

Instructions for use

Title Development of a Real-time Brain Retraction Simulator Using Patient-specific Model

Author(s) 佐瀬, 一弥

Citation 北海道大学. 博士(工学) 甲第12647号

Issue Date 2017-03-23

DOI 10.14943/doctoral.k12647

Doc URL http://hdl.handle.net/2115/65622

Type theses (doctoral)

File Information Kazuya_Sase.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

SSI-DT79135031

Doctoral Thesis

Development of a Real-time Brain Retraction

Simulator Using Patient-specific Model

（患者固有モデルを用いた
実時間脳組織圧排シミュレータの開発）

Kazuya Sase

March, 2017

Division of Systems Science and Informatics

Graduate School of Information Science and Technology

Hokkaido University

Doctoral Thesis

submitted to Graduate School of Information Science and Technology,

Hokkaido University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy.

Kazuya Sase

Thesis Committee: Prof. Atsushi Konno

Prof. Hajime Igarashi

Prof. Satoshi Kanai

2017

Development of a Real-time Brain Retraction

Simulator Using Patient-specific Model∗

Kazuya Sase

Abstract

The progress of computer technology has enabled the real-time computing of phys-

ical phenomena. An application of the computing technique is surgery simulator,

in which the deformation of soft organs is calculated in real-time. In addition, us-

ing haptic device, users can touch the virtual organs with artificial sense of touch.

One difficulty in the clinical application of surgery simulator is the generation of

the patient-specific model. When a surgeon wish to conduct a preoperative surgery

planning, he/she need to prepare the models for mechanical analysis, e.g. finite

element (FE) mesh, from medical images. Especially, the model generation for a

brain is challenging because the structure of the brain is highly complex. From

the point of the real-time application, the model is required to be simple for rea-

sonable calculation cost. At the same time, the model is required to preserve the

geometrical and topological features of the target organ. Although models that

fulfill these requirements can be generated using current software, the generation

task takes several hours or days with a specialist. Ideally, the model generation

should be conducted by medical stuffs in a hospital and should not require spe-

cial knowledge on the numerical analysis for them. In this thesis, a generation

method of patient-specific FE mesh from medical images is proposed for enabling

brain retraction procedure in virtual environment. The method relies on an idea

of the use of nonconforming mesh. The input geometry is embedded in a regu-

lar hexahedral mesh. The deformation of the input geometry is interpolated by

∗Doctoral Thesis, Division of Systems Science and Informatics, Graduate School of

Information Science and Technology, Hokkaido University, SSI-DT79135031, March 1,

2017.

3

the hexahedral mesh in a master-slave manner. An advantage of this approach is

the simplicity of the mesh generation compared with the conforming mesh gen-

eration. Thanks to the simplicity, the mesh generation can be performed quickly

and robustly. Thus, a user can generate a patient-specific model without special

knowledge on a specific software. A drawback of this method is the possibility

of the loss of fine structure. For example, if multiple domains are included in a

hexahedral element, they are considered as connected domains even when they

are separated in the input geometry. To resolve this issue, an approach using el-

ement duplication is proposed. An efficient algorithm of the mesh generation for

segmented medical image is also described. The effectiveness of the method in

the topology preservation of brain fissure is presented. Additionally, a simulation

method for a patient-specific nonconforming FE mesh is also proposed. The defor-

mation of the brain tissues is calculated using corotational finite element method.

The contact problem between brain tissues and surgical instruments is formulated

using penalty method. For stabilizing the simulation, implicit time integration is

utilized for dynamic problem. This framework enables to simulate the interaction

between a brain retractor and a brain model with stable force feedback.

Keywords: surgery simulator, haptic rendering, real-time physics simulation,

medical image processing, finite element method

4

Contents

1. Introduction 1

1.1 Brain Retraction . 1

1.2 Surgery Simulator . 2

1.3 Brain Model Construction . 4

1.4 Approach of This Study . 5

1.5 Outline of the Thesis . 6

2. Patient-specific Model Generation 9

2.1 Introduction . 9

2.2 General Approach . 9

2.3 Embedding Approach . 12

2.4 Topology Preservation . 14

2.5 Mesh Generation Algorithm . 15

2.6 Visualization . 17

2.7 Results and Discussion . 19

2.7.1 Conditions . 19

2.7.2 Evaluations in 2D . 20

2.7.3 Evaluation Using a Cylinder Model 21

2.7.4 Evaluation Using a Brain Model 23

2.7.5 Evaluation Using a Abdominal Model 26

2.8 Limitations . 28

2.9 Summary . 29

3. Real-time Simulation of Soft-tissue Deformation 33

3.1 Introduction . 33

3.2 Related works . 34

3.2.1 Collision Response . 34

5

3.2.2 Fracture and Cutting . 36

3.3 Finite Element Method . 37

3.3.1 Corotational FEM . 37

3.3.2 Matrix Assembly . 40

3.3.3 Boundary Conditions . 40

3.4 GPU Parallelization . 43

3.4.1 Simulation Procedures . 43

3.4.2 Element Data Calculation 45

3.4.3 Matrix Assembly in a Sparse Storage Format 45

3.4.4 Matrix Rearrangement . 47

3.5 Modeling of Dissection . 51

3.5.1 Topological-singularity Avoidance 51

3.5.2 Implementation . 54

3.6 Results and Discussion . 55

3.6.1 Performance Evaluation of GPU Implementations 55

3.6.2 Blunt Dissection Simulation 56

3.6.3 Brain Retraction Simulation 58

3.7 Summary . 61

4. Haptic Rendering Based on Virtual Coupling 63

4.1 Introduction . 63

4.2 Related Works . 63

4.3 Formulation of Contact Problem . 65

4.3.1 Dynamics of Tool Object . 65

4.3.2 Dynamics of Deformable Object 66

4.3.3 Contact Force . 68

4.3.4 Implicit Time Integration 69

4.4 Collision Detection . 73

4.5 Haptic Rendering . 74

4.5.1 Virtual Coupling . 74

4.5.2 Implementation . 77

4.6 Results and Discussion . 77

4.6.1 Effects of Virtual Coupling Parameters 77

6

4.6.2 Evaluation Using a Simple Cube Model 79

4.6.3 Example of a Complex Environment Simulation 81

4.7 Summary . 81

5. Haptic Rendering for Embedded Volume 87

5.1 Introduction . 87

5.2 Related Works . 87

5.3 Contact Handling . 89

5.3.1 Overview . 89

5.3.2 SDF Generation . 89

5.3.3 Determination of Projection Points 91

5.3.4 Contact Response . 93

5.3.5 Experimental Conditions . 94

5.4 Results and Discussion . 98

5.4.1 Evaluation Using a Cylinder Model 98

5.4.2 Evaluation Using a Brain Model 99

5.5 Summary . 103

6. Conclusion 105

6.1 Summary . 105

6.2 Future Directions . 106

Acknowledgements 109

References 111

List of Publications 121

Appendix A Examples of SLPs 127

7

List of Figures

1.1 Brain retraction using brain spatulas during craniotomy. 2

1.2 Overview of the opening of a cerebral fissure. (a) Sylvian fissure,

(b) cross-sectional view of X-X’, and (c) retraction using spatulas

and dissection using scissors and an aspirator. Reproduced from [1]. 3

2.1 Typical approach of the patient-specific model generation and ours.

The MR image printed in this figure is from the SPL brain atlas [2]. 10

2.2 Examples of the results of tetrahedrization using Delaunay-based

meshing [3, 4]. Adopted from [5]. 11

2.3 Examples of the results of tetrahedrization using our volume em-

bedding. Adopted from [5]. 11

2.4 Example of an atlas-based segmentation implemented in 3D Slicer [6].

The input image was T1 weighted image from NAMIC: Brain Mut-

limodality (case-01011) [7]. 12

2.5 Algorithm overview. Reproduced from [5]. 14

2.6 Generation of superimposed cells using voxel-level region growing.

Adopted from [5]. 16

2.7 Generation of superimposed nodes using cell-level region growing.

Reproduced from [5]. 18

2.8 Deformations of a “G”-shaped 2D image without topology preser-

vation. Although fine mesh (a) preserved the topology of the small

gap, coarse mesh (b) failed to preserve the topology. 19

2.9 Deformations of a “G”-shaped 2D image with topology preservation.

Even very coarse mesh preserved the topology of the small gap. . . 19

2.10 Deformations of a ring-shaped 2D image with topology preservation. 20

2.11 Deformations of a multi-labeled 2D image with topology preserva-

tion. The red and green parts are separated according to an SLP. . 21

8

2.12 Cylinder model used for the evaluation. This model is a volume

data and the voxel size is 1 mm. 21

2.13 Distributions of superimposed cells in the evaluation using the cylin-

der model. Red cells represents superimposed cells. 22

2.14 Deformations results of the obtained meshes in the evaluation us-

ing the cylinder model. Green wireframes are FE meshes and red

spheres are position-constrained nodes. 22

2.15 Label map of brain used in the evaluation. This data is called SPL

brain atlas [2] and rendered in our simulator. 23

2.16 Deformation results in the evaluation using the brain model. The

Sylvian fissures are opened in all cases by forced displacements.

Green wireframes are FE meshes and Red spheres are position con-

strained nodes. 23

2.17 Meshes obtained by a method using Delaunay-based triangulation [4] 24

2.18 Parallel scalability. Adapted from [5] 25

2.19 Visualization of deformed volume in 3D Slicer [6]. The left figure

is the slicing position. The middle figure is the cross section image

of the deformed volume. The right figure is the cross section image

with stress field overlay. 26

2.20 Deformation of meshes. (a-*): nvoxels = 5, without SLPs. (b-*):

nvoxels = 5, with SLPs. (c-*): nvoxels = 10, with SLPs. (*-1): rest

shape. (*-2): shape when the Sylvian fissure is opened. (*-3): shape

when the cerebellum is pushed. (*-4): shape when the longitudial

fissure opened. 27

2.21 Result of the evaluation using a abdominal model. Adopted from [8] 28

2.22 Limitation of the topological preservability. 28

2.23 Deformation of a label map with segmentation failures and its cor-

rected label map in 2D. Adopted from [9]. 31

3.1 Bending deformations with linear FEM and corotatioanl FEM. . . . 37

3.2 Torsional deformations with linear FEM and corotatioanl FEM. . . 37

3.3 Deformation of a tetrahedron. (a) Geometrical nonlinearity. (b)

Inversion of an element. Reproduced from [1]. 38

9

3.4 Contact nodes and free nodes. Reproduced from [1]. 41

3.5 Flowchart of the simulation scheme. Reproduced from [1]. 44

3.6 Reduction array. Reproduced from [1]. 47

3.7 Permutation list. Reproduced from [1]. 48

3.8 Algorithm of the matrix rearrangement with an example. Repro-

duced from [1]. 49

3.9 Example of input arrays and its compression. Reproduced from [1]. 50

3.10 Topological singularity. Reproduced from [1]. 51

3.11 Topological singularity detection. (a) Singular vertex detection. (b)

Singular edge detection. Reproduced from [1]. 53

3.12 Examples of fracture simulations. These sequences show a fracture

simulations of a soft tissue model executed (a) with and (b) without

topological-singularity avoidance. Reproduced from [10]. 55

3.13 Computational time of matrix assembly. Reproduced from [1]. . . . 56

3.14 Computational time of matrix rearrangement. Reproduced from [1]. 57

3.15 Results of the simulation of blunt dissection. (a) Snapshots. (b)

Stress visualization (maximum principal stress). Reproduced from [1]. 58

3.16 Computational time spent for each time step of the blunt dissection

simulation. Reproduced from [1]. 59

3.17 Number of removed elements at each time step. Reproduced from [1]. 60

3.18 Result of the brain retraction simulation. Reproduced from [1]. . . . 61

3.19 Computational time of the brain retraction simulation. Reproduced

from [1]. 62

3.20 Time history of reaction force to be rendered to the user. The raw

data is calculated by the FEM solver and the filtered data is the

force used for the force feedback. In this simulation, a first-order

low-pass filter (cut-off frequency, 1.0 Hz) was applied. Reproduced

from [1]. 62

4.1 Spring connecting the surface node i of an FE mesh and the rigid

object. Reproduced from [11]. 68

10

4.2 Penalty-based springs generated according to penetration of a rigid

object into a deformable object using an SDF. The red circles are

the penetrating surface nodes of the FE mesh. The blue circles are

the contact positions on the rigid object. Reproduced from [11]. . . 73

4.3 Haptic rendering pipeline of our method. Reproduced from [11]. . . 74

4.4 Observed step responses of the rigid body rotation with VC. Repro-

duced from [11]. 78

4.5 Recorded trajectory of the stylus of the haptic device. Reproduced

from [11]. 83

4.6 Snapshots of the evaluation using the simple cube model. Repro-

duced from [11]. 83

4.7 Force history with/without the LPF. Reproduced from [11]. 83

4.8 Trajectories of the virtual tool object in the evaluation using the

simple cube model. Reproduced from [11]. 84

4.9 Force histories in the evaluation using the simple cube model. Re-

produced from [11]. 84

4.10 Histories of the maximum penetration depth in the evaluation using

the simple cube model. Reproduced from [11]. 84

4.11 Snapshots of the simulation of a complex environment. Reproduced

from [11]. 85

5.1 Overview of the SDF generation with 2-dimensional illustration. . . 90

5.2 Projection of vertex using SDF in 2D. xp and xs are a vertex of a tool

object and the projected point to the surface of a deformable object.

The penetration depth is determined using an SDF calculated in the

material coordinate. 91

5.3 SDF sampling for implicit surface. 91

5.4 Retractor model. The white spheres are the vertices of the surface

polygons, which used to detect the penetration with deformable

models. The number of vertices and faces are 712 and 1352, respec-

tively. 94

11

5.5 Cylinder model. Spacing is 1 mm. D and L are the diameter and

the length, respectively. In (a), the color of the voxels indicate the

labels. In (b) the color of the voxels indicate the signed distance.

The value is close to 0 (near the surface) if the color is red. 95

5.6 Snapshots of the evaluation using cylinder model. 96

5.7 Tool trajectory of the evaluation using cylinder model. 97

5.8 Force history of the evaluation using cylinder model. 97

5.9 Brain model generated from a brain atlas [2]. In (a) and (b) the

color of the voxels indicate the labels. In (c) the color of the vox-

els indicate the signed distance. The value is close to 0 (near the

surface) if the color is red. 99

5.10 Snapshots of the evaluation using the brain model. 100

5.11 History of the magnitude of the force to be displayed to the user. . 101

5.12 Visualization on 3D Slicer [6]. 102

12

List of Tables

2.1 Results of the evaluation using the brain model [2]. Nvert and Ntet

are the number of vertices and tetrahedra, Tmesh and Tfem are the

computational time taken for the mesh generation and a loop of

FEM simulation, respectively. Reproduced from [5] 24

4.1 Determined parameters by the rotational step response experiment

with kθ = 0.3 Nm/rad. Reproduced from [11]. 78

4.2 Parameter sets of the stiffness and damping of the penalty-based

springs. Reproduced from [11]. 79

13

Chapter 1. Introduction

1.1 Brain Retraction

In neurosurgery, brain spatulas are used to push the brain tissue aside and

expose the lesion. To keep the lesion exposed, the surgeon fixes the spatulas to a

frame installed on an operating table and then treats the lesion. The operation

that exposes a lesion is called “retraction” and the equipments specialized for brain

retraction are called brain retractor systems [12]. Because of the compression of the

brain tissues, brain retraction may inhibit blood flow around the pressured region.

The inhibition of blood flow reduces oxygen supply to the surrounding tissues.

Damage to nervous tissue by blood flow inhibition causes dysfunction, such as

hemiparesis and aphasia. Such damage caused by brain retraction is called brain

retraction injury [13, 14].

Use of brain retraction is inevitable in most craniotomy approaches [15] (Fig. 1.1).

Craniotomy is an operation in which part of the skull (bone flap) is removed to

obtain a sufficient surgical field. After removal of the bone flap, the surgeon cuts

the arachnoid to release connective tissue, after which the brain retraction is per-

formed. In this way, the surgeons open a brain fissure to access a deep brain

regions.

In addition to damage caused by blocked blood flow, mechanical injury can be

induced by retraction. Inside the brain fissure, there is a fine web-like fiber struc-

ture (Figure 1.2). The fibers connects cerebral vessels and thin membranes that

cover the brain parenchyma. If the fiber constraints are not removed sufficiently,

the fibers can tear the walls of the small vessel [16].

To avoid injury during retractions, young surgeons should learn the anatomical

structure, how to remove constraints between brain tissues, and where to posi-

tion brain retractors. Young surgeons can learn such points from video material.

1

Chapter 1. Introduction

Bone removal Brain retraction Treatment

Figure 1.1: Brain retraction using brain spatulas during craniotomy.

However, they cannot learn the tactile cues from such visual media. They could

also train using animal bodies. However, the structure of the organs are highly

different from that of humans. Some surgeons might have the opportunity to

train using donor bodies. However, such opportunities are very limited. Even

when it is possible, the material properties of the body changes after death. One

possible effective means of training is an artificial organ model constructed using

3D printers [17]. However, the resolution of the modeled geometry is limited by

manufacturing processes and the reconstruction of material properties remains dif-

ficult. Eventually, the education of young surgeons is dependent on actual surgery

underthe supervision of a professional surgeon. This obviously carries the risk of

inducing retraction injuries during the trainings of young surgeons.

1.2 Surgery Simulator

For the training of young surgeon, virtual reality (VR) technology is expected

to enhance the safety and efficiency of surgical training [18, 19, 20]. In the last

2

1.2. Surgery Simulator

Vessels Arachnoid
membrane

Pia mater

Arachnoid
trabeculae

X X’

Sylvian fissure

X

X’

Spatula Spatula

Scissors

Aspirator

a b c

Figure 1.2: Overview of the opening of a cerebral fissure. (a) Sylvian fissure, (b)

cross-sectional view of X-X’, and (c) retraction using spatulas and dissection using

scissors and an aspirator. Reproduced from [1].

two decades, VR training systems for laparoscopic surgery have increasingly been

developed [21, 22]. Typically, a surgery simulator consists of a computer, a graphics

display, and a user I/O device that allows input of the movement of surgical

instruments and output of the reaction force to be applied to the user’s hand. The

development of a laparoscopic surgery simulator has been strongly funded because

there is a great demand for training in laparoscopic surgery. Laparoscopic surgery

requires surgeons to learn the usage of special instruments under the limited view

from an endoscope. Current laparoscopic surgery simulators are well developed and

are now commercially available [23]. Recently, following the success of laparoscopic

surgery simulators, VR surgery simulators have been developed for other fields.

Recently, neurosurgery simulators have also been developed for education or

preoperative planning purposes [24, 25, 26]. Delorme et al. developed a sophis-

ticated neurosurgery simulator called NeuroTouch [27, 28]. NeuroTouch enables

surgeons to train in a tumor resection procedure using an aspirator and bipolar for-

ceps. NeuroTouch is now available as a commercial product named NeuroVR [29].

Alaraj et al. developed a simulator for training in cerebral aneurysm clipping [30].

In addition, some brain retraction simulators have been developed. Koyama et

al. introduced a brain retraction simulator called Virtual Retractor [31]. In this

simulator, the deformations of intracranial vessels are modeled using geometrical

theory, but physical consistency was not considered. Hansen et al. developed a

3

Chapter 1. Introduction

brain retraction simulator using FEM [32]. They calculated the deformation of

brain tissues and the reaction force for haptic feed back. However, the calcu-

lation speed is not sufficient for haptic rendering. Hasegawa et al. conducted a

cerebellar retraction simulation using a high-resolution model [33]. In their study,

they considered the nonlinear viscoelastic behavior of soft tissues. However, they

did not achieve real-time simulation because of high-computational costs. In the

physics-based simulator, the real-time computation of brain deformation is still a

challenging problem.

1.3 Brain Model Construction

To simulate a brain retraction, a brain model is required. In particular, when

we require reliable soft-tissues deformation, finite element method (FEM) is the

most common approach [34]. FEM requires a discretized volumetric representa-

tion, such as tetrahedral or hexahedral mesh, termed the finite element (FE) mesh.

The resolution (number of nodes or elements) of the FE mesh is related to the com-

putational cost of FEM. To achieve a force feedback in brain retraction simulation,

the soft-tissues’ dynamic behavior must be calculated in real time. Therefore, the

resolution of a FE mesh is limited. This limitation make the brain model construc-

tion difficult, because the brain has a highly complex structure [35]. In a retraction

simulation, we cannot ignore the structure of a brain fissure that is to be opened

using spatulas. In the previous real-time neurosurgery simulators [27, 30, 32],

brain fissures were not modeled and only a small area surrounding the affected

part was discretized to a volumetric mesh.

In general, the inner structure of human body can be obtained by medical

imaging techniques, such as computed tomography (CT) or magnetic resonance

imaging (MRI). The structure of the brain can be reconstructed from medical

images. However, the meshing process for reproducing a brain fissure structure

has not been automated well. Therefore, to develop a brain retraction simulator,

we should consider how to generate a brain model containing brain fissures from

medical images under limited resolution. Brain model construction is important in

preoperative planning with a patient-specific model. Ideally, the model generation

4

1.4. Approach of This Study

should be conducted by medical staff in a hospital and should not require special

knowledge about their numerical analysis [35].

1.4 Approach of This Study

This study aimed to develop a brain retraction simulation using a patient-

specific model with force-feedback. To develop such a simulator, the following

functions were developed.

• A generation method for a patient-specific FE mesh that preserves the struc-

ture of brain fissures with reasonable resolution.

• Fast and stable physics simulation method for haptic rendering of the contact

between a retractor and soft brain tissues.

A generation method for patient-specific FE mesh from medical images is pro-

posed to allow a brain retraction procedure in a virtual environment. The method

relies on the concept of using nonconforming mesh. The input geometry is em-

bedded in a regular hexahedral mesh (cartesian grid). The deformation of the

input geometry is interpolated by the hexahedral mesh in a master-slave manner.

An advantage of this approach is the simplicity of the mesh generation as com-

pared with the conforming mesh generation. Thanks to the simplicity, the mesh

generation can be performed quickly and robustly. Thus, a user can generate a

patient-specific model without special knowledge on a specific software. A draw-

back of this method is the possibility of the loss of fine structure. For example,

if multiple domains are included in a hexahedral element, they are considered as

connected domains, even when they are separated in the input geometry. To re-

solve this issue, an approach using element duplication is proposed. An efficient

algorithm for mesh generation from segmented medical images is also described.

The effectiveness of the method in topology preservation of brain fissure is also

presented.

Additionally, a simulation method for a patient-specific nonconforming FE mesh

is also proposed. The deformation of brain tissues is calculated using a corota-

tional FEM. The contact problem between brain tissues and surgical instruments is

5

Chapter 1. Introduction

formulated using a penalty method. For stabilizing the simulation, implicit time

integration is utilized for dynamic problems. This framework allows simulation

of the interaction between a brain retractor and a brain model with stable force

feedback.

1.5 Outline of the Thesis

The thesis is structured as follows.

Chapter 1 Introduction

The background and purpose of this study is are described.

Chapter 2 Patient-specific Model Generation

The method of patient-specific model generation is described in this chap-

ter. The method allows adjusting of the resolution of an output mesh while

making preservation of features possible. To evaluate the method, meshes of

various resolutions were generated and the abilities of feature preservation

are compared.

Chapter 3 Real-time Simulation of Soft-tissue Deformation

The mechanical modeling of soft tissues and its calculation method using

FEM is described in this chapter. Additionally, the acceleration method

using GPGPU for real-time computation is described and its performance is

shown in this chapter.

Chapter 4 Haptic Rendering Based on Virtual Coupling

The haptic rendering method based on virtual coupling is described in this

chapter. Virtual coupling is a commonly used approach for stabilizing 6-

DoF haptic rendering. The contact problem between a retractor and a brain

model is formulated based on a penalty method. To stabilize the contact

simulation, a dynamic system is formulated using implicit time integration.

Chapter 5 Haptic Rendering for Embedded Volume

A haptic rendering method for an embedded volume is described. A patient-

specific FE mesh, generated by the method described in Chapter 2, is a

6

1.5. Outline of the Thesis

nonconforming orthogonal mesh. Thus, the boundary does not equal that

of the surface of an input volume. This chapter describes how to address

this issue and the results shows the effectiveness of the proposed collision

handling method for simulating brain retraction.

Chapter 6 Conclusion

The background and purpose of this study are described.

7

Chapter 2. Patient-specific

Model Generation

2.1 Introduction

This chapter describes the method of patient-specific model generation. A

patient-specific model is generated from medical images. Firstly, a medical image

is segmented into anatomical regions. From the segmented volume FE mesh is

generated. The FE mesh is a nonconforming orthogonal mesh which covers whole

volume. Fig. 2.1 shows the overview of the typical approach of the patient-specific

model generation and ours.

2.2 General Approach

Patient-specific model is generated from medical images obtained preoperative

clinical examinations. In general, medical images are segmented into regions, e.g.,

anatomical regions and affected area, for analysing the geometry. This proce-

dure is called segmentation. From the segmented region, surface of the volume

is extracted. The surface is represented by a polygonal mesh. Using the surface

mesh, the domain is discretized into volumetric meshes, e.g. hexahedral mesh,

tetrahedral mesh, and their combinations.

In the above procedure, the segmentation and mesh generation is labor-intensive

works. The segmentation techniques are significantly studied and the developed

algorithm can be used in some open-source software, e.g. 3D Slicer [6]. Fig. 2.4

shows an example of an atlas-based segmentation. In the segmentation, a T1

weighted MR image was segmented automatically based on manually segmented

MR image (atlas). The mesh generation methods are also well-studied. Some

algorithms are implemented in open-source software, e.g. CGAL [36]. Our research

9

Chapter 2. Patient-specific Model Generation

Medical image Surface mesh
(triangular mesh)

Our approach:
 Use orthogonal grid

Pros:
- Easy to automate

- Poor topology preservability

- Nonconformity

Element superimposi!on (Chap. 2)

SDF-based collision detec!on (Chap. 5)

Cons:

FE mesh
(tetrahedral mesh)

FE mesh
(Hexahedral mesh)

Example of deforma!on

Extracted brain region

Typical approach: Use conforming mesh

Cons: Difficult to automate

Deforma!on is calculated using the FE mesh.
The medical image (or fine surface mesh for
graphics) are deformed according to the
deforma!on of FE mesh by an interpola!on
technique (Embedding).

Figure 2.1: Typical approach of the patient-specific model generation and ours.

The MR image printed in this figure is from the SPL brain atlas [2].

group have used a commercial software, GiD pre- and post- processor [37] provided

by International Center for Numerical Methods in Engineering, Spain. Most of

the volumetric mesh generation algorithms requires water-tight surface mesh as

an input of the meshing process. Therefore, the surface mesh must be modified

appropriately. In most case, such modification involves manual tasks. Meshing

often takes several hours or days for meshing a complex domain, such as brain.

Such labor-intensive tasks are hope to be automated.

To reduce the manual tasks of mesh generation, Pons et al. developed a volumet-

ric mesh generation method that directly generates tetrahedral grid from a multi-

segmented volume data [4]. This method enabled to avoid surface mesh generation

and reduce the labor involved in patient-specific mesh generation. Boltcheva et

10

2.2. General Approach

Cross sec�on

18 mm

9
0

 m
m

Mesh size 20 mm,
218 ver�ces,
734 tetrahedra.

Mesh size 20 mm,
89 ver�ces,
305 tetrahedra.

Input segmented volume

Delaunay-based
meshing
(Pons et al., 2007)

Delaunay-based
meshing with
feature preserva�on
(Boltcheva et al., 2009)

Figure 2.2: Examples of the results of tetrahedrization using Delaunay-based mesh-

ing [3, 4]. Adopted from [5].

Mesh size 10 mm,
1264 ver�ces,
3720 tetrahedra.

Mesh size 100 mm,
24 ver�ces,
15 tetrahedra.

Cross sec�on

18 mm

9
0

 m
m

Input segmented volume

Volume
embedding
(our approach)

Figure 2.3: Examples of the results of tetrahedrization using our volume embed-

ding. Adopted from [5].

al. extended the method to preserve the point and edge features according to con-

straints input by users [3]. Their methods are implemented in CGAL [36]. Some

results of the mesh generation using [4] and [3] are shown in Fig. 2.2. The feature

preservation worked well and good-quality mesh was obtained. However, the res-

olution of the mesh becomes fine when the feature preservation is applied. High

resolution mesh increase the computational cost in FEM. Apparently, the ability

of the detail preservation and the computational cost of FEM are in a trade-off

relationship. Therefore, it is difficult to achieve the both of the preservation of the

fine geometry and the reasonable computational cost that can be used in real-time

surgery simulation.

11

Chapter 2. Patient-specific Model Generation

Figure 2.4: Example of an atlas-based segmentation implemented in 3D Slicer [6].

The input image was T1 weighted image from NAMIC: Brain Mutlimodality (case-

01011) [7].

2.3 Embedding Approach

In the computer graphics community, deformations of fine geometries are often

controlled by geometrical interpolation techniques using the movement or deforma-

tions of skeletons or master meshes. In the character animation, polygonal meshes

are often deformed by interpolating the movement of skeletons associated with

the skin meshes. Such animation techniques is called rigging and implemented in

general 3D animation software such as Maya (Autodesk Inc.), 3ds Max (Autodesk

Inc.), and Blender (an open-source freeware). The rigging can be achieved using

a master mesh. In the approach, a polygonal mesh is covered by a coarser con-

trol mesh, which usually called cage [38]. The polygonal mesh is deformed by the

control mesh in a master-slave manner. By combining this mesh-based rigging

and physics simulation, physically-based deformation can be obtained with good

visual plausibility. Such idea was introduced by Müller et al. [39]. They generated

a regular grid that covers a fine polygonal geometry. The grid is deformed by FEM

and the fine geometry is deformed by a geometrical interpolation technique. This

approach is useful for trading off the computational cost of physics simulation and

12

2.3. Embedding Approach

the quality of visual representation. In this thesis, we call this approach embedding

because this naming is conventionally used in the computer graphics community,

e.g. in [40].

In the embedding approach, regular grid is often used for FE analysis. Thus,

the boundary of the embedded fine geometry and that of the FE mesh is not

conformed. Although the use of regular grid limits the accuracy of domain rep-

resentation, it is easy to control the resolution of the FE mesh. Therefore, it can

easily adjust the computational cost of FEM. Even if the resolution is decreased,

the visual plausibility is preserved because the rendered model is different from

the FE mesh. Instead of being Fig. 2.3 illustrates examples of the meshes used in

volume embedding approach. Because the method uses a regular grid for FE mesh,

they are able to reduce the number of vertices down as far as 24 vertices in this ex-

ample. Such coarse resolution can not be achieved when we use a Delaunay-based

meshing method as shown in Fig. 2.2.

One of the issues of the use of regular grid is the disability to separate proximate

surfaces that included in a same cell. Off course we can avoid such issue by

increase the resolution of the grid. However, it leads too high computational

cost to compute the deformation in real time. To resolve this issue, Nesme et al.

proposed a method using the superimposition of elements [40]. In their method,

when multiple separated regions exist in a same cell, overlapped cells are generated

for each region. The connectivity of the cells are modified according to embedded

fine geometry. As a result, a topology-preserved FE mesh is obtained. However,

they intended for embedding a polygonal 3D model in a FE mesh and not for

medical images.

In this study, we developed a mesh generation algorithm based on regular grid

with element superimposition. Our method that directly processes a segmented

volume data. In addition, we consider the separation of attached boundary which

specified by a user.

13

Chapter 2. Patient-specific Model Generation

(a) Ini�al grid genera�on (b) Superimposed cell
 genera�on

(c) Superimposed node
 genera�on

(d) Deforma�on example
 of resul�ng mesh

Figure 2.5: Algorithm overview. Reproduced from [5].

2.4 Topology Preservation

To preserve the topology of input structure, we uses superimposed nodes and

cells. Fig. 2.5 shows an overview of the developed algorithm. By superimposing

nodes and cells, the degrees of freedoms of the mesh deformation are added. As

a result, the connections between volumetric regions are preserved as precise as

possible. We also paid attention to the separation of connected multiple segments,

e.g., the “Temporal lobe” segment and the “Parietal lobe” might be separated

for simulating the brain retraction for the Sylvian fissure. To describe such user

requests, we define separation label pairs (SLPs). The algorithm performs the

hexahedral mesh generation according to the input volumetric data (label map)

and user-specified SLPs.

The details of the input and output of our algorithm are described as follows.

Segmented medical image (label map). A segmented medical image, which

also called label map, is volume data that store labels (integer value) at

aligned points. A label represents a segment, e.g., 0 is “empty (air)”, 1 is

“gray matter”, 2 is “white matter”. Let i ∈ Z3 be a voxel coordinate. We

14

2.5. Mesh Generation Algorithm

denote a label at i as L(i) ∈ Z. Voxel coordinate i can be transformed

into spatial coordinate p ∈ R3 using a vector of the origin of the volume

p0 ∈ R3 and a vector of spacing values (size of a voxel) s = [sx, sy, sz] ∈ R3

as p = p0 + s ⊙ i, where ⊙ denotes element-wise vector multiplication. p0

and h are available as properties of medical image data.

Mesh size. We define the mesh size H ∈ R as the approximate edge length of a

resulting hexahedral cell. The algorithm determines the actual edge lengths

in the x, y, and z directions h = [hx, hy, hz] by multiples of the spacing value

of a volume, e.g., hx = ceil(H/sx)sx for the direction x, where ceil(H/sx) is

the number of voxels along the x axis. The edge lengths of a hexahedral cell

become nvoxelshx, nvoxelshy, and nvoxelshz.

SLPs. An SLP is a pair of labels {La, Lb}, where La and Lb are the labels of

segment a and b, respectively. The algorithm processes the mesh generation

to separate the segments that are specified by SLPs. The SLPs are a part

of our algorithm and they should be prepared users. The SLPs need to be

generated by users.

Hexahedral mesh. A mesh consists of nodes and cells. A node has a correspond-

ing position and a cell has references to nodes (eight nodes for a hexahedral

mesh). Note that a hexahedral mesh can be considered a rectangular mesh,

where each cell has four nodes in 2D space. In this paper, although the

schematic illustrations are sometimes described in 2D space with a rectan-

gular mesh, all the algorithms are directly extended to 3D space with a

hexahedral mesh.

Superimposed nodes and cells. A superimposed node is a node that coexists

at the same position as another node. The number of superimposition is not

limited. The same is true for superimposed cell.

2.5 Mesh Generation Algorithm

The first step is the generation of a regular grid (Fig. 2.5(a)). The bounding

box of the input volume is calculated, and an regular grid is constructed inside

15

Chapter 2. Patient-specific Model Generation

1

1

1 1

2 2 2

3 3

3

3 3

3

3

3

332

1

1

0 0

0 0

0

Voxel

Label
Ni Nj

Nk Nl

Ni Nj

Nk Nl
Ni Nj

Nk Nl

Ni Nj

Nk Nl

Cell for each region is superimposed. All cells

refer to the same set of nodes. Node references

are updated in the subsequent procedure.

An ini!al cell and voxels inside it.

Ni, Nj, Nk, and Nl are references to node.

Run voxel-level region growing (SLP = {2, 3}).

The border is determined by cell border (),

empty label (), and SLP ().

1

1

1 1

2 2 2

3 3

3

3 3

3

3

3

332

1

1

0 0

0 0

0

Seed points (voxels)

Figure 2.6: Generation of superimposed cells using voxel-level region growing.

Adopted from [5].

the bounding box. The lattice bases are [hx, 0, 0]
T , [0, hy, 0]

T , [0, 0, hz]
T .

The second step is superimposition of the cells (Fig. 2.5(b)). In order to detect

multiple regions in a cell, local segmentation based on region growing is executed

in each cell, as illustrated in Fig. 2.6. An initial seed point is arbitrarily selected

from voxels inside the cell, and then, the label values of the neighbor voxels are

compared. If the label value of a neighbor voxel is not “empty (air)” and is

not registered in the SLPs, the neighbor voxel is added to the region. These

procedures are repeated until no connected voxel is detected. After a region is

obtained, the region growing algorithm is repeated until all voxels are checked. If

multiple regions are detected, superimposed cell is generated for each region. If

no region is detected, the cell is deleted. At the end of this step, all superimposed

cells have the reference to the same set of nodes.

The third step is superimposition of nodes (see Fig. 2.5(c) and Fig. 2.7 for

16

2.6. Visualization

details). This process modified the node references stored in cells. This is a node-

independent procedure. At each node, cells that share the node are extracted and

the connection between the cells are checked. This connection check is performed

in a manner of cell-level region growing. The region growing is initiated from a

seed point, in this case an arbitrary cell in the extracted cells. From the seed

cell, connectivities with surrounding cells are checked. For the cell connectivity

determination, the neighbor labels on the boundary of a pair of cells are checked.

If a label pair does not have a label of“ empty”and is not registered in the list

of SLPs, the pair is considered to be connected. If at least one connected label

pair is found, the two cells are determined to be connected. If multiple regions

(subsets of connected cells) are detected, the node is superimposed for each region

and the corresponding node references in the cells are rewritten to the generated

superimposed node. If no region is detected, the node is deleted because it means

no cells does not refer the node.

Optionally, small islands deletion can be useful. In most cases, a label map

includes isolated small segments because of imaging noise or segmentation errors.

Such segments can generate unmeaningful small pieces (island) in dynamic sim-

ulation. In order to delete these island, we measure the volume of the island by

counting the number of cells for each cell island (a set of connected cells). If the

volume of the island is smaller than a threshold, the cells included in the island

are deleted.

2.6 Visualization

The surface polygons of segmented volumes are generated using the marching

cubes method for visualization. As in [41, 40], the polygonal surfaces are deformed

by interpolating the deformation of FE mesh obtained calculated by the FEM. To

perform the interpolation, each surface vertex is associated with a tetrahedron in

a preprocessing and the vertex is transformed using the barycentric coordinate

defined in the associated tetrahedron. For real-time simulation, the voxels are

rendered as a simple primitive such as a point or box because of the low rendering

cost. For offline rendering of a captured deformation, a deformed volume can

17

Chapter 2. Patient-specific Model Generation

2. Cell-level region growing (SLP = {2, 3}).
 Connec�ons between cells are checked.

Ni

1

0

1 1

0 1 1

0 3

3

3 3

3

3

3

111

1

1

1 0

1 0

20

0

0 0

0 0 0

2 2

1

1 1

1

1

0

000

2

0

0 0

0 2

2

0

0

0 1

1 1 1

1 1

1

0 0

1

1

1

111

0

0

0 0

0 0

0 0

1

1 1

2 2 2

2 2

2

0 0

0

0

2

222

0

0

1 2

2 2

0

Connected

1 1 2 0 0

01 0 0

001 0 0

000 0 0

000 0 0

1

1 1 222

1

1

1

0

0

Connected

C
o

n
n

e
ct

e
d

0

1 1

0 1 1

1

000 3 3

1 1

3

000 3 3

000 3 3

1 1 222

1

1

1

0

0

D
is

co
n

n
e

ct
e

d

DisconnectedC
o

n
n

e
ct

e
d

 : Connected label pair
 : Disconnected label pair due to “empty” label
 : Disconnected label pair due to SLP.

Ni
1

Addi�onal
node

Ni

3. Genera�on of superimposed nodes.
 Generate addi�onal node for each connected cells.

1. Extrac�on of cells that share a node.
 Cells that share the node is extracted.

Figure 2.7: Generation of superimposed nodes using cell-level region growing.

Reproduced from [5].

be exported in a common format of volume data, such as NRRD or DICOM.

Although the general volume data format stores values on equally spaced points,

the voxels no longer locate on the initial positions in a deformed volume. Therefore,

the values by interpolating the values on volume points being exported from a

deformed volume. this can be realized by interpolation method, such as the nearest

neighbor search, trilinear interpolation, in the deformed volume for each voxel of

the exported volume.

18

2.7. Results and Discussion

(a) (b)

Figure 2.8: Deformations of a “G”-shaped 2D image without topology preserva-

tion. Although fine mesh (a) preserved the topology of the small gap, coarse mesh

(b) failed to preserve the topology.

Figure 2.9: Deformations of a “G”-shaped 2D image with topology preservation.

Even very coarse mesh preserved the topology of the small gap.

2.7 Results and Discussion

2.7.1 Conditions

Our method was implemented on a workstation with an six-core CPU (In-

tel Core i7-3960X overclocked to 4.5 GHz), 64 GB of RAM, and two GPUs, an

NVIDIA K20c (2,496 CUDA cores) and an NVIDIA Quadro K5000 (1536 CUDA

cores). GPU K20c was used for numerical calculation of FEM and GPU K5000 was

used for graphics rendering. The proposed meshing algorithms which described in

this chapter were implemented using OpenMP for the parallelization on multi-core

CPU.

Meshes obtained by our algorithm were validated using an FEM (explained in

Chapter 3). Each hexahedrron in obtained meshes is divided into five tetrahe-

dra and a first-order tetrahedral element was used for FE model. The meterial

properties of all tetrahedral element were set to same values; Young’s modulus is

1000 Pa, Poisson’s ratio is 0.4, density is 1.0 g/cm3.

19

Chapter 2. Patient-specific Model Generation

(b)

(a)

Figure 2.10: Deformations of a ring-shaped 2D image with topology preservation.

2.7.2 Evaluations in 2D

To validate the effect of our meshing method, some evaluations were conducted

in 2D. Fig. 2.8 and 2.9 are the deformation examples of a “G”-shaped image with-

out/with the topology preservation. In Fig. 2.8 (a), the shape is embedded in a fine

orthogonal mesh and the deformation of the image is interpolated by the orthog-

onal mesh. Using such a fine mesh, visually plausible dynamic deformation was

obtained. However, in Fig. 2.8 (b), the topology of the shape was not preserved:

the right-top part and the right-bottom part of the “G” was connected because

the separated multiple parts are integrated in a single cell. This is a drawback of

the use of a regular mesh that we wish to avoid. Fig. 2.9 shows the deformation

example of the topology preserved mesh generated by the proposed method. In

the figure, the surface boundary edges are colored with yellow lines. Thanks to

the superimposed cells, the right-top part and right-bottom part of “G” were sep-

arated in the generated FE mesh. As a result, visually plausible simulation with

very coarse mesh was achieved.

We also conducted a simulation using a ring-shaped image with very small gap

(Fig. 2.10). By our meshing method, the floating parts in the image (a circle and

a ring) were separated in the obtained FE mesh. In the figure, we first dragged

the circle region and then dragged the ring. In the both of fine mesh and coarse

mesh, the circle and ring regions were separated as expected.

20

2.7. Results and Discussion

(a) (b) (c)

Figure 2.11: Deformations of a multi-labeled 2D image with topology preservation.

The red and green parts are separated according to an SLP.

Gap

* Seg. = Segment

98 mm

105 mm

With gap Without gap

Seg. 2

Seg. 3

Seg. 1

No gap

1
 m

m

Figure 2.12: Cylinder model used for the evaluation. This model is a volume data

and the voxel size is 1 mm.

We also conducted a simulation using a multi-labeled image. Fig. 2.11 shows the

deformation of the image that is segmented into four regions, red, green, blue, and

orange. The red, green, and orange regions are partly attached. To separate these

regions, we input the SLPs {{red, green}, {red, orange}, {green, orange}}. As

shown in the figure, these regions were separated in the obtained FE mesh. Even

in a coarse mesh (Fig. 2.11 (c)), the SLP was processed well and the boundaries

were separated.

2.7.3 Evaluation Using a Cylinder Model

For preliminary evaluation in 3D problem, we used a cylinder volume model

that divided into 3 segments (Fig. 5.5). In the figure, red, green, and blue parts

represents segmented region labeled 1, 2, and 3, respectively. In the front-half

part, there is a small gap. The width of the gap is 1 mm (equal to the length

21

Chapter 2. Patient-specific Model Generation

(a) Without SLP (b) With SLP

Figure 2.13: Distributions of superimposed cells in the evaluation using the cylin-

der model. Red cells represents superimposed cells.

Completely
separated

Partly
separated

(a) Without SLP (b) With SLP

Figure 2.14: Deformations results of the obtained meshes in the evaluation using

the cylinder model. Green wireframes are FE meshes and red spheres are position-

constrained nodes.

of a voxel). In the rear-half part, there is no gap between segments 2 and 3

(completely attached). Fig. 2.13 and 2.14 show the results of the proposed volume

embedding with and without SLP {2, 3}. The results were obtained with a mesh

size of H = 5 mm. Fig. 2.13 shows the distributions of the superimposed cells

in the obtained FE mesh. In the figure, gray cells indicate normal cells, and red

cells indicate superimposed cells. As seen in this figure, the use of SLP generated

the superimposed cells on attached boundary between segment 2 and 3. Fig. 2.14

shows the examples of the mesh deformations from two different views. In this

figure, the groove was separated even in the case without the SLP. However, the

attached boundary between segments 2 and 3 was not separated. In contrast,

using SLP, the boundary was separated as expected. This results show that our

algorithm based on the SLPs worked well and is effective for the separation of

completely attached segments.

22

2.7. Results and Discussion

(b) Surface rendering.(a) Label map and its cross-sectional view.
 Voxels are rendered as cubes.

Sylvian fissure

Figure 2.15: Label map of brain used in the evaluation. This data is called SPL

brain atlas [2] and rendered in our simulator.

H = 5 mm H = 10 mm H = 15 mm

Figure 2.16: Deformation results in the evaluation using the brain model. The

Sylvian fissures are opened in all cases by forced displacements. Green wireframes

are FE meshes and Red spheres are position constrained nodes.

2.7.4 Evaluation Using a Brain Model

Fig. 2.15 shows the label map (256 × 256 × 256) used in the evaluation for

meshing of a brain model, our target organ in this study. The label map is a part

of SPL brain atlas dataset provided by Halle et al. [2]. In this evaluation, SLPs

for the separation of the Sylvian fissure (described in Fig. 2.15) were generated

manually by the authors. Full list of the used SLPs are shown in Appendix A.

The several different mesh sizes were used for the comparisons with respect to

the effect of the resolution. Fig. 2.16 shows the deformation results of the meshes

obtained by our method. In this results, the forced displacements was imposed to

open the Sylvian fissure. As seen in this figure, the Sylvian fissure was opened in

23

Chapter 2. Patient-specific Model Generation

H = 2 mm H = 6 mm

Figure 2.17: Meshes obtained by a method using Delaunay-based triangulation [4]

Table 2.1: Results of the evaluation using the brain model [2]. Nvert and Ntet

are the number of vertices and tetrahedra, Tmesh and Tfem are the computational

time taken for the mesh generation and a loop of FEM simulation, respectively.

Reproduced from [5]

Method Mesh size (mm) Nvert Ntet Tmesh (s) Tfem (ms)

Pons, et al. [4] 2.0 149,506 799,165 22.23 -

Pons, et al. [4] 4.0 44,421 95,740 7.43 -

Pons, et al. [4] 6.0 6,106 29,144 1.28 -

Ours 2.0 227,225 925,360 5.78 -

Ours 5.0 22,999 79,650 0.57 133.3

Ours 10.0 4,829 14,130 0.19 30.8

Ours 15.0 2,072 5,530 0.16 11.9

all cases as expected even in very coarse mesh with the mesh size of 15 mm.

To compare the method with a well-established method, we also conducted

Delaunay-based meshing proposed in [4] (Fig. 2.17). We used an implementation

in CGAL library [36] for Delaunay-based meshing. When we used Delaunay-

based meshing with a too low resolution, as noted in [4], non-manifold meshes,

that involves vertex singularity, was produced. Such singularity can cause the

instability in FEM simulation. In addition, thin or small segments vanished in

the obtained mesh. Furthur, the boundary of Sylvian fissures of the meshes look

jaggy in coarse resolution, which lead to poor visual plausibility in the real-time

simulations.

The quantitative results (number of nodes and tetrahedra and timing results)

24

2.7. Results and Discussion

 0

 0.2

 0.4

 0.6

 0.8

1.0

 1 2 3 4 5 6

C
o

m
p

u
ta

!
o

n
a

l
!

m
e

 [
s]

Number of threads

Ini!al grid gen.
Superimposed cell gen.

Superimposed node gen.
Islands del.

gen. = genera!on, del. = dele!on

Total

Figure 2.18: Parallel scalability. Adapted from [5]

are described in Table 2.1. The timing measurements of the FEM simulation (com-

putational times spend on matrix assembler and linear solver with 20 iterations

in conjugate gradient method) are performed for meshes obtained by our method.

Note that the simulation was not executed for the mesh with H = 2.0 because the

mesh was too large to store the related data in the GPU memory. This table shows

that our meshing method is very fast and easily modify the resolution interactively.

It would help users construct patient-specific model that have appropriate mesh

resolution for real-time simulation. In this evaluation, we was able to find that the

mesh size with 10 mm was a reasonable mesh for real-time simulation because the

FEM calculation takes approximately 30 ms (≈ 30 FPS).

We also investigated the applicability of the parallelization techniques. In our

algorithm the superimposed cell generation and the superimposed node genera-

tion are cell-independent and node-independent procedures, respectively, and thus

it can be parallelized straightforwardly on multi-core CPU. Fig. 2.18 shows the

computational times of each algorithm stage of the mesh generation with different

number of threads. In this result, good scalability was observed. This performance

is suitable for current computer architecture that involves many core in a CPU

package.

We show an example of postprocess application. Our volume embedding ap-

proach enables to deform the volume data and export the volume data by resam-

25

Chapter 2. Patient-specific Model Generation

Figure 2.19: Visualization of deformed volume in 3D Slicer [6]. The left figure is

the slicing position. The middle figure is the cross section image of the deformed

volume. The right figure is the cross section image with stress field overlay.

pling the MRI intensites using interpolation techniques. The exported data can

be visualized using viewers that supports medical image format. Fig. 2.19 shows

a visualization example using 3D Slicer [6]. This was obtained by exporting a

deformed volume with mesh size 5 mm. Note that the original MR image was

obtained preoperatively and Sylvian fissure should be closed. In the visualization

example (middle image), the Sylvian fissure is opened. This is because the image

was deformed according to the displacements imposed in FE analysis as described

above. Furthermore, the stress field inside the volume was overlaid (right figure).

This is valuable , e.g., when assessing the risk of retraction injury with evidence

of stress concentrations.

Although we have focused on the separation of the Sylvian fissure, our method

can separate the boundary between differently segmented regions. Therefore, the

other fissures can also be separated. To confirm this advantage, we tried to separate

the cerebellum and longitudial fissure.

2.7.5 Evaluation Using a Abdominal Model

Although we have developed a meshing algorithm for brain retraction, our

method can be used for simulations of the other organs. To provide an example,

we conducted a simulation using a abdominal model. We used a label map that is

a part of SPL abdominal atlas dataset provided by Talos et al. [42]. We resampled

the label map to 1 mm voxel size and set the mesh size to 5 mm. To separate the

26

2.7. Results and Discussion

(a-1) (b-1) (c-1)

(a-2) (b-2) (c-2)

(a-3) (b-3) (c-3)

(a-4) (b-4) (c-4)

Figure 2.20: Deformation of meshes. (a-*): nvoxels = 5, without SLPs. (b-*):

nvoxels = 5, with SLPs. (c-*): nvoxels = 10, with SLPs. (*-1): rest shape. (*-2):

shape when the Sylvian fissure is opened. (*-3): shape when the cerebellum is

pushed. (*-4): shape when the longitudial fissure opened.

27

Chapter 2. Patient-specific Model Generation

Fixed nodes
Displaced
nodes

Fixed
nodes

Fixed nodes

Liver

Stomach

Figure 2.21: Result of the evaluation using a abdominal model. Adopted from [8]

Input volume (le�) and

expected deforma�on (right)

Embedded in

a coarse mesh

Embedded in

a coarser mesh

Figure 2.22: Limitation of the topological preservability.

liver and stomach, the SLP {3 (stomach), 13 (liver)} was input to the meshing

algorithm. Fig. 2.21 shows the result of the simulation. In the simulation, the liver

was displaced upperward and separated from the stomach. This results imply that

our grid-based meshing algorithm can applied to various surgical situations that

involves complex geometry.

2.8 Limitations

Finally, we discuss on the limitation of the topological preservability. As mesh

size H increases, small gaps with lengths that are smaller than H were integrated

in a cell as illustrated in Fig. 2.22. Thus, we need to determine the mesh size with

a consideration of the boundary length that user wish to preserve.

Because we used regular grid for meshing the volumetric domain, the boundary

conformity of the FE mesh was ignored. This approximation decreases in the

28

2.9. Summary

accuracy of the physics simulations. This problem can be mitigated considering the

modification of the element stiffness matrix on the basis of the spatial distribution

of labels inside a finite element [40]. To address this problem, the knowledge on

the computational mechanics would be helpful. The method called Finite Cover

Method and homogenization are related to this issue.

Furthermore, we have not discussed on the contact handling for embedded

volumes. This topic is discussed in Chapter 5.

Moreover, the automated segmentation method should be customized for spe-

cific applications. In our evaluations, we used well-segmented models (atlas).

However, in an actual situation, automated segmentation should be performed

for efficient model generation. For the brain retraction simulation, we tried the

implementation on 3D Slicer [6], which is called EMSegmenter with “MRI Human

Brain Full Parcellation” predefined task. Although this implementation works

well, some small segmentation errors can be generated in most cases. Fig. 2.23

shows a 2D deformation of a label map with segmentation failures. This is an

example of deformations using a mesh generated by our method. The label map

was generated using the 3D Slicer EMSegmenter module. The input MR im-

age was NAMIC: Brain Mutlimodality “case01011” provided by National Alliance

for Medical Image Computing [7]. In the label map, a part of parietal lobe is

segmented temporal lobe (Fig. 2.23 (a)). Because our algorithm preserves the

topology according to a label map, resulting mesh can deform unexpectedly if the

map includes segmentation errors (Fig. 2.23 (b)). Although we can correct such

error interactively in 2D (Fig. 2.23 (c)), this correction is difficult for 3D complex

segmentation. In order to avoid the problem, precise segmentation method or

intuitive correction interfaces are required.

2.9 Summary

In this chapter, a mesh generation method for volume embedding approach

was introduced. This method preserves the connectivity of an input shape defined

as segmented volume data using superimposed cells. This method also considers

the separation of the boundary of differently labeled regions. Such boundaries

29

Chapter 2. Patient-specific Model Generation

are described using SLP by a user and the proposed algorithm try to separate

the boundaries even when they are attached without gaps. The proposed method

succeeded in preserving the topology of the brain fissures with good efficiency and

robustness.

30

2.9. Summary

Boundary that the user
wishes to separate

Segmenta!on
error

(a)

Incorrectly
separated
boundary

Displaced node

Fixed
nodes

Fixed nodes

(b)

Manually
corrected area

Displaced node

Fixed
nodes

Fixed nodes

(c)

Figure 2.23: Deformation of a label map with segmentation failures and its cor-

rected label map in 2D. Adopted from [9].

31

Chapter 3. Real-time Simulation

of Soft-tissue

Deformation

3.1 Introduction

In this chapter, a real-time simulation method for soft-tissue deformation and

fracture is described. The brain tissues are modeled as linear elastic material,

and the deformation is calculated using FEM. The geometrical nonlinearity is

considered by adopting a corotational formulation. Additionally, a fracture rep-

resentation of brain tissues is described. The proposed methods are evaluated on

the calculation speed and the stability in fracture simulation.

Please note that this chapter does not describe the consideration of nonconform-

ing mesh proposed in chapter 2. This chapter focuses on the general procedure of

FEM and its acceleration using a GPU. The contact problem considering noncon-

forming boundaries is described in chapter 5.

The contributions of the method proposed in chapter are described as the fol-

lowings:

• An acceleration method using GPU for a corotational linear FEM with fre-

quent change in the region of geometrical boundary condition.

• A stabilization method for the fracture simulation on the basis of the element

removals is integrated in the proposed FEM framework.

In general, the most time-consuming procedures of FEM are the stiffness matrix

assembly and solving linear simultaneous equation. In addition, the collision re-

sponse procedure requires additional costs. In the FEM solver described in this

chapter, the collision response is calculated by imposing forced displacements (ge-

33

Chapter 3. Real-time Simulation of Soft-tissue Deformation

ometrical boundary conditions). Because general FEM solvers do not consider the

frequent changes in the regions applied geometrical boundary conditions, efficient

matrix rearrangement algorithm have not been discussed in the field of real-time

physics simulation. In this chapter, the implementation of the three procedures

mentioned above, i.e., the stiffness matrix assembly, the linear solver, and the

stiffness matrix rearrangement, are described by considering sparse-matrix stor-

age formats (Section 3.4). All algorithms are designed for the paralellization on a

GPU. However, these algorithms presented in this chapter assume that the mesh

topology is not changed during a simulation. Therefore, topology changes such

as node additions are forbidden. In order to enable to simulate the soft-tissue

dissection under these limitations, we utilized a fracture representation based on

the element removal approach. In this approach, fracture behaviors are computed

by disabling the contributions to global stiffness of removed elements. However,

it has been reported that the dynamic simulation become unstable, which can

lead to vibration when the tetrahedral mesh becomes nonmanifold due to the ele-

ment removals [43]. To address the instability issue, we also developed an element

removal algorithm with topological singularities avoidance (Section 3.5). The con-

cept of the avoidance algorithm is aggressive element removal. Its implementation

is very simple and can be used as alternative to existing methods, e.g. [44]. Finally,

the method was evaluated by conducting a blunt dissection and brain retraction

simulations.

3.2 Related works

3.2.1 Collision Response

Recent studies on the haptic rendering for interaction with deformable envi-

ronments have focused on efficient contact handling considering collisions between

multiple soft objects as well as self-collisions [45, 46]. They have modeled con-

tact response on the basis of Signorini’s law and Coulomb’s law, and the linear or

nonlinear complementarity problem needs to be solved. Although they have de-

veloped efficient GPU implementations, the number of nodes is limited to several

thousands for real-time simulation because of their high computational burdens.

34

3.2. Related works

The fastest method for collision response may be the penalty method [47]. In

penalty method, contact forces are applied to contact nodes which formulated using

the depth to the penetration in a colliding object. The magnitude of the contact

force is often formulated by the multiplication of the penetration depth and penalty

parameters. However, the determination of the penalty parameters for realizing

stable simulation is difficult. To obtain a stable behavior, the time integration

should be carefully formulated. This approach is described in Chapter 4.

The other approach is the position-constraint method. In this method, nodal

displacements are directly imposed according to geometrical relationships. In an

early study on a real-time deformable model for surgery simulator, Cotin et al. pro-

posed a position-constraint method using the Lagrange multiplier method [48]. A

few years later, Hirota et al. adopted a boundary-condition-based constraint [49].

These method are basically equivalent and both methods resulting in a large si-

multaneous linear equations. The method by Hirota et al. might be faster because

the size of the linear equations is smaller than that of [48](see Section 3.3.3). The

limitation of the position-constraint-based method is that the inability to compute

accurate contact responses subject to Signorini’s law or Coulomb’s law. However,

the computational cost is lower than that of the accurate methods (method based

on Signorini’s law or Coulomb’s law), the position-constraint method can be uti-

lized for a high-resolution models.

In general, the stiffness matrix of FEM is a large sparse matrix, in which most

of the components are zero. Therefore, the stiffness matrix should be stored as

a sparse matrix format. However, past boundary-condition-based studies have

stored the stiffness matrix in dense matrix format. This might be faster for a very

coarse mesh model (e.g. less than 1,000 nodes). However, when we consider to use

a large and high-resolution mesh (e.g. mesh with approximately 10,000 nodes),

memory consumptions and calculation cost become larger than the implementation

with dense matrix format. Therefore, GPU-based implementations with sparse

matrix format is required for fast calculation of high-resolution deformable models.

35

Chapter 3. Real-time Simulation of Soft-tissue Deformation

3.2.2 Fracture and Cutting

In the community of computer graphics, a lot of fracture simulation methods

have been proposed (e.g. [50, 51, 52]). This section reviews several important

algorithms developed for real-time fracture simulations.

Mor and Kanade developed the model of knife cutting based on explicit mesh

modification [53]. They investigated split patterns in which a tetrahedron is di-

vided into smaller tetrahedra according to the path of the knife movement. This

approach explicitly modifies a tetrahedral mesh by adding new nodes to it, and

thus, the number of nodes are increased as the cutting procedure are conducted.

Jerabkova et al. have developed a method based on the extended FEM [54],

in which a crack is represented by modification of interpolation functions of fi-

nite elements. This method does not requires the mesh topology modification and

might free us from the complex implementation of explicit online mesh modifi-

cation. However, this approach increase in the degree of freedom (DOF) as the

cracks propagated and the computational cost can be increased.

In the early years of the studies of surgery simulation, Delingette et al. devel-

oped an method based on the element removal [55]. The main drawback of this

approach is a loss of volume. However, it offers a low calculation cost and simple

implementation. In this approach, no nodes are added as the fracture propagated.

Therefore, the simulation can be run at the constant computational cost. Because

we wish to make high-speed calculation top priority, we adopt this element removal

approach.

However, as pointed by Forest et al., element removals may lead a tetrahedral

mesh to become nonmanifold [43], which means that the tetrahedral mesh has

vertices or edges on which the thickness of the volumetric mesh cannot be defined.

Such vertices and edges are called singular vertices and singular edges, respectively,

and the singularity is called a topological singularity. Fig. 3.10 shows examples of

topological singularity. Because the dynamic simulation can be unstable when the

FE mesh is a nonmanifold geometry, topological singularities should be avoided.

Some techniques of topological-singularity avoidance have been discussed in the

literature. Forest et al. introduced an algorithm based on node separation [43].

In their method, the singular vertices and singular edges are separated by adding

36

3.3. Finite Element Method

Fixed

Bending

displacement

(a) Initial shape (b) Linear FEM (c) Corotational FEM

Figure 3.1: Bending deformations with linear FEM and corotatioanl FEM.

(a) Initial shape (b) Linear FEM (c) Corotational FEM

Fixed

Torsional
displacement

Figure 3.2: Torsional deformations with linear FEM and corotatioanl FEM.

copies of the singular vertices and edges. However, this approach increases the

computational burden because the DOFs of the mesh increase with the node addi-

tions. Nakayama et al. developed an algorithm that suspends the element removals

that cause topological singularities [44]. However, such delay algorithm does not

correctly simulate realistic fracture phenomena because the stress will be concen-

trated at a singular vertex and singular edge and such vertex and edges should be

disconnected immediately.

3.3 Finite Element Method

3.3.1 Corotational FEM

In this study, we adopted corotational FEM for calculating the deformation of

soft tissues. In the corotational FEM, the geometrical nonlineality is considered by

modifying the element stiffness matrix defined in infinitesimal strain theory. The

corotational FEM can be implemented with small modification of linear FEM.

This method enhances the visual plausibility of the simulation and is a reason-

37

Chapter 3. Real-time Simulation of Soft-tissue Deformation

R

a b

Figure 3.3: Deformation of a tetrahedron. (a) Geometrical nonlinearity. (b) In-

version of an element. Reproduced from [1].

able choice for trading off accuracy and computational cost [56]. In particular,

corotational FEM can calculate the deformations involves element rotations such

as bending (Fig. 3.1) or torsional deformation (Fig. 3.2) better than linear FEM.

In this formulation, element strains is evaluated in the rotated coordinates, which

are called corotational coordinates (see Fig. 3.3(a)). A corotational coordinate is

defined based on the rotation component of a element deformation. The element

stiffness equation of a linear FEM is described as

f e
ext = Keue, (3.1)

where f e
ext and ue are the element force vector and element displacement vector,

respectively. The element displacement vector is defined as ue = xe − xe
0, where

xe and xe
0 are the current and initial nodal positions vectors, respectively. Let

R ∈ R3×3 be the rotation matrix that represents th erotation of the element

coordinates. In the corotationa formulation, the current position and force vectors

are transformed using R and the element stiffness equation can be written as

ReTf e
ext = Ke

0

(
ReTxe − xe

0

)
, (3.2)

where Ke
0 is the element stiffness matrix of a linear FEM and

Re ≜ blockdiag [R,R,R,R] .

Eq. (3.2) is rewritten as

f e
ext = Kexe − f e

0, (3.3)

where

Ke = ReKe
0R

eT, (3.4)

f e
0 = ReKe

0x
e
0; (3.5)

38

3.3. Finite Element Method

We call f e
0 the force offset vector.

The rotation matrix R is obtained by SVD of the deformation gradient tensor

F [57]. This formulation is stable even if the elements are inverted (see Fig-

ure 3.3(b)). In the case of the first-order tetrahedral element, F transforms an

edge vector of the initial shape dmj into an edge vector of the deformed shape dsj

as dsj = Fdmj (j = 1, 2, 3). From this equation, F is calculated as F = DsD
−1
m ,

where Ds = [ds1 ds2 ds3] and Dm = [dm1 dm2 dm3]. F can be represented as

F = UΣVT, (3.6)

where U and V are orthogonal matrices, and Σ is a diagonal matrix. The rotation

matrix is calculated as

R = UCVT, (3.7)

where C ≜ diag
[
1, 1, det(UVT)

]
[58].

To obtain the rotation matrices of the tetrahedral elements, SVD of a large

number of 3×3 matrices described in Eq. (3.6) must be performed. However, most

existing parallel implementations of SVD are specialized for large matrices [59].

For SVD of a large number of small matrices, Bedkowski et al. introduced an

algorithm for three-dimensional reconstruction using mobile robots [60]. In the

present work, the algorithm introduced by Bedkowski et al. is modified. The

modified algorithm is summarized as follows:

1. Diagonalize FTF by the Jacobi eigenvalue algorithm as FTF = VTSV, where

V is an orthogonal matrix, and S is a diagonal matrix whose elements are

the eigenvalues of FTF.

2. Construct a matrix Σ whose diagonal elements are the singular values of

FTF. The singular values are obtained by calculating the square root of

each diagonal element of S.

3. Calculate U = FVΣ−1.

4. U and V are used in Eq. (3.7).

In this algorithm, the eigenvalue approach is different from that of Bedkowski et

al. They calculated the eigenvalues by obtaining the roots of a cubic polynomial.

39

Chapter 3. Real-time Simulation of Soft-tissue Deformation

On the other hand, we adopted the Jacobi eigenvalue algorithm to simplify the

implementation.

3.3.2 Matrix Assembly

After Ke and f e
0 are obtained, they are assembled and integrated in the global

stiffness matrix K ∈ R3Nnode×3Nnode and global force offset vector f 0 ∈ R3Nnode

, where Nnode is the number of nodes. The assembly is processed by gathering

all element contributions using mesh topology. This procedure is referred to as

matrix assembly. As the mathematical expression, the assembly can be written as

the following equations.

K =
∑
e

LeTKeLe, (3.8)

f 0 =
∑
e

LeTf e
0, (3.9)

where Le ∈ R12×3Nnode is the gather matrix, which extract element nodal values

from global vectors. Le consists of zeros and ones (Boolean matrix). Eq. (3.8)

and Eq. (3.9) are just mathematical formulations, and the implementation of the

assembly process is realized in an efficient manner (the matrix multiplication is

not performed). We describe the efficient implementations in Section 3.4.3.

Let f ext and x be the global external force vector and global position vector,

respectively. The global stiffness equation can be written as

f ext = Kx− f 0. (3.10)

This equation can be written in analogy with the global stiffness equation formu-

lated in a linear FEM as

f = Kx, (3.11)

where f = f ext − f 0.

3.3.3 Boundary Conditions

In this chapter, we consider that the contact response is calculated by applying

the geometrical boundary conditions (Note that we also discuss on the contact

40

3.3. Finite Element Method

Contact nodes

Free nodes

Force f
d
: Unknown

Displacement u
d
: Known

Force f
f
: 0

Displacement u
f
: Unknown

Figure 3.4: Contact nodes and free nodes. Reproduced from [1].

response based on penalty method in Chapter 4). We assume that the forced

displacements for a deformable object due to contact of surgical instruments are

obtained by collision detection algorithms. When a contact between the brain

model and surgical instruments are detected, the forced displacements are imposed

to the contact nodes (Fig. 3.4). Therefore, the displacements of the contact nodes

are known, but, their external forces are unknown. In contrast, the displacements

of free nodes are unknown, but their external forces are known (the external forces

are zeros). Following the method proposed in Hirota et al. [49], the components

in the matrix and vectors of Eq. (3.11) are rearranged into displacement-known

and force-known variables, and the equation can be modified as:[
f f

fd

]
=

[
Kff Kfd

Kdf Kdd

][
xf

xd

]
, (3.12)

where the suffixes d and f denote the components of the displacement-known and

force-known nodes, respectively. In Eq. (3.12), fd and xf are unknown, and xf is

calculated by solving the following linear simultaneous equation:

Kffxf = f f −Kfdxd. (3.13)

After xf is obtained, fd is calculated as

fd = Kdfxf +Kddxd. (3.14)

We described only the formulation of the static FEM above. The dynamic for-

mulation with implicit time integration becomes a mathematically similar equation

to that of static FEM. The equation of motion for a deformable object is written

41

Chapter 3. Real-time Simulation of Soft-tissue Deformation

as

Mẍ+Cẋ+ (Kx+ f 0) = f ext, (3.15)

where M and C are a mass matrix and a damping matrix, respectively. M is a

diagonal matrix determined by gathering the equivalent masses of all nodes from

the node-share tetrahedrons: mi =
∑

Ti
mTi

/4, where mi is the equivalent mass

of node i, Ti is a tetrahedron that shares node i, and mTi
is the mass of Ti. In

general, C is determined on the basis of the material constitutive law. However,

for simplicity, Rayleigh damping is adopted in this study:

C = αM+ βK, (3.16)

where α and β are scalar values representing the damping effect, which are selected

heuristically for stabilizing the simulation. Eq. (3.15) can be written in the same

form as the linear FEM form as

Mẍ+Cẋ+Kx = f (3.17)

by defining a vector f = f ext−f 0. When we substitute v for ẋ, the time derivatives

of the variables are defined as

ẋ = v, (3.18)

Mv̇ = −Cv −Kx+ f . (3.19)

In order to avoid numerical instability in the dynamic simulation, we adopt implicit

time integration because it has unconditionally stable characteristics. Implicit time

integration is formulated as

xi+1 = xi +∆tvi+1, (3.20)

Mvi+1 = Mvi +∆t
(
−Cvi+1 −Kxi+1 + f i+1

)
. (3.21)

By substituting Eqs. (3.16) and (3.20) into Eq. (3.21), vi+1 can be obtained by

solving the following equation:(
(1 + α∆t)M+

(
β∆t+∆t2

)
K
)
vi+1 = Mvi +∆t

(
−Kxi + f i+1

)
. (3.22)

As discussed in Section 3.3.3, the contact nodes move together with the rigid body;

hence, xd and vd are known, whereas fd is unknown. The forces applied to the

42

3.4. GPU Parallelization

unconstrained nodes are zero, i.e., f f = 0. Therefore, Eq. (3.22) can be rewritten

as (
(1 + α∆t) M̄+

(
β∆t+∆t2

)
K̄
)
v̄i+1 = M̄v̄i +∆t

(
−K̄x̄i + f̄

i+1
)
, (3.23)

where

M̄ =

[
Mf 0

0 Md

]
, K̄ =

[
Kff Kfd

Kdf Kdd

]
, v̄ =

[
vf

vd

]
, x̄ =

[
xf

xd

]
, f̄ =

[
f f

fd

]
.

Eq. (3.23) is rewritten as [
Aff Afd

Adf Add

][
vi+1
f

vi+1
d

]
=

[
bi+1
f

bi+1
d

]
. (3.24)

3.4 GPU Parallelization

This section describes a GPU implementation of the FEM described in Sec-

tion 3.3. In this section, some performance measurements are shown. For the per-

formance measurements, a CIARA KRONOS S810R workstation was used. The

workstation mounts an Intel Core i7-3960X (six cores, overclocked to 4.5 [GHz])

CPU, 64 [GB] of RAM, and two GPUs: an NVIDIA K20c (2,496 CUDA cores)

for numerical calculation and an NVIDIA Quadro K5000 (1,536 CUDA cores)

for graphics rendering. The algorithms are parallelized using OpenMP for multi-

threading on a multicore CPU and NVIDIA CUDA for general-purpose computing

on a GPU.

3.4.1 Simulation Procedures

Fig. 3.5 shows the flowchart of the boundary-condition-based contact simulation

scheme. Before the real-time loop is started, the element stiffness matrices Ke
0 and

the reduction arrays explained in Section 3.4.3 are calculated. The procedures in

the real-time loops are as follows.

Element data calculation: Re, Ke, and f e
0 are calculated. The parallel imple-

mentations of this stage are described in Section 3.4.2.

43

Chapter 3. Real-time Simulation of Soft-tissue Deformation

Precompu�ng

Collision detec�on

Matrix assembly

Fracture handling

Calcula�on of element data

Applica�on of boundary condi�on

Calcula�on of deforma�on and external forces

Figure 3.5: Flowchart of the simulation scheme. Reproduced from [1].

Matrix assembly: K and f 0 are assembled. The parallel implementation of the

assembly are described in Section 3.4.3.

Collision detection: Intersections between a deformable object (brain) and rigid

objects (brain spatulas) are tested. The contact nodes of the deformable

object and the corresponding forced displacements are determined. The

discrete collision detection approach reported in [61] is adopted. This method

can deal with collisions between a nonconvex deformable object and a rigid

object.

Boundary condition application: On the basis of collision detection, a bound-

ary condition is set. As mentioned in Section 3.3.3, a large sparse matrix is

rearranged according to the boundary condition. The implementation details

are described in Section 3.4.4.

Calculation of deformation and forces: The deformation is calculated by solv-

ing a system of linear equations. The linear equations are solved by the

conjugate gradient method. Sparse-matrix dense-vector multiplications are

44

3.4. GPU Parallelization

implemented by the sparse-matrix library CUSPARSE provided by NVIDIA

Corp.

3.4.2 Element Data Calculation

An element stiffness matrix Ke is formulated as Eq. (3.4). We assume the

material isotropy; thus, Ke is a symmetric matrix. Therefore, only the elements

of the upper triangular matrix of Ke should be stored. Further, f e
0 is obtained in

the same way as Ke (Eq. (3.5)). Finally, all Ke (K1, K2, . . . ,KNelem) and f e
0 (f 1

0,

f 2
0, . . . , f

Nelem
0), where Nelem is the number of tetrahedral elements, are serialized

and stored in the arrays valuesKe and valuesF0e, respectively. These element data

calculation can be executed in parallel using one thread per element.

3.4.3 Matrix Assembly in a Sparse Storage Format

In the matrix assembly procedure, the element stiffness matrices (small dense

matrices) are added into the global stiffness matrix (a large sparse matrix), as

described in Eq. (3.8). Similarly, the element force offset vectors (small dense

vectors) are added into the global force offset vector (a large dense vector), as

described in Eq. (3.9). In this section, the implementation of the assembly of

global stiffness matrix and global force offset vector is described.

In FEM, the global stiffness matrix is a large sparse matrix, in which most of

the components are zero. Therefore, the matrix is usually stored in a sparse-matrix

storage format to decrease memory consumption. In this work, we store the global

stiffness matrix using the coordinate list (COO) sparse storage format at the stage

of matrix assembly. This is because of the requirement of the algorithm of the ma-

trix rearrangement (described in Section 3.4.4). The COO matrix format consists

of three arrays: values , rowIdx , and colIdx . In this format, only the nonzero com-

ponents of a matrix are stored in the array values . The row and column indices of

the nonzero components are stored in the arrays rowIdx and colIdx , respectively.

These arrays are stored in row-major order (sorting is required). For example, the

45

Chapter 3. Real-time Simulation of Soft-tissue Deformation

matrix 
a 0 0

b c 0

0 0 d


is stored as the following three arrays.

values = [a, b, c, d]

rowIdx = [0, 1, 1, 2]

colIdx = [0, 0, 1, 2]

In the remainder of this section, values, rowIdx, and colIdx represent the arrays of

K in the COO format.

In order to achieve a fast calculation of matrix assembly, we adopted the reduc-

tion list approach introduced by Cecka et al. [62]. When the mesh connectivity

does not change during a simulation, rowIdx and colIdx are constant. Therefore,

only values should be recalculated at every time step. The matrix assembly pro-

cedure involves lots of independent summations expressed as

values(i) =

Nsrc,i∑
j=1

valuesKe(srcIdx i(j)), (3.25)

where srcIdx i is an array that stores the source indices that point to the compo-

nents of valuesKe for the summation of the i-th component of values, and Nsrc,i is

the number of components of srcIdx i. The components of srcIdx are determined

by the mesh topology. In a reduction list, the source indices and a negative-signed

destination index are stored as

reductionList i = [srcIdx (1), srcIdx (2), . . . , srcIdx (Nsrc,i),−i]. (3.26)

In general, a reduction list has one destination index as shown in Eq. 3.26. On the

other hand, because our stiffness matrix K is a symmetric matrix, our reduction

list stores two destination indices as

reductionList i = [srcIdx (1), srcIdx (2), . . . , srcIdx (Nsrc,i),−i,−lower(i)], (3.27)

where lower(i) is an index that points to the lower component of values(i). An

example of reduction-list-based summation is illustrated in Fig. 3.6. There is a

46

3.4. GPU Parallelization

Reduc�on lists

Values array of K in COO

Serialized K
e (K

1
,K

2
, ... ,K

Nelem

)

Write

 Read

Write

 Read

3 50

a

a+c+e i+k+n+o

b c d e f h i j k l m n o p q r s t

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 4 137 9 12 13 16

Figure 3.6: Reduction array. Reproduced from [1].

storage format specialized for a symmetric matrix that stores only upper or lower

triangular entries as in the case of Ke. However, we did not adopt such a storage

format for K because it requires special treatment in the subsequent procedures,

which can degrade the maintainability because of its complexity. Therefore, all

the nonzero components of K are stored as described above. As noted in [62],

this approach avoids atomic operations (conflict avoidance for parallel writing

operations) because the destination addresses are independent of each other.

The assembly of f 0 is performed in a similar way. After we obtain Re, all values

of f e
0 are stored as an array. We construct the reduction list for the assembly of f 0

in advance. The reduction is executed in a thread per component of f 0, which en-

ables the calculation of f 0 without atomic operation. Because this reduction is not

depends on the assembly of K, assemblies of K and f 0 are executed concurrently,

e.g., on two GPUs.

3.4.4 Matrix Rearrangement

In this study, contact responses are calculated by applying geometrical bound-

ary conditions (forced displacements) and the global stiffness matrix is rearranged

according to the boundary conditions as described in Section 3.3.3. This rear-

rangement procedure includes permutation and separation of matrices.

Permutation is executed by using a permutation list. Permutation list includes

the destination indices of the permutation. We describe the list as list(i) for the

permutation of the i-th index. The list is generated according to the boundary

conditions. Fig. 3.7 is an example of permutation for in the case of one tetrahedron.

47

Chapter 3. Real-time Simulation of Soft-tissue Deformation

Node 0

Permuta!on
list

0

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

Node 1 Node 2 Node 3

3 4 5 6 7 80

x y z
0 0 0

x y z
0 0 0

x y z
1 1 1

x y z
1 1 1

x y z
2 2 2

x y z
2 2 2

x y z
3 3 3

x y z
3 3 3

1 2 9 10 11

Contact node

Free node

x

x x

x

f d

Figure 3.7: Permutation list. Reproduced from [1].

In this example, the nodes 0, 2, and 3 are constrained. The permutation procedure

prepare an array that store the resulting permutated array, and copies the values

of the contact nodes to the head of the array and those of the free nodes at the

bottom. The Permutation is represented as m′(list(i), list(j)) = m(i, j), where m

and m′ are the source matrix and permutated matrix, respectively. m(i, j) denotes

the i, j component of matrix m. When a source matrix is stored as a dense matrix

format, permutation is executed by simply copying the source components to the

destinations. However, when the source matrix is stored in a sparse matrix storage

format, the implementation of permutation differs.

In this study, the COO format is adopted for storing global stiffness matrix, as

mentioned in Section 3.4.3. For the matrix stored in the COO format, permutation

is performed as

rowIdx (i) = list(rowIdx (i)),

colIdx (i) = list(colIdx (i)).
(3.28)

These operations do not conflict with each other, and the permutations are exe-

cuted in parallel. Note that compressed sparse row (CSR) are also widely used

for sparse matrix storage format. The CSR format is constructed by compressing

rowIdx of the COO format. This approach reduces the memory usage compared

to the COO format, and it can be parallelized for matrix–vector multiplication

with good performance. However, the permutation of the components is more

complex than that of the COO format. Although permutations can be achieved

using the permutation matrix P as M′ = PTMP, this implementation is not

48

3.4. GPU Parallelization

a

e

g

0

0

0

c

00

0 0 h

0

b d

f

h

d

0

0

0

0

0

0c

0 0 a

g

f e

b

h

d

0

0

0

c

0

f

0

0

0

0 a

g

e

b

d

0

c

0

h 0

0 f

0

0

g

e

0

0 a

b

Permutate A by list.

v, r and c denote

values, rowIndices and colIndices, respec!very.

Procedure Matrix data in COO format Correspoinding matrix

in dense format

v [a,b,c,d,e,f,g,h]

r [3,2,2,2,1,1,0,0]

c [3,2,1,0,3,1,2,0]

A:

Sort arrays by c. v [d,h,c,f,b,g,a,e]

r [2,0,2,1,2,0,3,1]

c [0,0,1,1,2,2,3,3]

A:

Separate A

into Af (c<Nf) and Ad (c>=Nf).

Substract Nf from c of Ad.

Sort arrays by r (stable sort)

v [d,h,c,f]

r [2,0,2,1]

c [0,0,1,1]

v [b,g,a,e]

r [2,0,3,1]

c [0,0,1,1]

Af: Ad:

v [h,f,d,c]

r [0,1,2,2]

c [0,1,0,1]

v [g,e,b,a]

r [0,1,2,3]

c [0,1,0,1]

Af: Ad:

Separate Af

into Aff (r<Nf) and Adf (r>=Nf).

Separate Ad

into Afd (r<Nf) and Add (r>=Nf).

Subs!tute Nf from r of Adf and Add. v [d,c]

r [0,0]

c [0,1]

v [h,f]

r [0,1]

c [0,1]

v [g,e]

r [0,1]

c [0,1]

v [b,a]

r [0,1]

c [0,1]

Aff:

Adf:

Afd:

Add:

Matrix A in COO format,

permua!on list list and

separa!on index Nf are given.

*In the example, list=[3,2,1,0] and Nf=2

v [a,b,c,d,e,f,g,h]

r [0,1,1,1,2,2,3,3]

c [0,1,2,3,0,2,1,3]

A:

Figure 3.8: Algorithm of the matrix rearrangement with an example. Reproduced

from [1].

efficient because additional arithmetic operations are required compared to the

above-mentioned permutation in COO format. Therefore, the COO format was

adopted as the sparse matrix storage format for our application.

Because COO format requires that the index arrays are sorted in the row-

major manner, sorting must be performed when the index arrays are modified.

We perform the sorting process in combination with a matrix separation process.

Fig. 3.8 shows an overview of the procedure including permutation by taking a

matrix A as an example. After the modification of the index arrays (Eq. (3.28))

is performed, three arrays are sorted by colIdx. Next, A is separated along its

columns into Af and Ad. Let Nf be the separation index as used in Fig. 3.8.

The entries whose column index is less than Nf are copied to Af . The rest of the

49

Chapter 3. Real-time Simulation of Soft-tissue Deformation

Figure 3.9: Example of input arrays and its compression. Reproduced from [1].

entries are copied to Ad. To fix colIdx to zero-base indices, Nf is subtracted from

all the components of colIdx inAd. Subsequently, three arrays (values, rowIdx, and

colIdx) of Af and Ad are sorted by their rowIdx. This sort must be stable sort, in

which the original order is maintained when the compared components are same

values. This is because, if the sorting is not stable, the ascending order of colIdx

might be disturbed. After the sort, Af and Ad are separated along their rows into

Aff , Adf , Afd, and Add. Subtraction of rowIdx of Adf and Add is required for the

same reason with that for Ad. Finally, the rearrange and separated matrices are

generated in the COO format.

As described above, these procedures require sorting of large arrays, which

is computationally demanding. To accelerate the sorts, we use the optimized

implementation in the NVIDIA CUDA thrust library.

For further acceleration, the permutation list and the arrays (values, rowIdx,

colIdx) of A can be compressed. Fig. 3.9 shows an example of the compression.

Because three variables with respect to each node are relocated together, the

50

3.5. Modeling of Dissection

Singular vertex
Singular edge

Figure 3.10: Topological singularity. Reproduced from [1].

permutation list is a combination of three consecutive integers. In addition, rowIdx

and colIdx consist of a combination of the same three integers, e.g., (0, 0, 0), and

a combination of three consecutive integers, e.g., (0, 1, 2), respectively. Therefore,

sorting can be performed according to these three-integer blocks. In order to realize

the sort per block, values is separated into three arrays, values x, values y, and

values z. The permutation list, rowIdx, and colIdx are compressed by storing only

the first element of the consecutive-integer blocks. By this compression the size of

the arrays to a third of their original size is reduced and the computational burden

of sorting decreases. After Aff , Afd, Adf , and Add are calculated, the compressed

arrays are extracted in the uncompressed COO format.

3.5 Modeling of Dissection

3.5.1 Topological-singularity Avoidance

Element removing can lead a FE mesh to be a nonmanifold mesh [43], which

means that the mesh has vertices or edges where the thickness of the volumet-

ric mesh cannot be defined. Such vertices and edges are called singular vertices

and singular edges, respectively. The singularity because of the singular vertex

and singular edges is called a topological singularity. Examples of the topological

singularity is illustrated in Fig. 3.10. Because the physics simulation can be un-

stable when the mesh becomes nonmanifold, we consider to avoid the topological

singularities in our surgery simulator.

This section describes a simple and fast algorithm for topological-singularity

avoidance that can be used for element-removal fracture representations. The

51

Chapter 3. Real-time Simulation of Soft-tissue Deformation

concept of the algorithm is aggressive element removing. One drawback of this

approach is that the volume decreases as elements removals. However, if such

drawback is allowed, the approach is fast and suitable for real-time applications.

The summarized algorithm flow is described as follows.

1. Fracture detection: Detect the tetrahedra according to a fracture criterion

and list them in a set Trm.

2. Singularity verification: Test whether the vertices and edges involved in

Trm are singular after the removal of the tetrahedra listed in Trm.

3. Determination of additional tetrahedra to be removed: If vertices or

edges are predicted to be singular, the tetrahedra that include the singular

vertices or edges are added to Trm.

4. Iterate Singularity verification and Detection of additional tetrahe-

drons to be removed until Trm becomes empty.

In our simulator, the maximum principal stress is used as the criterion to detect

the tetrahedra to be removed (in the fracture detection described above). That

is, if the absolute value of the maximum principal stress exceeds a threshold,

the element is added in Trm (the set of tetrahedra to be removed). The removal

criterion is written as

max(|σ1|, |σ2|, |σ3|) > σmax, (3.29)

where σi (i = 1, 2, 3) is the maximum principal stress, which is obtained as the

eigenvalue of the element stress tensor Se, and σmax is the stress threshold. Because

we use a constant-strain tetrahedral element, Se is constant on an element. In the

corotational formulation, Se is obtained by applying the element rotation to Se as

Se = DeBe (Rexe − xe
0) , (3.30)

where De is the strain–stress matrix and Be is displacement–strain matrix.

In the phase of singularity detection, the sets of vertices Vrm and edges Erm

are extracted from the tetrahedra listed in Trm. Each vertex v ∈ Vrm and edge

e ∈ Erm is tested whether it is a singular vertex or edge. The singularity detection

algorithm of vertex v is described as the following. See also Fig. 3.11(a).

52

3.5. Modeling of Dissection

Figure 3.11: Topological singularity detection. (a) Singular vertex detection. (b)

Singular edge detection. Reproduced from [1].

1. Extract T v, a set of tetrahedra that share v.

2. Select an arbitrary tetrahedron tv0 ∈ T v.

3. Construct T v
edge, a set of tetrahedra, that connects with tv0 by edges.

4. Select a tetrahedra tvx ∈ T v
edge and search for an edge-sharing tetrahedron as

described in steps 2 and 3. Add the new edge-sharing tetrahedron to T v
edge

and iterate until no entry is detected.

5. If n(T v) ̸= n(T v
edge), v is a singular vertex, where n(·) is the number of

tetrahedra.

53

Chapter 3. Real-time Simulation of Soft-tissue Deformation

The algorithm of singular-edge detection goes in a similar manner with that for

singular-vertex detection. The algorithm flow is described as the following. See

also Fig. 3.11(b).

1. Extract T e, a set of tetrahedra, that share e.

2. Select an arbitrary tetrahedron te0 ∈ T e.

3. Construct T e
edge, a set of tetrahedra, that connects with te0 with edges except

edge e.

4. Select a tetrahedron tex ∈ T e
edge and search for an edge-sharing tetrahedron as

described in steps 2 and 3. Add the new edge-sharing tetrahedron to T e
edge

and iterate until no entry is detected.

5. If n(T e) ̸= n(T e
edge), e is a singular edge.

The phase of detection of additional tetrahedrons to be removed detects

a set of additional tetrahedra to be removed, Tadd, to avoid a topological singularity.

When a singular vertex v is detected, T v
edge and T̂ v

edge

(
= T v ∩ T̄ v

edge

)
are defined.

In order to avoid the volume loss as much as possible, the number of tetrahedra to

be removed should be minimized. Hence, the smaller set between T v
edge and T̂ v

edge

is selected as Tadd by comparing n(T v
edge) and n(T̂ v

edge). Similarly, when a singular

edge e is detected, the smaller set between T e
edge and T̂ e

edge = T e ∩ T̄ e
edge is selected

as Tadd for the same reason. After Tadd is determined, it is added to Trm.

We shows the effect of the singularity avoidance. Fig. 3.12 shows some results

of fracture simulations. Without topological-singularity avoidance (Fig. 3.12(b)),

tetrahedra connected with a singular vertex or edge exhibit unstable dynamic

behavior. On the other hand, with topological-singularity avoidance (Fig. 3.12(a)),

stable behavior was obtained and the simulation can be continued in any fracture

situation.

3.5.2 Implementation

In our fracture simulation the maximum principal stress of each tetrahedral

element is required. It is computed in parallel using the GPU. The eigenvalues

54

3.6. Results and Discussion

b

a

Figure 3.12: Examples of fracture simulations. These sequences show a fracture

simulations of a soft tissue model executed (a) with and (b) without topological-

singularity avoidance. Reproduced from [10].

of the stress tensor are calculated using the Jacobi eigenvalue algorithm. The

topological-singularity avoidance is implemented on a CPU. It is because numerous

conditional branchings and complex data structures for representing the mesh

connectivity are required. However, it is not a cost-intensive procedure and is

rapidly computed on a CPU.

3.6 Results and Discussion

3.6.1 Performance Evaluation of GPU Implementations

To evaluate our GPU implementation, we compare three implementations: (1)

a CPU (no parallelization), (2) a six-core CPU with multithreading paralleliza-

tion, and (3) a GPU parallelization. Cube-shaped models discretized by various

numbers of tetrahedrons were used for the comparison. Simulation environment

was constructed using a cube model. The cube model was procedurally generated

with different resolutions. In the cube model, the surface vertices of the two op-

posite sides are constrained. The computational times of the matrix assembly and

matrix rearrangement are shown in Fig. 3.13 and Fig. 3.14, respectively.

Fig. 3.13 and Fig. 3.14 show that the GPU parallelization was fastest among

55

Chapter 3. Real-time Simulation of Soft-tissue Deformation

 0

 50

 100

 150

 200

 250

 0 10000 20000 30000 40000 50000 60000

C
o

m
p

u
ta

!
o

n
a

l
!

m
e

 [
m

s]

Number of nodes

CPU

Mul!-Core CPU

GPU

Figure 3.13: Computational time of matrix assembly. Reproduced from [1].

the three implementations in both evaluations. Let us compare the performance

for the FE mesh with 15,625 nodes and 69,120 elements. For the matrix assem-

bly, the GPU parallelization (10.7 ms) was 19.7 times faster than the single-CPU

implementation (210.9 ms) and 3.9 times faster than the six-core CPU implemen-

tation (41.9 ms). For the matrix rearrangement, the GPU parallelization (11.0 ms)

was 7.1 times faster than the single-CPU implementation (78.4 ms) and 5.1 times

faster than the six-core CPU implementation (56.3 ms]).

3.6.2 Blunt Dissection Simulation

In surgery, an operation for separating tissues without cutting is called blunt

dissection. For example, blunt dissection is performed to breaking very soft con-

nective tissues that covers cerebral vessels in neurosurgery.

An cube-shaped FE mesh with a groove filled with soft material was used in

the simulation. This model is a simple model that imitating the structure of

a cerebral fissure filled with connective tissue. The number of nodes was 4,807

and the number of tetrahedrons was 19,600. The Young’s modulus and Poisson’s

ratio of the connective tissue were set to 100 [Pa] and 0.4, respectively. The

Young’s modulus and Poisson’s ratio of the main body were set to 1,000 [Pa]

and 0.4, respectively. The threshold stresses (absolute value of the maximum

56

3.6. Results and Discussion

 0

 50

 100

 150

 200

 250

 0 10000 20000 30000 40000 50000 60000

C
o

m
p

u
ta

!
o

n
a

l
!

m
e

 [
m

s]

Number of nodes

CPU

Mul!-Core CPU

GPU

Figure 3.14: Computational time of matrix rearrangement. Reproduced from [1].

principal stress) were set to the same values with their Young’s moduli. Note that

these material parameters are intended to distinguish the relative stiffness of the

materials. They are not reliable parameters for simulating the brain tissue and

connective tissue.

In the simulation, two spatulas were inserted into the groove, and they were

moved to dissect the connective tissues filled in the groove at a velocity of 5.0 mm/s.

The time step was set to 20 ms.

Fig. 3.15(a) show the snapshots of the simulation. Fig. 3.15(b) show the stress

visualizations of the same simulation. As seen in Fig. 3.15(b), the connective tissue

was deformed larger than the main body because of the difference of the stiffness.

The connective tissues were removed owing to the stress concentration because it

was specified to be softer than the main body. In the simulation, no oscillation or

divergent behavior was observed.

Fig. 3.16 and Fig. 3.17 show the computational time and the removed elements

count at each time step. In Fig. 3.16, the jitter of the computational time was

observed. One of the cause of the jitter is the difference in the convergence of

the conjugate gradient method in each time step. Another cause is the change in

the region where the geometrical constraints (boundary condition) were imposed

. When the region of the constraints changed, the matrix rearrangement proce-

57

Chapter 3. Real-time Simulation of Soft-tissue Deformation

Spatula

So�
�ssue

Connec�ve
�ssue

0.8 [s]0.0 [s] 2.4 [s]1.6 [s]

0.8 [s]0.0 [s] 2.4 [s]1.6 [s] 0.0

0.5

1.0

a

b

Figure 3.15: Results of the simulation of blunt dissection. (a) Snapshots. (b)

Stress visualization (maximum principal stress). Reproduced from [1].

dure is performed and takes additional computations. The average computational

times of the three implementations, a CPU with no parallelization, a six-core CPU

with multithreaded parallelization, and a GPU implementation, were 103, 41, and

17 ms, respectively. The speed-up of the GPU against the CPU was 6.1. Only the

GPU realized sufficient smooth animation with a refresh rate greater than 30 Hz.

From Fig. 3.17, the fracture started at 25-th time step, and the peak number of

removed elements was 33 at 60-th step. This result shows that the number of

removed elements did not affect the computational time. This is preferable for

real-time interactive simulation because the simulation can be continued at the

constant refresh rate throughout.

3.6.3 Brain Retraction Simulation

Brain retraction is a pushing manipulation for creating surgical working space.

In most approach in neurosurgery, brain retraction is inevitable and the imposed

pressure can injure the brain tissue. Therefore, the haptic sense is important for

performing the retraction. We focuses on the retraction of the brain tissues of

58

3.6. Results and Discussion

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200

C
o

m
p

u
ta

!
o

n
a

l
!

m
e

 [
m

s]

Step [-]

CPU
Mul!-core CPU

GPU

Figure 3.16: Computational time spent for each time step of the blunt dissection

simulation. Reproduced from [1].

the Sylvian fissure. The Sylivian fissure is a cerebral fissure that separates lobus

parietalis and lobus temporalis. The Sylvian fissure is filled with the arachnoid

manbraine, which required to be dissected by surgeons to approach the deep part of

the brain. We conducted a brain retraction simulation using a Sensable Phantom

Omni haptic device. The calculated reaction forces that acting to the brain spatula

model was fed back to the user through the haptic device. In this simulation, we

assumed that the arachnoid menbrain had been dissected beforehand. The user

was given the task objective to retract the brain tissues and expose the brain tumor

existing at the bottom of the Sylvian fissure. We used a brain hemisphere mesh

model in this simulation. The number of nodes was 8,647 and the number of the

tetrahedral elements was 32,639. This model was constructed from scan data of

an anatomical model of the human brain, Brain Model C20 (3B Scientific GmbH)

with modifications using 3D modeling software. The nodes located on the bottom

of the model were fixed, i.e., the displacements were set to zero.

Fig. 3.18 shows the snapshots of the simulation. By manipulating a haptic de-

vice, an operator moves a sphere-shaped pointer displayed in the virtual space. The

operator picked up and manipulated the spatulas in the virtual space. Collision

detection was performed between spatulas and the brain model, and the reaction

59

Chapter 3. Real-time Simulation of Soft-tissue Deformation

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200

N
u

m
b

e
r

o
f

re
m

o
v
e

d
 t

e
tr

a
h

e
d

ro
n

s
[-

]

Step [-]

Figure 3.17: Number of removed elements at each time step. Reproduced from [1].

force acting to the spatula was fed back to the user. As seen in Fig. 3.18, the brain

tissues were pressed, and the Sylvian fissure was opened using two spatulas. As

a result, the tumor was exposed. Fig. 3.19 shows the computational time of each

time step. The computational times spent for assembling a matrix, rearranging

a matrix, and solving a linear system of equations are plotted. A stress analysis

and the fracture processing were not performed in this simulation. Fig. 4.7 shows

the history of reaction force to be rendered to the user. We filtered the reference

forces by a first-order low-pass filter (cut-off frequency 1.0 Hz) for smooth force

feed back.

Although the simulation was performed with good visual plausibility, the cal-

culation speed was not sufficient for stable force feed back. The range of computa-

tional time for a simulation loop was 40–80 [ms]. This refresh rate is not sufficient

for smooth animations and haptic rendering. Because of the discontinuous force

update, the force display could oscillate without the low-pass filter. Although the

low-pass filter smoothed the discontinuous force feedback, this is not a fundamental

solution to display realistic reaction forces. From these results, further accelera-

tion or stabilizing strategy are needed to achieve stable and visually acceptable

simulation.

60

3.7. Summary

Manipulate spatulas

by the pointer

Retract a fissure

using two spatulas

Tumor

Pointer

Spatulas

Sylvian fissure

Figure 3.18: Result of the brain retraction simulation. Reproduced from [1].

3.7 Summary

In this chapter, a real-time simulation method for soft-tissue deformation and

fracture is described. An formulation using corotational FEM and bounday-

condition-based contact response was introduced. To accelerate the simulation,

a GPU implementation was proposed for matrix assembly, matrix rearrangement,

and solving linear equations. To stabilize the fracture simulation, an approach

based on topological-singularity avoidance was proposed. To evaluate these meth-

ods, blunt dissection simulation and brain retraction simulation were conducted.

Both simulations were conducted in (nearly) real time. Although the proposed

method worked well with good visual plausibility, stabilization method for haptic

rendering need to be developed.

61

Chapter 3. Real-time Simulation of Soft-tissue Deformation

 0

 20

 40

 60

 80

 100

 1000 200 300 400 500

C
o

m
p

u
ta

!
o

n
a

l
!

m
e

 [
m

s]

Time step

Collision detec!on

Matrix/vector assembly

Matrix rearrangement

Solving linear equa!ons

Sum

Figure 3.19: Computational time of the brain retraction simulation. Reproduced

from [1].

 0

 0.02

 0.04

 0.06

 0.08

 0.12

 0.10

 0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

A
m

p
li

tu
d

e
 o

f
th

e
 r

e
fe

re
n

ce
 f

o
rc

e
 [

N
]

Time [s]

Raw

Filtered

Figure 3.20: Time history of reaction force to be rendered to the user. The raw

data is calculated by the FEM solver and the filtered data is the force used for the

force feedback. In this simulation, a first-order low-pass filter (cut-off frequency,

1.0 Hz) was applied. Reproduced from [1].

62

Chapter 4. Haptic Rendering

Based on Virtual

Coupling

4.1 Introduction

This chapter describes a stabilized haptic rendering method for enabling brain

retraction simulation with a large simulation time step. In Chapter 3, haptic

rendering was performed by a boundary-condition-based method. Such approaches

are called direct rendering. However, a system that involves force feedback to a

human hand can be unstable when the sampling time or the displaying stiffness

are large. To address this instability issue, we developed a stabilizing method

based on virtual coupling (VC). In addition, the contact response of a deformable

object is formulated using a penalty method to allow a real-time simulation with

high-resolution models.

4.2 Related Works

Six-DoF haptic rendering has been an important problem since the haptic in-

terface was developed [63], In order to realize a responsive haptic interaction with

virtual environments, many methods have been proposed. However, 6-DOF haptic

rendering of the deformable objects is a still difficult problem because it involves

high computational burdens.

In a recent study on haptic rendering, a constraint-based approach was adopted.

In this approach, the collisions between virtual objects are resolved precisely us-

ing using equality-based formulations [64] and inequality-based formulations [65].

Although the approach makes it possible to resolve the collisions precisely, the

63

Chapter 4. Haptic Rendering Based on Virtual Coupling

computational cost is too high to calculate the dynamics of soft objects in real-

time. Thus, the resolution of the deformable object is limited.

The penalty method has also been used in haptic rendering of soft objects [66,

47]. The computational cost of the penalty method is less than that of the

constraint-based method and the implementation is simple. A disadvantage of

the penalty methods proposed by [66, 47] is the numerical instability.

The past haptic rendering methods for deformable objects based on the penalty

method [66, 47] formulated the contact forces using explicit time integration. In

general, explicit time integration involves numerical instability. To stabilize the

simulation, a very small time step should be used. In the method proposed by

Barbič and Doug [66], the physics simulation was executed at an extremely fast

rate (1 kHz). They accelerated the simulation using a model reduction method

and an adaptive proximity query strategy.

On the other hand, we focused on adoption of implicit time integration for

stabilizing the contact response. The implicit time integration is an effective

method for enhancement of the numerical stability even with a large time step

(e.g., 30 ms) [67].

In this chapter, a handling method of contact between rigid and deformable

objects using the implicit time integration is described. In our formulation, the

dynamics of rigid models and deformable models are described in a single large

system. To apply implicit time integration, the Jacobians of the contact forces

were introduced.

Although our method is expected to enhance the numerical stability of the

physics simulation, some stability problems can occur because our method applies

the linearization to nonlinear terms (e.g., rotation of a rigid body). Although such

drawbacks of linearization are concern, this problem has not been discussed well in

the literature (e.g., in [68]). Therefore, we performed some numerical experiments

of the step response of rigid body rotation under the constraint of a visco-elastic

torsional spring (virtual coupling). By this experiment, we attempted to determine

stable VC parameters for typical large time steps. Our method is evaluated using

a simple model (cube model) and complex environments (bunny model).

64

4.3. Formulation of Contact Problem

4.3 Formulation of Contact Problem

4.3.1 Dynamics of Tool Object

In our study, the tool object is modeled as a rigid body. Let y be the state

vector of a rigid body. The vector y consists of the position of the center of mass

(CoM) xcom, the orientation q (in quaternion form), the momentum P, and the

angular momentum L. The time derivative of y is written as

ẏ(t) =


ẋcom

q̇

Ṗ

L̇

 =


P/mrb

1
2
ωqq

F

T

 = g(y, t), (4.1)

where mrb, F, and T are the mass, the external force, and the external torque,

respectively. The variable ωq is the angular velocity formed as a quaternion. The

term ωqq represents the multiplication of two quaternions. The angular velocity

ω is derived using angular momentum, as

ω = RI−1
bodyR

TL, (4.2)

where R is the rotation matrix equivalent to q, and Ibody is the moment of inertia

defined in the body space. Further details of the rigid body dynamics for the

numerical simulation can be found in [69].

In this study, we adopted implicit time integration using the Backward Euler

method. The increment of the state vector at a time step ∆y(= yn+1 − yn) is

written as ∆y = ∆t gn+1(∆y). Note that this is a nonlinear equation because of

the rigid body rotation. We linearize gn+1 around yn for reduction of the computa-

tional cost because a nonlinear solver such as Newton’s method is computationally

demanding. The linearized equation is written as

gn+1 = gn +
∂g

∂y
∆y, (4.3)

where ∂g/∂y is the Jacobian described in the following equation.

∂g

∂y
=


0 0 1

mrb
I 0

0 ∂q̇
∂q

0 ∂q̇
∂L

∂F
∂x

∂F
∂q

∂F
∂P

∂T
∂L

∂T
∂x

∂T
∂q

∂T
∂P

∂T
∂L

 (4.4)

65

Chapter 4. Haptic Rendering Based on Virtual Coupling

See [68] for the complete descriptions of the Jacobian. Using Eq. (4.3), the update

equation of the state variable yields a linear simultaneous equation.

4.3.2 Dynamics of Deformable Object

A deformable object is modeled by a deformable tetrahedral mesh. The dy-

namic deformation of a deformable model is represented by the movements of

the particles (nodes of the mesh) interacting with each other. The interactions

of particles can be formulated by the potential energy of elasticity or the energy

dissipation due to damping effects. The forces applied to particles are numerically

calculated, e.g., by a spring-mass model or FEM. In this study, we adopted an

FEM as described in Chapter 3. Let x be the position vector and Mv be the

momentum vector, where M and v are the mass matrix and the velocity vector,

respectively. These vectors consist of the position/momentum of all of the par-

ticles, i.e., x = [xT
1 xT

2 . . .xT
n]

T , where xi is the position vector of i-th particle

and n is the number of particles. The state of a deformable object is described

by the combination of x and Mv. The dynamics of the deformable object can be

expressed as [
ẋ(t)

M v̇(t)

]
=

[
v(t)

f(x,v, t)

]
, (4.5)

where f is the external force vector that is composed of forces applied to particles.

Note that, in this study, the internal forces originated from the dynamics of de-

formable objects are treated as external forces. Typically, the motion of equation

of a deformable object is described as

M v̇ +Cv + fels(x) = fex, (4.6)

where C is the damping matrix, fels is the internal force vector (elastic forces),

and fex is an external force (e.g., gravity forces). In our formulation, however,

the internal forces (Cv and fels) are considered as external forces acting on the

particles, and the equation of motion is described by rearranging the terms as

M v̇ = fdefo + fex, (4.7)

where fdefo = −Cv − fels(x) is the force vector defined by the dynamics of a

deformable object. Using this representation, we can combine the internal force

66

4.3. Formulation of Contact Problem

with the external forces to the same term in Eq. (4.5).

The increments of the state vector formulated in the Backward Euler method

is introduced by the same manner as for rigid body dynamics, as[
∆x

M∆v

]
= ∆t

[
vn+1

fn+1

]
, (4.8)

where ∆x = xn+1 − xn and ∆v = vn+1 − vn. When we consider the nonlinear

constitutive law of the material, Eq. (4.8) becomes a nonlinear equation. To reduce

the computational burden, we linearize fn+1 around xn and vn as

fn+1 = fn +
∂f

∂x
∆x+

∂f

∂v
∆v. (4.9)

Substituting Eq. (4.9) into (4.8) yields a system of linear equations.

As described in Chapter 3, a corotational formulation of FEM is adopted [1]. We

show an example of the above-mentioned formulation for the corotational FEM.

The element stiffness equation is expressed as

fe = ReK0R
T
e xe −ReK0xe0, (4.10)

where fe is the internal force vector by elastic energy, Re is the rotation of the

element of the deformed configuration, K0 is the stiffness matrix of the linear FEM

in the initial configuration, xe and xe0 are current and rest position vectors of the

element vertices, respectively. All fe are summed to a global vector as

fels = Kx+ f0, (4.11)

where K is the tangent stiffness matrix and f0 is a vector obtained by assembling

the term −ReK0xe0. For the damping effect, we utilize Rayleigh damping for

simplicity of implementation, as

C = αM + βK. (4.12)

Finally, the contribution of the internal forces as external forces are described as

fdefo = −(αM + βK)v −Kx− f0. (4.13)

From this equation, the Jacobians are calculated as

∂fdefo
∂x

= −K,
∂fdefo
∂v

= −αM − βK. (4.14)

67

Chapter 4. Haptic Rendering Based on Virtual Coupling

x

Rr

i

xcom

Surface of
deformable object

constraint posi!on
on rigid object

Penetra!ng surface node
of FE mesh

Rigid
object

Figure 4.1: Spring connecting the surface node i of an FE mesh and the rigid

object. Reproduced from [11].

4.3.3 Contact Force

In this study, contact forces are formulated using a penalty method. In the

penalty method, a potential energy is defined based on a vertex penetration [70].

Let d be a penetration depth of a vertex into an obstacle and k be a penalty

coefficient. The potential energy can be defined as E = 1
2
kd2. The contact force is

derived from the negative gradient of the potential energy as −∇E. Apparently,

this contact force can be considered as springs that are inserted between colliding

objects. Therefore, the formulation of the contact forces is explained using spring

elements in the following descriptions.

these penalty-based springs are generated according to object intersections.

Fig. 4.1 shows the schematic of a spring that connects a surface node i of an FE

mesh and a point on the surface of the rigid object. The constraint position r is the

relative position from the CoM defined in the fixed coordinate of the rigid body.

The connecting position of the spring on the rigid body in global coordinates is

represented as, Rr+ xcom. The force acting on the surface node i is defined as

fp,i = kpN (xcom +Rr− xi) + bpN (vcom + ω × (Rr)− vi), (4.15)

where kp and bp are penalty parameters corresponding to the stiffness and damping

of the spring. N is a matrix representing the anisotropic stiffness, defined as

N = aI + (1− a)nnT , (4.16)

where n is the normal vector of the surface, and a is the parameter defining the

anisotropic stiffness, e.g., when a = 1, the spring has an isotropic stiffness, and

68

4.3. Formulation of Contact Problem

when a = 0, the spring has a completely anisotropic stiffness, which allows to

slide in the tangent direction [71]. We use this parameter to approximate friction

behavior between a rigid object and a deformable object. The force/torque applied

to the rigid body is described as

Fp = −fp,i, Tp = Rr× Fp. (4.17)

In the above paragraph, we explained the contribution of a single spring. The

total contribution of multiple penalty-based springs are obtained by the sum of Fp

and Tp in Eq. (4.17). They are accumulated in F and T in Eq. (4.1), respectively.

4.3.4 Implicit Time Integration

The penalty-based contact forces depend on both the state of a rigid object and

of deformable objects as described in Sec. 4.3.3. In order to formulate the contact

forces by a manner of implicit time integration, a large system involving both of

the rigid and deformable objects are constructed:
ẋ(t)

M v̇(t)

ẏ(t)

 =


v(t)

f(x,v,y, t)

g(x,v,y, t)

 . (4.18)

Note that here f and g become the functions depending on both the state variables

of a rigid object (y in Eq. (4.1)) and those of a deformable object (x and v in

Eq. (4.5)). The increments of the state variables at a simulation time step are

written as 
∆x

M∆v

∆y

 = ∆t


vn+1

fn+1

gn+1

 . (4.19)

In the same manner as in Eq. (4.3) and (4.9), the linearization of the right-hand

side of Eq. (4.19) around xn, vn, and yn yields the following simultaneous linear

equations: I −∆t


0 M−1 0

∂f
∂x

∂f
∂v
M−1 ∂f

∂y

∂g
∂x

∂g
∂v
M−1 ∂g

∂y





∆x

M∆v

∆y

 = ∆t


vn

fn

gn

 . (4.20)

69

Chapter 4. Haptic Rendering Based on Virtual Coupling

Note that, in this equation, all of the Jacobians of the contact forces are added to

the coefficient matrix.

From Eq. (4.15) and (4.17), the Jacobians of the forces are derived. In the

following equations, a matrix u∗ given by a vector u = [ux, uy, uz]
T is the skew-

symmetric matrix used as a matrix-vector cross product, i.e., u∗a = u× a, where

a is an arbitrary vector applied to the cross product. The derived Jacobians are

70

4.3. Formulation of Contact Problem

described using the following equations:

∂fp,i
∂xi

= −kpN , (4.21)

∂fp,i
∂vi

= −bpN , (4.22)

∂fp,i
∂xcom

= kpN , (4.23)

∂fp,i
∂qj

= kpN
∂R

∂qj
r+ bpNω∗∂R

∂qj
r− bpN (Rr)∗

∂ω

∂qj
, (4.24)

∂fp,i
∂P

=
bp
mrb

N , (4.25)

∂fp,i
∂L

= −bpN (Rr)∗I−1
body, (4.26)

∂Fp

∂xi

= kpN , (4.27)

∂Fp

∂vi

= bpN , (4.28)

∂Fp

∂xcom

= −kpN , (4.29)

∂Fp

∂qj
= −∂fp,i

∂qj
, (4.30)

∂Fp

∂P
= − bp

mrb

N , (4.31)

∂Fp

∂L
= bpN (Rr)∗I−1

body, (4.32)

∂Tp

∂xi

= (Rr)∗
∂Fp

∂xi

, (4.33)

∂Tp

∂vi

= (Rr)∗
∂Fp

∂vi

, (4.34)

∂Tp

∂xcom

= (Rr)∗
∂Fp

∂xcom

, (4.35)

∂Tp

∂qj
= (Rr)∗

∂Fp

∂qj
− Fp

∂R

∂qj
r, (4.36)

∂Tp

∂P
= (Rr)∗

∂Fp

∂P
, (4.37)

∂Tp

∂L
= (Rr)∗

∂Fp

∂L
. (4.38)

The terms ∂R
∂qj

and ∂ω
∂qj

were derived by Otaduy and Lin [68].

Although Eq. (4.20) represents the entire system that requires solving, this

equation includes large sparse submatrices in the coefficient matrix. To handle

such sparse matrices with a sparse matrix format (as discussed in Chapter 3),

71

Chapter 4. Haptic Rendering Based on Virtual Coupling

separation of the equation should be considered. First, we separate the first row

of Eq. (4.20). The variable ∆x can be represented using ∆v, as

∆x = ∆t(vn +∆v). (4.39)

Substituting Eq. (4.39) into the second and third rows of Eq. (4.20) yields a smaller

system of linear equations, as[
Avv Avy

Ayv Ayy

][
∆v

∆y

]
=

[
bv

by

]
, (4.40)

where

Avv = M −∆t
∂f

∂v
−∆t2

∂f

∂x
, (4.41)

Avy = −∆t
∂f

∂y
, (4.42)

Ayv = −∆t
∂g

∂v
−∆t2

∂g

∂x
, (4.43)

Ayy = I −∆t
∂g

∂y
, (4.44)

bv = ∆t

(
fn +

∂f

∂x
∆tvn

)
, (4.45)

by = ∆t

(
gn +

∂g

∂x
∆tvn

)
. (4.46)

Eq. (4.40) still involves a small dense submatrix (Ayy). The matrix Ayy is

separated from the large system by calculating the Schur complement as a similar

to [72]. From the second row of Eq. (4.40), ∆y can be represented by the following

equation:

∆y = A−1
yy (by −Ayv∆v). (4.47)

By substituting Eq. (4.47) into the first row of the Eq. (4.40), we obtain the

following equation:

(Avv −AvyA
−1
yyAyv)∆v = bv −AvyA

−1
yy by. (4.48)

Here, Avv −AvyA
−1
yyAyv is the Schur complement of Ayy. We calculate the incre-

ments as follows: (1) Calculate A−1
yy using a direct solver designed for a dense ma-

trix (we use an LU decomposition-based implementation in Eigen C++ library1),

1http://eigen.tuxfamily.org/index.php

72

4.4. Collision Detection

SDF gridUndesired

pulling spring
Inexact penetra�on but

appropriate force direc�on

Use SDF gradient Use surface normal of FE mesh

FE mesh

Figure 4.2: Penalty-based springs generated according to penetration of a rigid

object into a deformable object using an SDF. The red circles are the penetrating

surface nodes of the FE mesh. The blue circles are the contact positions on the

rigid object. Reproduced from [11].

(2) solve Eq. (4.48) for ∆v by an iterative solver designed for a sparse matrix

(we used our own implementation of conjugate gradient (CG) method), (3) cal-

culate ∆y and ∆x using Eq. (4.47) and (4.39), respectively. Finally (4) calculate

xn+1, vn+1, and yn+1 by adding the calculated increments to their values from the

previous time step.

4.4 Collision Detection

In order to detect the penetration of a rigid object into a deformable object, we

compute the penetration depth against the rigid object at each surface node of the

FE mesh (Fig. 4.2). The measurements of the penetration depth are executed using

signed distance field (SDF) generated on the fixed coordinate of the rigid object

as in the study by Barbič and Doug [66]. An SDF ϕ is a function that transforms

a 3D spatial coordinate to a scalar value representing the distance to the nearest

surface of the object. If ϕ(x) = 0, the point is on the surface of the object. If

ϕ(x) > 0 or ϕ(x) < 0, the point is outside or inside of the object, respectively. In

general, SDF values are stored on the points of a uniform grid for the numerical

analysis. The SDF value between the points are trilinearly interpolated. The SDF

is calculated before the simulation (preprocessing). A depth query using the SDF

takes a constant time. This property is effective for real-time simulations.

The relative vector to the nearest surface from a point is obtained by the gra-

73

Chapter 4. Haptic Rendering Based on Virtual Coupling

Filtered reference force

Physics simula�on thread (60 Hz or faster)Hap�c rendering thread (1 kHz)

LPFMax. limit

Device controller

Reference
force
Fref and Tref

Device state

Freq.

G
a

in

Input

O
u

tp
u

t

Simulated handle object

(rendered as solid material)

Actural handle posi�on

(rendered as wireframe)

Figure 4.3: Haptic rendering pipeline of our method. Reproduced from [11].

dient of the SDF. Using this property, the penetration normal can be determined.

However, as pointed out in [66], the normal vector calculated using the gradient

of the SDF can point to the counterpart of contact faces when the rigid object

has a thin structure (left part of Fig. 4.1). To address this problem, we adopted

the approach proposed in [66]. In their method, the normal vector of a surface

node of the FE mesh is used for the penetration vector instead of the gradient of

the SDF. The calculated penetration depth is not exact, but it always directs to

the outside of the deformable object. This property enhances the robustness of

interactive simulations.

Although we explained the method using an SDF, the collision detection method

can be replaced with other methods, e.g., the continuous collision detection method [64],

another collision detection method using implicit surface representation by meta-

ball [73], and so on.

In addition, the SDF can be generated in fixed coordinates on the deformable

model. This approach is effective for a nonconforming deformable model or sim-

ulation with a thin tool (such as a spatula). In Chapter 5, such approaches are

described for resolving the nonconformity between the surface of the graphics

model and the FE mesh.

4.5 Haptic Rendering

4.5.1 Virtual Coupling

Fig. 4.3 shows the haptic rendering pipeline. As mentioned in the previous

section, virtual coupling (VC) [63] is adopted for 6-DoF haptic rendering. In the

74

4.5. Haptic Rendering

VC, the stylus of the haptic device and the simulated tool object are connected

by a 6-DoF visco-elastic spring. Let Fc and Tc be the force and torque applied to

the virtual tool object by the VC. The vectors Fc and Tc are calculated as:

Fc = kc(xh − xcom)− bc(vh − vcom), (4.49)

Tc = kθuc + bθ(ωh − ω), (4.50)

where kc, bc, kθ, and bθ are the stiffness, damping, torsional stiffness, and torsional

damping of the visco-elastic spring of VC, respectively. The vectors xh, vh, and ωh

are the position, velocity, and angular velocity of the stylus of the haptic device,

respectively. The vector uc is the rotation axis of the torsional stiffness [68]. The

magnitude of uc is the angle between the stylus and the virtual tool object. The

vector Fc and Tc contribute the term g in Eq. (4.1).

The rotation axis uc is represented by the orientations of the tool object and

haptic device. Let q and qh be the orientation of the tool and the haptic device,

respectively. The rotation from the frame of the tool to that of the haptic device

is

∆q = qhq
−1. (4.51)

Following Otaduy et al. [68], we describe the vector part and scalar part of ∆q as

∆qxyz and ∆qs;

∆q = (∆qxyz, ∆qs) (4.52)

From the definition of the quaternion, ∆q can also be expressed as

∆q =

(
sin

(
|uc|
2

)
uc

|uc|
, cos

(
|uc|
2

))
. (4.53)

From Eq. (4.52) and (4.53), the rotation angle are formed using ∆qs as

|uc| = 2 cos−1(∆qs), (4.54)

uc =
|uc|

sin (|uc|/2)
∆qxyz. (4.55)

In Eq. (4.55), it seems that Otaduy et al. missed the term 1
sin(|uc|/2) . In our for-

mulation, this term is considered, and we believe that this consideration would

strengthen the robustness and responsiveness of the method in [68]. In our imple-

mentation, we the use std :: acos function in C++11. The range of the argument

75

Chapter 4. Haptic Rendering Based on Virtual Coupling

is [-1, 1], and the output range is [0 : π]. Considering the continuity around 0, the

output range is converted from [0 : π] to [-π/2 : π/2]. Therefore, in our mathemat-

ical formulation, we use a symbol θ ([-π/2 : π/2]) instead of |uc| ([0 : π]). Thus,

we express the uc as

θ = 2 cos−1(∆qs), (4.56)

uc =
θ

sin (θ/2)
∆qxyz. (4.57)

In Eq. (4.1), the Jacobians of Fc and Tc are required. The detailed description

of the Jacobians are found in [68]. However, because we corrected the formula-

tion of uc as shown Eq. (4.55), we also introduced the corrected Jacobian of uc

(∂uc/∂q). Following [68], Eq. (4.51) is expressed with matrix-vector multiplication

as

∆q = Cq, (4.58)

where

C =


qhs −qhx −qhy −qhz

qhx qhs −qhz qhy

qhy qhz qhs −qhx

qhz −qhy qhx qhs

 . (4.59)

We divide the C into C1 ∈ R1×4 and C234 ∈ R3×4 as

C =

[
C1

C234

]
. (4.60)

Using these matrices, ∆qs and ∆qxyz are expressed as ∆qs = C1q and ∆qxyz =

C234q, respectively. Thus, Eq. (4.57) and (4.57) can be described as follows:

θ = 2 cos−1(C1q), (4.61)

uc =
θ

sin (θ/2)
C234q. (4.62)

From these equations, the Jacobian is obtained as

∂uc

∂q
=

1

sin(θ/2)
C234q

∂θ

∂q
− θ

2 sin2(θ/2)
C234q

∂θ

∂q
+

θ

sin(θ/2)
C234

=

(
1

sin(θ/2)
− θ

2 sin2(θ/2)

)
C234q

∂θ

∂q
+

θ

sin(θ/2)
C234, (4.63)

76

4.6. Results and Discussion

where
∂θ

∂q
= − 2√

1− (C1q)2
C1. (4.64)

The force and torque to be displayed to the user (Fref , Tref) are calculated

as Fref = −Fc, and Tref = −Tc. However, in most case, the physics simulation

cannot be refreshed at a sufficient rate (1 kHz for stiff material). If the simulation

is performed at a slow rate, the displayed force becomes a stepping signal in the

haptic rendering thread executed at 1 kHz. In this study, we decided to smooth

the force by a first-order low-pass filter (LPF). However, an LPF enlarges the

delay of the response and this is only a symptomatic treatment. To address this

problem, a contact model that can be used in multi-rate haptic rendering should

be developed as methods proposed in [64, 65].

4.5.2 Implementation

We used the Sensable Phantom Omni haptic device (input: 6-DoF position/orientation,

output: 3-DoF force). The CHAI3D C++ library designed for haptic applications2

was utilized for the communication between the haptic device and the PC with

a 1-kHz refresh rate. The physics simulation was run with a constant refresh

rate using a clock nanosleep system call of the standard LINUX OS (without

a real-time patch). The workstation mounted Intel Core i7-4790K CPU (4 cores,

overclocked to 4.5 GHz), 16 GB of RAM, and an NVIDIA GTX TITAN GPU.

The sparse matrix operations are parallelized on multi-cores using OpenMP. The

GPU was used only for graphics rendering in the evaluations in this chapter. The

interface of the haptic device was IEEE 1394.

4.6 Results and Discussion

4.6.1 Effects of Virtual Coupling Parameters

Our method updates both the state of a rigid object and of a deformable object

at the same time and it enables two-way interaction between the objects with good

2http://www.chai3d.org/

77

Chapter 4. Haptic Rendering Based on Virtual Coupling

∆t = 0.017, kθ = 0.3, bθ = 0.01 ∆t = 0.017, kθ = 0.3, bθ = 0.03

(a) (b)

Figure 4.4: Observed step responses of the rigid body rotation with VC. Repro-

duced from [11].

Table 4.1: Determined parameters by the rotational step response experiment with

kθ = 0.3 Nm/rad. Reproduced from [11].

∆t [s] 0.017 0.033 0.10

bθ [Nm s/rad] 0.03 0.04 0.11

Tc [s] 0.35 0.50 0.11

stability. However, when we take a large time step, the linearization error can be

generated especially from the rigid body rotation.

To determine appropriate torsional parameters of the VC, we conducted numer-

ical experiments of step response of torsional stiffness using different time steps,

viz., 0.1 s (10FPS), 0.033 s (30FPS), and 0.017 s (60FPS). The mass of the tool

object is set to an as small as possible value to minimize the undesirable inertial

effect: mass mrb = 0.1 kg and momentum of inertia Ibody = 5.0 × 10−4I3, where

I3 is the 3 × 3 identity matrix. For the step response experiment, the step input

(torsion) was set to uc = (1√
3
, 1√

3
, 1√

3
). This means that 1 rad is imposed around

the axis (1, 1, 1). The torsional stiffness kθ was set to 0.3Nm/rad in this evalu-

ation. Note that kθ should be adjusted with consideration of the specification of

haptic devices, and thus, this condition is an example for our specific setup.

Fig. 4.4 shows typical results of the step response experiments. In Fig. 4.4(a),

the response shows a damping oscillation behavior. In Fig. 4.4(b), suppressed os-

cillation and overshoot are observed. Because the oscillation and overshoot in the

78

4.6. Results and Discussion

Table 4.2: Parameter sets of the stiffness and damping of the penalty-based springs.

Reproduced from [11].

Parameter set ID A B C

kp [N/m] 50 50 1000

bp [N s/m] 0.1 0.1 0.1

Implicit integration Yes No Yes

transition phase decrease the quality of haptic rendering, the viscous parameter

bθ was adjusted to suppress the oscillation and overshoot. In Table 4.1, the pa-

rameters determined for typical time steps ∆t are summarized. In the table, Tc

denotes the convergence time on which the error of θ reaches less than 0.001 rad.

We needed to increase bθ for larger ∆t to obtain responses without oscillations and

overshoots. Therefore, when ∆t becomes larger, Tc also needs to be larger. In our

experience, when Tc exceeds 0.5 s, the response is too slow to interact with virtual

environments.

In the following experiments, given the responsiveness and the practicality at

the computational speed of the current implementation, we decided to adopt the

following parameters: ∆t = 0.017 s, kθ = 0.3 Nm/rad, bθ = 0.03 Nm s/rad.

In addition, the translational stiffness of the VC spring is determined from the

specification of the Sensable Phantom Omni as kc = 1000 N/m. We determined

the damping parameter for reducing the translation vibration as bc = 10 N s/m.

4.6.2 Evaluation Using a Simple Cube Model

An evaluation was conducted using a simple cube model was conducted (Fig. 4.6).

To compare the different parameter settings, a trajectory of the haptic device was

recorded and the trajectory was used repeatedly. Fig .4.5 shows the recorded

trajectory of the haptic device. A tool object was modeled by a sphere-shaped

rigid body. The radius of the sphere was 0.03m. The properties of the rigid body

was set to the parameters determined in Sec. 4.6.1. The deformable object was

modeled by a cube-shaped tetrahedral mesh. The mesh had 1331 nodes and 5000

tetrahedral elements. The lengths of the cube edges were 0.1m. The material

79

Chapter 4. Haptic Rendering Based on Virtual Coupling

properties were set to the values of typical soft materials (such as biological soft

tissues) as the follows: density 1000 kg/m3, Young’s modulus 2000Pa, Poisson’s

ratio 0.45, and Rayleigh’s damping parameters α = 0 and β = 0.1. The nodes of

the bottom of the mesh was constrained by springs that connect to each initial

nodal position. The stiffness and damping parameters of the springs were set to

50.0N/m and 0.1N s/m. The time step ∆t was 0.017 s (60FPS) as mentioned in

Sec. 4.6.1. The cutoff frequency of the LPF for smoothing the displaying force was

set to 10Hz.

Table 4.2 shows three parameter sets of the stiffness and damping of each spring

for the calculation of the penalty-based contact forces between the rigid object

and the deformable objects. In addition, in order to compare our method with an

explicit time integration approach (i.e. [47]), we performed simulations with and

without implicit time integration of the contact force. All of the Jacobians related

to contact forces, described in Eq. (4.21)–(4.38), are set to zero, in the simulation

in which the implicit time integration is disabled.

Fig. 4.7 shows the effect of the LPF applied to the force output of the simulation

using the parameter set A. Although the delay caused from LPF was observed,

the LPF worked to smooth the stepping force output.

Figs. 4.8, 4.9, and 4.10 are the comparisons of the results of the three parameter

sets. Fig. 4.8 shows the trajectories of the virtual tool object and the stylus of the

haptic device. Fig. 4.9 shows the histories of the reaction forces to be displayed to

the user. Fig. 4.10 shows the histories of the maximum penetration depth between

the tool object and the deformable object. The maximum penetration depth was

obtained by measuring the penetration depth of contacting surface nodes of the

FE mesh.

From Fig. 4.8, the positions of the virtual tool object were kept at a distance

from the actual stylus position. This is because of the visco-erastic spring of the

VC and should be allowed to ensure stability.

From Fig. 4.8, the vibration is seen in the trajectory of the parameter set B.

This is also seen in the force history (Fig. 4.9) and the maximum penetration-depth

history (Fig. 4.10). Comparing the result of A with that of B, it is observed that

implicit time integration obtained stable behavior, but explicit time integration did

not. To suppress the vibrating behavior in the method employing explicit time

80

4.7. Summary

integration, it would be necessary to decrease kp, which leads to larger penetrations

and less responsive haptic feed backs.

Comparing the result of A with that of C in Fig. 4.10, it could be seen that a

large kp reduces the maximum penetration depth. However, from the force history

of C (Fig. 4.9), a sticking force is observed at the moving-back motion (6 s). This

is because our method assumes that the penalty-based springs continue to connect

the objects during a time step (from the beginning of a time step to its end).

Thus, we cannot asign too large a value to kp. The sticking force can be canceled

by observing the contact normals. However, such an approach might influence the

dynamic behavior of a multi-contact and the visual sticking behavior cannot be

resolved.

From these investigations, the parameters of penalty methods need to be ad-

justed for each specific simulation environment depending on whether the the

penetration and sticking behavior are permitted.

4.6.3 Example of a Complex Environment Simulation

Fig. 4.11 shows the snapshots of the simulation using a complex environment.

The deformable model was constructed from The Stanford 3D Scanning Reposi-

tory3. It consists of 1229 nodes and 4584 tetrahedral elements. The tool object

is modeled as a cube-shaped rigid body. The user manipulated the tool object

through the haptic device. The torus and the floor are static rigid objects. In the

simulation, the user is able to push the deformable object to pass through the hole

of the torus. The simulation was conducted with good stability and no vibration

was observed.

4.7 Summary

In this paper, we described a method for handle the contact between a rigid

object and a deformable object. The contact response is formulated using the

penalty method and implicit time integration. Collision detection using an SDF is

3http://graphics.stanford.edu/data/3Dscanrep/

81

Chapter 4. Haptic Rendering Based on Virtual Coupling

combined with our penalty method. An efficient numerical computation method

considering the sparse matrix was described. The parameters of the VC were

determined by step response experiments. Our method was evaluated using a

simple cube model and a complex bunny model. Although our method proved to

have a drawback in terms of the difficulty in parameter determination, our method

was able to handle complicated contacts using an appropriate parameter.

82

4.7. Summary

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 1 2 3 4 5 6 7
z

[m
]

Time [s]

Handle trajectory

h0

Figure 4.5: Recorded trajectory of the stylus of the haptic device. Reproduced

from [11].

0.0 (s) 0.5 (s) 1.0 (s) 1.5 (s) 2.0 (s) 2.5 (s) 3.0 (s)

3.5 (s) 4.0 (s) 4.5 (s) 5.0 (s) 5.5 (s) 6.0 (s) 6.5 (s)

Figure 4.6: Snapshots of the evaluation using the simple cube model. Reproduced

from [11].

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5 6 7

F
z
 [

N
]

Time [s]

without LPF

with LPF

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 5.2 5.4 5.6 5.8
 0

 0.2

 0.4

 0.6

 0.8

 0.8 1 1.2 1.4

Figure 4.7: Force history with/without the LPF. Reproduced from [11].

83

Chapter 4. Haptic Rendering Based on Virtual Coupling

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 1 2 3 4 5 6 7

z
[m

]

Time [s]

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

5.3 5.4 5.5 5.6 5.7

Handle trajectory A

B
C

h0

Figure 4.8: Trajectories of the virtual tool object in the evaluation using the simple

cube model. Reproduced from [11].

-1

 0

 1

 2

 3

 4

 0 1 2 3 4 5 6 7

F
z
 [

N
]

Time [s]

A

B

C

Figure 4.9: Force histories in the evalu-

ation using the simple cube model. Re-

produced from [11].

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0 1 2 3 4 5 6 7

M
a

xi
m

u
m

 d
e

p
th

 [
m

]

Time [s]

A
B
C

Figure 4.10: Histories of the maximum

penetration depth in the evaluation us-

ing the simple cube model. Repro-

duced from [11].

84

4.7. Summary

Deformable object

Rigid object

manipulated by the user

Sta!c rigid object

Hap!c device

Figure 4.11: Snapshots of the simulation of a complex environment. Reproduced

from [11].

85

Chapter 5. Haptic Rendering for

Embedded Volume

5.1 Introduction

The method of the patient-specific model generation was described in Chapter 2.

The method adopted embedding approach in which a volume data is embedded in a

coarse simple FE mesh. One of the drawbacks of the method is the nonconformity

of the boundary between the surface of the FE mesh and that of the volume data.

In the haptic surgery simulator of brain retraction, the contact handling is an

essential problem to enable the force feed back. Therefore, collision detection and

contact response computation need to be designed considering the nonconformity.

This chapter describes the contact handling method for embedded volume (patient-

specific model obtained by the method of Chapter 2).

A specific issue in our volume embedding approach is the existence of super-

imposed elements. We considered the issue and developed a method to detect

correct collisions. Additionally, the collision detection method was designed not

to increase the manual tasks. Our patient-specific model does not requires surface

mesh. Off course the surface mesh can be generated from the volume data. But

appropriate surface mesh also affects the computational cost, and thus, it might

involve trials and errors. Therefore, we develop a method that does not requires

explicit surface mesh representation. A collision detection method using an signed

distance field (SDF) [74] is introduced in this chapter.

5.2 Related Works

Physics-based volume embedding methods combined with volume rendering

techniques have been proposed in this two decades. Masutani et al. developed a

87

Chapter 5. Haptic Rendering for Embedded Volume

volume deformation method using a coarse regular tetrahedral grid [75]. FEM was

utilized for the calculation of the deformation. They enabled haptic feedback us-

ing a haptic device. However, the haptic interaction is limited to the displacement

impositions on nodes of the grid. Nakao et al. developed a volume manipula-

tion method that embeds a medical volume data in an unstructured tetrahedral

mesh [76]. Although they enabled various surgical manipulation such as grasp-

ing and cutting, their method required the tetrahedral meshes generation that

conform to the volume domain, which is difficult to be automated for highly ir-

regular organs, e.g., for brain . Torres et al. proposed a volume manipulation

method to embed high-resolution heterogeneous volume data in a coarse regular

grid [77]. They utilized a homogenization technique to construct stiffness matrices

considering the spatial distribution of voxels inside each hexahedral element. In

their report, some results of contact simulations were shown. They adopted con-

tact handling method [78] that relies on the polygonal surface representation in

their simulation, which involves surface mesh generation. To our best knowledge,

previous studies on physics-based volume manipulation methods required explicit

surface representation, i.e., polygonal surface, for resolving the contact handling.

The polygonal surface can be generated using the marching cube method [79] or,

e.g., Delaunay-triangulation-based method [4]. However, their methods tend to

generate a significantly large number of surface polygons. And they increase the

computational burden of contact handling procedures. One can apply a simpli-

fication techniques for the surface mesh to obtain a reasonable mesh. However,

such operations increase the error between the obtained polygonal surface and the

surface of volume data. Therefore, human decisions with the knowledge of com-

putational burdens are needed to generate an appropriate surface mesh, which

increases the tasks involved in patient-specific model construction.

In the computer graphics community, some studies have proposed contact han-

dling methods that do not depend on the vertices of the mesh but on a pre-

computed SDF. Wu et al. introduced a collision detection method for a real-teim

cutting simulation using an SDF calculated on the material coordinate of a de-

formable model [80]. Similarly, there are some studies that adopted the SDF on a

deformable model for self-collisions for nearly real-time character skinning anima-

tion [71] and offline contact simulation for a deformable model represented using a

88

5.3. Contact Handling

level set method [81]. These methods are based on the approximated SDF stored

on the material coordinate first introduced in [82]. The effectiveness of the method

was validated in contact simulation with FEM [83]. In this study, we adopt this

approximated SDF for collision handling in our volume embedding strategy. The

use of the SDF enables to preserve the full geometry described in volume data pre-

served without surface mesh generation. This chapter describes a automated SDF

generation method as well as an efficient penetration-depth measuring method

using the SDF.

5.3 Contact Handling

5.3.1 Overview

In this study, a tool object is modeled as a rigid body and the shape is rep-

resented by a polygonal surface. The collision detection between the tool object

and a deformable object is computed by searching the vertices of the tool object

that penetrate into the deformable object. This collision detection is performed

at the beginning of the simulation time step. A projected point on the surface of

the deformable object is determined for each penetrating vertex. The projected

points are used for definition of the contact forces.

5.3.2 SDF Generation

Before the execution of a real-time simulation, the SDF is generated in advance

with respect to the material coordinate (Fig. 5.1). The material coordinate is

a coordinate defined on the rest shape of a deformable model. As explained in

Chapter 4, SDF Φ(x) is a scalar field constructed in 3-D space and the abusolute

value |Φ(x)| represents the minimum distance to the object surface from the point

x. The sign of Φ is positive if the position is outside the volume and negative

otherwise. In this study, the SDF values are stored on the points aligned at

regular intervals. The SDF value is interpolated by those on the discrete points

using trilinear interpolation. From the length of the intervals, the resolution of

the surface is determined. In our method, the values are stored on the positions

89

Chapter 5. Haptic Rendering for Embedded Volume

Label map + SLP{2, 3}

Surface voxels SDF

Tetrahedral mesh

Anchors on tetrahedra

Color indicates signed distances.

Dashed lines indicate surface voxels.

0

0

0

0 0

0

0

0 0 1 1 1 2 2 2

2 2 2 2

2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

1 1 1 3 3 3

3 3 3 3

3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

11 1 1

11 1 1

111 1 1

111 1 1

1111 1 1

1111 1 1

1111 1 1

1111 1 1

1111 1 1

1111 1 1

0 0 0

0

0

0

0 0 00 0

0

0

0

0

Voxel coordinate i

Label L

Ini!al posi!on x0

Posi!on x

Pointer to tetrahedron T

Baricentric coordinate b

Signed distance d

A"ributes of a voxel

Figure 5.1: Overview of the SDF generation with 2-dimensional illustration.

of voxels. In other words, the SDF value is treated as an attribute of a voxel.

In our volume embedding, the deformable object does not have surface meshes.

To define the surface, the surface points are first extracted from the label map (see

Fig. 5.1). Let V be the set of all voxels of the label masp. A voxel v ∈ V is on the

surface of the volume if v satisfies the following condition:

• at least one neighbor voxel has an empty label, or

• at least one neighbor voxel is registered as an SLP.

We denote the set of the voxels that satisfy these conditions by Vs. The positions

of the voxels v ∈ Vs are considered as the representative points of the surface of

volume, and thus, we call Vs the surface voxels.

The SDF is generated using Vs (see Fig. 5.1). At each voxel v ∈ V , the nearest

voxel vnearest is searched from Vs. The absolute SDF value at the position of v is

determined to be the distance between v and vnearest. The sign of the SDF value at

the sample point is positive if v has an empty label (outside the volume), otherwise

it is negative (inside the volume). Because this generation is a computationally

90

5.3. Contact Handling

Figure 5.2: Projection of vertex using SDF in 2D. xp and xs are a vertex of a tool

object and the projected point to the surface of a deformable object. The pene-

tration depth is determined using an SDF calculated in the material coordinate.

expensive procedure, the SDF generation is performed once as the precomputation.

The SDF values on the voxels are not changed through real-time simulation.

5.3.3 Determination of Projection Points

For collision detection and contact point estimation, we adopt the deformed

distance field proposed in [82]. Let xp be the position of a rigid body vertex

penetrating into the deformable object. A typical algorithm of penetration-depth

Figure 5.3: SDF sampling for implicit surface.

91

Chapter 5. Haptic Rendering for Embedded Volume

measurement using the deformed distance field is as the following (Fig. 5.2):

• In the world coordinate Σw, the tetrahedron T that includes xp is determined

(intersection test A).

• The barycentric coordinate b of xp inside T is computed.

• By using b, xp is transformed into the position xp,m in the material coordi-

nate Σm.

• The nearest surface position from the sampling point is computed as xs,m =

xp,m − Φ(xp,m)∇Φ(xp,m).

• In Σm, the tetrahedron Ts that includes xs,m is determined (intersection test

B).

• The barycentric coordinate bs of xs,m inside Ts is calculated.

• Using bs, xs,m is transformed to the position xs in Σw.

The difficulty in the application of the above-mentioned algorithm to our volume

embedding arises from the existence of the superimposed tetrahedral elements.

Even in the material coordinate, some tetrahedral elements overlap. Hence, the

intersection tests A and B return multiple tetrahedra for a single sample point.

Therefore, a determination method of the correct tetrahedron is required.

The determination of the correct tetrahedron for intersection test A can be

resolved by using the anchored position of the voxels. Let VT be the set of voxels

inside a tetrahedron T . The correct tetrahedron can be detected as follows:

• Multiple tetrahedra T1, T2, . . . , Tn are detected.

• For each tetrahedron Ti, the nearest voxel from the sample point is detected

in VTi
.

• The correct tetrahedron is determined to be the tetrahedron that has the

nearest voxel among the detected tetrahedra.

The tetrahedron determination for intersection test B is more difficult than for

intersection test A because the SDF cannot always construct the complete surface

92

5.3. Contact Handling

boundary using interpolation of discrete sample points. Thus, we simply consider

that the tetrahedron detected by intersection test B is the same with that chosen

in intersection test A; i.e., Ts = T . Fig. 5.3 shows that this assumption is not

correct for all cases (Ts is not always identical to T). However, the assumption

helps simple and fast implementation. We confirmed that the contacts can be well

handled with this assumption.

We discuss on the computational cost of the collision handling below. If the

brute-force algorithm is adopted, the collision detection requires O(Ntet × Nvert),

where Ntet is the number of tetrahedral elements of the FE mesh, and Nvert is the

number of vertices of the rigid body’s surface mesh. To reduce the computational

cost, an approach based on spatial partitioning is adopted [84]. A uniform grid

is generated inside the axis-aligned boundary box of the mesh of the deformable

model before the collision detection. The intersection test with cells of the grid is

performed for each tetrahedron. When an intersection is detected, the reference

to the tetrahedron is stored in the array that is associated with the intersected

cell. Collision detection is divided into two phases, the broad phase and the narrow

phase. In the broad phase, the vertices of the rigid body’s are tested for intersection

with the axis-aligned cells. When an intersection between a vertex and a cell

is detected, the references to the tetrahedra stored in the list is extracted. In

the narrow phase, the intersection test between the tetrahedra and the vertex is

performed. This approach improves the effectiveness of the collision detection.

5.3.4 Contact Response

The contact forces are formulated based on the penalty method described in

Chapter 4. The contact forces acting to the deformable model at position xs are

expressed as the following equation;

fs = kpN (xp − xs) + bpN (vp − vs), (5.1)

where vp and vs are velocities of the points xp and xs, respectively. The matrix N

is a matrix that defines the anisotropy of the contact stiffness (See Chapter 4). The

contact force is distributed by using the barycentric coordinate b. The distributed

93

Chapter 5. Haptic Rendering for Embedded Volume

Figure 5.4: Retractor model. The white spheres are the vertices of the surface

polygons, which used to detect the penetration with deformable models. The

number of vertices and faces are 712 and 1352, respectively.

contact force at the i-th vertex of the tetrahedral element is calculated as

fi = bifs. (5.2)

On the other hand, the force and torque applied to the tool object are written

using the Newton’s second law as

frb = fs, Trb = r× frb, (5.3)

where r is a vector from the CoM of the rigid body to the contact point xp, which

is defined w.r.t the rigid body coordinate. The following relationship is satisfied

with the position of the CoM xcom and the rotation matrix R as follows:

xp = Rr+ xcom. (5.4)

The contact forces are computed for all penetrating vertices of the tool object

and incorporated in the dynamic system of the tool object and the deformable

object described in Chapter 4.

5.3.5 Experimental Conditions

We utilized a haptic device Phantom Omni haptic device with the IEEE 1394

interface provided by Sensable Inc.. The physics simulation and control of the

94

5.4. Results and Discussion

x
y

z

D
 =

 7
6

 m
m

FE mesh

(a) Label map (b) SDF with SLP {2, 3}

L = 20 mm

Seg. 1

Seg. 2

Seg. 3

Cross-sec!on view at x = 0

Seg. = Segment

Figure 5.5: Cylinder model. Spacing is 1 mm. D and L are the diameter and the

length, respectively. In (a), the color of the voxels indicate the labels. In (b) the

color of the voxels indicate the signed distance. The value is close to 0 (near the

surface) if the color is red.

haptic device were processed on a workstation with an six-cores CPU (Intel Core i7-

3960 overclocked to 4.5 GHz), 64 GB of RAM, and NVIDIA Quadro K5000 GPU.

In the current implementation, the GPU was used only for graphics rendering.

The OS of the computer was a standard Linux for a desktop configuration without

real-time patches (Ubuntu 14.04 64 bit). The algorithms was parallelized on the

multi-core CPU using OpenMP. The time step of the physics simulation was set

to 33 ms (30 FPS) and synchronized using the clock nanosleep system call.

In Fig. 5.4, the geometrical model of a tool (retractor) to be manipulated by

a user though the haptic device is shown. The polygonal mesh consists of 712

vertices. The mass and moment of inertia were 0.1 kg and 0.0005 I3, where I3 is

a 3 × 3 identity matrix. The VC parameters kc, kθ, bc, and bθ were 1000.0 N/m,

0.3 Nm/rad, 10.0 Ns/m, and 0.03 Nms/rad, respectively.

95

Chapter 5. Haptic Rendering for Embedded Volume

0 s

RetractorFE mesh

Embedded
volume

3 s

6 s 9 s 12 s

x
y

z

Figure 5.6: Snapshots of the evaluation using cylinder model.

96

5.4. Results and Discussion

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 2 4 6 8 10 12 14

P
o

si
!

o
n

 (
m

)

Time (s)

x
y
z

Figure 5.7: Tool trajectory of the evaluation using cylinder model.

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 2 4 6 8 10 12 14

F
o

r
c
e

 (
N

)

Time (s)

x

y

z

Figure 5.8: Force history of the evaluation using cylinder model.

97

Chapter 5. Haptic Rendering for Embedded Volume

5.4 Results and Discussion

5.4.1 Evaluation Using a Cylinder Model

The proposed method was evaluated using a simple cylinder model (Fig. 5.5(a)).

The voxel spacing of the cylinder model was 1 mm. The diameter and length of the

cylinder were 76 mm (76 voxels) and 20 mm (20 voxels), respectively. The volume

was segmented to 3 parts that are attached each other without any gap. An SLP

{2, 3} was input to our algorithm for separating the boundary between segment

2 and 3. The FE mesh was generated with 12 mm of mesh size. The number of

nodes and tetrahedral elements of the FE mesh were 264 and 729, respectively.

Fig. 5.5(b) shows the SDF generated on the cross-section surface at x = 0

inside the volume. This figure shows that the SDF reflects the separation between

segment 2 and 3 according to the SLP.

Using the SDF, we conducted the evaluation of haptic rendering. The material

properties of the deformable model was set to those of a typical soft tissue. The

Young’s modulus, Poisson’s ratio, and density of the deformable model were set to

1000.0 Pa, 0.45, and 1000 kg/m3, respectively. The Rayleigh’s damping parameters

α and β were set to 0 and 0.1 respectively. The parameters of penalty-based

contact forces were set as followings: kp = 1.0 N/m, bp = 0.1 Ns/m, and a = 1.0.

The vertices on the top and bottom of the FE mesh were fixed using springs with

10 N/m of stiffness and 0.1 of damping.

The results of the simulation with haptic feedback are shown in Fig. 5.6, 5.7,

and 5.8. Fig. 5.6 shows the snapshots of the simulation. Fig. 5.7 shows the logged

trajectory of haptic device handle. From these figures, we can see that the user

moved the tool to left direction for touching the FE model (the negative direction

of y axis), and then, moved it up and down to open the separated boundary,

and finally moved it back to initial position. The simulation was executed with

no visible vibration. Fig. 5.8 shows the contact force history sent to the haptic

device controller to feedback the reaction forces to the user. Average calculation

times for a time step were as followings: 1.0 ms for the collision detection, 7.9 ms

for dynamics solver, 1.4 ms for voxel transformations, and 3.2 ms for graphics

rendering (13.6 ms for a time step).

98

5.4. Results and Discussion

(a) Label map (b) Cross-sec�on view of label map (c) Cross-sec�on view of SDF

Figure 5.9: Brain model generated from a brain atlas [2]. In (a) and (b) the color

of the voxels indicate the labels. In (c) the color of the voxels indicate the signed

distance. The value is close to 0 (near the surface) if the color is red.

these results show that the collision handling in superimposed cells is success-

fully resolved. In addition, we can see that the direction and magnitude were qual-

itatively correct, i.e. the force resisted the penetration and the magnitude became

larger when the larger pushing displacement was applied. The calculation time

spent for the collision detection was smaller than that of dynamics solver. These

results show that the proposed collision handling method worked as expected, and

can be practically used for haptic rendering applications. However, we recognize

that the implementation is not optimized well especially for the graphics render-

ing. For example, in our current implementation, all of the voxel transformations

were computed on the CPU, and the results were sent to the GPU later. These

computations and communications can be reduced if they are computed on GPU.

Thus, the optimization of the implementation is left as an issue to be addressed

for the future improvements.

5.4.2 Evaluation Using a Brain Model

The proposed method was evaluated using a brain atlas model [2] (256× 256×
256 voxels with spacing of 1 mm). The SLPs are set for separating Sylvian fissure

as described in Appendix A. Fig. 5.9 shows the label map and the generated SDF

according to the SLPs. The generated FE mesh consist of 3343 nodes and 9180

tetrahedral elements.

99

Chapter 5. Haptic Rendering for Embedded Volume

3 s 7 s

11 s 15 s

19 s

Figure 5.10: Snapshots of the evaluation using the brain model.

100

5.4. Results and Discussion

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14 16 18 20

M
ag

n
it

u
d

e
o

f
d

is
p

la
y

 f
o

rc
e

(N
)

Time (s)

Figure 5.11: History of the magnitude of the force to be displayed to the user.

Some parameters were modified from those of Section 5.4.1 because of the com-

plexity of the model geometry. Because the computational time became larger, the

stiffness of VC visco-elastic spring was needed to be reduced for stable interaction

as kθ = 0.1 Nm/rad and bθ = 0.02 Nms/rad. Additionally, because the brain

model locally has thin structures, the parameters of penalty-based springs were

modified to larger values as kp = 10.0 N/m, bp = 0.01 N/ms. Further, the friction

effect was disabled by setting a = 0.

A result of the evaluation using the brain model is shown in Fig. 5.10. The

force history to be displayed to a user is shown in Fig. 5.11. Average calculation

times for a time step were as followings: 17.2 ms for the collision detection, 22.4 ms

for dynamics solver, 9.4 ms for voxel transformations, and 14.0 ms for graphics

rendering (62.9 ms for a time step).

In the simulation, the user suceeded in opening the Sylvian fissure with force

feedback. However, because of the time delay due to the large calculation time,

the stability was not maintained when the user quickly moved the tool with large

velocity.

Finally, we show a visualization example on the postprocess of the simulation.

Fig. 5.12 shows the visualization of the deformed medical image. The visualization

is performed on 3D Slicer [6]. The deformed medical image was exported from the

real-time simulation at the time 11 s (the third figure from the left in Fig. 5.10) by

resampling the volume data. Because our method stores explicit relation between

101

Chapter 5. Haptic Rendering for Embedded Volume

Regions where stress is

over the threshold

Figure 5.12: Visualization on 3D Slicer [6].

the tetrahedral mesh and voxels, the deformation of the medical image can be

realized straight-forwardly. Additionally, the result of the stress analysis can be

reflect on the same image with the deformed volumes. For example, in Fig. 5.12,

the region where the maximum principal stress exceed a threshold is colored on

the images. This visualization will be useful for the quantitative evaluation of the

surgery skills for learning safe surgical operations.

102

5.5. Summary

5.5 Summary

In this chapter, a haptic rendering method for embedded volume was described.

The penetration depth estimation is efficiently performed using deformed distance

field. The contact forces are distributed on vertices of nonconforming FE mesh.

This method achieved a stable brain retraction simulation with force feedback.

103

Chapter 6. Conclusion

In this thesis, a brain retraction simulator that enables force display to a user

has been reported. This chapter includes a summary and future directions of this

work.

6.1 Summary

Brain retraction is an inevitable basic operation in most approaches of cran-

iotomy. The education and training of brain retraction are important because

inappropriate retractions can induce injuries including blood flow blocking and

mechanical damage on vessels or nerves. However, training opportunities are lim-

ited and new training methods have been expected.

For this problems, this thesis proposed the use of a virtual reality surgery simu-

lator that enables a user to touch a virtual organs with force feedback. The devel-

opment of a brain retraction simulator involves some difficulties: the construction

of brain model, especially of patient-specific model, real-time computation of soft-

tissue deformation and fracture, and stable contact simulation with force feedback.

In this study, these issues were addressed by the following approaches.

Brain model construction

An automated patient-specific mesh generation method was developed. A

generated FE mesh is nonconforming orthogonal mesh with duplicated ele-

ments. The duplicated elements are generated to preserve the topology of

input fine structures. The input fine structures are deformed according to

the FE mesh by interpolation of displacement field in a master-slave manner.

To preserve the topology of a brain fissure, we also proposed the considera-

tion of separation label pairs. Using this idea, we achieved the separation of

a complex boundary on the Sylvian fissure.

105

Chapter 6. Conclusion

Real-time computation of the deformation and fracture of brain tissue

In general, real-time computing requires to trade off the accuracy and speed.

In this study, for simplicity and computation efficiency, brain tissues are

modeled as a uniform linear elastic material. The geometrical nonlinearity

was considered by adopting corotational formulation for strain measure. Us-

ing GPU, the global matrix assembly, the boundary condition enforcement,

and iterative linear solver were accelerated. This enhanced the capacity of

the simulator for simulation using a large high-resolution brain model.

Stable contact simulation with force feedback

The contact problem was formulated using a penalty method. To enhance

the numerical stability, implicit time integration was applied. This approach

enabled to simulate the contact between a rigid object and a deformable

object in large time step, e.g., up to 30 ms. The stable simulation was

combined with virtual coupling method for haptic rendering. Furthermore,

an efficient contact handling method for nonconforming volumetric mesh

was proposed. In this method, overlap between objects are estimated using

deformed distance field and the overlap is resolved by a penalty method. This

approach enabled retraction simulation with force feedback in good stability.

Our method has also enabled to visualization of stress field. Because proposed

patient-specific model generation stores the explicit relationship between the voxels

of medical images and FE mesh, the stress value on each voxel can be calculated

straightforwardly. This feature is expected for useful to evaluate the risk of brain

tissue damages.

As mentioned above, a haptic simulator that enables brain retraction in virtual

environment has been developed. The contributions of this thesis are expected to

help the clinical application of surgery simulators in the field of neurosurgery.

6.2 Future Directions

In this section, some possible future directions of this research are described.

106

6.2. Future Directions

Consideration of heterogeneity in an elements

In the proposed embedding method, the material property was assumed as

uniform in an element. Obviously, this assumption causes error in mechan-

ical modeling. This problem can be improved by adopting homogenization

method.

Accurate mechanical modeling of brain tissues

In this thesis, the material property of a brain tissues are modeled by linear

elasticity. However, brain tissues are known to have nonlinear viscoelasticity

and anisotropy [85]. The measurement of material properties have been

worked by many researchers including our laboratory. Such works will benefit

in the future study of a brain retraction simulators. To consider such complex

properties, we might need to develop a new efficient implementation of a

nonlinear FEM solver.

Consideration of important microstructures

In this thesis, vessels, membranes and nerves were ignored. However, these

structures are considerably important for neurosurgery. For practical use of

the surgery simulator, we must address this problem. This problem requires

more complex model construction method. One possible approach is the use

of multimodal medical images. By combining multiple medical images, we

could obtain more detailed structures including vessel and nerves.

Modeling of frictions

In this thesis, friction is represented by a anisotropic stiffness of penalty

springs. However, this is a fake effect. When the effect of frictions becomes

dominant in any context, one should adopt more reliable friction model such

as Coulomb friction. This requires unilateral constraints in the dynamic sys-

tem and leads a linear complementarity problem. A real-time solver should

be implemented for such extensions.

107

Acknowledgements

I would like to thank my adviser, Professor Konno for his continued support. He

taught me lots of things about research and engineering as well as how a researcher

should be. I also would like to express my gratitude to Professor Hajime Igarashi

and Professor Satoshi Kanai for their useful advices and patient readings.

I greatly thankful to the members of the Intelligent Robots and Systems Lab-

oratory. I would like to thank Dr. Shunsuke Komizunai for discussions on the

direction of my research. I also would like to thank the members of the surgery

simulator group, Ms. Xiaoshuai Chen, Mr. Akito Ema, and Mr. Noriyuki Shido,

for their dairy discussions and cooperation in my experiments. I have enjoyed

productive and delightful times with all of the members of our Lab.

I would like to thank Dr. Teppei Tsujita. He has supported me from my under-

graduate project to my PhD thesis. I have learned a lot of useful things through

the collaborative work with him. I also appreciate Mr. Akira Fukuhara for the col-

laborative work on surgery planning and productive discussions during my master

project. I would like to thank Dr. Meng-Hung Wu and Mr. Shuhei Ogawa for

advising the implementation of my algorithms and sharing useful information on

current technologies.

I also appreciate medical doctors who gave useful advices to my research.

Dr. Atsuhiro Nakagawa has advised me through TV meetings as well as showed

his experiment rooms in his hospital. Dr. Atsuhiro Nakagwa and Dr. Tomohiro

Kawaguchi kindly evaluated our simulator and gave us meaningful comments. I

would like to thank Projessor Teiji Tominaga for his kind cooperation of the collab-

orative work with our research group. I would like to thank Professor Masaru Uchi-

ayama for supervising my master thesis at Tohoku University. My PhD project is

an extension of the master thesis and knowledge obtained in the master project

was the base of my PhD project. I also would like to thank Dr. Satoko Abiko,

109

Dr. Xin Jiang, and Dr. Koyu Abe for their productive discussions during my master

project at Tohoku University.

Finally, I would like to thank my parents, sisters, and friends for supporting

me. Without their encouragement, this work would have been impossible.

110

References

[1] K. Sase, A. Fukuhara, T. Tsujita, and A. Konno, “GPU-accelerated surgery

simulation for opening a brain fissure,” ROBOMECH Journal, vol. 2, no. 1,

pp. 1–16, 2015.

[2] M. Halle, I.-F. Talos, M. Jakab, N. Makris, D. Meier, L. Wald, B. Fischl,

and R. Kikinis, “Multi-modality MRI-based atlas of the brain,” 2015, https:

//www.spl.harvard.edu/publications/item/view/2037.

[3] D. Boltcheva, M. Yvinec, and J.-D. Boissonnat, “Mesh generation from

3d multi-material images,” in MICCAI 2009, Part II. LNCS, G.-Z. Yang,

D. Hawkes, D. Rueckert, A. Noble, and C. Taylor, Eds. Heidelberg: Springer,

2009, vol. 5762, pp. 283–290.

[4] J. P. Pons, F. Ségonne, J. D. Boissonnat, L. Rineau, M. Yvinec, and

R. Keriven, “High-quality consistent meshing of multi-label datasets,” in

IPMI 2007, LNCS, N. Karssemeijer and B. Lelieveldt, Eds. Heidelberg:

Springer, 2007, vol. 4584, pp. 198–210.

[5] K. Sase, T. Tsujita, and A. Konno, “Embedding segmented volume in finite

element mesh with topology preservation,” in Proceedings of the 19th In-

ternational Conference on Medical Image Computing and Computer-Assisted

Intervention (MICCAI 2016), Part III, 2016, pp. 116–123.

[6] A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin,

S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward,

J. V. Miller, S. Pieper, and R. Kikinis, “3D Slicer as an image computing

platform for the quantitative imaging network,”Magnetic Resonance Imaging,

vol. 30, no. 9, pp. 1323–1341, 2012.

111

[7] “Natinal Alliance for Medical Image Computing (NAMIC): Brain Mut-

limodality,” http://insight-journal.org/midas/collection/view/190.

[8] K. Sase, T. Tsujita, and A. Konno, “Topology presavation method for em-

bedding a segmented medical image (in Japanese),” Proceedings of the 34th

Annual Conference of the Robotics Society of Japan, pp. RSJ2016AC1W1–06,

2016.

[9] K. Sase, T. Tsujita, and A. Konno, “Automatic generation of finite element

mesh with brain-fissure structure based on medical-image segmentation (in

Japanese),” IEICE Technical Report, vol. 115, no. 401, pp. 7–11, 2016.

[10] K. Sase, A. Konno, T. Tsujita, A. Fukuhara, X. Chen, and S. Komizunai,

“Stable fracture model of soft materials for a simulation of brain tumor resec-

tion (in Japanese),” in Proceedings of the 2014 JSME Conference on Robotics

and Mechatronics, 2014, pp. 3A1–B03.

[11] K. Sase, T. Tsujita, and A. Konno, “Haptic rendering of contact between rigid

and deformable objects based on penalty method with implicit time integra-

tion,” Proceedings of the 2016 IEEE International Conference on Robotics

and Biomimetics (ROBIO 2016), pp. 1594–1600, 2016.

[12] M. Dujovny, O. Ibe, A. Perlin, and T. Ryder, “Brain retractor systems,”

Neurological Research, vol. 32, no. 7, pp. 675–683, 2010.

[13] R. J. Andrews and J. R. Bringas, “A review of brain retraction and recom-

mendations for minimizing intraoperative brain injury,” vol. 33, no. December

1993, pp. 1–19, 1993.

[14] J. Zhong, M. Dujovny, A. R. Perlin, E. Perez-Arjona, H. K. Park, and F. G.

Diaz, “Brain retraction injury,” Neurological Research, vol. 25, no. 8, pp.

831–838, 2003.

[15] M. G. Yasargil, Microneurosurgery. Thieme, 1995.

[16] K. Hino, R. Tanikawa, T. Sugimura, M. Iwasaki, N. Izumi, A. Hashidume,

T. Fujita, M. Hashimoto, and H. Kamiyama, “Microsurgical technique with-

112

References

out pial injury for transsylvian approach,” Surg. Cereb. Stroke (in Japanese),

vol. 34, pp. 96–100, 2006.

[17] T. Mashiko, T. Konno, N. Kaneko, and E. Watanabe, “Training in brain

retraction using a self-made three-dimensional model,” World Neurosurgery,

vol. 84, no. 2, pp. 585–590, 2015.

[18] A. G. Gallagher and E. Matt Ritter, Virtual Reality: Objective Assessment,

Education, and Training. Berlin, Heidelberg: Springer Berlin Heidelberg,

2007, pp. 27–33.

[19] T. R. Coles, D. Meglan, and N. W. John, “The role of haptics in medical

training simulators: A survey of the state of the art,” IEEE Transactions on

Haptics, vol. 4, no. 1, pp. 51–66, 2011.

[20] S. Kapoor, P. Arora, V. Kapoor, M. Jayachandran, and M. Tiwari, “Haptics

- touchfeedback technology widening the horizon of medicine,” Journal of

Clinical and Diagnostic Research, vol. 8, no. 3, pp. 294–299, 2014.

[21] LapSim, http://www.surgical-science.com/lapsim-the-proven-training-system.

[22] LapVR, http://caehealthcare.com/eng/interventional-simulators/lapvr.

[23] D. Escobar-Castillejos, J. Noguez, L. Neri, A. Magana, and B. Benes, “A

review of simulators with haptic devices for medical training,” Journal of

Medical Systems, vol. 40, no. 4, pp. 1–22, 2016.

[24] H. R. Malone, O. N. Syed, M. S. Downes, A. L. D’Ambrosio, D. O. Quest, and

M. G. Kaiser, “Simulation in neurosurgery: A review of computer-based sim-

ulation environments and their surgical applications,” Neurosurgery, vol. 67,

pp. 1105–1116, 2010.

[25] G. M. Lemole, P. P. Banerjee, C. Luciano, S. Neckrysh, and F. T. Charbel,

“Virtual reality in neurosurgical education: Part-task ventriculostomy simu-

lation with dynamic visual and haptic feedback,” Neurosurgery, vol. 61, pp.

142–149, 2007.

113

[26] M. A. Spicer, M. van Velsen, J. P. Caffrey, and M. L. J. Apuzzo, “Virtual

reality neurosurgery: a simulator blueprint,” Neurosurgery, vol. 54, pp. 783–

798, 2004.

[27] S. Delorme, D. Laroche, R. DiRaddo, and R. F. Del Maestro, “Neurotouch: a

physics-based virtual simulator for cranial microneurosurgery training,” Neu-

rosurgery, vol. 71, pp. 32–42, 2012.

[28] V. Mora, D. Jiang, R. Brooks, and S. Delorme, “A computer model of soft

tissue interaction with a surgical aspirator,” in Proceedings of the 12th In-

ternational Conference on Medical Image Computing and Computer-Assisted

Intervention (MICCAI 2009), Part I, 2009, pp. 51–58.

[29] NeuroVR, http://caeneurovr.com.

[30] A. Alaraj, C. J. Luciano, D. P. Bailey, A. Elsenousi, B. Z. Roitberg,

A. Bernardo, P. P. Banerjee, and F. T. Charbel, “Virtual reality cerebral

aneurysm clipping simulation with real-time haptic feedback,” Neurosurgery,

vol. 11, no. 1, pp. 52–58, 2015.

[31] T. Koyama, H. Okudera, and S. Kobayashi, “Computer-generated surgical

simulation of morphological changes in microstructures: concepts of “virtual

retractor”,” Journal of Neurosurgery, vol. 90, no. 4, pp. 780–785, 1999.

[32] K. V. Hansen, L. Brix, C. F. Pedersen, J. P. Haase, and O. V. Larsen, “Mod-

elling of interaction between a spatula and a human brain,” Medical Image

Analysis, vol. 8, no. 1, pp. 23–33, 2004.

[33] Y. Hasegawa, K. Adachi, Y. Azuma, A. Fujita, E. Kohmura, and H. Kanki, “A

study on cerebellar retraction simulation for developing neurosurgical training

system,” Jounal of Japan Society of Computer Aided Surgery, vol. 12, no. 4,

pp. 533–543, 2010.

[34] S. Misra, K. T. Ramesh, and A. M. Okamura, “Modeling of tool-tissue

interactions for computer-based surgical simulation: A literature review,”

Presence: Teleoper. Virtual Environ., vol. 17, no. 5, pp. 463–491, Oct. 2008.

114

References

[35] A. Wittek, N. M. Grosland, G. R. Joldes, V. Magnotta, and K. Miller, “From

finite element meshes to clouds of points: A review of methods for genera-

tion of computational biomechanics models for patient-specific applications,”

Annals of Biomedical Engineering, vol. 44, no. 1, pp. 3–15, 2016.

[36] “CGAL: Computational Geometry Algorithms Library,” http://www.cgal.

org/.

[37] “GiD,” www.gidhome.com/.

[38] J. R. Nieto and A. Suśın, Cage Based Deformations: A Survey. Dordrecht:

Springer Netherlands, 2013, pp. 75–99.

[39] M. Muller, M. Teschner, and M. Gross, “Physically-based simulation of

objects represented by surface meshes,” in Proceedings of the Computer

Graphics International, ser. CGI ’04. Washington, DC, USA: IEEE

Computer Society, 2004, pp. 26–33.

[40] M. Nesme, P. G. Kry, L. Jeřábková, and F. Faure, “Preserving topology and

elasticity for embedded deformable models,” ACM Trans. Graph., vol. 28,

no. 3, pp. 52:1–52:9, 2009.

[41] M. Müller and M. Gross, “Interactive virtual materials,” in Proceedings of

Graphics Interface 2004, 2004, pp. 239–246.

[42] I.-F. Talos, M. Jakab, and R. Kikinis, “SPL abdominal atlas,” 2008, http:

//www.spl.harvard.edu/publications/item/view/1266.

[43] C. Forest, H. Delingette, and N. Ayache, “Removing tetrahedra from mani-

fold tetrahedralisation: application to real-time surgical simulation,” Medical

Image Analysis, vol. 9, no. 2, pp. 113–122, 2005.

[44] M. Nakayama, S. Abiko, X. Jiang, A. Konno, and M. Uchiyama, “Stable

soft-tissue fracture simulation for surgery simulator,” Journal of Robotics and

Mechatronics, vol. 23, no. 4, pp. 589–597, 2011.

115

[45] H. Courtecuisse, H. Jung, J. Allard, C. Duriez, D. Y. Lee, and S. Cotin, “Gpu-

based real-time soft tissue deformation with cutting and haptic feedback,”

Progress in Biophysics and Molecular Biology, vol. 103, pp. 159–168, 2010.

[46] H. Courtecuisse, J. Allard, P. Kerfriden, S. P. Bordas, S. Cotin, and C. Duriez,

“Real-time simulation of contact and cutting of heterogeneous soft-tissues,”

Medical Image Analysis, vol. 18, no. 2, pp. 394–410, 2014.

[47] N. Galoppo, S. Tekin, M. A. Otaduy, M. Gross, and M. C. Lin, “Interactive

haptic rendering of high-resolution deformable objects,” in Proceedings of the

2nd International Conference on Virtual Reality, 2007, pp. 215–233.

[48] S. Cotin, H. Delingette, and N. Ayache, “Real-time elastic deformations of

soft tissues for surgery simulation,” IEEE Transactions on Visualization and

Computer Graphics, vol. 5, no. 1, pp. 62–73, Jan. 1999.

[49] K. Hirota and T. Kaneko, “Haptic representation of elastic objects,” Presence:

Teleoperators Virtual Environments, vol. 10, no. 5, pp. 525–536, Oct. 2001.

[50] J. F. O’Brien, A. W. Bargteil, and J. K. Hodgins, “Graphical modeling and

animation of ductile fracture,” ACM Transactions on Graphics, vol. 21, no. 3,

pp. 291–294, 2002.

[51] C. Wojtan, N. Thürey, M. Gross, and G. Turk, “Deforming meshes that split

and merge,” ACM Transactions on Graphics, vol. 28, no. 3, pp. 76:1–76:10,

2009.

[52] J. Hegemann, C. Jiang, C. Schroeder, and J. M. Teran, “A level set method

for ductile fracture,” Proceedings of the 12th ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, pp. 193–201, 2013.

[53] A. B. Mor and T. Kanade, “Modifying soft tissue models: progressive cut-

ting with minimal new element creation,” in Proceedings of the Third In-

ternational Conference on Medical Image Computing and Computer-Assisted

Intervention, 2000, pp. 598–607.

116

References

[54] L. Jeřábková and T. Kuhlen, “Stable cutting of deformable objects in vir-

tual environments using xfem,” IEEE Computer Graphics and Applications,

vol. 29, no. 2, pp. 61–71, 2009.

[55] H. Delingette, S. Cotin, and N. Ayache, “A hybrid elastic model allowing

real-time cutting, deformations and force-feedback for surgery training and

simulation,” in Proceedings of Computer Animation 1999, 1999, pp. 70–81.

[56] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler, “Stable real-

time deformations,” Proceedings of the 2002 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, pp. 49–55, 2002.

[57] G. Irving, J. Teran, and R. Fedkiw, “Invertible finite elements for ro-

bust simulation of large deformation,” Proceedings of the 2004 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, pp. 131–140,

2004.

[58] A. Myronenko and X. Song, “On the closed-form solution of the ro-

tation matrix arising in computer vision problems,” Technical Report

arXiv:0904.1613v1 [cs.CV], 2009.

[59] S. Lahabar and P. Narayanan, “Singular value decomposition on gpu using

cuda,” in Proceedings of 23rd IEEE International Parallel and Distributed

Processing Symposium, May 2009, pp. 1–10.

[60] J. Bedkowski and A. Maslowski, “GPGPU computation in mobile robot ap-

plications,” International Journal on Electrical Engineering and Informatics,

vol. 4, no. 1, pp. 15–26, 2011.

[61] A. Fukuhara, T. Tsujita, K. Sase, A. Konno, X. Jiang, S. Abiko, and

M. Uchiyama, “Proposition and evaluation of a collision detection method

for real time surgery simulation of opening a brain fissure,” ROBOMECH

Journal, vol. 1, no. 1, p. 6, 2014.

[62] C. Cecka, A. Lew, and E. Darve, “Application of assembly of finite element

methods on graphics processors for real-time elastodynamics,” in GPU Com-

puting Gems Jade Edition, W.-m. W. Hwu, Ed., Boston, 2012, pp. 187–205.

117

[63] J. E. Colgate, M. C. Stanley, and J. M. Brown, “Issues in the haptic display

of tool use,” in Proceedings. 1995 IEEE/RSJ International Conference on

Intelligent Robots and Systems 95. ’Human Robot Interaction and Cooperative

Robots’, vol. 3, Aug 1995, pp. 140–145.

[64] M. A. Otaduy and M. Gross, “Transparent rendering of tool contact with

compliant environments,” in Second Joint EuroHaptics Conference and Sym-

posium on Haptic Interfaces for Virtual Environment and Teleoperator Sys-

tems (WHC’07), March 2007, pp. 225–230.

[65] C. Duriez, C. Andriot, and A. Kheddar, “A multi-threaded approach for de-

formable/rigid contacts with haptic feedback,” in 12th International Sympo-

sium on Haptic Interfaces for Virtual Environment and Teleoperator Systems,

March 2004, pp. 272–279.

[66] J. Barbič and D. L. James, “Six-DoF haptic rendering of contact between

geometrically complex reduced deformable models,” IEEE Transaction on

Haptics, vol. 1, no. 1, pp. 39–52, Jan. 2008.

[67] D. Baraff and A. Witkin, “Large steps in cloth simulation,” in Proceedings

of the 25th Annual Conference on Computer Graphics and Interactive

Techniques, ser. SIGGRAPH ’98. New York, NY, USA: ACM, 1998, pp.

43–54.

[68] M. A. Otaduy and M. C. Lin, “A modular haptic rendering algorithm for sta-

ble and transparent 6-DOF manipulation,” IEEE Transactions on Robotics,

vol. 22, no. 4, pp. 751–762, Aug 2006.

[69] D. Baraff, “Physically based modeling: Rigid body simulation,” ACM SIG-

GRAPH Course Notes, 2001.

[70] M. A. Otaduy, C. Garre, and M. C. Lin, “Representations and algorithms for

force-feedback display,” Proceedings of the IEEE, vol. 101, no. 9, pp. 2068–

2080, 2013.

118

References

[71] A. McAdams, Y. Zhu, A. Selle, M. Empey, R. Tamstorf, J. Teran, and

E. Sifakis, “Efficient elasticity for character skinning with contact and col-

lisions,” ACM Trans. Graph., vol. 30, no. 4, pp. 37:1–37:12, 2011.

[72] C. Garre and M. A. Otaduy, “Haptic rendering of objects with rigid and

deformable parts,” Computers & Graphics, vol. 34, no. 6, pp. 689–697, 2010.

[73] K. Hirota and K. Tagawa, “Interaction with virtual object using deformable

hand,” in 2016 IEEE Virtual Reality (VR), March 2016, pp. 49–56.

[74] M. W. Jones, J. A. Baerentzen, and M. Sramek, “3D distance fields: A

survey of techniques and applications,” IEEE Transactions on Visualization

and Computer Graphics, vol. 12, no. 4, pp. 581–599, Jul. 2006.

[75] Y. Masutani, Y. Inoue, K. Ishii, N. Kumai, F. Kimura, and I. Sakuma,

“Development of surgical simulator based on fem and deformable volume-

rendering,” in Proc. SPIE, vol. 5367, 2004, pp. 500–507.

[76] M. Nakao and K. Minato, “Physics-based interactive volume manipulation

for sharing surgical process,” IEEE Transactions on Information Technology

in Biomedicine, vol. 14, no. 3, pp. 809–816, May 2010.

[77] R. Torres, A. Rodŕıiguez, J. M. Espadero, and M. A. Otaduy, “High-

resolution interaction with corotational coarsening models,” ACM Trans.

Graph., vol. 35, no. 6, pp. 211:1–211:11, Nov. 2016.

[78] J. Allard, F. Faure, H. Courtecuisse, F. Falipou, C. Duriez, and P. G. Kry,

“Volume Contact Constraints at Arbitrary Resolution,” ACM Trans. Graph.,

vol. 29, no. 4, pp. 82:1—-82:10, 2010.

[79] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d

surface construction algorithm,” in Proceedings of the 14th Annual Conference

on Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’87.

New York, NY, USA: ACM, 1987, pp. 163–169.

[80] J. Wu, C. Dick, and R. Westermann, “Efficient collision detection for

composite finite element simulation of cuts in deformable bodies,” Vis.

Comput., vol. 29, no. 6-8, pp. 739–749, Jun. 2013.

119

[81] N. Mitchell, M. Aanjaneya, R. Setaluri, and E. Sifakis, “Non-manifold Level

Sets : A multivalued implicit surface representation with applications to self-

collision processing,” ACM Trans. Graph., vol. 34, no. 6, pp. 247:1–247:9,

2015.

[82] S. Fisher and L. C. Ming, “Deformed distance fields for simulation of non-

penetrating flexible bodies,” Computer Animation and Simulation 2001, pp.

99–111, 2001.

[83] G. Hirota, S. Fisher, and A. State, “An improved finite-element contact

model for anatomical simulations,” Visual Computer, vol. 19, no. 5, pp.

291–309, aug 2003.

[84] M. Teschner, B. Heidelberger, M. Müller, D. Pomeranets, and M. Gross, “Op-

timized spatial hashing for collision detection of deformable objects,” in Pro-

ceedings of the Vision, Modeling, and Visualization Conference 2003 (VMV

2003), 2003, pp. 47–54.

[85] D. Sahoo, C. Deck, and R. Willinger, “Development and validation of an

advanced anisotropic visco-hyperelastic human brain FE model,” Journal of

the Mechanical Behavior of Biomedical Materials, vol. 33, no. 1, pp. 24–42,

2014.

120

References

List of Publications

Journal Publications

[1] X. Chen, K. Sase, A. Konno, T. Tsujita, S. Komizunai, “A simple damage

and fracture model of brain parenchyma for haptic brain surgery simula-

tions,” Journal of Biomechanical Science and Engineering (JBSE), vol. 11,

no. 4, 2016.

[2] A. Fukuhara, T. Tsujita, K. Sase, A. Konno, Atsuhiro Nakagawa, Toshiki

Endo, Teiji Tominaga, X. Jiang, S. Abiko and M. Uchiyama, “Securing

an Optimum Operating Field without Undesired Tissue Damage in Neu-

rosurgery,” Advanced Robotics (AR), Taylor & Francis, vol. 30, no. 19,

pp. 1245–1259, 2016.

[3] K. Sase, A. Fukuhara, T. Tsujita, A. Konno, “GPU-accelerated surgery

simulation for opening a brain fissure,” ROBOMECH Journal, vol. 2, no. 1,

Article 17, 2015.

[4] A. Fukuhara, T. Tsujita, K. Sase, A. Konno, X. Jiang, S. Abiko, M.

Uchiyama, “Proposition and evaluation of a collision detection method for

real time surgery simulation of opening a brain fissure,” ROBOMECH Jour-

nal, vol. 1, no. 1, 2014.

[5] T. Tsujita, K. Sase, A. Konno, M. Nakayama, X. Chen, K. Abe, and M.

Uchiyama, “Design and Evaluation of an Encountered-type Haptic Interface

Using MR Fluid for Surgical Simulators,” Advanced Robotics (AR), Taylor

& Francis, vol. 27, no. 7, pp. 525–540, 2013.

[6] Y. Hayashi, Y. Tamura, K. Sase, K. Sugawara, Y. Sawada, “Intermittently-

121

visual Tracking Experiments Reveal the Roles of Error-correction and Pre-

dictive Mechanisms in the Human Visual-motor Control System”, Trans-

actions of the Society of Instrument and Control Engineers, vol. 46, no. 7,

pp. 391–400, 2010 (in Japanese).

International Conferences (Full Review)

[1] X. Chen, K. Sase, A. Konno, T. Tsujita, “A Viscoelastic Model of Brain

Parenchyma for Haptic Brain Surgery Simulations,” Proceedings of the 2016

IEEE/SICE International Symposium on System Integration (SII), Sapporo,

Japan , December 14, 2016.

[2] K. Sase, T. Tsujita, A. Konno, “Haptic Rendering of Contact Between Rigid

and Deformable Objects Based on Penalty Method with Implicit Time Inte-

gration,” Proceedings of the 2016 IEEE International Conference on Robotics

and Biomimetics (ROBIO), Qingdao, China, December 6, 2016.

[3] X. Chen, K. Sase, A. Konno, T. Tsujita, “Experimental and Numerical

Analysis of Damage Fracture Mechanics of Brain Parenchyma,” Proceedings

of the 2016 IEEE International Conference on Robotics and Biomimetics

(ROBIO), Qingdao, China, December 4, 2016.

[4] K. Sase, T. Tsujita, A. Konno, “Embedding Segmented Volume in Finite

Element Mesh with Topology Preservation,” Proceedings of the 19th Inter-

natinal Conference on Medical Image Computing and Computer-Assisted In-

tervention (MICCAI), pp. 116–123, October 17-21, 2016, Athens, Greek.

[5] A. Fukuhara, T. Tsujita, K. Sase, A. Konno, X. Jiang, S. Abiko, M.

Uchiyama, “Optimization of retraction in neurosurgery to avoid damage

caused by deformation of brain tissues,” Proceedings of the 2014 IEEE In-

ternational Conference on Robotics and Biomimetics (ROBIO), December

5-10, 2014, Bali, Indonesia.

[6] X. Chen, K. Sase, A. Konno and T. Tsujita, “Identification of Mechani-

cal Properties of Brain Parenchyma for Brain Surgery Haptic Simulation,”

122

References

Proceedings of the 2014 IEEE International Conference on Robotics and

Biomimetics (ROBIO), December 5-10, 2014, Bali, Indonesia.

[7] T. Tsujita, M. Ohara, K. Sase, A. Konno, M. Nakayama, K. Abe, and M.

Uchiyama, “Development of a haptic interface using MR fluid for displaying

cutting forces of soft tissues,” Proceedings of the 2012 IEEE International

Conference on Robotics and Automation (ICRA 2012), pp. 1044-1049, Saint

Paul, 2012.

International Conferences (No Review)

[1] A. Konno, M. Nakayama, X. Chen, A. Fukuhara, K. Sase, T. Tsujita and

S. Abiko, “Development of a Brain Surgery Simulator,” in Proceedings of the

International Symposium on Interdisciplinary Research and Education on

Medical Device Developments (IREMD), I-6, Hirosaki, Japan, 13 September,

2013.

Domestic Conferences

[1] K. Sase, T. Tsujita, A. Konno, “Topology Presavation Method for Em-

bedding a Segmented Medical Image (in Japanese),” Proceedings of the 34th

Annual Conference of the Robotics Society of Japan, RSJ2016AC1W1-06,

2016 (in Japanese).

[2] A. Ema, K. Sase, X. Chen, T. Tsujita, A. Konno, “GPU Acceleration

Method of Fluid-Structure Coupled Analysis for Intraoperative Brain-sift

Estimation,” Proceedings of the 34th Annual Conference of the Robotics So-

ciety of Japan, RSJ2016AC1W1-08, 2016 (in Japanese).

[3] X. Chen,K. Sase, A. Konno, T. Tsujita, “Damage Model of Brain Parenchyma

for Neurosurgery Simulation,” Proceedings of the 34th Annual Conference of

the Robotics Society of Japan, RSJ2016AC1W1-01, 2016 (in Japanese).

123

[4] A. Ema, K. Sase, T. Tsujita, A. Konno, “Fluid-Structure Coupled Analysis

Using Particle Method and Finite Element Method for Brain-shift Estima-

tion,” Proceedings of JSME Conference on Robotics and Mechatronics 2016,

1A1-02b7, 2016 (in Japanese).

[5] K. Sase, T. Tsujita, A. Konno, “Automatic Generation of Finite Element

Mesh with Brain-Fissure Structure Based on Medical-Image Segmentation,”

IEICE Technical Report, vol. 115, no. 401, pp. 7–11, 2016 (in Japanese).

[6] A. Ema, K. Sase, T. Tsujita, A. Konno, “A Fluid-Structure Coupled Anal-

ysis Method for Intraoperative Brain-shift Estimation,” Proceedings of the

33th Annual Conference of the Robotics Society of Japan, RSJ2015AC1J2-

02,2015 (in Japanese).

[7] K. Sase, A. Fukuhara, T. Tsujita, A. Konno, “Haptic Interaction Using

a Robust Soft-tissue Deformation and Fracture Model for Real-time Neu-

rosurgery Simulator,” Proceedings of the 32th Annual Conference of the

Robotics Society of Japan, RSJ2014AC3H2-03, 2014 (in Japanese).

[8] A. Fukuhara, T. Tsujita, K. Sase, A. Konno, X. Jiang, S. Abiko, M.

Uchiyama “Optimization of Surgical Path for Avoidance of Brain Retraction

Injury,” Proceedings of the 32th Annual Conference of the Robotics Society

of Japan, RSJ2014AC3H2-01, 2014 (in Japanese).

[9] N. Nagayasu, A. Konno, T. Tsujita, K. Sase, S. Komizunai, “Physical and

Contact Modeling of Surgical Thread for Suture Simulation,” Proceedings of

the 32th Annual Conference of the Robotics Society of Japan, RSJ2014AC3H2-

02, 2014 (in Japanese).

[10] K. Sase, A. Konno, T. Tsujita, A. Fukuhara, X. Chen, S. Komizunai, “Real-

time Simulation of Brain Tumor Resection Using GPGPU,” Proceedings of

JSME Conference on Robotics and Mechatronics 2014, 3A1-B04, 2014 (in

Japanese).

[11] K. Sase, A. Konno, T. Tsujita, A. Fukuhara, X. Chen, S. Komizunai, “Sta-

ble Fracture Model of Soft Materials for a Simulation of Brain Tumor Resec-

tion,” Proceedings of JSME Conference on Robotics and Mechatronics 2014,

3A1-B03, 2014 (in Japanese).

124

References

[12] N. Nagayasu, A. Konno, T. Tsujita, K. Sase, S. Komizunai, “Real-time Su-

ture Simulation of Soft Tissue,” Proceedings of JSME Conference on Robotics

and Mechatronics 2014, 3P1-A04, 2014 (in Japanese).

[13] A. Fukuhara, T. Tsujita, K. Sase, A. Konno, X. Jiang, S. Abiko, M.

Uchiyama, “Collision Detection for Real-time Surgery Simulation of Opening

a Brain Fissure”, Proceedings of JSME Conference on Robotics and Mecha-

tronics 2013, 2A1-L02, 2013 (in Japanese).

[14] Y. Inoue, T. Kameyama, K. Sase, T. Tsujita, X. Jiang, S. Abiko, M.

Uchiyama, “Cutting Force Display Using a MR-fluid-based Encountered-

type Haptic Interface for Surgical Simulators,” Proceedings of the 13th SICE

System Integration Division Annual Conference (SI2012), 2D1-2, pp. 1307–

1310, 2012 (in Japanese).

[15] T. Kameyama, T. Tsujita, K. Sase, X. Jiang, S. Abiko, M. Uchiyama,

“Analysis of Flow characteristics of MR Fluid for Displaying Cutting Force

of Soft Tissue,” Proceedings of the 13th SICE System Integration Division

Annual Conference (SI2012), 2D1-5, pp. 1318–1321, 2012 (in Japanese).

[16] K. Sase, M. Nakayama, Y. Satake, S. Abiko, X. Jiang, T. Tsujita, A. Konno,

M. Uchiyama, “Evaluation of Real-time Performance of the Blunt Dissection

Simulator Using a Real Brain Model,” Proceedings of JSME Conference on

Robotics and Mechatronics 2012, 2P1-U03, 2012 (in Japanese).

[17] K. Sase, X. Chen, M. Tomita, T. Tsujita, A. Konno, M. Nakayama, K.

Abe, M. Uchiyama, “Development of a Haptic Surgery Simulator Using MR

Fluid”, Proceedings of the 12th SICE System Integration Division Annual

Conference (SI2011), pp. 1540–1543, 2011 (in Japanese).

[18] T. Tsujita, K. Sase, M. Ohara, A. Konno, M. Nakayama, K. Abe, M.

Uchiyama, “Development of Haptic Interface for Force Display of Soft-tissue

Cutting Using MR Fluid,” Proceedings of the 29th Annual Conference of the

Robotics Society of Japan, 3L1－ 6, 2011 (in Japanese).

[19] T. Tsujita, M. Nakano, K. Sase, K. Yoshida “Small Braille Display System

Using Diaphragm Actuator Controlled by ER Fluid Microvalve,” Proceedings

of the Annual Spring Conference of the Japan Fluid Power System Society

125

2010, pp. 109-111, 2010 (in Japanese).

[20] Y. Hayashi, Y. Tamura, K. Sase, K. Sugawara, Y. Sawada, “Generation

of Rhythm and Occurrence of Precedence in Human Visual Tracking Mo-

tion”, Proceedings of the 24th Symposium on Biological and Physiological

Engineering, pp. 273–274, 2009 (in Japanese).

[21] K. Sase, K. Yaegashi, M. Yuki, Y. Hayashi, “Experiment Education Pro-

gram Starting with the Manufacture of Measuring Instruments”, Proceedings

of the Annual Conference of the Physical Society of Japan, vol. 64, no. 2,

p. 305, 2009 (in Japanese).

[22] K. Yaegashi, K. Sase, M. Yuki, Y. Hayashi, “Development and Implemen-

tation of an 80-hour Educational Program for the MONODUKURI Course,”

Proceedings of the Annual Conference of the Physical Society of Japan, vol. 64,

no. 2, p. 304, 2009 (in Japanese).

126

Appendix A Examples of SLPs

The SLPs (Separation Label Pairs, defined in Chapter 2) for preserving topology

of the brain fissures were manually specified. The task of the construction of this

SLPs required several hours. Although this is a labor-intensive work, SLPs are

repeatedly used if the application is specified.

The specified SLPs are as the following. Note that the integers are labels used

in the atlas-based segmentation tool of 3D Slicer ver. 4.5.0. The definition of the

labels are found in the file located on the following path: (Slicer_installed_

directory)/share/Slicer-4.5/ColorFiles/SPL-BrainAtlas-2012-ColorFile.

txt.

Sylvian fissure

{1000, 1018}, {1000, 1022}, {1000, 1030}, {1000, 1034}, {1030, 1031}, {1031, 1034}, {1022, 1030},

{1022, 1034}, {1024, 1030}, {2000, 2024}, {2000, 2018}, {2000, 2022}, {2000, 2030}, {2000, 2031},

{2000, 2034}, {2018, 2030}, {2022, 2024}, {2022, 2030}, {2022, 2034}, {2030, 2018}, {2030, 2022},

{2030, 2024}, {2030, 2031}, {2031, 2034},

Left cerebellum

{8, 2}, {8, 1099}, {8, 1011}, {8, 1013}, {8, 1016}, {8, 1007}, {8, 1009}, {7, 1099}, {7, 1011},

{7, 1013}, {7, 1016}, {7, 1007}, {7, 1009},

Right cerebellum

{47, 2}, {47, 2013}, {47, 2007}, {47, 2011}, {47, 41}, {47, 2009}, {47, 1013}, {46, 2013},

{46, 2007}, {46, 2011}, {46, 2009},

Longitudial fissure

{2, 54}, {2, 58}, {2, 508}, {2, 2005}, {2, 2013}, {2, 2014}, {2, 2017}, {2, 2023}, {2, 2021},

{2, 2028}, {2, 3002}, {26, 2014}, {41, 26}, {41, 509}, {41, 1005}, {41, 1013}, {41, 1014},

{41, 1017}, {41, 1021}, {41, 1025}, {41, 1028}, {41, 1029}, {54, 3003}, {508, 509}, {1002, 2002},

{1002,2023}, {1002, 2026}, {1005, 2005}, {1005, 2021}, {1010, 2010}, {1010, 2013}, {1010, 2025},

{1011, 2005}, {1011, 2011}, {1011, 2021}, {1012, 2012}, {1013, 2005}, {1013, 2013}, {1013, 2021},

{1014, 2012}, {1014, 2014}, {1014, 2032}, {1017, 2017}, {1017, 2023}, {1017, 2025}, {1017, 2029},

{1021, 2005}, {1021, 2021}, {1022, 2029}, {1023, 2010}, {1023, 2017}, {1023, 2023}, {1023, 2025},

{1025, 2005}, {1025, 2010}, {1025, 2013}, {1025, 2021}, {1025, 2025}, {1025, 2029}, {1026, 2014},

{1026, 2026}, {1028, 2002}, {1028, 2017}, {1028, 2023}, {1028, 2024}, {1028, 2026}, {1028, 2028},

{1029, 2005}, {1029, 2025}, {1029, 2029}, {1032, 2012}, {1032, 2014}, {1032, 2032},

Mammillary body

{3002, 3003},

127

