments each units independent time counter when the unit is assumed rele-
vant for a data sample (x(t), y(t)). This normalization then provides a local-
ization of the delete mechanism, which helps to improve robustness against
negative interference. The time counter of a unit is incremented either when
the unit belongs to the updated units at time step t or when it is not updated
but the input posterior probability P (i|x(t), θ(t)) = P (x(t)|i,θ(t))∑M

j=1 P (x(t)|j,θ(t))
is high

enough for the unit to be considered locally relevant. To take each unit’s
received discount into account, I define the time counter c(time)i similarly to
η(t) with

c
(time)
i = 1 + λ(t)Pi(t)c

(time)
i . (3.12)

But the major difference to η(t) is that each unit has its own counter, which
is managed independently by the unit and not incremented at each time
step. A unit i is then deleted if 〈〈1〉〉i(t)/c

(time)
i < TDelete, where TDelete

is a delete threshold. It is necessary to include the discount information
into the normalization, since the applied discount evokes that the weighted
sums stop growing after reaching a certain limit where applied discount
and newly added information become approximately the same for each
time step. This is especially a problem when the discount factor converges
only slowly to one or does not converge at all. Not including the discount
information would then lead to the deletion of highly active units because
the time counter is still growing linearly.

Split

The split mechanism is another approach to increase model complexity,
which considers units that are in charge of a large partition of the input
space but not able to represent data samples well. The output variance of
a unit i, σ2i (t), is an indicator for this as it accumulates information about
the squared error between the unit’s predictions and the real outputs. High
variance values are then the result of a high error accumulation and split-
ting such units can improve learning performance. In Section 2.3.4, a split
mechanism has been discussed that employs a static threshold parameter
to decide whether a unit is split or not. For a static threshold, it is however
difficult to find an appropriate setting in non-i.i.d. learning tasks, especially
when the data distribution is imbalanced and different regions are in need
of different threshold parameters.

For my split decision, I compare each unit’s σ2i (t) with a dynamic thresh-
old parameter that is calculated from local information and therefore at-
tempts to localize the split mechanism. Here, the threshold parameter is
calculated by considering only output variances of nearest neighbors of the

3.3. Dynamic Model Selection 41

split candidate. When a unit’s output variance is considerably bigger than
the biggest variance of its neighbors, the unit is split and the unit param-
eters are initialized according to Eq. (2.45)-(2.48). Additionally, I have to
decide on an initialization for 〈〈1〉〉new so that the rest of the weighted sums
can be initialized accurately based on the available information. Because
the sum

∑M
i=1〈〈1〉〉i(t) over all units M is similar to a discounted counter of

the current total number of time steps T , I initialize 〈〈1〉〉new(t) = 〈〈1〉〉old(t)/2
for the two split units so that the sum

∑M
i=1〈〈1〉〉i(t) remains the same.

The algorithm below describes the flow of the dynamic threshold calcu-
lation for my split mechanism.

1: Number of nearest neighbors: NoNN = M/Div(NN)

2: for all candidate units i do
3: Find the NoNN nearest neighbors of unit i
4: σ2NN

(max)
= max{σ2j , j = 1, 2, · · · , NoNN}

5: Calculate dynamic split threshold:
TSplit = σ2NN

(max) · C
6: if σ2i > TSplit then
7: Add unit to splitting candidates vector VSplit
8: end if
9: end for

10: Split all candidates in VSplit

Here, Div(NN) and C are two variables that have to be set by the user.
Div(NN) is regulating the number of nearest neighbors involved in the split-
ting decision in relation to the current model complexity M of the NGnet.
Div(NN) is set to 6 for my method. On the other hand, C is a constant
that regulates when a unit is considered too error-prone compared with its
neighbors and has to be split. C is set individually according to the needs
of the experiments and information about the chosen values can be found
in Chapter 4. Nearest neighbor search is based on the distance between
two units. The NoNN units with the shortest distances are considered as
nearest neighbors of unit i and the Euclidean distance is used for distance
calculation. Because nearest neighbor search is computationally expensive,
I limit the number of considered split candidates to actually updated units
at each time step.

Merge

Additionally, I propose a new merge manipulation mechanism (Backhus et
al. 2016b) that is an important addition to reduce redundancies in the net-
work model. Redundancy means here that two network units overlap so
much that they are approximating almost the same partition of the input-
output-space. For finding possible merge candidates, the grade of overlap

42 Chapter 3. Proposed Method

between units has to be evaluated over the input and output space. Similar
to a merge approach discussed by Hennig (2010), I use the Bhattacharyya
Coefficient (BC) to measure the overlap between two multivariate Gaus-
sian distributions G1(µ1,Σ1) and G2(µ2,Σ2). BC has the advantage that
the merge mechanism can be applied online based on currently available
information of each unit, which is for example not possible for the merge
mechanism in Ueda et al. (2000). In case of Gaussian distributions, a closed
form solution for BC exists with

dB(G1, G2) =
1

8
· (µ1 − µ2)′Σ−1(µ1 − µ2) +

1

2
· log |Σ|√

|Σ1| · |Σ2|
(3.13)

BC(G1, G2) = exp (−dB(G1, G2)) (3.14)

Here, dB is the Bhattacharyya distance and Σ = (Σ1 + Σ2)/2. For a similar-
ity S(i, j) between two units i and j, I have to calculate the overlap of the
units’s input and output probability density functions (pdf). Suppose, the
input pdf of a unit i isGinputi (µi,Σi) and the output pdf isGoutputi (W̃ix̃, σ

2
i I).

The similarity S(i, j) is then calculated in regard to the overlap of the ob-
served units for the input and output space

S(i, j) = BC(Ginputi , Ginputj) ·BC(Goutputi , Goutputj). (3.15)

If S(i, j) > TMerge with a threshold TMerge, then the units are possible
merge candidates.

The merge mechanism starts merging always from the units with the
maximal similarity. Its flow is therefore similar to a search that is repeat-
edly looking for the maximal similarity between units until no unit pair
satisfies the merge threshold anymore. The algorithmic flow is described in
the following:

1. Calculate the similarity S(i, j) for all pairs {i, j}.

2. Choose the pair {imax, jmax}with maximal similarity.

3. If S(imax, jmax) > TMerge then merge units into one and go to step 1.

4. Otherwise, stop routine.

The merge mechanism is computationally heavy, especially when the
network model complexityM is high. Furthermore, it is unnecessary to ap-
ply merge at every time step t, because merge candidates are not found that
frequently. Intervals of a few hundred time steps are sufficient. Yet, a new
problem arises when applying merge in intervals, because the calculation

3.3. Dynamic Model Selection 43

of the output BC depends on input x for the output center W̃ix̃. A calcula-
tion of similarities using current input x(t), in the form x̃′(t) ≡ (x(t), 1)′, is
inappropriate since the calculated similarities depend on and change with
x(t). Preliminary experiments showed that this can lead to an underes-
timation of similarity, for example when x(t) and the units are in differ-
ent parts of the input space. A possible alternative would be to use the
weighted sum 〈〈x̃〉〉′i(t) ≡ (〈〈x〉〉i(t), 〈〈1〉〉i(t))′, however preliminary experi-
ments showed that this approach is overestimating the similarity between
the output distributions. Especially the first term of dB becomes very small
due to the output center. Therefore, I revise the overlap calculation to avoid
the inclusion of input x in the output center for the BC calculation.

I use a multivariate theorem applicable to Gaussian distributions to con-
duct an affine transformation of the output distribution. According to the
theorem, a distribution U ∼ N(µ,Σ) can be linearly transformed with a
vector c and a matrix D to a distribution V ∼ N(c+DµU , DΣUD

′). Here, I
want to transform the output distribution y ∼ N(W̃ix̃, σ

2
i I) so that input x

is not included in the center of the output distribution. For convenience, I
consider the transformation of the transpose y′ ∼ N(x̃′W̃ ′i , σ

2
i I) instead. W̃i

is defined in Eq. (2.19), and the transpose is

W̃ ′i = (〈〈yx̃′〉〉i(t)[〈〈x̃x̃
′〉〉i(t)]

−1)′ = [〈〈x̃x̃′〉〉i(t)]
−1〈〈x̃y′〉〉i(t). (3.16)

I then use U = y′, µU = x̃′W̃ ′i , ΣU = σ2I , V = W̃ ′i , D = [〈〈x̃x̃′〉〉i(t)]−1〈〈x̃〉〉i(t)
and c = 0 to transform U to V .

µV = [〈〈x̃x̃′〉〉i(t)]
−1〈〈x̃〉〉i(t)〈〈x̃

′〉〉i(t)W̃
′
i = W̃ ′i (3.17)

ΣV = [〈〈x̃x̃′〉〉i(t)]
−1〈〈x̃〉〉i(t)σ

2
i I([〈〈x̃x̃′〉〉i(t)]

−1〈〈x̃〉〉i(t))
′ = σ2i [〈〈x̃x̃′〉〉i(t)]

−1

(3.18)

So, V becomes W̃ ′i ∼ N(W̃ ′i , σ
2
i [〈〈x̃x̃′〉〉i(t)]−1), and input x is excluded from

the output center. But W̃ ′i is a (N + 1)×D-dimensional matrix, and the left
term of Eq. (3.13) becomes a D ×D-dimensional matrix dependent on the
output dimension D. Therefore, I update Eq. (3.13) to

dB(G1, G2) =
1

8D
·Tr

(
(µ1 − µ2)′Σ−1(µ1 − µ2)

)
+

1

2
·log |Σ|√

|Σ1| · |Σ2|
, (3.19)

where Tr is the trace of the matrix.
Finally, I have to merge units i and j when S(imax, jmax) > TMerge.

Again, I consider the units’ Gaussian distributions for the input and output

44 Chapter 3. Proposed Method

space and merge the centers and covariances of input and output distri-
butions in the same matter. New centers µnew and covariances Σnew are
calculated by

µnew = ωiµi + ωjµj , (3.20)

Σnew =

i,j∑
k

ωk
(
Σk + (µk − µnew)(µk − µnew)′

)
, (3.21)

where ωk =
〈〈1〉〉

k
(t)

〈〈1〉〉
i
(t)+〈〈1〉〉

j
(t)

with k ∈ {i, j} are functioning as merging

weights with 〈〈1〉〉k(t) representing the importance of unit i and j during
training until current time step t. In addition, I initialize the newly merged
unit’s weighted sum of one to 〈〈1〉〉new(t) = 〈〈1〉〉i(t) + 〈〈1〉〉j(t). Then, the
remaining weighted sums can be initialized based on the available infor-
mation.

3.3.2 Self-Constructing Model Adaptation

In online learning schemes, domain knowledge is generally limited what
makes it difficult to decide on a good model initialization in advance. An
alternative approach is to build the model from scratch during learning,
and this approach has been applied several times in the context of recep-
tive field based ANNs (Schaal and Atkeson 1998; Platt 1991). I introduce a
similar approach in this thesis and build the network model of the NGnet
self-constructively during learning with the help of the above discussed
unit manipulation mechanisms.

Here, the NGnet is initialized with zero units (M = 0), and an initial
unit is produced upon receiving the first training data sample. Only for
the first unit, some predetermined initialization is necessary and I set the
parameters as in the following.

µ1 = x(t) (3.22)

Σ−11 = 0.1IN (3.23)

σ21 = 0.1 (3.24)

3.3. Dynamic Model Selection 45

W̃1 = (0, y(t)) (3.25)

After the first unit is produced, it is possible to create all other units in
relation to the first one by applying the produce mechanism in Eq. (2.41)-
(2.44). This reduces the necessary decisions for initialization largely, which
eases the application of NGnets in environments where domain knowledge
is limited.

The full flow of the self-constructing model adaptation is described in
the algorithm below.

1: if M==0 then
2: Produce first unit
3: else
4: Compute Probabilities
5: if

∑M
i=1 P (x(t), y(t)|i, θ(t− 1)) < TProduce then

6: Produce new unit
7: else
8: Update units
9: Test delete, split, merge

10: end if
11: end if

47

Chapter 4

Experiments

In this chapter, I conduct several experiments to evaluate the learning per-
formance of my proposed method for a broad range of learning tasks. First,
two function approximation tasks are considered, where I do not only test
the overall learning performance but also conduct experiments to discuss
some of the new proposals independently. Additionally, the proposed method
is evaluated for chaotic time series forecasting and a reinforcement learning
tasks.

4.1 Preparations

Before the experiments, it is necessary to discuss several initial decision
steps. This includes information about the compared NGnet learning meth-
ods and the choice of several learning parameters for the dynamic model
selection and the discount schedules.

4.1.1 Compared Learning Methods

The learning performance of the proposed method is mainly evaluated in
comparison with the previously proposed NGnet training methods (Celaya
and Agostini 2015; Sato and Ishii 2000). The newly proposed method em-
ploys the changes described in Section 3.1 and it will be mainly termed
either LF or LF(Prop.) in the following to keep things short. LF is applied
with or without dynamic model selection depending on the aim of each
experiment and the compared learning methods.

The previously proposed localized forgetting method (Celaya and Agos-
tini 2015), LF(Prev.), is mainly discussed in regard to LF(Prop.). Dynamic
model selection was yet to be considered for LF(Prev.) and it is not applica-
ble without proposing some changes in the delete manipulation. Therefore,
the two methods are compared only with static model complexities. To
keep the comparison fair, both methods use an identical network initializa-
tion.

In addition, LF (Prop.) is compared with an NGnet that applies global
forgetting updates, termed GF in the following. GF has been proposed in

48 Chapter 4. Experiments

Sato and Ishii (2000) and dynamic model selection has also been applied.
Therefore, dynamic model selection can be included for the comparison of
LF (Prop.) with GF. Two different versions of GF are considered: one is
equal to the proposal in Sato and Ishii (2000) including a normalization co-
efficient as in Eq. (2.24), referred to as GFnorm, while the other one employs
only a discount factor as in Eq. (2.26), referred to as GFdisc. For GFdisc, a
normalizer is necessary to enable the application of a delete mechanisms
for the same reasons as described in Section 3.3.1. Since old information is
forgotten globally, units experience some major changes in the parameters
at every time step. Therefore, the applied normalizer equals a unit life time
counter, which is the same as the second normalizer candidate discussed in
Section 3.3.1. For both GF methods, I apply dynamic model selection in a
self-constructing manner in all experiments as explained in Section 3.3.2.

Finally, some differences have to be considered for the initialization
of the learning approaches. GFdisc and both local forgetting methods are
based on a non-normalized update method that accumulates information
about the received training samples in weighted sums. On the other hand,
GFnorm is using a normalizer that accumulates newly received information
in weighted means. This makes it necessary to consider a slightly differ-
ent initialization for GFnorm to achieve a good and approximately similar
learning behavior compared with GFdisc. For the non-normalized update
methods, the weighted accumulator 〈〈1〉〉new is initialized with one for a
newly added unit (with dynamic model selection) or units created at the
beginning (no dynamic model selection). This means a unit has a repre-
sentation ability of one for its input center at the point of its creation. Yet,
this initialization would put too much weight on a newly added unit in
case of GFnorm, where the weight mean of one is supposed to be normal-
ized and then is equal to η(t)Pi(t). Therefore, I will use the initialization
〈〈1〉〉new = η(t) for GFnorm instead. With this additional change in the ini-
tialization of GFnorm, it is then possible to compare LF with the global for-
getting approaches GFdisc and GFnorm under equal initial conditions.

4.1.2 Model Selection Parameter Settings

Each of the four dynamic model selection mechanisms include a thresh-
old parameter that has to be set in advance, where the four manipulation
mechanisms are produce (Prod.), delete (Del.), split (Spl.) and merge (Mrg.).
I have conducted several preliminary experiments with different param-
eter settings for all compared methods and the best performing parame-
ters were selected separately for each test environment and method. An
overview of the selected parameters can be found in Table 4.1, where I have

4.1. Preparations 49

TABLE 4.1: Manipulation Parameter Settings for All Exper-
iments

Method
Parameter Settings

Prod. Del. Spl. Mrg.

FA: Balanced
LF(Prop.) 1.0 0.09 3× 0.7
GF 1.0 0.001 0.12 -

FA: Imbalanced
LF(Prop.) 1.0 0.001 3× 0.95
GF 1.0 0.00001 0.12 -

FA: Dynamic
LF(Prop.) 1.0 0.05 3× 0.8
GF 1.0 0.0001 0.12 -

Lorenz Attractor
LF(Prop.) 0.001 0.01 3× 0.7
GFdisc 0.001 0.0001 10× -

MG Time Series: 6-steps ahead
LF(Prop.) 500.0 0.1 3× 0.7
GFdisc 500.0 0.001 3× -

MG Time Series: 50-steps ahead
LF(Prop.) 500.0 0.01 3× 0.7
GFdisc 500.0 0.00001 5× -

Reinforcement Learning
LF(Prop.) 0.00001 0.001 3× 0.7
GFdisc 0.00001 0.00001 2 -

summarized the two global forgetting methods as GF when the same pa-
rameters have been selected after extensive testing. For the function ap-
proximation task, several different learning scenarios are tested that are all
marked with a beginning FA in the table. Some split parameters in the ta-
ble are a multiple of a referenced value and are marked by an additional ×,
e.g. 3×meaning three times. For the chaotic time series forecasting tasks, I
also apply a dynamic threshold decision for GFdisc’s split mechanism, be-
cause the static one used in Sato and Ishii (2000) has unstable performance.
A unit is then split when its output variance is a certain number of times
bigger than the average of the units’ variances.

The produce threshold is set to the same parameter for all compared
methods within an experimental environment. This is reasonable because
the same produce mechanism is used by all methods. In the experiments,
differences in the unit production behavior can be observed, but this is
mainly caused by the effects of the different forgetting approaches and
delete mechanisms. After testing several values, the produce threshold is
set to TProduce = 1.0 for the FA experiments and TProduce = 0.001 for the

50 Chapter 4. Experiments

Lorenz Attractor experiment. For the Mackey-Glass (MG) Time Series exper-
iment, very high produce thresholds are chosen to make the NGnet com-
petitive. Further explanation of the reasons can be found in Section 4.3.3.
For the reinforcement learning task, it is however necessary to choose very
small produce thresholds.

4.1.3 Scheduling of Discount Factor

FIGURE 4.1: Discount Scheduling for b=30

A discount factor λ(t) has been introduced to the NGnet updates with
the aim to speed up convergence. To reach convergence, the discount has
to be scheduled so that λ(t) → 1 when t → ∞ to fulfill the Robbins-Monro
condition for convergence of stochastic approximations (Kushner and Yin
1997). A scheduling λ(t) → 1, where λ(t) is changing over time t, can be
calculated according to

λ(t) = 1− 1− a
at+ b

, (4.1)

depending on two parameters a and b. a controls how fast λ(t) → 1 and b

sets the initial value of λ. In Fig. 4.1, it is shown how different values of a
influence the convergence of λ(t) for an example where the initial value is
b = 30. In my experiments, I apply several values for a and b to evaluate the
effect of different discount schedules on the performance of all compared
methods.

In addition to experiments with forgetting, I conduct experiments with-
out forgetting. Here, a discount factor λ(t) = 1 is applied over the whole
training time which is equal to any value b and a = 1. Then, LF updates
with Eq. (3.11) reduce to the same as GFdisc’s with Eq. (2.26). This makes a

4.2. Function Approximation Tasks 51

better comparison of the two different model selection approaches possible,
since learning performance is not influenced by differences in the update
methods.

4.2 Function Approximation Tasks

First of all, the NGnets are tested for two function approximation tasks.
Here, the main focus is laid on the second function approximation task,
described in Section 4.2.2, but in addition I consider another simple ap-
proximation task in Section 4.2.1 to discuss the effects of different update
precisions in a second testbed.

4.2.1 Simple Regression Task with 5-Dimensions

The main aim of this simple approximation task is to investigate the effect
of different update precisions on the learning performance of LF. In section
3.2, I have discussed that it is not necessary to update all units at every
time step when an NGnet is updated with local forgetting, because units
with small update weights have barely any influence on the learning per-
formance. It is however difficult to decide on an appropriate update preci-
sion without any experimental results as references, so I use the following
experiment as a baseline for the decision. The same function approxima-
tion task has been applied earlier by Jacobs (1997) to analyze the bias and
variance of different ME model architectures. In a similar manner, I want
to investigate the changes in learning performance, bias and variance of
NGnets that employ different update precisions. The results are then used
to decide on a limit for the update precision that ensures stable learning of
the NGnet even under changing environmental conditions.

For this learning task, the target function is defined as

f(x) =
1

13

[
10sin(πx1x2) + 20(x3 −

1

2
)2 + 10x4 + 5x5

]
− 1, (4.2)

where x = [x1, . . . , x5] is a 5-dimensional input vector and each input com-
ponent can take values between zero and one. The target function f(x)

takes then values in the interval [−1, 1]. Additionally, some white Gaussian
noise N(0, σ2) is added to the target outputs.

Preparations

Some preparative steps are necessary before the experiment, which are ex-
plained in the following. This includes details about the training and test

52 Chapter 4. Experiments

data, the network initialization and the performance evaluation. In addi-
tion, a discount schedule with a = 0.001 and b = 30 is used for all test
cases.

Training and Test Data For this approximation tasks, I prepare 25 train-
ing data sets with 500 input-output patterns each. The input data are sam-
pled i.i.d. from a uniform distribution over the full interval of each input
component [0, 1]. Then, the target output is calculated using f(x) and an
additional noise is added. Because I want to evaluate different noise en-
vironments, I create three output data sets where the Gaussian noise vari-
ances are {0.2, 0.1, 0.05}. All output data sets corresponds to the same 25
input data sets. In addition, one test data set is created, where input data
are not sampled randomly, but 1024 samples are uniformly spaced in the
5-dimensional input space instead. The target outputs are not corrupted by
noise to make the calculation of bias and variances possible. The same test
data set is applied to all training runs.

Network Initialization To ensure that differences in performance are solely
due to the different training data sets, the same network initialization is
used for all test cases. Only NGnets with a static model complexity are
tested, where two representative model complexities are used with 3 and
8 units. The lower model complexity has been found to perform best after
testing different complexities in the range from 2 to 10. The higher model
complexity then represents a case with unnecessarily high complexity. The
input centers are initialized with the same value for each dimension, where
the value is obtained by equally spacing the total number of units in the
interval from zero to one. Similarly, the weight matrix of each unit is ini-
tialized with zeros for all columns except the last, where initial values are
obtained by equally spacing the number of units in the full output interval
[−1, 1].

Learning Performance The overall learning performance is evaluated for
the test data set with the Mean Square Error (MSE) after 60 learning epochs.
The MSE is defined by

MSE =
1

T

T∑
t=1

1

S

S∑
s=1

|f̂(x(t))(s) − y(t)|2, (4.3)

where T is the number of training data, S is the number of simulation runs,
which is equal to the number of training data sets, and f̂(x(t))(s) is the es-
timated output of the NGnet for the t-th data sample in the s-th simulation
run.

4.2. Function Approximation Tasks 53

Bias and Variance In addition to the learning performance, the bias and
variance are two other quantities of interest that have been already shortly
mentioned in Section 2.2.2 in regard to the model complexity selection prob-
lem. The bias-variance dilemma also plays a role in regard to the global-
local trade-off of a network. Local architectures are known to over-fit more
easily resulting in high variances. For the ME framework, it has been claimed
by Jordan and Jacobs (1994) that when a network model splits the input
space hardly between its units, it has a larger variance as when it splits the
input space softly. This was also experimentally tested and confirmed in
Jacobs (1997). Bias and variance play therefore a role in the update preci-
sion evaluation, since lower update precisions resemble a harder split of the
input space as a smaller number of units is updated.

A bias is a quantity that measures the difference between the target out-
put and the average estimated output of network models, which are trained
on different training sets, for a data sample at time step t. The bias is calcu-
lated with

Bias =
1

T

T∑
t=1

|f̂(x(t))− y(t)|2, (4.4)

where f̂(x(t)) is the average output of different simulations for a sample at
time step t and is defined by

f̂(x(t)) =
1

S

S∑
s=1

f̂(x(t))(s). (4.5)

The variance is a quantity that measures how much the estimated out-
put of each processing units in the separately trained network models varies
around the average estimation of each unit. It is calculated with

V ariance =

M∑
i=1

1

T

T∑
t=1

1

S

S∑
s=1

(f̂i(x(t))(s) − f̂i(x(t)))2. (4.6)

Here, f̂i(x(t)) = W̃i
˜x(t)Ni(x(t)) is the i-th unit output for an input data

sample x(t) at each simulation and f̂i(x(t)) is the average output of i-th
unit overall simulation that is defined by

f̂i(x(t)) =
1

S

S∑
s=1

f̂i(x(t))(s). (4.7)

Experimental Results

Experimental results are presented separately on three tables with one ta-
ble for each performance measure: MSE (Table 4.2), bias (4.3) and variance

54 Chapter 4. Experiments

TABLE 4.2: MSE Results for Simple Regression Task

Update
Precision

UnitNo=3 UnitNo=8

Var0.2 Var0.1 Var0.05 Var0.2 Var0.1 Var0.05

1.0E-17 0.0168 0.0117 0.0101 0.0351 0.0184 0.0115
1.0E-7 0.0168 0.0117 0.0101 0.0351 0.0184 0.0115
1.0E-6 0.0168 0.0117 0.0101 0.0349 0.0185 0.0115
1.0E-5 0.0168 0.0117 0.0101 0.0345 0.0181 0.0114
1.0E-4 0.0168 0.0117 0.0101 0.0358 0.0185 0.0115
1.0E-3 0.0169 0.0117 0.0101 0.0374 0.0184 0.0103
1.0E-2 0.0179 0.0118 0.0105 0.0359 0.0183 0.0116
1.0E-1 0.0193 0.0132 0.0115 0.0407 0.0213 0.0129

(Table 4.4). In the first column of each table, the tested update precision is
listed, where the stated values are the limits of the included update weights
Pi(t) so that a unit is updated only when Pi(t) > 1.0E−XX . I don’t display
update precisions in the range from 1.0E − 16 to 1.0E − 8, because there is
no obvious difference compared with the update precision 1.0E − 17. In
all tables, experimental results for several test cases are presented, which
employ different update precisions, noise levels and number of units.

The most general performance measure is the MSE (Table 4.2), which
gives an overview of how well each test case generalizes on the test data
set. In the table, the best learning performance is marked in for each col-
umn in bold. The results show that a lower update precision is not nec-
essarily always performing worse, but there are cases where learning per-
formance improved instead. Yet, it is difficult to find a common pattern
in the learning results that would give a hint on the likely best performing
update precision. When the model complexity is low (UnitNo=3), higher
precisions perform generally better than lower ones. There is no real dif-
ference in the learning performance for precisions higher than 1.0E − 3,
while the learning performance starts to worsen for precisions under this
limit. On the other hand, bigger differences can be observed for the tested
precisions when the model complexity is relatively high (UnitNo=8). Inter-
estingly, the best learning performance is now achieved somewhere in the
middle range, where additional differences can be observed for the chang-
ing noise levels. Since the higher model complexity actually represents a
case of over-fitting, performance is worse than for the lower model com-
plexity, which is especially apparent for the highest noise level (variance
σ2 = 0.2). Overall, a decrease in learning performance can be observed for
the lowest update precision 1.0E− 1 for all test cases. This is likely because
of the reasons that have been discussed already in Section 3.2.

Additional insights for the above discussed MSE results can be found in

4.2. Function Approximation Tasks 55

TABLE 4.3: Bias Results for Simple Regression Task

Update
Precision

UnitNo=3 UnitNo=8

Var0.2 Var0.1 Var0.05 Var0.2 Var0.1 Var0.05

1.0E-17 0.0037 0.0025 0.0023 0.0021 0.0013 0.0010
1.0E-7 0.0037 0.0025 0.0023 0.0021 0.0013 0.0010
1.0E-6 0.0037 0.0025 0.0023 0.0020 0.0013 0.0010
1.0E-5 0.0037 0.0025 0.0023 0.0019 0.0012 0.0010
1.0E-4 0.0037 0.0025 0.0023 0.0021 0.0012 0.0009
1.0E-3 0.0037 0.0025 0.0023 0.0022 0.0011 0.0009
1.0E-2 0.0037 0.0022 0.0028 0.0025 0.0010 0.0008
1.0E-1 0.0039 0.0024 0.0020 0.0025 0.0011 0.0011

TABLE 4.4: Variance Results for Simple Regression Task

Update
Precision

UnitNo=3 UnitNo=8

Var0.2 Var0.1 Var0.05 Var0.2 Var0.1 Var0.05

1.0E-17 0.0462 0.0385 0.0382 0.0785 0.0576 0.0520
1.0E-7 0.0462 0.0385 0.0382 0.0785 0.0575 0.0520
1.0E-6 0.0462 0.0385 0.0382 0.0781 0.0576 0.0520
1.0E-5 0.0462 0.0385 0.0382 0.0791 0.0578 0.0521
1.0E-4 0.0462 0.0385 0.0382 0.0794 0.0584 0.0527
1.0E-3 0.0460 0.0385 0.0383 0.0833 0.0595 0.0513
1.0E-2 0.0481 0.0393 0.0384 0.0818 0.0617 0.0535
1.0E-1 0.0518 0.0416 0.0425 0.0930 0.0683 0.0588

the bias (4.3) and variance (Table 4.4) tables. Again, I marked the best per-
forming (lowest) values for each column in bold. One crucial performance
factor is to find a good balance between bias and variance, where a high
variance implies often a low bias (over-fitting) and a low variance implies
generally a high bias (under-fitting). One obvious example of over-fitting is
presented here with the high model complexity (UnitNo=8) testbed. While
MSE results showed that the UnitNo=8 testbed performs worse than the low
model complexity testbed, it has a lower bias. On the other hand, the vari-
ance is much higher meaning that the network model starts to fit noise and
therefore results in the worse performance. Furthermore, it is observable
that a lower update precision is not necessarily related to a worse bias and
changes in the bias are overall relatively low in most cases. But the vari-
ance becomes higher for lower update precisions in all cases. Therefore, I
conclude that too low update precisions are prone to over-fit and should be
avoided. The question is then how to choose an update precision that has
no greater negative influence on the learning performance but can lower the
computational complexity as much as possible. In cases where model com-
plexity is near to optimum, it does not seem like a problem to choose very
low complexities as 1.0E−3. Yet, it is not possible to assume an always near

56 Chapter 4. Experiments

optimum model complexity when considering dynamic model selection,
especially for self-constructing training methods. The decision on an ap-
propriate update precision is difficult with only one testbed, especially be-
cause the over-fitting model complexity testbed shows high fluctuations in
the learning performance. For now, I consider {1.0E−6, 1.0E−5, 1.0E−4}
as possible candidates for the update precision and conduct another exper-
iment to evaluate the learning performance in an additional test environ-
ment (Section 4.2.2).

4.2.2 The Cross Function

FIGURE 4.2: Target of the Cross Function

In the following section, I consider a commonly used function approx-
imation task of the Cross function (Celaya and Agostini 2015; Meier et al.
2014; Vijayakumar et al. 2005; Sato and Ishii 2000; Schaal and Atkeson 1998),
which provides a learning tasks that is sufficiently complex but still can be
illustrated nicely. Therefore, it makes a good testbed to evaluate not only
the overall learning performance but also conduct performance test for par-
tial improvements of the proposed method separately. The function has the
input dimension N = 2, the output dimension D = 1, and is defined by

g(x1, x2) = max{e−10x21 , e−50x22 , 1.25e−5(x
2
1+x

2
2)}. (4.8)

In addition, a normally distributed random noise ε(t) ∼ N(0, 0.01) is added
to each function output g(x1(t), x2(t)), and y(t) = g(x1(t), x2(t))+ε(t) is ob-
tained as the noisy sample output. The function possesses areas with rather
high and rather low curvature and a Gaussian bump in the middle (see Fig.
4.2). It is challenging to find a good approximation, since the nonlinearities

4.2. Function Approximation Tasks 57

are hard to capture accurately when model complexity is too low, but mod-
els tend to overfit easily for higher model complexities (Vijayakumar et al.
2005).

Preparations

Again, several preparative steps are discussed that were taken before train-
ing the NGnets. This includes topics about the used training and test data
sets, different performance evaluation criteria and the static network ini-
tialization.

Training Data For this learning task, different input data distributions
are used to evaluate the robustness of the compared methods in a variety
of learning scenarios. When data are not i.i.d., neural networks are more
prone to negative interference and achieving good performance is difficult.
Three test cases are considered

• Balanced

• Imbalanced

• Dynamic

For the balanced test case, the training data are i.i.d over the whole input
space (−1 ≤ x1, x2 ≤ 1). For the imbalanced test case, a non-identical data
distribution is used. Here, 95% of the data samples are extracted from a
sub-region of the input domain with (0 ≤ x1, x2 ≤ 0.25), and the remaining
data are i.i.d in (−1 ≤ x1, x2 ≤ 1). For these two cases, 10,000 data samples
are obtained for each test run. For the dynamic test case, the input data
distribution is slowly changing for x1 over time. x1’s sample distribution
starts at the interval [−1,−0.2] and ends at the interval [0.2, 1] after 250,000
training samples. x2 is sampled in [−1, 1] over all time steps t. A similar
experiment has been conducted by Celaya and Agostini (2015) and Sato and
Ishii (2000) to evaluate learning performance in dynamic environments. In
all test cases, I have obtained training data sets for 50 test runs, and the
same data sets are applied to all compared methods.

Test Data Similarly as in Celaya and Agostini (2015), test data are ob-
tained from a regular grid formed of 21 × 21 points in the input domain.
These data are used to evaluate the learning performance of the compared
methods over the whole input space in all three test cases. Additionally, test
data is obtained for the last input interval of the dynamic test case. Here,
performance is evaluated with two test sets representing the whole input
space and the last training interval, which are referred to as NMSE All and
NMSE Last in the result tables respectively.

58 Chapter 4. Experiments

Performance Evaluation For all Cross function experiments, the learning
performance of the tested methods is evaluated with the normalized Mean
Square Error (NMSE). The NMSE is defined by

NMSE =

∑T
t=1(y(t)− f̂(x(t)))2∑T

t=1(y(t)− ȳ)2
, (4.9)

where T is the number of test data samples and the divisor is equal to the
variance of the target test data. In the result tables, all NMSEs are presented
as the averages of the 50 test runs.

Permutation Tests Additionally, one-tailed permutation tests are conducted.
Since only the averages over 50 test runs are presented as results, p-values,
which are obtained by the permutation test, provide an additional measure
to evaluate the significance of the compared methods’ performance differ-
ences. Generally, LF is compared with one of the other tested methods for
all presented p-values in the result section.

Network Initialization When dynamic model selection is considered, the
NGnet is initialized with zero units. Otherwise, the network model has to
be initialized in advance and I consider two static model complexity initial-
izations for this learning task. First, a model complexity with 25 units is
used, which is equal to the complexity used by Celaya and Agostini (2015).
Additionally, I add some experiments with a model complexity of 100 units.
For both cases, units are placed equally spaced on a grid of the input space.
During the initialization, (x, y) values are obtained according to the location
of each unit on the grid, and the unit’s parameters are then set according to
Eq. (3.22) - (3.25).

Comparison of Localized Forgetting Methods

In this experiment, I compare my proposed method LF (Prop.) with the
former local forgetting method (LF (Prev.), Celaya and Agostini (2015)) for
the Balanced testbed. This experiment evaluates the effectiveness of the LF
(Prop.) update function (Eq. (3.11)) in regard to the previous one (Eq. (2.32))
and discusses similarities and differences. The two methods basically differ
only in the applied update weight, and the new local forgetting approach
was mainly proposed to eliminate the inability of LF (Prev.) to update net-
work parameters over the whole numerical range of discount factor λ(t).
For LF (Prev.), λ(t) = 1 cannot be processed because the update weight
becomes 0

0 in this case. Because dynamic model selection has not been con-
sidered for LF (Prev.) and also to keep the comparison simple, testing is con-
ducted only for the two static model complexities. Performance results are

4.2. Function Approximation Tasks 59

TABLE 4.5: Comparison of Localized Forgetting Methods

Discount
Unit No. = 25 Unit No. = 100

NMSE
p-Val

NMSE
p-Val

LF(Prop.) LF(Prev.) LF(Prop.) LF(Prev.)

b=10
a=0.1 0.0386 0.0394 0.01 0.0246 0.0247 0.25
a=0.01 0.0244 0.0251 0.01 0.0185 0.0186 0.16
a=0.001 0.0170 0.0179 0.10 0.0109 0.0111 0.08
b=30
a=0.1 0.0398 0.0402 0.01 0.0252 0.0251 0.29
a=0.01 0.0290 0.0293 0.03 0.0215 0.0215 0.20
a=0.001 0.0235 0.0237 0.14 0.0184 0.0183 0.19
b=150
a=0.1 0.0420 0.0421 0.02 0.0259 0.0259 0.33
a=0.01 0.0380 0.0381 0.01 0.0249 0.0249 0.30
a=0.001 0.0367 0.0368 0.01 0.0245 0.0246 0.30
b=1000
a=0.1 0.0442 0.0442 0.00 0.0264 0.0264 0.38
a=0.01 0.0438 0.0438 0.00 0.0263 0.0263 0.40
a=0.001 0.0437 0.0437 0.00 0.0263 0.0263 0.40
Discount 1
a=1.0 0.0451 0.3650 0.00 0.0267 0.3786 0.00

presented in Table 4.5 with the two model complexities Unit No. = 25 and
Unit No. = 100. When one method performed apparently better, experimen-
tal results are marked in bold. I have obtained test results for 13 different
discount schedules with four different initial values b = {10, 30, 150, 1000}
and four different convergence schedules a = {1, 0.1, 0.01, 0.001}. In case of
a = 1, the value of b is irrelevant as the discount λ(t) becomes one over all t
and no forgetting occurs. In the other 12 cases, the applied discount factor
plays a role in the resulting learning performance.

Overall, there is no big differences between the two approaches in most
cases when forgetting occurs. Yet, there is a small tendency for LF(Prop.) to
perform better than LF(Prev.). Interestingly, the differences is more appar-
ent for the low model complexity with 25 units, where LF(Prop.) performs
always better or equally well. The performance difference becomes much
smaller for the higher model complexity with 100 units and in two cases
LF(Prev.) is able to perform slightly better. Also, the number of equally
well-performing cases has increased. The largest performance difference is
observed for the discount initial value b = 10 for both model complexities.
Again, the difference is much smaller for Unit No. = 100, but LF(Prop.) is
still able to perform slightly better. These results lead to the assumption that
the influence of the update weights becomes smaller with increasing model

60 Chapter 4. Experiments

complexity. Furthermore, an observable tendency is that the difference be-
tween the two methods becomes bigger with smaller b, which is equal to an
initial discount values farer from one. Fig. 4.3 shows an example of how
the learning performance is changing over time t for the compared meth-
ods LF(Prop.) and LF(Prev.) in the test case {Unit No. = 25, a = 0.1, b = 10}.
Although the difference is small, LF(Prop.) is able to perform better than
LF(Prev.) over the whole learning time.

The obtained p-values also show that the superiority of LF (Prop.) for
the 12 forgetting cases cannot be claimed in all cases. Especially for the
high model complexity with 100 units, the p-values are high meaning that
the significance of performance differences is low. Yet, when model com-
plexity is small with 25 units, LF(Prop.) is able to perform significantly bet-
ter in most cases even when the approximate learning performance is quite
similar. A special case can be observed for b = 1000, where the approximate
learning performance is the same but the significance of performance dif-
ferences is high, represented by a p-value that is approximately zero. For
all three b = 1000 discount schedules, LF(Prop.) is performing slightly bet-
ter but the performance results are outside of the presented precision limits
with an approximately 7.0E − 07 difference. Still, the performance differ-
ence is steady over most of the 50 test runs, and LF(Prop.) is therefore able to
perform better with high significance. The p-value comparison again con-
firms that a higher model complexity results in a smaller performance gap
between the two methods and also in a lower significance. Yet, the overall
tendency shows that LF(Prop.) is favorable over LF(Prev.).

FIGURE 4.3: Comparison of Local Forgetting Methods’ Per-
formance Error over Learning Time

For the results without forgetting (Discount 1), LF (Prop.) performs much
better than LF(Prev.) for both network sizes. The p-values also prove the

4.2. Function Approximation Tasks 61

TABLE 4.6: Update Precision Test for Cross Function with
Noise Variance 0.01 (b = 30)

Update
Precision

Discount1 a=0.01 a=0.001 a=0.0

NMSE UnitNo NMSE UnitNo NMSE UnitNo NMSE UnitNo

1.0E-17 0.0316 52.24 0.0208 60.06 0.0157 65.02 0.0152 66.49
1.0E-7 0.0316 52.24 0.0208 60.06 0.0157 65.02 0.0152 66.49
1.0E-6 0.0316 52.24 0.0208 60.06 0.0157 65.02 0.0152 66.49
1.0E-5 0.0316 52.24 0.0208 60.08 0.0157 65.02 0.0152 66.51
1.0E-4 0.0317 52.29 0.0207 60.08 0.0158 65.00 0.0151 66.55
1.0E-3 0.0317 52.27 0.0205 60.35 0.0155 65.35 0.0149 67.10
1.0E-2 0.0284 53.51 0.0181 63.12 0.0149 68.71 0.0141 70.22
1.0E-1 0.0204 61.86 0.0160 75.06 0.0147 82.53 0.0145 84.39

TABLE 4.7: Update Precision Test for Cross Function with
Noise Variance 0.1 (b = 30)

Update
Precision

Discount1 a=0.01 a=0.001 a=0.0

NMSE UnitNo NMSE UnitNo NMSE UnitNo NMSE UnitNo

1.0E-17 0.0497 124.61 0.0501 132.55 0.0508 136.94 0.0514 138.10
1.0E-7 0.0497 124.61 0.0500 132.55 0.0508 136.94 0.0514 138.10
1.0E-6 0.0497 124.61 0.0500 132.55 0.0508 136.94 0.0514 138.10
1.0E-5 0.0497 124.61 0.0500 132.57 0.0509 136.98 0.0514 138.10
1.0E-4 0.0497 124.76 0.0502 132.65 0.0510 137.08 0.0517 138.27
1.0E-3 0.0495 125.31 0.0508 133.55 0.0522 138.22 0.0523 139.43
1.0E-2 0.0525 129.82 0.0536 138.61 0.0546 143.61 0.0551 144.88
1.0E-1 0.0799 150.96 0.0783 161.98 0.0824 168.76 0.0833 170.57

superiority of my proposal. Here, LF(Prev.) was not able to update its net-
work parameters, and its performance is the direct result of the initializa-
tion. Therefore, I have achieved the main purpose of the new proposal.
Now, updates are possible for the local forgetting approach, even when the
discount equals one. This complies with the numerical range defined for
the discount factor as 0 ≤ λ ≤ 1 by Sato and Ishii (2000).

Discussing the Update Precision

In addition to Section 4.2.1, I want to further discuss the effects of differ-
ent update precisions on the learning performance of the NGnet for the
here applied Cross function. To add further insights, I make the test differ-
ent from the simple regression task and only evaluate the learning perfor-
mance of the trained NGnets but over a broader range of discount sched-
ules with the initial value b = 30 and different convergence schedules
a = {1, 0.01, 0.001, 0.0}. Also, I do not use a static model complexity but
instead train the NGnets with a self-constructing model selection approach
that only includes production of new units. This enables me to observe

62 Chapter 4. Experiments

learning performances of different update precisions in a setting with dy-
namic model selection that still is kept simple enough to make a fair com-
parison possible without influence from the other manipulation mecha-
nisms. The experiments are conducted for two noise levels with the com-
monly applied variance 0.01 and a higher noise variance 0.1. Experimental
results are presented separately for the two noise levels in Table 4.6 and Ta-
ble 4.7 respectively. Again, the best performing results are marked in bold
for each column.

For the results with noise variance 0.01 in Table 4.6, it can be observed
that the lowest update precision 1.0E − 1 performs best in most cases. Yet,
this comes at the cost of an increased model complexity, which is likely re-
lated to the units participating in a decreased range of input space. This
leads then to smaller input covariances of the NGnet and the necessity to
have more units to cover the input space accurately. The discount sched-
ule also influences the best update precision performance. While discount
schedules that converge to one faster tend to have the best performance
for a 1.0E − 1 update precision, this is not the case when a = 0.0. Here,
an update precision with 1.0E − 2 performs best, while 1.0E − 1’s perfor-
mance is still better than update precisions with 1.0E − 3 or larger. Yet,
this shows that higher discounts might negatively affect the learning per-
formance when the update precision is too low.

The same tendencies can be observed more extremely in Table 4.7 for
the higher noise level with variance 0.1. Here, the higher noise provokes
the NGnet to over-fit more easily and the learning performance decreases
drastically for the lower update precisions, especially 1.0E−1, while model
complexity also drastically increases. For a discount of one over all t, up-
date precision 1.0E − 3 is able to perform best, but for all other discount
schedules higher update precisions are preferable. This shows again that
higher discounts affect the learning performance negatively when update
precisions are too low. Therefore, even when very low update precisions
can perform best in some test cases where the noise level is moderate, they
have to be generally handled with care when information about the learn-
ing environment are limited. The observed proneness to noise is then simi-
lar to the insights obtained for the first testbed in Section 4.2.1.

In Section 4.2.1, I already assumed that the update precisions {1.0E −
6, 1.0E − 5, 1.0E − 4} are the best possible candidates to choose an appro-
priate update precision. For both noise levels, it is observable that there is
almost no change in learning performance and model complexity over all
test cases for update precisions with 1.0E−5 or higher. For update precision
1.0E− 4, the performance and model complexity are still similar compared
with the higher update precisions but differences become already more ap-
parent. These observations are similar to the ones of Section 4.2.1, where

4.2. Function Approximation Tasks 63

TABLE 4.8: Update Precision Test for Cross Function with
Noise Variance 0.01 (a = 0.0)

Discount/
Precision

UnitNo. = 25 UnitNo. = 100

NMSE Time(sec.) NMSE Time(sec.)

b=10
All Units 0.0174 4.86 0.0074 16.59
1.0E-17 0.0174 2.89 0.0074 10.91
1.0E-5 0.0175 2.15 0.0074 6.58
b=150
All Units 0.0399 4.81 0.0619 16.45
1.0E-17 0.0399 3.68 0.0619 13.46
1.0E-5 0.0399 2.45 0.0619 7.60
Discount=1
All Units 0.0516 4.80 0.0700 16.44
1.0E-17 0.0516 3.80 0.0700 13.63
1.0E-5 0.0516 2.50 0.0699 7.66

update precision 1.0E − 4 also has difficulties to perform similarly well
when the noise level is high. Therefore, I decide to set the update precision
for the LF(Prop.) update method to 1.0E − 5.

After deciding on the new update precision, I want to evaluate the
achieved difference in computational time in comparison with two repre-
sentative update precisions. The results are presented in Table 4.8. Here,
All Units refers to a training approach where all units are always updated
regardless of the actual necessity of the update. For the other two cases, up-
dates are limited to units that have update weights larger than 1.0E− 17 or
1.0E − 5, where the first one is the computational precision and the second
is my selected precision. For a fair comparison, I use static model complex-
ities with 25 and 100 units to see the time differences for a low complexity
and higher complexity case, since the model complexity highly influences
the learning speed. Time is measured in seconds (sec.) and the best learning
speed for each test case is marked in bold in the table. The presented results
are again the average of 50 test runs and only one test run was executed on
one time to reduce outer influences as much as possible. The results in Table
4.8 show that the update precision 1.0E − 5 is able to improve the learning
speed a lot while achieving approximately the same performance results as
the other two update precisions. For the presented cases, the update preci-
sion 1.0E−5 improves learning speed approximately 25% to 45% compared
with 1.0E − 17 and 50% to 60% compared with an update of all units.

Balanced Testbed With Dynamic Model Selection

For this testbed, I compare the proposed LF method with the two global for-
getting methods GFdisc and GFnorm for the Cross function with a balanced

64 Chapter 4. Experiments

TABLE 4.9: Balanced Test without Forgetting

Method NMSE UnitNo.
Manipulation Counter

p-Val
Prod. Del. Spl. Mrg.

Setting 1
LF(Prop.) 0.0202 45.06 08.74 50.96 2.46 6.18
(LF(no Mrg.)) (0.0200) (46.3) (93.1) (50.38) (2.58) (/)
GFnorm 0.0382 30.9 94.52 67.12 2.5 / 0.0
GFdisc 0.0351 44.42 57.02 15.98 2.38 / 0.0
Setting 2
LF(Prop.) 0.0301 49.06 57.14 0.42 3.22 11.88
(LF(no Mrg.)) (0.0311) (55.04) (51.06) (0.0) (2.98) (/)
GFnorm 0.0292 54.2 50.6 0.04 2.64 / 0.08
GFdisc 0.0292 53.9 50.58 0.24 2.56 / 0.08

training data distribution. All methods apply a self-constructing dynamic
model selection. The experimental results are presented separately for two
test settings: without forgetting and with forgetting of previously learned
information.

Without Forgetting First, the three methods are compared with each other
for the balanced test case without forgetting. Experimental results are pre-
sented in Table 4.9 for two different manipulation parameter settings. The
best performing results are marked in bold for each setting. For both set-
tings, I have chosen the same parameters as stated in Table 4.1 for FA: Bal-
anced except the delete threshold parameters. In addition, information are
included about the number of manipulation occurrences, because they give
interesting insights, especially in regard to the different deletion behavior of
the three methods. Furthermore, experimental results for LF(Prop.) without
merging are added as a reference ((LF(no Mrg.))) to show how the results
are affected by the merge mechanism.

For Setting 1 in Table 4.9, the delete threshold parameters are set ac-
cording to FA: Balanced in Table 4.1 for LF (TDelete = 0.09) and GFnorm
(TDelete = 0.001), but it is set to TDelete = 0.01 for GFdisc so that all meth-
ods are provoked to delete some units. The results show that while GFnorm
employs the strictest delete threshold parameter, it deletes more units than
the other two methods. Since no forgetting occurs, this is mainly related to
the difference in the normalization of the deletion indicator 〈〈1〉〉i(t). I have
discussed three different possible normalizations in Section 3.3.1, where the
first one is similar to GFnorm’s delete, the second is applied to delete units
with GFdisc and the third one is applied to LF. Especially, the first normal-
ization approach is not considering that the life time of each unit is different
in dynamic model selection approaches, resulting in units that are added

4.2. Function Approximation Tasks 65

later in the run to be deleted more easily. One can observe that LF is per-
forming best out of the three methods while having more unit manipula-
tion occurrences than GFdisc. GFnorm performs worst of all three methods,
likely because its delete mechanism affects the learning performance neg-
atively. Overall, the experimental results show that the proposed changes
work well in this testbed. The difference in learning performance is not
only quite high but also statistically significant, which is supported by the
p-values approximately equaling zero. These results emphasize the effec-
tiveness of the localized deleting approach applied to LF. Furthermore, one
can observe that the additional merge mechanism is able to further decrease
the model complexity while having a similar learning performance for this
test case when comparing the result of LF(Prop.) with the reference result
LF(no Mrg.).

For Setting 2 in Table 4.9, the delete threshold parameters are set so
that all three methods almost never delete units with TDelete = 0.01 for
LF, TDelete = 0.0001 for GFnorm and TDelete = 0.001 for GFdisc. This en-
ables a comparison when the methods’ learning behavior is not influenced
by the deletion of units. Here, GFnorm and GFdisc perform slightly better
than LF. Yet, this time the performance differences are relatively small com-
pared with Setting 1 and the p-values report only a medium significance of
the differences. When no forgetting occurs, GFdisc and LF update methods
reduce to the same function, so performance differences are the result of
different unit manipulation mechanisms. Since deletion almost never oc-
curs for all methods and the GF methods were able to perform better, the
observed performance difference shows that the static threshold is able to
affect the learning performance more positively than the proposed method.
Considering the reference (LF(no Mrg.)), I conclude that the performance
difference is mainly affected by the split mechanism with localized thresh-
olding, while the merge mechanism has a positive effect on the learning
performance. In this testbed, the data and noise distributions are balanced
so that there is no apparent advantage of localizing the split decision. The
merge mechanism helps to reduce the model complexity of LF, which is
approximately 10% smaller than for the GF methods.

Finally, I compare the results of LF applying dynamic model selection
with the results of LF(Prop.) using a static model complexity in Table 4.5
for the test cases where no forgetting occurs. Without model selection, LF
has achieved a performance of NMSE = 0.0267 in the best case with a
model complexity of 100 units. With dynamic model selection, LF per-
forms better while employing a model complexity that is approximately
only half the size for Setting 1. For Setting 2, the performance is worse than
NMSE = 0.0267 but considering the smaller model complexity, this result
is still reasonable and its likely that it would perform better when a higher

66 Chapter 4. Experiments

TABLE 4.10: Balanced Test with Forgetting

Discount
LF(Prop.) GFnorm GFdisc

NMSE UnitNo. NMSE UnitNo. p-Val NMSE UnitNo. p-Val

b=30
a=0.1 0.0184 47.98 0.0059 128 0 0.0075 135.12 0
a=0.01 0.0143 53.5 0.0508 109.96 0 0.0508 109.86 0
a=0.001 0.0128 57.56 0.1491 77.86 0 0.1575 78.16 0
b=150
a=0.1 0.0189 45.86 0.0062 86.6 0 0.0087 96.22 0
a=0.01 0.0178 46.86 0.0242 128.04 0 0.0246 128.58 0
a=0.001 0.0176 47.26 0.0410 116.02 0 0.0403 116.4 0
b=1000
a=0.1 0.0197 45.1 0.0165 36.7 0 0.0159 64.74 0
a=0.01 0.0194 45.08 0.0120 42.18 0 0.0137 70.56 0
a=0.001 0.0193 45.04 0.0110 46.32 0 0.0134 71.3 0

production of units would be allowed. These results also show that the se-
lection of threshold parameters is important for the learning performance.
Both settings in Table 4.9 are able to perform better than the static models
with 25 units.

With Forgetting For the balanced testbed with forgetting, experimental re-
sults are presented in Table 4.10 with the best results for each discount
schedules marked in bold. Here, LF is not the overall superior approach but
shows the highest robustness over all discount schedules for both learning
performance and network size. It also has the best learning performance
on average over all 9 discount schedules. Additionally, it can be said that
LF performs better than the GF methods when larger discounts are applied,
because the learning behavior of the global forgetting methods becomes
unstable in these cases. On the other hand, the two GF methods perform
approximately the same on average and have shown similar performance
behavior over all discount schedules. Yet, GFnorm is able to perform better
than GFdisc in most cases. The two GF methods are able to perform best for
discount schedules where their learning is stable. This applies for discount
schedules that are near to one from the start (b = 1000) or reaching one very
fast (a = 0.1). For higher discounts, the performance steadily decreases and
observed over all discount schedules both GF methods exhibit a non robust
behavior.

Again, it is interesting to observe the effects of the different delete mech-
anisms for the two GF methods. Although no delete manipulation counter
data are presented, one can observe that GFnorm has a smaller network size
than GFdisc for most discount schedules. This is likely related to a higher
number of unit deletions. Also, the GF methods’ network sizes become

4.2. Function Approximation Tasks 67

TABLE 4.11: Imbalanced Test without Forgetting

Method RMSE Net. Size
Manipulation Counter

p-Val
Prod. Del. Spl. Mrg.

Setting 1
LF(Prop.) 0.1044 44.76 46.64 0.04 4.14 6.98
(LF(no Mrg.)) (0.1011) (49.8) (45.04) (0) (3.76) (/)
GFnorm 0.1046 47.62 45.72 0 0.9 / 0.47
GFdisc 0.1046 47.62 45.72 0 0.9 / 0.47
Setting 2
LF(Prop.) 0.1047 44.54 46.74 0.18 4.14 7.16
(LF(no Mrg.)) (0.1011) (49.8) (45.04) (0) (3.76) (/)
GFnorm 0.6159 20.66 180.54 161.38 0.5 / 0.0
GFdisc 0.1210 45.34 48.48 4.94 0.8 / 0.0

similar for the discount schedules where LF performs best. The higher dis-
counts prevent the normalization factors to grow larger than a certain value,
which makes the normalization of both GF methods converge to the ap-
proximately same and relatively small value resulting in a similar deletion
behavior. Although, the delete manipulation counter data for LF is also not
presented, the deletion behavior was approximately the same for all dis-
count schedules with only a slight increase for the larger discounts where
b = 30, emphasizing the robustness of the deletion behavior.

Permutation tests were conducted comparing LF with either GFnorm or
GFdisc. Regardless of whether the local or global forgetting method has
performed better, the resulting p-values were approximately equal to zero
in all cases proving the significance in the performance differences.

Furthermore, I compare the results of LF applying model selection with
the results of LF(Prop.) without model selection in Table 4.5. Without model
selection, LF has achieved learning performances betweenNMSE = 0.0442

and NMSE = 0.0170 for models with 25 units and between NMSE =

0.0264 and NMSE = 0.0109 for models with 100 units depending on the
discount schedule. For LF with model selection, the performance is rang-
ing between NMSE = 0.0197 and NMSE = 0.0128 for an average model
complexity of approximately 50 units. So, while it not always performs
better than the static model complexity with 100 units, it is able to achieve
very good learning performance within a smaller performance range over
all discount schedules with only half of the model complexity. This empha-
sizes the advantage of applying dynamic model selection to LF.

Imbalanced Testbed With Dynamic Model Selection

Without Forgetting For the imbalanced testbed without forgetting, LF and
the GF methods are compared for discount λ = 1 and experimental results

68 Chapter 4. Experiments

are presented in Table 4.11, where the best results are marked in bold. Ex-
cept for delete, manipulation parameters are set as stated in Table 4.1 for
FA: Imbalanced. For delete, two threshold parameter settings are tested. In
Setting 1, the thresholds are set to TDelete = 0.0001 so that for all compared
methods no units are deleted, while in Setting 2 I have relaxed the thresh-
olds to TDelete = 0.001 to show the differences in learning performance and
deletion behavior when deleting occurs. Again, I also added experimental
results for LF(Prop.) without applying the merge mechanism (LF(no Mrg.))
as a reference for better interpretation.

For Setting 1, the performance difference is small and significance is low
as indicated by the p-values. Here, LF performs slightly better than the
two GF methods, and it possesses a lower model complexity. It can be
remarked positively that LF performs better while the number of model
manipulations is higher. Since this testbed has a highly imbalanced data
distribution, there is a tendency that too many model manipulation occur-
rences negatively affect the learning performance of the NGnet. The NGnet
units are dependent on each other due to the normalization and changes in
model complexity come together with the need to adjust to the new model
complexity. This is however difficult for units in regions that barely re-
ceive new data samples as it is the case in this testbed. Especially merge is
then a problem. The frequently sampled region observes much more data,
which provokes the development of more model redundancies leading to
frequent merging. Yet, the relationship between all units has to be adjusted
and learning performance then decreases for units in regions where not
enough possibilities to adjust the relationship are available. The localized
split threshold decision works however favorable for the imbalanced data
distribution as it is apparent when comparing the reference result LF(no
Mrg.) with LF(Prop.). Even though the significance of the results is low, the
results can still be interpreted positively in favor of the LF method.

In Setting 2, deletion occurs for all methods, although the number of
deleted units is differing largely for each of them. Considering that the up-
dates are the same for LF and GFdisc and the same delete thresholds are
applied to all methods, the results give some insights about the different
behavior of the three delete mechanisms. While the delete mechanism of
GFnorm has a high increase in deletions, likely for the same reasons that
were discussed previously for the balanced testbed and in Section 3.3.1,
GFdisc and LF still exhibit a stable deletion behavior. Yet, GFdisc has al-
ready a higher number of deletions than LF and the difference between
the two methods would become larger for bigger threshold parameters.
Comparing the learning performances of the three methods for Setting 2,
LF is able to perform best with high significance while possessing approxi-
mately the same model complexity as GFdisc. While GFdisc’s performance

4.2. Function Approximation Tasks 69

TABLE 4.12: Imbalanced Test with Forgetting

Discount
LF (Prop.) GFnorm GFdisc

NMSE UnitNo. NMSE UnitNo. p-Val NMSE UnitNo. p-Val

b=30
a=0.1 0.0999 45.92 0.1411 107.48 0.00 0.1411 107.48 0.00
a=0.01 0.1096 46.9 0.5229 90.22 0.00 0.5230 90.28 0.00
a=0.001 0.1110 47.62 0.8960 49.68 0.00 0.9408 49.3 0.00
b=150
a=0.1 0.1039 45.3 0.1368 100.82 0.00 0.1368 100.82 0.00
a=0.01 0.1079 44.84 0.3911 100.62 0.00 0.3868 100.4 0.00
a=0.001 0.1107 44.06 0.4555 98.12 0.00 0.4591 98.12 0.00
b=1000
a=0.1 0.1049 44.34 0.1042 65.98 0.44 0.1042 65.98 0.44
a=0.01 0.1048 44.48 0.1321 78.8 0.00 0.1321 78.8 0.00
a=0.001 0.1048 44.48 0.1375 80.98 0.00 0.1375 80.98 0.00

decrease is already quite large considering the relatively small number of
unit deletions, the performance of GFnorm decreases disastrously provoked
by the bad deletion behavior. Overall, the results emphasize that my newly
proposed manipulation mechanisms work well in the imbalanced environ-
ment, although the application of merge shows to have a slight negative
effect on the learning performance.

With Forgetting For the imbalanced testbed with forgetting, the experi-
mental results are presented in Table 4.12. Again, several discount sched-
ules are applied and the best result for each schedule is marked in bold.
Dynamic model manipulation parameters are set as stated in Table 4.1 for
FA: Imbalanced. Because of the imbalanced data distribution and the applied
discount, this testbed is more prone to negative interference.

The results show favorable performance for the proposed method LF in
almost all cases with high significance proven by p-values equaling zero.
There is one exception for the discount schedule (a = 0.1, b = 1000), where
LF and the two GF methods have a similar learning performance with the
GF methods performing slightly better on average. Yet, the high p-value
shows that these results have statistically seen no significance. Also, it
should be noted that LF is able to have a similar learning performance
with a ca. 30% smaller model complexity. Overall, LF shows a high sta-
bility in learning performance and model complexities over the discount
schedules and provides the best performance for the imbalanced testbed at
a = 0.1, b = 30. On the other hand, the learning performances and model
complexities of GFnorm and GFdisc are strongly varying and both perform
very bad when the discount is high. These results emphasize the robustness
of LF in negative interference prone testbeds and its advantage over the GF

70 Chapter 4. Experiments

TABLE 4.13: Results for Dynamic Testbeds

Discount/
Method

NMSE
All

NMSE
Last

UnitNo.
Manipulation Counter

p-Val
Prod. Del. Spl. Mrg.

λ = 1
LF(Prop.) 0.0050 0.0085 213.8 288.1 102.94 42.9 15.26
GFnorm 0.3021 1.2828 112.26 23190.22 23079.38 0.42 / 0.0
GFdisc 0.0071 0.0095 219.6 218.58 0.4 0.42 / 0.0
λ = 0.999
LF(Prop.) 0.0055 0.0078 206.42 294.2 112.82 41.16 17.12
GFnorm 4.0411 0.0058 209.1 311.22 103.56 0.44 / 0.0
GFdisc 4.4606 0.0058 210.32 312.1 103.22 0.44 / 0.0

methods. LF is therefore preferable compared with the global forgetting
methods.

Although, data about the manipulation occurrences are not presented
to save place, I shortly discuss the deletion behavior of the three methods
for this testbed. LF has similar model complexities for all discount sched-
ules, which is also mirrored in a stable deletion behavior that does not differ
much over all discounts. On the other hand, the two GF methods exhibit a
less stable deletion behavior that is however similar for all discount sched-
ules in this testbed. Interestingly, the deletion behavior shows a higher
resemblance than for the balanced testbed, where big differences could be
observed for b = 1000. This is probably because delete occurs in general
more easily outside the frequently sampled regions so that the difference in
the normalizers has less effect on the deletion behavior. One exception can
be observed for the discount schedule a = 0.001 and b = 30, where both GF
methods perform very bad, but there is a large difference with GFdisc per-
forming even worse than GFnorm. There is however no apparent reason for
this as the model complexity and the manipulation behavior are very sim-
ilar. Maybe, the different timing of the model manipulations is somehow
negatively affecting the performance of GFdisc. Overall, I conclude that
both GF deletion mechanisms cannot behave well in this negative interfer-
ence prone environment, showing that local learning strategies are neces-
sary as employed by LF. These results emphasize the advantage of the local
forgetting approach in online learning tasks where robustness is needed.

Dynamic Testbed with Dynamic Model Selection

Without Forgetting For the dynamic testbed without forgetting, the com-
pared methods are trained with λ(t) = 1 over all time steps t. Here, the
manipulation parameters are set as stated in Table 4.1 for FA: Dynamic ex-
cept for GFnorm the delete threshold is set to an even smaller value with
TDelete = 0.00001. Fig. 4.4 illustrates for the three compared methods how

4.2. Function Approximation Tasks 71

FIGURE 4.4: Running Error for Dynamic Testbed without
Forgetting

the NGnet models’ performance over the whole input distribution [−1, 1]

changes during training. GFdisc has a better learning performance over
a large part of training, but eventually looses out to LF in the last quar-
ter, which is however not visible in the figure because of the rough scale.
GFnorm behaves similar to GFdisc for the first half of training, but then starts
to perform worse than the other two methods, especially in the last third of
training. The final performance results are presented in Table 4.13 for λ = 1,
where one can observe that LF possesses better approximation capabilities
not only over the whole input distribution (NMSE All) but also for the last
interval [0.2, 1] (NMSE Last). The favorable performance of LF is also sup-
ported by a statistical significance of the results with the p-value equaling
zero.

The presented manipulation counter data in Table 4.13 give some in-
sights about the dynamic model selection behavior of the three methods.
For GFnorm, it is apparent why it performs worse than the other two meth-
ods, since it has a very high number of unit productions and deletions.
Also, it is interesting to observe that GFnorm performs worse in the last
input interval than over the whole input space. Without forgetting, the
normalization factor η(t) tends to grow smaller without limit and in the
last interval GFnorm is then unable to keep newly added units. Each unit
starts with a small weighted mean 〈〈1〉〉i(t) = η(t) and is then prone to be
deleted right away as η(t) becomes very small. This assumption is also
supported by the fact that GFnorm performs better over the whole input
space, meaning that older units with higher weights 〈〈1〉〉i(t) are not deleted.
This deletion behavior demonstrates that the established NGnet training
method GFnorm has difficulties with online learning tasks not only because
of global forgetting but also because of the applied delete mechanisms. This

72 Chapter 4. Experiments

effect is drastically apparent for this testbed because the number of train-
ing data samples is large. For LF and GFdisc, the update reduces to the
same function so that the differences in learning performance are only due
to the different manipulation mechanisms. Here, LF is able to perform bet-
ter with high significance and a slightly lower model complexity despite
of the higher number of manipulations. Interestingly, a quite aggressive
delete threshold has been selected for LF as the best performing one, while
a very low threshold has been chosen for GFdisc. This shows the advantage
of the localized delete mechanism. It was able to affect the learning perfor-
mance positively while the global delete mechanism did not. Overall, the
performance results show the superiority of the proposed method.

FIGURE 4.5: Running Error for Dynamic Testbed with For-
getting

With Forgetting In the dynamic testbed with forgetting, a static discount
λ(t) = 0.999 is applied over the whole training time. This is equal to a
discount schedule with a = 0 and b = 1000. I compare LF again with both
GFdisc and GFnorm and apply the manipulation parameters as stated in
Table 4.1 for FA: Dynamic.

In Fig. 4.5, a huge performance difference is visible for the running er-
ror of LF compared with GFdisc and GFnorm. At the second time quarter,
the GF methods seem to be successfully learning and even perform better
than LF for a short time frame. However, their performances then decrease
and become almost as bad as at the begin of training for a second time. On
the other hand, LF is able to steadily improve its approximation. The final
performance results in Table 4.13 (λ = 0.999) also confirm that LF performs
much better over the whole input space. Compared with the without for-
getting case, this time the GF methods are able to perform better in the last

4.3. Chaotic Time Series Approximation Tasks 73

input interval NMSE Last but are unable to achieve an acceptable perfor-
mance over the whole input space. The two GF methods perform similar to
each other in regard to learning performance and dynamic model selection.
Reasons for the bad performance of the GF methods are likely the global for-
getting and the global deletion behavior. While LF is actually deleting more
units because of the chosen delete threshold, it is still able to perform much
better over the whole input space, which shows the importance of a local
deletion approach in environments where the training data distribution is
not i.i.d. All methods experience a decrease in performance compared with
the non-forgetting test case, but only LF is able to perform similarly well.
These results prove again the robustness of LF in regard to different learn-
ing situations.

Again, I shortly want to discuss the deletion behavior of the three meth-
ods. The delete thresholds of LF and GFdisc are equal to the ones in the
dynamic without forgetting case, so it is interesting to compare the differ-
ences in deletion behavior. For LF, the number of unit deletions is only
slightly increasing for the forgetting case, which confirms that the local
deletion mechanism is behaving stable. On the other hand, while GFdisc
has almost never deleted units before, the number of deletions increased
when discount was applied. This shows that there is a high impact of
global forgetting and the global time counter on the delete mechanism of
GFdisc. In addition, one can observe that GFnorm has less deletions in this
test case compared with the without forgetting case (λ = 1) while employ-
ing a larger delete threshold value. This highlights that GFnorm possesses
a robuster deletion behavior when η(t)’s ceasing to zero is limited by the
applied discount. I conclude that the delete mechanism of GFnorm is un-
suited in general but especially when no forgetting occurs. Overall, it can
be said that the proposed LF method is preferable for online learning tasks,
especially when data distributions are not i.i.d.

4.3 Chaotic Time Series Approximation Tasks

In this section, I apply the NGnet to chaotic time series forecasting tasks
that represent environments with non-i.i.d. data, since data samples are re-
ceived in a time-dependent order. Two chaotic time series are tested: the
Lorenz attractor and the Mackey-Glass chaotic time series. I have already
observed for the Cross function approximation task in Section 4.2.2 that
GFnorm has a higher potential of instable behavior than GFdisc and also
discussed that this is likely related to its deletion mechanism. In test cases
where GFnorm was able to perform stable, its performance has been gener-
ally similar to the one of GFdisc. Therefore, I only compare my proposed

74 Chapter 4. Experiments

learning method LF with GFdisc for the chaotic time series approximation
tasks to save space.

4.3.1 Preparations

Some preparative decisions were taken before training and are introduced
in the following.

Time Delay Embedding A time delay embedding method is commonly
used for the approximation of chaotic time series. According to Takens’
theorem (Takens 1985), it is possible to reconstruct the chaotic dynamics
from one dimension, e.g. dimension x. A next state x(t+P) is then defined
by the following delay coordinate

x(t+ P) = {x(t), x(t−∆t), . . . , x(t− (d− 1)∆t)}, (4.10)

where d is the embedding dimension and ∆t is the embedding delay. The
reconstruction of the chaotic dynamics is dependent on an appropriate choice
of d and ∆t, and therefore the parameters are chosen separately for the two
learning tasks. P is the number of prediction steps ahead.

Performance Evaluation For the chaotic time series approximation tasks,
I evaluate the learning performance of the tested methods with the Root
Mean Square Error (RMSE). The RMSE is defined by

RMSE =

√∑T
t=1(y(t)− f̂(x(t)))2

T
, (4.11)

where T is here the number of test data samples. The RMSE results repre-
sent then the short-term generalization performance of the trained NGnets
for one-step ahead predictions.

4.3.2 Lorenz Attractor

For the first chaotic time series approximation task, the NGnet is applied to
the Lorenz attractor (Lorenz 1963) that is defined by

ẋ = a(y − x),

ẏ = bx− y − xz,

ż = xy − cz.

(4.12)

For the commonly used parameters a = 10, b = 28, c = 8/3, the attrac-
tor possesses then chaotic behavior. Attractor trajectories are obtained by
fourth order Runge-Kutta integration with an integration time step ti =

4.3. Chaotic Time Series Approximation Tasks 75

0.001. The vector notation of the attractor is Ẋ = F (X) where X ≡ (x, y, z)′

and F denotes the vector field. Additionally, some noise can be added to
each observation with

Y (t) = X(t) + ξ(t), (4.13)

where the noise ξ(t) is a white Gaussian noise with zero mean and some
standard deviation SD.

Preparations

Further preparative steps are necessary to apply the NGnet to this learning
task. Dynamic model selection is applied to the compared methods and
threshold parameters are selected according to the values stated for Lorenz
Attractor in Table 4.1.

Time Delay Parameters Appropriate parameters have to be chosen for
the time delay embedding method. For the Lorenz attractor, ∆t = 0.15

and d = 3 are sufficient to reconstruct the chaotic dynamics (Ishii and Sato
2001). The number of prediction steps ahead P is set to P = 1.

Training and Test Data The NGnets are trained with 10,000 training data
samples sequentially obtained from one trajectory of the attractor with a
sample time step ts = 0.01. Short-term prediction accuracy is evaluated
with two test sets: one is noiseless (RMSE1) and another one added white
Gaussian noise with SD = 0.2 (RMSE2). For both test sets, 10,000 test data
samples are randomly obtained from several different trajectories.

Correlation Dimension (CD) Additionally to the short-term performance,
it is possible to evaluate the long-term characteristics of the trained NGnet
models for the Lorenz attractor (Cowper et al. 2002). For long-term pre-
dictions, recursively predicted trajectories are obtained, where recursive
means that the NGnets use their own predicted outputs as the input for
the next prediction step. Because of the chaotic dynamics, the recursively
obtained trajectory starts to differ largely from the original trajectory even
when obtained from the same initial state. It is therefore not possible to
evaluate the long-term characteristics by direct comparison.

The correlation dimension (CD) (Grassberger and Procaccia 1983) mea-
sures properties of a chaotic time serie’s trajectory and can be used to eval-
uate the long-term characteristics of the trained NGnet models. For each
trained model, three recursively predicted trajectories are obtaiend with
30,000 samples and different initial states. Then, CDs are calculated for
each trajectory and their average is presented in the test results. The CD

76 Chapter 4. Experiments

TABLE 4.14: Lorenz Attractor Testbed Results with b=150

Discount/
Data Noise

LF (Prop.) GFdisc

RMSE1 RMSE2 Size CD RMSE1 RMSE2 Size CD

a=0.1
SD=0.0 0.1527 0.4843 172 1.87 0.1805 0.7330 435 1.61
SD=0.1 0.1757 0.4632 169 1.84 0.1875 0.4961 399 1.82
SD=0.2 0.2012 0.4538 174 1.78 0.2921 0.5041 453 1.69
SD=0.3 0.2430 0.4626 207 1.76 0.3579 0.5428 584 1.79
a=0.01
SD=0.0 0.1506 0.4897 173 1.86 0.6761 1.0421 494 0.32
SD=0.1 0.1742 0.4645 169 1.83 0.6504 0.9003 458 0.00
SD=0.2 0.2006 0.4540 175 1.79 0.5669 0.7459 511 1.49
SD=0.3 0.2407 0.4622 211 1.78 0.6951 0.8234 555 1.43
a=0.001
SD=0.0 0.1499 0.4912 173 1.87 0.8621 1.1928 434 1.05
SD=0.1 0.1737 0.4650 169 1.84 0.7642 1.0197 412 1.09
SD=0.2 0.2003 0.4539 175 1.78 0.8382 0.9852 463 1.03
SD=0.3 0.2404 0.4621 211 1.77 0.9873 1.0708 519 1.58

of a real Lorenz attractor is CDOriginal = 2.05± 0.01 (Grassberger and Pro-
caccia 1983), while it is approximately CDEmbedded = 2.021 for a trajectory
obtained by the embedding delay method (Ishii and Sato 2001). The nearer
a calculated CD is to the real CD the better are the long-term characteristics
of the trained model.

Experimental Results

The effectiveness of the proposed method LF is compared with GFdisc for
several discount schedules with initial settings b = 150 and b = 1000 in Ta-
ble 4.14 and Table 4.15 respectively. For each discount schedule, I present
results obtained from training runs with different grades of noise added to
the data, denoted by the noise standard deviation SD. The results show that
LF has a robust short-term performance in comparison with GFdisc, since it
is able to perform well for all test cases and the full range of the achieved
learning performances is much smaller. The long-term characteristics of LF
are also robust, since there is no CD lower than 1.76 and CDs are similar
within each training data noise level irrespective of the applied discount
schedule. On the other hand, GFdisc is not able to perform robustly over
the different discount schedules. Short-term performance is decreasing a
lot when higher discounts are applied and it performs especially bad over
all noise levels for two out of three discount schedules with b = 150. There
are a few cases where GFdisc has either better short-term performance for

4.3. Chaotic Time Series Approximation Tasks 77

TABLE 4.15: Lorenz Attractor Testbed Results with b=1000

Discount/
Data Noise

LF (Prop.) GFdisc

RMSE1 RMSE2 Size CD RMSE1 RMSE2 Size CD

a=0.1
SD=0.0 0.2329 0.4826 172 1.86 0.1259 0.7070 200 0.00
SD=0.1 0.2140 0.4626 169 1.83 0.1537 0.5009 181 1.89
SD=0.2 0.2060 0.4539 174 1.78 0.2218 0.4609 211 1.81
SD=0.3 0.2143 0.4629 206 1.78 0.2481 0.4744 263 1.72
a=0.01
SD=0.0 0.1534 0.4829 172 1.86 0.1666 0.8423 225 0.36
SD=0.1 0.1764 0.4627 169 1.83 0.1716 0.5202 198 1.82
SD=0.2 0.2016 0.4539 174 1.79 0.2456 0.4887 246 1.73
SD=0.3 0.2434 0.4629 206 1.77 0.3107 0.5153 314 1.71
a=0.001
SD=0.0 0.1534 0.4830 172 1.85 0.1735 0.8198 226 0.23
SD=0.1 0.1764 0.4627 169 1.82 0.1773 0.5166 203 1.84
SD=0.2 0.2016 0.4539 174 1.79 0.2537 0.4923 252 1.73
SD=0.3 0.2434 0.4629 206 1.77 0.3180 0.5175 321 1.74

the RMSE1 test data or better long-term characteristics than LF, when dis-
counts are small and mainly for b = 1000, but overall it misses the robust-
ness shown by the proposed LF method. In addition, GFdisc has also more
difficulties to exhibit good performance for the RMSE2 test data set, where
LF performs better regardless of the discount schedule. The results in Table
4.14 and Table 4.15 also show that better short-term performance is not nec-
essarily an indicator for good long-term characteristics. For some cases, LF
has better long-term characteristics even when short-term performance is
worse than GFdisc’s for RMSE1. This phenomenon has also been noted by
Cowper et al. (2002). Similarly to the function approximation experiments,
one can observe again that GFdisc has difficulties to show a robust learn-
ing performance while LF is able to perform robustly over all testbeds. The
same is true for the long-term characteristics, where GFdisc achieves only
five CD values over 1.8 and one additional CD that is larger than 1.75. On
the other hand, LF has achieved 12 CD values over 1.8 and all other CDs are
at least higher than 1.75. Overall, it can be concluded that LF is performing
clearly better than GFdisc.

In Fig. 4.6(a) - 4.6(d), some examples are illustrated of how different CD
values relate to different representations of the long-term characteristics.
30,000 data points are presented in all four figures, but Fig. 4.6(d) seems
much sparser than the rest because the recursive prediction always returns
to the same points. Fig. 4.6(c) looks already more like the real attractor in

78 Chapter 4. Experiments

(a) Real Attractor (b) CD = 1.89

(c) CD = 1.09 (d) CD = 0.23

FIGURE 4.6: Real attractor (a) compared with recursive pre-
dictions (b) - (d)

Fig. 4.6(a) but still has some holes. Fig. 4.6(b) has a compact point distribu-
tion in space similar to the real attractor. All learned models have difficul-
ties to represent the inner edges accurately resulting in the difference to the
real attractor’s CD.

4.3.3 Mackey-Glass Chaotic Time Series

The Mackey-Glass (MG) chaotic time series (Mackey and Glass 1977) is an-
other popular example of a chaotic dynamic time series approximation task.
It is also often referenced in the literature for testing neural network learn-
ing approaches, which makes it a good testbed to compare the proposed
method not only with GFdisc but also with other self-constructing online
learning approaches. The Mackey-Glass chaotic time series is defined as

x(t+ 1) = (1− a)x(t) +
bx(t− τ)

1 + x10(t− τ)
, (4.14)

where the parameters are normally chosen to be a = 0.1, b = 0.2 and τ =

17. The prediction problem is again described as a time delay embedding
problem, where the future value x(t + P) is predicted from past values
embedded in a delay coordinate as in Eq. (4.10). The embedding delay

4.3. Chaotic Time Series Approximation Tasks 79

TABLE 4.16: MG 6 steps ahead prediction accuracy

Network UnitNo.
RMSE

Training Test

RBF-AFS 21 0.0107 0.0128
OLS 13 0.158 0.0162
DFNN 10 0.0082 0.0083
FAOS-PFNN 11 0.0073 0.127
GEBF-OSFNN 10 0.0091 0.0087
LF(Prop.) 33 0.0056 0.0086
GFdisc 38 0.0083 0.0098

parameter is set to ∆t = 6 and the embedding dimension is set to d = 4 for
the experiments.

For this learning task, LF is compared with GFdisc in two testbeds, again
applying dynamic model selection to both methods. The selected thresh-
old parameters are stated in Table 4.1 separately for both testbeds marked
with a beginning MG Time Series. Here, it was necessary to choose a very
high produce parameter (TProduce = 500.0) to provoke early unit additions.
The produce threshold parameter is dependent on the calculated proba-
bility density function over the input and output space, so the appropriate
threshold value is highly dependent on the characteristics of the underlying
testbed. In case of the MG time series, it is possible to use smaller produce
thresholds, e.g. TProduce = 10.0, but this results in new units being added
more slowly and then they have less time to approximate the underlying
functional relationship of the learning problem. This is especially a prob-
lem here because the number of available training data is strongly limited
and the training data is applied only once for learning. Two different MG
testbeds are applied with 6-step (Section 4.3.3) and 50-step (Section 4.3.3)
ahead prediction, where both have a limited number of training data with
1,000 and 4,000 samples respectively.

First Testbed: 6-step ahead prediction

In the first testbed, the NGnets are trained for a MG time series with a 6-
step ahead prediction (P = 6). Here, the initial condition of the model is
set to x(0) = 1.2. These settings are chosen in reference to a paper by Wang
(2011) to enable a direct comparison with the tested methods in the paper.
Similarly to the related work, I only evaluate the short-term prediction ac-
curacy for training and test data. The training and test data are extracted
from the same time series trajectory, starting at sampling time step t = 124.
The first 1,000 samples are obtained for the training data and the second
1,000 samples (from t = 1124) are obtained for the test data set.

80 Chapter 4. Experiments

In Table 4.16, the obtained performance results are presented for LF and
GFdisc, which are also compared with several other constructive learning
approaches where performance results are taken from Wang (2011). The ref-
erenced paper has proposed a generalized ellipsoidal basis function based
online self-constructing fuzzy neural network (GEBF-OSFNN). Most of the
other compared methods are also based on fuzzy neural network architec-
tures: RBF based adaptive fuzzy system (RBF-AFS), dynamic fuzzy neu-
ral network (DFNN) and fast and accurate online self-organizing scheme
for parsimonious fuzzy neural networks (FAOS-PFNN). Except the NGnets
learning approaches, only one of the compared method is not fuzzy in Ta-
ble 4.16: the orthogonal least squares algorithm for the RBF network (OLS).
OLS is constructive but not applicable incrementally as the whole batch of
training data is necessary for the construction. I also have shortly men-
tioned the OLS method in Section 2.2.3. For both NGnet approaches, I
present the best performing results in the table with discount schedules set
to (a = 0.001, b = 5) for LF and (a = 0.001, b = 1000) for GFdisc.

The results in Table 4.16 show that the NGnet with LF is able to per-
form very well compared with the other methods. It is also able to outper-
form GFdisc in regard to both training and test data prediction. For the two
NGnet methods, the model complexity is higher than for the fuzzy neural
networks and also than for the OLS method, where the OLS method is how-
ever not able to perform very well. The fuzzy networks have a number of
units that is equal to the number of fuzzy rules. In my opinion, the higher
model complexity is a natural result of the different network architectures
where the NGnet units are more simple and can represent less information
than each of the fuzzy rules. In addition, the increased model complexity is
not really a problem for the proposed LF, because only a limited number of
units is updated at every time step reducing its computational heaviness.

Second Testbed: 50-step ahead prediction

For the second testbed, the number of prediction steps ahead is set to P =

50 and the initial condition of the model to x(0) = 0.3. 4,000 training data
samples are obtained starting from the sampling time step t = 1 and 500 test
data samples are obtained from t = 4001. I refer to Liang et al. (2006) for
the comparison of the proposed method with other self-constructive online
approaches, including RAN (Platt 1991), RAN-EKF (Kadirkamanathan and
Niranjan 1993), MRAN (Lu et al. 1997), GGAP-RBF (Huang et al. 2005) and
OS-ELM (Liang et al. 2006). The first four approaches are based on RBF
networks and also have been discussed shortly in Section 2.2.3, while the
last approach is based on the ideas of extreme learning machines (ELM).

The results in Table 4.17 show that the proposed method is able to out-
perform all compared methods. For both NGnet learning strategies, I present

4.4. Reinforcement Learning Task 81

TABLE 4.17: MG 50 steps ahead prediction accuracy

Network UnitNo.
RMSE

Training Test

RAN 39 0.1006 0.0466
RAN-EKF 23 0.0726 0.0240
MRAN 16 0.1101 0.0337
GGAP-RBF 13 0.0700 0.0368
GEBF-OSFNN 12 0.0316 0.0218
OS-ELM (RBF) 120 0.0184 0.0186
OS-ELM (Sigmoid) 120 0.0177 0.0183
LF(Prop.) 45 0.0137 0.0140
GFdisc 45 0.0165 0.0141

the best results, where the discount schedules are set to (a = 0.001, b = 25)

for LF and (a = 0.001, b = 1000) for GFdisc. GFdisc is also able to perform
well coming in second place in comparison with all methods. Similar to the
first MG testbed, the performance gap between GFdisc and LF is quite large
for the training data set. This leads to the assumption that a GF method
has more difficulties to perform well on previously learned data probably
due to the forgetting. Both NGnets have the same network model com-
plexity, which is approximately a third of the network size of the OS-ELM,
while performing better than this method. All other compared methods
have smaller network sizes but also perform much worse. I assume that
likely a certain network complexity is necessary to perform well on this
learning task.

4.4 Reinforcement Learning Task

For the last experiment, I apply the NGnet to a reinforcement learning (RL)
task. RL provides an environment that is naturally prone to negative in-
terference as received training data samples are not i.i.d. While a learning
agent explores the environment to find a good policy for the learning task,
it will visit some regions of the input space more frequently than other re-
gions. This is especially the case after learning converges to a policy and
exploration of other regions becomes less frequent. RL makes therefore an
interesting testbed to evaluate the effectiveness of the proposed LF method
in regard to GFdisc.

The NGnet is applied to a classical RL benchmark problem with a con-
tinuous state and action space that considers the control of a simple in-
verted pendulum with limited torque (Doya 2000). The learning goal is to
swing up the pendulum and fix it in the upright position indefinitely, see
also Fig. 4.7. The problem is described by a 2-dimensional state space that

82 Chapter 4. Experiments

TABLE 4.18: Physical Parameters for Simple Pendulum Dy-
namics

Parameter Description Value

g gravity (m/sec2) 9.81
l pendulum length (m) 1.0
mp pendulum mass (kg) 1.0
µp torque 0.01
F force (N) {5,0,-5}

FIGURE 4.7: Control of a inverted pendulum with limited
torque (inspired by Doya (2000))

consists of the angular position of the pendulum ϑ, measured in regard to
the upright position, and its angular velocity ϑ̇. Here, ϑ takes values in the
interval [−π, π] and ϑ̇ is limited to the value range [−8, 8]. The dynamics of
the pendulum are defined by the following differential equation

ϑ̈ =
(−µpϑ̇+mpgl sin(ϑ) + F)

(mpl2)
. (4.15)

The equation includes several physical parameters that are explained in
Table 4.18. A numerical solution is obtained for the differential equation
with the fourth order Runge-Kutta method, where I use a sampling time
step τ = 0.1. The experiment is then conducted in episodes of 70 time steps,
which is equal to 7 seconds of simulated time. Although the action space
is continuous, I have discretized it to three actions, where either positive
force, negative force or no force is applied to the pendulum. The applicable
force is selected so that it is smaller than a maximal load torque mpgl and
the pendulum needs to be swung several times to build up enough kinetic
energy to reach the upright from the downward position (Doya 2000).

4.4. Reinforcement Learning Task 83

4.4.1 Preparations

Some preparative steps are taken before learning that are explained in the
following.

RL General Settings For the RL task, I apply a greedy exploration strat-
egy where the learning agent always chooses the action at = π(st) = arg max

a
Qπ(st, a).

In addition, the reward is obtained by the negative of the absolute value of
the distance to the goal position, where the goal is ϑ = 0 and the reward
function is then equal to r(s, a) = −|ϑ| (Agostini and Celaya 2016).

Training and Test Runs The NGnet has to approximate the Q-function
with input samples x = (st, at), described by the current state st = (ϑ, ϑ̇)

and the selected action at, and target outputs that are calculated according
to Eq. (2.4). The discount γ in Eq. (2.4) is fixed at γ = 0.85. For all experi-
ments, I have conducted 20 independent runs with 1000 episodes each and
only averages are presented as results. Each episode consists of a training
run and a test run with 7 seconds of simulation time each. While the train-
ing run is mainly for learning a better policy, the test runs are conducted to
evaluate the current policy when no learning takes place.

Pendulum Initialization The angular velocity ϑ̇ is always initialized to
zero for both training and test runs. The pendulum’s initial position is al-
ways set to the downward position for the test runs with ϑ = π, but for the
training runs ϑ is initialized differently in two considered testbeds. In the
first testbed, ϑ is initialized randomly over the full value range [−π, π]. For
the second testbed, it is set to ϑ = π.

Learning Methods and Evaluation Similarly to the Lorenz attractor learn-
ing task, I only compare the proposed LF method with GFdisc for the pen-
dulum RL task. The applied manipulation threshold parameters are stated
for Reinforcement Learning in Table 4.1 and learning performance is evalu-
ated by the accumulated amount of reward in each episode.

4.4.2 First Testbed

For the first testbed, the NGnet has to learn a good swing-up policy for
a pendulum that can take any possible initial position int its state space.
Therefore, the level of exploration is high and some hints of the goal are
given when the initial pendulum position is near to the upright position for
a training run. On the other hand, the learning performance is evaluated
only for one initial position in the test runs where ϑ = π. Therefore, learning
is expected to improve rather slowly. First, the two forgetting methods are

84 Chapter 4. Experiments

FIGURE 4.8: First Testbed with a = 0.001 and Different b for
LF(Prop.)

evaluated separately for different discount schedules, where a = 0.001 and
several initial discount values b are tested. Then, I will compare the best
performing runs for each method with each other.

For LF(Prop.), the trend of the learning performance is presented in Fig.
4.8, which shows how the learning performance changes over the episodes
for 6 different initial discount values. The discounts represent a broad range
of initial values that go from very large discounts (b = 5) to very small ones
(b = 1000). It is apparent that the trend of the learning performance is
highly dependent on the applied discount and a high discount is necessary
to achieve an increase in learning performance for this task. Even over the
long run of 1000 episodes, small discounts, b = {500, 1000}, are not able to
show an improving trend in the learning performance. Also, one can ob-
serve that a higher initial discount leads to a faster improvement in learn-
ing performance, while initial discounts b ≥ 50 take off to a slow start and
it takes a long time before these test cases start to actually improve on the
task. The best performing test cases have a very high initial discount with
b = 5 or b = 10. Here, one can observe that the highest discount (b = 5)
is improving faster, but in the long run the high discount has a slight neg-
ative effect on the learning performance as some instabilities are observed
for the last learning phase. The more modest discount b = 10 performs
then better in the last learning phase. Similarly, it was possible to observe
better performance for the LF method when the discount is higher for the
function and chaotic time series approximation tasks, but the results here
further emphasize the importance of a high discount for learning success.
The improvements of LF are in general slow if the applied discount is small.

4.4. Reinforcement Learning Task 85

FIGURE 4.9: First Testbed with a = 0.001 and Different b for
GFdisc

On the other hand, while high discounts can help to deal with this problem,
one has to be careful that the high discount does not start to affect the learn-
ing performance negatively in a later phase of learning. This problem likely
depends a lot on the length of the learning phase.

In Fig. 4.9, the trend of the GFdisc learning performance is presented
over the whole training time. Again, several initial discount values are
tested, where however the range of discounts is set from small (b = 500) to
very small (b = 2000). I only choose relatively small discount for the com-
parison, since GFdisc behavior becomes instable when higher discounts are
applied. This can already be observed for a discount with initial b = 500,
which performs best of all discount schedules in the first phase of learn-
ing but then deteriorates and finally performs worst in the last learning
phase. It also has the highest fluctuation of accumulated rewards between
episodes. Furthermore, if one compares the fluctuations of all discounts
with the ones of LF in Fig. 4.8, then it is noticeable that the fluctuations are
overall much higher for GFdisc. This is again related to the negative effect
of the global approach and emphasizes the higher robustness of a localized
approach. Overall, the performance differences are not as visible as for LF,
which is probably caused by the smaller difference in the applied discount
schedules. For all applied discounts, GFdisc has difficulties to converge to a
good action policy.

Finally, I want to compare the two best performing results for LF and
GFdisc with each other. The trends of the best performing discount sched-
ules are presented in Fig. 4.10, where I have selected an initial discount
value b = 10 for LF and b = 2000 for GFdisc. The difference in the trends

86 Chapter 4. Experiments

FIGURE 4.10: Compare Best Performance for First Testbed

then clearly shows the better performance of LF, which is not only able to
perform better over all learning episodes but also converge to a much more
stable solution with less fluctuations in the accumulated reward.

4.4.3 Second Testbed

For the second testbed, the angular position of the pendulum is initialized
always in the same position, ϑ = π, for all training and test runs. The
grade of exploration is therefore low and it is only necessary to learn the
trajectory for one initial state. For this testbed, I only present the best results
for both methods, since the overall trend of different discount schedules is
similar to the first testbed. The learning performance of LF and GFdisc is
compared in Fig. 4.11, where the initial discount value is set to b = 5 for LF
and b = 1000 for GFdisc. Interestingly, both methods apply a higher initial
discount for this testbed, which is probably related to the static initial state
of the pendulum. Here, the learning agent does not explore different initial
pendulum states but always starts in the same position. This also means
that more data samples are observed in the same regions of the input space,
and this testbed has a less imbalanced data distribution than the first one.
Therefore, it is possible to apply higher discounts for both testbeds without
experiencing a deterioration of performance in the later learning phases.

The trend of the learning performances can be observed in Fig. 4.11.
Since there is no random exploration of different initial states, all random
factors are eliminated and the NGnet training is discrete. In other words,
all test runs achieve the same learning performance as long as some of the
NGnet parameter settings are not changed. Therefore, the presented results

4.4. Reinforcement Learning Task 87

FIGURE 4.11: Compare Best Performance for Second
Testbed

look very different from the first testbed, here the accumulated reward fluc-
tuation is much higher for both methods as there is no soothing effect by
averaging the results. An accumulated reward of −50 is the approximately
best that can be achieved, since the pendulum needs some time to swing
up to the upright position. Both methods are able to achieve high rewards
for this testbed, where even GFdisc is able to reach a near to optimal perfor-
mance from time to time. For the first testbed, the average performance is
not able to converge to an optimum for both methods, probably because of
the high level of exploration that can negatively affect the learning. Then,
it prevents the convergence of the trained model to a good action policy for
some of the test runs, resulting in a non-optimal performance on average.
For this testbed, the fluctuation for GFdisc is high even in the last phase of
learning, but LF is able to achieve almost constantly high values near to
optimum after the 400th learning episode. The stability of LF performance
increases further with advancement of the training time. This shows that
LF is able to learn a good action trajectory for the initial pendulum position
ϑ = π, which is the ultimate goal of learning evaluated in the test episodes.
Overall, LF is able to achieve higher rewards much earlier and much more
steady than GFdisc, emphasizing again its preferable robustness in negative
interference prone environments.

89

Chapter 5

Discussion

In this chapter, I discuss properties of the proposed method in regard to the
results obtained for the conducted experiments in Chapter 4. The discus-
sion is largely divided into two parts: properties of the localized forgetting
method in Section 5.1 and properties of the dynamic model selection mech-
anisms in Section 5.2.

5.1 Updates with Localized Forgetting

In this section, I focus on the localized forgetting update method of the
NGnet and discuss the properties of my proposed approach in compari-
son with the previous local forgetting method (Section 5.1.1) and the global
forgetting method (Section 5.1.2).

5.1.1 Comparison with the Previous Local Forgetting Method

I have reconsidered the derivation of the localized forgetting approach in
Section 3.1 to eliminate the dependency of the update weight on discount
factor λ(t). As a result, I have derived a new localized forgetting update
method that applies the discount only for forgetting and becomes appli-
cable over the whole numerical range of discount factor λ(t). In Section
4.2.2, some experiments are conducted for a function approximation task to
compare the previous LF method with my newly derived one. Overall, the
experimental results have shown only a very small difference in learning
performance when forgetting occurred, and the difference decreases fur-
ther with smaller discounts. On the other hand, the new LF(Prop.) method
is apparently better than the old LF(Prev.) when no discount (λ(t) = 1)
is applied over all t, because LF(Prev.) is then unable to update its network
parameters. Therefore, the main aim of my new proposal has been fulfilled.

Additionally, I want to discuss shortly the reasons for the less appar-
ent differences in the learning performance of the two LF methods when
forgetting occurs (Backhus et al. 2016a). Any numerical difference in the
performance of the two approaches is affected only by the update factors.
The old update factor Ω(Pi(t)) = 1−λ(t)Pi(t)

1−λ(t) depends on the current discount

90 Chapter 5. Discussion

TABLE 5.1: Sample Values for LF(Prev.) Update Factor

Discount λ(t)
Posterior Probability Pi(t)

0.01 0.2 0.4 0.6 0.8

0.9 0.01053 0.20852 0.41268 0.61260 0.80834
0.99 0.01005 0.20080 0.40121 0.60121 0.80080

0.999 0.01000 0.20008 0.40012 0.60012 0.80008

factor λ(t) and unit weight Pi(t), while the newly proposed update factor is
only dependent on and equal to Pi(t). Therefore, the discount λ(t) plays an
important role in the numerical differences between both methods. In Table
5.1, some sample values are presented for the update factor of LF(Prev.) that
show how different values of Pi(t) and λ(t) influence it. The difference be-
comes larger as further λ(t) is away from one and Pi(t) is near to 0.5. For the
examples in the table, the difference between Pi(t) and Ω(Pi(t)) = 1−λ(t)Pi(t)

1−λ(t)
is then largest for discount λ(t) = 0.9, which is equal to a discount schedule
with a = 0.0 and b = 10. I have conducted experiments with this and other
discount schedules and the results are presented in Table 4.5 of Section 4.2.2.
The experimental results show similar tendencies as discussed here with
higher performance differences when the applied discount is larger. Over-
all, I conclude that no large performance differences can be expected since
the LF(Prev.) update factor’s is still similar to the LF(Prop.) update factor
due to its characteristics, and the influence on the learning performance is
therefore limited except for discount λ(t) = 1.

5.1.2 Comparison of Local and Global Forgetting

For most of the conducted experiments, I have compared the newly pro-
posed LF method with two GF methods and all methods have employed
some dynamic model selection mechanisms. In this Section, I attempt to
summarize the differences in learning performance that were mainly caused
by the applied forgetting approaches by discussing benefits and limitations
of LF.

Benefits

Robustness is one of the biggest advantages of the LF update method
compared with GF. This was observable throughout the experiments in
Chapter 4 in two manners. First, the LF updates have shown a higher ro-
bustness against the application of different discount schedules. While LF
is not performing equally well for all tested cases, it is able to perform with
a certain grade of robustness for different discounts. On the other hand, GF
has difficulties to perform well when the applied discounts are too large

5.1. Updates with Localized Forgetting 91

resulting even in a catastrophic learning behavior. Because large discounts
make a GF network forget learned information much faster than new infor-
mation can be learned, the units become smaller and smaller and eventually
the network output becomes not a number in cases where no unit manipula-
tion is applied and no other prearrangements are taken. This problem can
be avoided with dynamic unit manipulation, where units are deleted before
they become too small. The same problem translates also to the second per-
ception on robustness, where LF is able to deal much better with non i.i.d.
data than GF. Again, this is related to units globally forgetting information
and becoming eventually unable to present information in regions that are
sampled sparsely or only at an earlier point of learning.

Computational Complexity can be decreased when applying localized
forgetting, because the properties of LF make it possible to reduce the num-
ber of updated units (see discussion in Section 3.2). This is a big advantage
compared with GF, where the computational cost of updates grows linearly
with the model complexity and a reduction of unit updates is not possible.
I have also discussed the possibility to further cut down the update pre-
cision of the LF method and conducted some experiments to evaluate the
influence of different update precision limits in Section 4.2.1 and Section
4.2.2 for two function approximation tasks under several performance as-
pects. Finally, I found that a precision of 1.0E−5 is sufficient for the update
weights of the LF method. This has resulted then in performance speed ups
up to 60% compared with a full update over all units for the sample testbed.

Limitations

Slower Learning Convergence is a major downside of LF. While it is pos-
sible to eliminate this disadvantage to a certain degree by applying higher
discounts, GF will still be able to perform better in learning environments
where data are i.i.d. and that are not prone otherwise to negative interfer-
ence. This is especially apparent for the Cross function approximation task
with a balanced data distribution in Section 4.2.2. Even when applying rela-
tively high discounts, LF is not able to achieve the overall best performance
for this test case. For LF, the localization of the forgetting slows down the
training process. Another more extreme example is the reinforcement learn-
ing task in Section 4.4. Here, the learning trends have been observed for LF
with different discounts applied, and it is apparent that higher discounts
have achieved a good performance much faster than smaller discounts.
Some of the smallest discounts were not able to reach a good performance
even after a long training period. This limitation can become a serious prob-
lem when available data samples are very limited and fast learning is nec-
essary. This is for example obviously the case for the Mackey-Glass chaotic

92 Chapter 5. Discussion

time series approximation task in Section 4.3.3, where the limited number
of available data samples has forced me to apply very high discounts. But
even with the high discounts, it was necessary to additionally apply a very
high produce threshold parameter to ensure that units are added early to
the model. This is again related to the LF method, because added units are
adjusted slowly and it takes more time until it can be decided if new units
should be added or not. If I know for an environment that stable learning
is possible, then it might be preferable to apply GF instead of LF updates.
But otherwise, LF is preferable over GF because of its learning robustness.

5.2 Dynamic Model Selection

In this section, I will discuss benefits and limitations of the dynamic model
selection approach applied to LF(Prop.). The discussion is separately con-
ducted for each of the unit manipulation mechanisms and the self-constructing
model adaptation.

5.2.1 Produce Mechanism

Benefits

The produce mechanism plays a very important role within the unit ma-
nipulation mechanisms as it is responsible for adding new units and learn-
ing performance can be highly dependent on it. Although, split is another
mechanism that adds new units to the network, it is not able to add units
fast enough when new input regions are observed for the first time. On the
other hand, the produce mechanism can add new units in the moment that
the model is not able to represent the currently observed data sample well
enough. This property is especially necessary in a self-constructing model
adaptation approach. For the produce mechanism, I have then proposed
to take the sum of the input-output-probability over all units as the fac-
tor to decide when new units are necessary, ignoring the prior probability
P (i|θ) = 1

M . By leaving out the prior probability, one avoids that units are
added more easily with increasing model complexity. Taking the sum of all
probabilities helps to consider not only the unit with the highest probabil-
ity but also the other surrounding ones. If units are far from the currently
observed data sample, then they do not influence the probability sum very
much. Therefore, a further localization is not necessary for the produce
decision.

Limitations

The produce mechanisms is important but the current decision approach
has a big downside: it is dependent on the Gaussian probability density

5.2. Dynamic Model Selection 93

functions of the input and output space, which have a wide range of pos-
sible numerical values. This makes the search of an appropriate produce
threshold difficult, since the best value can be found in a large range of val-
ues depending on the characteristics of the learning problem. This is for
example the case for the MG time series approximation task, where I had
to choose a very large produce threshold value to achieve a good learn-
ing performance. On the other hand, it might be necessary to choose a
very small value for the threshold, which was for example the case for the
Lorenz chaotic time series approximation and the reinforcement learning
task. The optimal produce threshold value is influenced by different fac-
tors, including not only the numerical range of the input and output space
but also the amount of noise added, since the output variance is an estima-
tion of the added noise. The output probability density function tends to
have smaller values for larger noise levels so that even for the same learn-
ing problem different threshold parameters can be preferable depending
on the noise. These limitations make the produce mechanism quite difficult
to handle and looking into an alternative solution for the produce decision
that is easier applicable to learning tasks with limited domain knowledge
remains major future work.

5.2.2 Delete Mechanism

Benefits

The new delete mechanism has been shown to be the most important im-
provement for the proposed method. In Section 3.3.1, I have introduced
several possibilities to normalize an accumulated sum of update weights
〈〈1〉〉i(t). Then, all three of them are applied and deleting effects are dis-
cussed broadly in the experimental results in Chapter 4. The experiments
have made apparent that the alternative delete mechanisms with global
characteristics possess weaknesses in regard to negative interference.

The first delete mechanism has been applied by GFnorm. While here
〈〈1〉〉i(t) is normalized naturally by the update method’s normalization co-
efficient, its delete mechanism performs very weakly under certain condi-
tions. GFnorm’s delete performance is especially weak when the discount
is λ(t) = 1 and no forgetting occurs. This contradicts the idea of no forget-
ting since performance should be slower in convergence but stable when
no forgetting occurs. Yet, here the GFnorm deletion approach provokes the
method to behave more and more catastrophically with increasing learn-
ing time. I have tested a second type of global normalizer for the GFdisc
method that is able to perform stabler compared with the GFnorm delete
mechanism. But both normalizations are based on global information and

94 Chapter 5. Discussion

have difficulties to perform robustly in negative interference prone envi-
ronments.

Then, I have proposed a third delete mechanism that employs a normal-
izer based on the local information of each unit. This delete mechanism is
able to perform very robust, and the conducted experiments have shown
that the local delete mechanism outperforms the other two. For the Cross
function approximation task, additional test cases without forgetting have
been considered to compare the different manipulation mechanisms when
learning performance is not affected by the parameter updates. Again, lo-
cal deletions have shown stabler performance. The robustness also trans-
lates in the range of applied threshold parameters, where it has been dif-
ficult to find stable threshold parameters for the GF methods. Especially
for GFnorm, it was often necessary to choose very small thresholds that still
resulted in many deleted units. The new delete mechanism is therefore not
only robuster but also easier to apply since the deletion of units is less influ-
enced by the data distribution and discount schedule than for the two GF
methods.

Since the local delete mechanism is more stable, it would be interest-
ing to discuss its applicability to other methods, especially the GF methods.
While it is possible to apply it to the GF methods, it is not as naturally done
as for LF. For GF, units forget old information at every time step, but the
normalizer only counts relevant updates regardless of the amount of re-
ceived discounts. A localized normalizer applied to GF would likely delay
the deletion of units but since the dividend still grows smaller over time due
to global forgetting, the deletion behavior is still not as robust as the one ob-
served for the LF(Prop.) method. I have not tested this delete approach for
the GF methods, but it might be a possible improvement of the GF methods
for the application to learning environments where GF is preferable. Over-
all, I believe that the localized delete mechanism is further improving the
robustness of the LF method and an important enhancement, especially in
environments where domain knowledge is limited and negative interfer-
ence a problem.

Limitations

The localized delete mechanism performed very well in the experiments,
and I believe that it is the better method for the learning problems consid-
ered in the scope of this thesis. Yet, the mechanism is proposed for learning
problems where one wants to avoid negative interference and its applica-
tion is therefore limited to these kind of testbeds. In learning problems
where regions without frequent observations are not from interest, for ex-
ample in case of unwanted outliers, a localized delete mechanism is not the
best choice.

5.2. Dynamic Model Selection 95

5.2.3 Split Mechanism

Benefits

Robustness: The proposed split mechanism shows a robust behavior over
the many different experiments that have been conducted. Although, I
have evaluated different threshold parameter settings for each experiment,
I found no necessity to change the applied threshold parameter for the split
mechanism of LF(Prop.) since it has performed robustly for all test cases. It
should also be noted that these test cases include a broad range of learning
situations as well as different grades of noise and data distributions. On
the other hand, a similar robustness could not be observed for the static
split threshold that is used by the GF methods. Especially for the chaotic
time series approximations, it was very difficult to find an appropriate static
threshold parameter so that I have applied a dynamic split threshold based
on global information about the output variances instead. The selection of
the static threshold is highly dependent on the added noise, which makes it
difficult to find a parameter that is neither too low nor too high to be effec-
tive. Furthermore, I have compared the local split decision with the static
threshold for a function approximation task with an imbalanced data distri-
bution, where the local split mechanism has been able to perform favorably
over the static one (Section 4.2.2). Overall, I conclude that splitting based
on the proposed local dynamic threshold is preferable in learning environ-
ments where domain knowledge is limited, since it acts overall robuster
and also favorable for imbalanced environments.

Limitations

Computational Complexity has increased for the newly proposed dy-
namic split threshold compared with a static threshold approach, because
nearest neighbor search is applied. For LF, only units with high update
weights are changed at each training time step, so it is possible to reduce
the computational cost by considering only the splitting of these units. The
number of updated units stays relatively constant after an initial learn-
ing phase and therefore does not affect the computational complexity too
much. On the other hand, each unit’s nearest neighbor candidates are
searched over the whole network model, so computational complexity in-
creases here with increasing model complexity. For the applied learning
problems, this has not affected the computation speed negatively, since
model complexity and amount of data samples have been relatively small.

Yet, the increase in computational complexity might become a problem
in learning environments that are in need of high model complexities. Then,
it would be necessary to consider possibilities to reduce the computational
complexity by speeding up the nearest neighbor search. The computational

96 Chapter 5. Discussion

burden of nearest neighbor search is a well studied problem, and many dif-
ferent approaches have been proposed to reduce the computation time. It is
possible to apply data structures to the search, e.g. kd-trees (Bentley 1975).
Data structures are then able to save information about each unit’s posi-
tion in the input space so that locally near units are faster to find. When
applying data structures to self-constructing model selection approaches,
additional properties are necessary because the model complexity is dy-
namically changing over time. Therefore, it should be relatively easy to add
or prune unit information from the data structure, which also means that
the data structure needs a certain degree of robustness against changes in
its structure. If changes affect the data structure negatively, then the search
performance of the data structure decreases and the computational burden
increase. In case of kd-trees, a bucket kd-tree would be for example prefer-
able over a simple kd-tree with only one point at the leaf since buckets
ensure a better balance in regard to changes of the tree. While the proposed
split mechanism is burdened by an increased computational complexity,
there are possibilities to reduce the burden by applying for example kd-
trees or other data structures.

Performance is not always better for the proposed local split mechanism
compared with a static split threshold as some testbeds work better with a
global decision. In the experimental results, the static threshold could per-
form better than the proposed method when data and noises are i.i.d. Actu-
ally, it would be possible to improve performance of the local split mecha-
nism by globalizing the dynamic threshold calculation in cases where data
are i.i.d., where globalizing means to include more units as neighbors for
the dynamic threshold decision. I have however decided to concentrate
more on the robustness of the local split mechanism and show its perfor-
mance throughout all experiments with a fixed parameter for the relative
number of nearest neighbors in regard to the model complexity as already
shortly mentioned in Section 3.3.1.

5.2.4 Merge Mechanism

Benefits

Model Complexity can be reduced when applying the newly proposed
merge mechanism that considers the elimination of redundancies in the net-
work model. For a more detailed comparison of the different model selec-
tion approaches for the Cross function approximation task in Section 4.2.2,
it was shown that merge is able to reduce model complexities. It probably
also functions positively as an opposite to the split mechanism, where one
unit is split into two because too much estimation error was accumulated.

5.2. Dynamic Model Selection 97

Since the split units are positioned next to each other, they might become
similar again in the course of learning so that an additional merge is helpful
to deal with these unnecessary redundancies.

Performance is improving mostly when merge is applied so that merge
does not only help to reduce redundancies but also can affect the learning
performance positively.

Limitations

Robustness: While merge is able to improve learning performance in most
cases, it has some difficulties in learning environments where data samples
are rarely sampled in large regions of the input space. This is for example
the case for the Cross function approximation task with an imbalanced data
distribution (Section 4.2.2), where as much as 95% of the data have been
sampled in less than 2% of the input space. Although, experimental re-
sults are not presented in detail in the scope of this thesis, I have previously
tested other percentage of imbalance and found that the merge mechanism
is able to improve performance for a testbed with up to 75% of imbalance
in the data distribution (Backhus et al. 2016b). Overall, it might however
be necessary to consider high threshold values near to one for merge when
the domain knowledge is limited and there is some possibility of merge
negatively affecting the learning performance.

Computational Complexity is a problem for the merge mechanism when
model complexity increases. The merge mechanism has to find the unit pair
with the highest similarity, and in its simplest form all similarities between
units have to be calculated each time the merge mechanism is applied. I
have already discussed this problem shortly when proposing the mecha-
nism in Section 3.3.1 and one big aim of my new proposal is to make the
merge mechanism better applicable in turns of a few hundred time steps
instead of every time step. Actually, one can assume that merge candidates
do not occur very often and therefore there is no need to check merging
candidates at every time step. So, the application of merge can be reduced
to a lower frequency, which then reduces the overall computational com-
plexity quite a lot. In my experiments, I have applied merge every 100 time
steps, but performance would be unlikely affected very much if application
is even more scarce. This depends however also on the overall number of
training data.

Furthermore, it is possible to reduce the number of similarity calcula-
tions by applying nearest neighbor search. Nearest neighbor search is itself
computational heavy, but one can enhance it by employing data structures,
for example a kd-tree, in a similar manner as it has already been discussed

98 Chapter 5. Discussion

for the split mechanism in Section 5.2.3. Then, the similarities are calculated
only for a few nearest neighbors instead of all units. This affects the compu-
tational complexity positively under the condition that the computational
heaviness induced by the model complexity is larger than that of the alter-
native approach. While merge introduces some additional computational
burdens, there are possibilities to reduce this burden and merge itself is a
kind of model complexity reduction, which also affects the computational
complexity positively.

5.2.5 Self-Constructing Model Adaptation

Benefits

Initialization becomes a lot easier for self-constructing model adaptation,
where the network is not initialized before training but adds and prunes
new units "on-the-go". It is only necessary to decide on some initial values
for the first unit’s input covariance and output variance, which I have fixed
to the same values for all experiments. The influence of the initial values
seems to be relatively low as it mainly concerns the first few units. Self-
constructing model adaptation is especially advantageous when domain
knowledge is limited, since one can avoid the common network initializa-
tion with random values in regard to the numerical ranges of the input and
output data of the learning problem.

Reproducibility: When network models are initialized with a certain model
complexity before training, model parameters are often chosen randomly
in regard to the learning problem. This randomness complicates the recre-
ation of the same learning results in a later test case or the evaluation of
why an initialization has performed much better than another one, except
all initializations are explicitly stored by the user. On the other hand, a self-
constructing model adaptation creates no units before learning and adds
and prunes units according to the received data samples. It is then possible
to reproduce the same learning results when the same training parameters
and data set are used. For example, this has been apparent in the second
testbed of the RL task (Section 4.4.3), where no random factor was intro-
duced and learning of the NGnet is discrete. This reproducibility makes
it easier to evaluate the effectiveness of different learning parameters for
the same data sets without having to worry about the effects of different
network model initializations.

5.2. Dynamic Model Selection 99

Limitations

Convergence to a good learning performance is slower for self-constructing
model adaptation because the model is built from scratch. While a ran-
domly initialized model possesses already a certain amount of units that
can be directly trained with the observed data, a self-constructing one needs
to find an appropriate model complexity first that is able to approximate the
problem well. Here, the produce mechanism plays an important role and
learning performance can depend a lot on adding enough units in an early
stage of training, especially when training data is limited. This has been for
example the case for the experiments of the MG time series approximation
in Section 4.3.3, where it is necessary to choose a very large produce thresh-
old to achieve a good performance. I have tested other parameters as well
and found that a produce threshold of TProduce = 10.0 can achieve similar
model complexities as TProduce = 500.0, but because units are added more
slowly the learning performance is much worse. I have already shortly
mentioned the same problem as a limitation of LF, but indeed I believe that
both LF and the self-construction of the model play an important role in
the necessary learning time to reach a good performance. This shows that
while a self-constructing approach is easy applicable, it has its limitations in
regard to learning speed and therefore can be difficult to apply in learning
environments where the number of available training samples is limited.

101

Chapter 6

Conclusion

6.1 Summary

In this thesis, I considered the application of an ANN with a receptive field
based architecture to online machine learning tasks. For online learning
tasks, domain knowledge is often limited making a successful application
of artificial neural networks (ANN) more difficult than for offline learn-
ing. Major challenges include the achievement of robust learning when the
problem environment is prone to negative interference and the choice of
an appropriate model complexity. Both are challenging for ANNs in gen-
eral, but this is especially the case in absence of prior knowledge about the
environment. I then discussed that ANNs with a receptive field based ar-
chitecture have a higher potential of performing robust against negative in-
terference because of the local properties provided by the network architec-
ture. Yet, robustness can not be provided only by the network architecture
but it is also important to choose appropriate learning and model selection
algorithms. In more detail, I considered a Normalized Gaussian network
(NGnet) as one ANN with a receptive field based architecture, where the
network parameters are estimated online by the EM-algorithm. Recently, it
had been proposed to further improve the robustness of the NGnet’s learn-
ing algorithm by applying localized forgetting to the parameter updates.
Global forgetting had been introduced earlier to improve the convergence
speed of the NGnet, but its global character make it prone to negative inter-
ference.

Based on the previous work, I considered to further improve an NGnet
with localized forgetting’s applicability to online learning tasks by propos-
ing several changes to the learning and model selection algorithm. My con-
tributions include the revision of the localized forgetting update method,
the adaptation of dynamic model selection, improvement of the robustness
of the model selection method in regard to negative interference and a dis-
cussion about how the characteristics of the localized forgetting method
can be used to reduce computational complexity. Dynamic model selection
was applied in a self-constructing manner to ease the network initializa-
tion problem prior to training, where now it is only necessary to decide

102 Chapter 6. Conclusion

on an input and output covariance of the first unit. Several experiments
are conducted to evaluate the effectiveness of the proposed method and
compare it with earlier training approaches for the NGnet that apply either
local or global forgetting. The experiments showed that the revised local-
ized forgetting method became applicable over the full numerical range of
its implied discount factor, while this was not possible before. Also, I con-
sidered the application of dynamic model selection to an NGnet with local
forgetting for the first time and found it to be performing well in all experi-
ments. In addition, I showed that an NGnet with global forgetting behaves
catastrophically under certain training situations, not only because of less
robustness of its update method but also because the earlier proposed dele-
tion mechanism is not suitable for dynamic model adaptation, especially in
a self-constructing matter. The newly proposed localized deletion approach
does not suffer from these problems and performed very well in compari-
son. Other contributions also showed performance improvements. Overall,
the experimental results showed that the robustness of the model selection
algorithm, which was not considered before, also plays an important role
in achieving an improved learning performance and less proneness to neg-
ative interference over a large range of online learning tasks.

6.2 Future Work

6.2.1 Improvement of Unit Production

For the dynamic model selection, new model units are created with a pro-
duce manipulation mechanism that bases the NGnet’s adding decisions on
the representation probability of an observed data sample. Although, this
approach is able to construct the network model successfully, the decision
on an appropriate threshold parameter is difficult without a trial-and-error
study before training. In its current form, the threshold parameter is in-
fluenced by many different properties of the underlying learning problem
and the possible numerical range of the threshold parameter is very large.
For future work, it would be interesting to look into other produce decision
approaches that are able to act on a smaller range of possible values and are
less dependent on the learning domain so that the applicability is improved
in learning environments where prior domain knowledge is limited.

6.2.2 Ease of Threshold Parameter Selection

For the dynamic model adaptation, I applied several unit manipulation
mechanism to increase or decrease the network model complexity. This
greedy adding and pruning of units is a widely used approach for ANNs,
but it comes with the disadvantage that several threshold parameters have

6.2. Future Work 103

to be set in advance. This is however difficult when domain knowledge
is limited as it is often the case for online learning tasks. For my proposed
approach, I showed that the behavior of the unit manipulation mechanisms
is relatively robust over a broad field of applications for a delete, split and
merge mechanism. Yet, selecting a best performing threshold parameter re-
mains a problem.For future work, it would be interesting to further ease the
selection of appropriate threshold parameters with good performance by
investigating possibilities for automation or by providing guidelines that
can support the users in their selection.

6.2.3 Extension of Proposed Ideas to Other ANNs

The applied unit manipulation mechanism with improved robustness showed
favorable performance, where especially the newly proposed localized dele-
tion mechanism played an important role against negative interference. For
future work, it would be interesting to investigate an extension of the pro-
posed ideas to other ANNs with a receptive field based network archi-
tectures that apply dynamic model selection. Depending on the applied
model selection approach, similar improvements are likely possible. Fur-
thermore, the online EM-algorithm, which has been used in this work, has
been recently applied to a Gaussian Mixture Model (GMM) in Agostini and
Celaya (2016) for a RL task. This work also considered dynamic model se-
lection but only applied a produce mechanism to add new units. It did not
consider any other manipulation mechanism, making it a constructive only
model selection approach. Since the GMM can be described with the same
model-based perspective as the here applied NGnet, which was shortly de-
scribed in Section 2.2.3 and Eq. (2.11), it would be of interest to consider
an extension of my model selection approach to the GMM in a first step.
Further extensions could be considered for other similar ANN models in a
second step.

6.2.4 Improvement of Learning Speed

Over all experiments, it was observable that the localized forgetting method
performs robuster and therefore is preferable in online learning tasks. Yet,
the learning process slows down due to the localization and the network
model needs more time to adapt to the training data. Furthermore, the self-
constructing model adaptation further slows down the learning process,
because it takes more observations to initially add new units and adjust
them accurately. In environments where training data is limited, it becomes
then more difficult to achieve good learning performance. For future work,
it would be interesting to investigate possibilities to improve the learning
speed while keeping the robustness of the localized forgetting method.

104 Chapter 6. Conclusion

6.3 Concluding Remarks

The application of ANNs to online learning tasks is difficult because of
limited domain knowledge and proneness to negative interference. Then,
robustness is important to achieve a good learning performance and it is
influenced by all factors of ANN’s learning: network architecture, learn-
ing algorithm and model selection approach. Although, negative interfer-
ence is a well-known problem since many years, further investigations of
its mitigation are necessary for most existing ANNs. Most times, these in-
vestigations concentrate on the applied learning algorithm and the network
architecture. In this thesis, I have showed that further improvement is pos-
sible by applying a robust model selection approach in addition to a robust
network architecture and learning algorithm. Therefore, robustness against
negative interference should be considered for all performance influencing
factors to achieve successful learning of ANNs in online learning tasks.

105

Bibliography

[AC16] A. Agostini and E. Celaya, “Online reinforcement learning us-
ing a probability density estimation”, Neural computation, vol.
28, pp. 1–27, 2016.

[AR05] W. C. Abraham and A. Robins, “Memory retention–the synap-
tic stability versus plasticity dilemma”, Trends in neurosciences,
vol. 28, no. 2, pp. 73–78, 2005.

[AS95] C. G. Atkeson and S. Schaal, “Memory-based neural networks
for robot learning”, Neurocomputing, vol. 9, no. 3, pp. 243–269,
1995.

[BA09] M. Bortman and M. Aladjem, “A growing and pruning method
for radial basis function networks”, IEEE transactions on neural
networks, vol. 20, no. 6, pp. 1039–1045, Jun. 2009.

[Bac+16a] J. Backhus, I. Takigawa, H. Imai, M. Kudo, and M. Sugimoto,
“Online EM for the normalized gaussian network with weight-
time-dependent updates”, in Neural information processing: 23rd
international conference, ICONIP 2016, Kyoto, Japan, October 16–
21, 2016, proceedings, part IV, ser. Lecture Notes in Computer
Science, A. Hirose, S. Ozawa, K. Doya, K. Ikeda, M. Lee, and D.
Liu, Eds., vol. 9950, Switzerland: Springer International Pub-
lishing AG, 2016, pp. 538–546.

[Bac+16b] ——, “Reducing redundancy with unit merging for self-constructive
normalized gaussian networks”, in Artificial neural networks and
machine learning – ICANN 2016: 25th international conference on
artificial neural networks, Barcelona, Spain, September 6-9, 2016,
proceedings, part I, ser. Lecture Notes in Computer Science, A. E.
Villa, P. Masulli, and A. J. Pons Rivero, Eds., vol. 9886, Switzer-
land: Springer International Publishing AG, 2016, pp. 444–452.

[Bac+17] ——, “An online self-constructive normalized gaussian network
with localized forgetting”, IEICE transactions on fundamentals
of electronics, communications and computer sciences, vol. E100-A,
no. 3, pp. 865–876, Mar. 2017.

[Ben75] J. L. Bentley, “Multidimensional binary search trees used for
associative searching”, Commun. ACM, vol. 18, no. 9, pp. 509–
517, Sep. 1975.

106 BIBLIOGRAPHY

[Ben94] M. Benaim, “On functional approximation with normalized gaus-
sian units”, Neural computation, vol. 6, no. 2, pp. 319–333, 1994.

[Bis06] C. M. Bishop, Pattern recognition and machine learning, 1st edn.
corr. 8th printing 2009, ser. Information Science and Statistics.
New York, USA: Springer Science+Business Media, 2006.

[BL88] D. S. Broomhead and D. Lowe, “Multivariable functional in-
terpolation and adaptive networks”, Complex systems, vol. 2,
pp. 321–355, 1988.

[Bot98] L. Bottou, “Online learning and stochastic approximations”, in
On-line learning in neural networks, D. Saad, Ed., Cambridge,
UK: Cambridge University Press, 1998, pp. 9–42.

[Bug98] G. Bugmann, “Normalized gaussian radial basis function net-
works”, Neurocomputing, vol. 20, no. 1–3, pp. 97–110, 1998.

[CA15] E. Celaya and A. Agostini, “On-line EM with weight-based for-
getting”, Neural computation, vol. 27, no. 5, pp. 1142–1157, May
2015.

[CCG91] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least
squares learning algorithm for radial basis function networks”,
IEEE transactions on neural networks, vol. 2, no. 2, pp. 302–309,
1991.

[CMU02] M. R. Cowper, B. Mulgrew, and C. P. Unsworth, “Nonlinear
prediction of chaotic signals using a normalised radial basis
function network”, Signal processing, vol. 82, no. 5, pp. 775–789,
May 2002.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum like-
lihood from incomplete data via the EM algorithm”, Journal of
the royal statistical society. series b (methodological), vol. 39, pp. 1–
38, 1977.

[Doy00] K. Doya, “Reinforcement learning in continuous time and space”,
Neural computation, vol. 12, no. 1, pp. 219–245, 2000.

[DS06] K.-L. Du and M. N. Swamy, Neural networks in a softcomput-
ing framework. London, UK: Springer Science & Business Me-
dia, 2006.

[Flo+12] J. P. Florido, H. Pomares, I. Rojas, J. M. Urquiza, and M. A.
Lopez-Gordo, “A deterministic model selection scheme for in-
cremental rbfnn construction in time series forecasting”, Neural
computing and applications, vol. 21, no. 3, pp. 595–610, 2012.

BIBLIOGRAPHY 107

[GBD92] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks
and the bias/variance dilemma”, Neural computation, vol. 4, no.
1, pp. 1–58, 1992.

[Goo15] B. F. Goodrich, “Neuron clustering for mitigating catastrophic
forgetting in supervised and reinforcement learning”, PhD the-
sis, University of Tennessee, 2015.

[GP83] P. Grassberger and I. Procaccia, “Characterization of strange at-
tractors”, Physical review letters, vol. 50, no. 5, pp. 346–349, Jan.
1983.

[Hen10] C. Hennig, “Methods for merging gaussian mixture compo-
nents”, Advances in data analysis and classification, vol. 4, no. 1,
pp. 3–34, 2010.

[HSS04] G.-B. Huang, P. Saratchandran, and N. Sundararajan, “An ef-
ficient sequential learning algorithm for growing and pruning
rbf (gap-rbf) networks”, IEEE transactions on systems, man, and
cybernetics, part b (cybernetics), vol. 34, no. 6, pp. 2284–2292, 2004.

[HSS05] ——, “A generalized growing and pruning rbf (ggap-rbf) neu-
ral network for function approximation”, IEEE transactions on
neural networks, vol. 16, no. 1, pp. 57–67, Jan. 2005.

[IS01] S. Ishii and M. Sato, “Reconstruction of chaotic dynamics by
on-line EM algorithm”, Neural networks, vol. 14, no. 9, pp. 1239–
1256, Nov. 2001.

[Jac+91] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adap-
tive mixtures of local experts”, Neural computation, vol. 3, no. 1,
pp. 79–87, 1991.

[Jac97] R. A. Jacobs, “Bias/variance analyses of mixtures-of-experts ar-
chitectures”, Neural computation, vol. 9, no. 2, pp. 369–383, 1997.

[Jai+14] L. C. Jain, M. Seera, C. P. Lim, and P. Balasubramaniam, “A re-
view of online learning in supervised neural networks”, Neural
computing and applications, vol. 25, no. 3-4, pp. 491–509, 2014.

[JJ94] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of ex-
perts and the EM algorithm”, Neural computation, vol. 6, no. 2,
pp. 181–214, 1994.

[KN93] V. Kadirkamanathan and M. Niranjan, “A function estimation
approach to sequential learning with neural networks”, Neural
computation, vol. 5, no. 6, pp. 954–975, Nov. 1993.

[KY97] H. J. Kushner and G. G. Yin, Stochastic approximation algorithms
and applications, New York, 1997.

108 BIBLIOGRAPHY

[Lia+06] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundarara-
jan, “A fast and accurate online sequential learning algorithm
for feedforward networks”, IEEE transactions on neural networks,
vol. 17, no. 6, pp. 1411–1423, 2006.

[Lor63] E. N. Lorenz, “Deterministic non-periodic flow”, Journal of the
atmospheric sciences, vol. 20, no. 2, pp. 130–141, Mar. 1963.

[Low15] D. Lowe, “Radial basis function networks - revisited”, Mathe-
matics today, vol. 51, no. 3, pp. 124–126, Jun. 2015.

[LSS97] Y. Lu, N. Sundararajan, and P. Saratchandran, “A sequential
learning scheme for function approximation using minimal ra-
dial basis function neural networks”, Neural computation, vol. 9,
no. 2, pp. 461–478, Feb. 1997.

[LWY97] R. Langari, L. Wang, and J. Yen, “Radial basis function net-
works, regression weights, and the expectation-maximization
algorithm”, IEEE transactions on systems, man, and cybernetics-
part a: Systems and humans, vol. 27, no. 5, pp. 613–623, Sep. 1997.

[MC89] M. McCloskey and N. J. Cohen, “Catastrophic interference in
connectionist networks: The sequential learning problem”, Psy-
chology of learning and motivation, vol. 24, pp. 109–165, 1989.

[MD89] J. Moody and C. J. Darken, “Fast learning in networks of locally-
tuned processing units”, Neural computation, vol. 1, no. 2, pp. 281–
294, Jun. 1989.

[MG77] M. C. Mackey and L. Glass, “Oscillation and chaos in physio-
logical control systems”, Science, vol. 197, no. 4300, pp. 287–289,
Jul. 1977.

[MHS14] F. Meier, P. Hennig, and S. Schaal, “Local gaussian regression”,
CoRR, vol. abs/1402.0645, 2014.

[Mic84] C. A. Micchelli, “Interpolation of scattered data: Distance ma-
trices and conditionally positive definite functions”, in Approx-
imation theory and spline functions, S. P. Singh, J. W. H. Burry, and
B. Watson, Eds., vol. 136, Dordrecht, Netherlands: Springer, 1984,
pp. 143–145.

[Mus+92] M. T. Musavi, W. Ahmed, K. H. Chan, K. B. Faris, and D. M.
Hummels, “On the training of radial basis function classifiers”,
Neural networks, vol. 5, no. 4, pp. 595–603, 1992.

[NFS05] J. Nakanishi, J. A. Farrell, and S. Schaal, “Composite adaptive
control with locally weighted statistical learning”, Neural net-
works, vol. 18, no. 1, pp. 71–90, 2005.

BIBLIOGRAPHY 109

[Pla91] J. Platt, “A resource-allocating network for function interpola-
tion”, Neural computation, vol. 3, no. 2, pp. 213–225, Jun. 1991.

[Pow87] M. J. D. Powell, “Radial basis functions for multivariable inter-
polation: A review”, in Algorithms for the approximation of func-
tions and data, J. C. Mason and M. G. Cox, Eds., Clarendon Press,
Oxford, UK, 1987, pp. 143–167.

[PS91] J. Park and I. W. Sandberg, “Universal approximation using
radial-basis-function networks”, Neural computation, vol. 3, no.
2, pp. 246–257, 1991.

[RG99] V. Ramamurti and J. Ghosh, “Structurally adaptive modular
networks for nonstationary environments”, IEEE transactions
on neural networks, vol. 10, no. 1, pp. 152–160, Jan. 1999.

[RN10] S. J. Russell and P. Norvig, Artificial intelligence: A modern ap-
proach, 3rd ed. Upper Saddle River, New Jersey: Prentice Hall,
2010.

[Roj+02] I. Rojas, H. Pomares, J. L. Bernier, J. Ortega, B. Pino, F. J. Pelayo,
and A. Prieto, “Time series analysis using normalized pg-rbf
network with regression weights”, Neurocomputing, vol. 42, no.
1, pp. 267–285, 2002.

[SA97] S. Schaal and C. G. Atkeson, “Receptive field weighted regres-
sion”, ATR human information processing laboratories, tech. rep. tr-
h-209, 1997.

[SA98] ——, “Constructive incremental learning from only local infor-
mation”, Neural computation, vol. 10, no. 8, pp. 2047–2084, Nov.
1998.

[Saa98] D. Saad, “Introduction”, in On-line learning in neural networks,
D. Saad, Ed., Cambridge, UK: Cambridge University Press, 1998,
pp. 3–8.

[Sat00] M. Sato, “Convergence of on-line EM algorithm”, in Proceed-
ings of the international conference on neural information processing,
vol. 1, 2000, pp. 476–481.

[SB98] R. S. Sutton and A. G. Barto, Reinforcement learning - an intro-
duction. Cambridge: MIT Press, 1998.

[SI00] M. Sato and S. Ishii, “On-line EM algorithm for the normalized
gaussian network”, Neural computation, vol. 12, no. 2, pp. 407–
432, Feb. 2000.

[SM96] R. Shorten and R. Murray-Smith, “Side effects of normalising
radial basis function networks”, International journal of neural
systems, vol. 7, no. 02, pp. 167–179, 1996.

110 BIBLIOGRAPHY

[SS15] F. Stulp and O. Sigaud, “Many regression algorithms, one uni-
fied model: A review”, Neural networks, vol. 69, pp. 60–79, 2015.

[Tak85] F. Takens, “On the numerical determination of the dimension of
an attractor”, in Dynamical systems and bifurcations, ser. Lecture
Notes in Mathematics, vol. 1125, Berlin: Springer, 1985, pp. 99–
106.

[Ued+00] N. Ueda, R. Nakano, Z. Ghahramani, and G. E. Hinton, “SMEM
algorithm for mixture models”, Neural computation, vol. 12, no.
9, pp. 2109–2128, 2000.

[VDS05] S. Vijayakumar, A. D’souza, and S. Schaal, “Incremental online
learning in high dimensions”, Neural computation, vol. 17, no.
12, pp. 2602–2634, 2005.

[vOW12] M. van Otterlo and M. Wiering, “Reinforcement learning and
markov decision processes”, in Reinforcement learning, ser. Adap-
tation, Learning, and Optimization, M. Wiering and M. van Ot-
terlo, Eds., vol. 12, Berlin Heidelberg: Springer, 2012, pp. 3–42.

[Wan11] N. Wang, “A generalized ellipsoidal basis function based on-
line self-constructing fuzzy neural network”, Neural processing
letters, vol. 34, no. 1, pp. 13–37, 2011.

[Wat89] C. J. C. H. Watkins, “Learning from delayed rewards”, PhD the-
sis, University of Cambridge England, 1989.

[Wil09] B. M. Wilamowski, “Neural network architectures and learning
algorithms”, IEEE industrial electronics magazine, vol. 3, no. 4,
pp. 56–63, 2009.

[WMS95] A. S. Weigend, M. Mangeas, and A. N. Srivastava, “Nonlinear
gated experts for time series: Discovering regimes and avoid-
ing overfitting”, International journal of neural systems, vol. 6, no.
04, pp. 373–399, 1995.

[Wu+12] Y. Wu, H. Wang, B. Zhang, and K.-L. Du, “Using radial basis
function networks for function approximation and classifica-
tion”, ISRN applied mathematics, 2012, Article ID 324194.

[XJH95] L. Xu, M. I. Jordan, and G. E. Hinton, “An alternative model for
mixtures of experts”, in Advances in neural information processing
systems, J. D. Cowan, G. Tesauro, and J. Alspector, Eds., vol. 7,
Cambridge, Massachusetts: MIT Press, 1995, pp. 633–640.

[Xu98] L. Xu, “Rbf nets, mixture experts, and bayesian ying–yang learn-
ing”, Neurocomputing, vol. 19, no. 1, pp. 223–257, 1998.

BIBLIOGRAPHY 111

[YGW97] D. L. Yu, J. B. Gomm, and D. Williams, “A recursive orthogo-
nal least squares algorithm for training rbf networks”, Neural
processing letters, vol. 5, no. 3, pp. 167–176, 1997.

[YWG12] S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of
mixture of experts”, IEEE transactions on neural networks and
learning systems, vol. 23, no. 8, pp. 1177–1193, Aug. 2012.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Contributions
	Thesis Structure

	Background and Related Work
	Online Machine Learning
	Supervised Learning
	Reinforcement Learning
	Markov Decision Process
	Online Q-Learning

	Artificial Neural Networks
	Negative Interference
	Model Complexity Selection
	Networks with a Receptive Field Based Architecture
	Radial Basis Function Networks
	Mixture of Experts
	Receptive Field Weighted Regression
	Summary

	Normalized Gaussian Networks (NGnet)
	Network Architecture
	Online EM Algorithm
	E (Estimation) Step:
	M (Maximization) Step:
	Step-wise Updates with Time-Dependent Discount
	Step-wise Updates with Weight-Dependent Discount

	Extension for NGnet's Online EM
	Avoiding Inverse Matrix Calculation
	Regularization of Covariance Matrix

	Dynamic Model Selection for the NGnet
	Produce
	Delete
	Split

	Proposed Method
	Re-Derivation of Localized Forgetting
	Update Precision
	Dynamic Model Selection
	Unit Manipulation Mechanisms
	Produce
	Delete
	Split
	Merge

	Self-Constructing Model Adaptation

	Experiments
	Preparations
	Compared Learning Methods
	Model Selection Parameter Settings
	Scheduling of Discount Factor

	Function Approximation Tasks
	Simple Regression Task with 5-Dimensions
	Preparations
	Experimental Results

	The Cross Function
	Preparations
	Comparison of Localized Forgetting Methods
	Discussing the Update Precision
	Balanced Testbed With Dynamic Model Selection
	Imbalanced Testbed With Dynamic Model Selection
	Dynamic Testbed with Dynamic Model Selection

	Chaotic Time Series Approximation Tasks
	Preparations
	Lorenz Attractor
	Preparations
	Experimental Results

	Mackey-Glass Chaotic Time Series
	First Testbed: 6-step ahead prediction
	Second Testbed: 50-step ahead prediction

	Reinforcement Learning Task
	Preparations
	First Testbed
	Second Testbed

	Discussion
	Updates with Localized Forgetting
	Comparison with the Previous Local Forgetting Method
	Comparison of Local and Global Forgetting
	Benefits
	Limitations

	Dynamic Model Selection
	Produce Mechanism
	Benefits
	Limitations

	Delete Mechanism
	Benefits
	Limitations

	Split Mechanism
	Benefits
	Limitations

	Merge Mechanism
	Benefits
	Limitations

	Self-Constructing Model Adaptation
	Benefits
	Limitations

	Conclusion
	Summary
	Future Work
	Improvement of Unit Production
	Ease of Threshold Parameter Selection
	Extension of Proposed Ideas to Other ANNs
	Improvement of Learning Speed

	Concluding Remarks

	Bibliography

