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Abstract

Considered is a family of irreducible Weyl representations of canonical commu-
tation relations with infinite degrees of freedom on the abstract boson Fock space
over a complex Hilbert space. Theorems on equivalence or inequivalence of the
representations are established. As a simple application of one of these theorems,
the well known inequivalence of the time-zero field and conjugate momentum for
different masses in a quantum scalar field theory is rederived with space dimension
d ≥ 1 arbitrary. Also a generalization of representations of the time-zero field and
conjugate momentum is presented. Comparison is made with a quantum scalar field
in a bounded region in Rd. It is shown that, in the case of a bounded space region
with d = 1, 2, 3, the representations for different masses turn out to be mutually
equivalent.

Keywords: Boson Fock space, canonical commutation relations, inequivalent represen-
tation, quantum field, time-zero field, Weyl representation.
Mathematics Subject Classification 2010: 81R10, 47L60.

1 Introduction

As is well known, in the Fock space formalism of quantum field theory (see, e.g., [6,
§X.7]), the time-zero field φm(f) and conjugate momentum πm(f) of a free scalar field
on the four-dimensional space-time R3 × R with mass m ≥ 0 and f ∈ SR(R3) (the
Schwartz space of rapidly decreasing real-valued C∞-functions on R3) give an irreducible
Weyl representation of the canonical commutations relations (CCR) over SR(R3) (see
Definition 2.4-(ii) and Example 2.6). Namely φm(f) and πm(f) are self-adjoint operators
on the boson Fock space Fb(L

2(R3)) over L2(R3) (see Section 2 for the definition of the
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abstract boson Fock space over a complex Hilbert space) satisfying the Weyl relations
(e.g., [6, Appendix to X.7]):

eiφm(f)eiπm(g) = e−i〈f,g〉eiπm(g)eiφm(f),

eiφm(f)eiφm(g) = eiφm(g)eiφm(f), eiπm(f)eiπm(g) = eiπm(g)eiπm(f), f, g ∈ SR(R3),

where i is the imaginary unit and 〈f, g〉 denotes the inner product of f and g in L2(R3).
The set {φm(f), πm(f)|f ∈ SR(R3)} is also a Heisenberg representaion of the CCR over
SR(R3) (see Definition 2.4-(i) as well as Remark 2.5) :

[φm(f), πm(g)] = i 〈f, g〉 ,

[φm(f), φm(g)] = 0, [πm(f), πm(g] = 0, f, g ∈ SR(R3)

on a dense subspace in Fb(L
2(R3)), where [A, B] := AB −BA, the commutator of A and

B. As for this representation, the following interesting fact is known:

Theorem 1.1 [6, Theorem X.46] If m1 6= m2 (m1,m2 > 0), then the Weyl representa-
tions {eiφm1 (f), eiπm1 (f)|f ∈ SR(R3)} and {eiφm2 (f), eiπm2 (f)|f ∈ SR(R3)} are inequivalent,
i.e., there exists no unitary operator U on Fb(L

2(R3)) such that, for all f ∈ SR(R3),
Uφm1(f)U−1 = φm2(f) and Uπm1(f)U−1 = πm2(f).

The proof of this theorem in [6] uses the Euclidean invariance of the operators φm(f)
and πm(f). This comes from “the idea that Euclidean invariance is deeply connected
with questions of inequivalence of representations of the CCR” [6, p.329]. But we want to
point out that there exists a general abstract structure which, in a concrete realization,
makes the representations {φm(f), πm(f)|f ∈ SR(R3)},m > 0 mutually inequivalent.
One of the motivations for the present work is to show this by establishing an abstract
theorem on inequivalence of representations of CCR on the abstract boson Fock space
(Theorem 5.1) and deriving Theorem 1.1 as an application of the abstract theorem. We see
that, from this view-point, the translation invariance in space is connected with the non-
Hilbert-Schmidtness of an operator which is a necessary and sufficient condition for the
representations {φm1(f), πm1(f)|f ∈ SR(R3)} and {φm2(f), πm2(f)|f ∈ SR(R3)} (m1 6=
m2) to be inequivalent. Schematically speaking, the translation invariance in space implies
the continuity of the energy spectrum of one free boson, which, in turn, implies the non-
Hilbert-Schmidtness of the relevant operator.

We also present a generalization of the representation {φm(f), πm(f)|f ∈ SR(R3)} in
such a way that the energy function ωm of a free relativistic boson with mass m is replaced
by a general function and the space R3 is replaced by Rd with d ∈ N (the set of natural
numbers) arbitrary. We prove a theorem on equivalence of the representations in the
generalized family (Theorem 6.10). Since infinity in space may give rise to inequivalence of
representations {φm(f), πm(f)|f ∈ SR(R3)}, we also discuss a quantum field in a bounded
space region in Rd. In this case, we find that, in the case d = 1, 2, 3, representations of
time-zero fields for different masses are mutually equivalent, in contrast to the case of the
infinite space Rd. This may be an interesting phenomenon to note.

The present paper is organized as follows. In Section 2, we recall the definition of the
boson Fock space Fb(H) over a complex Hilbert space H and describe some facts. Also

2



concepts of representations of CCR over a real inner product space are reviewed. Some
details of the above mentioned representation of CCR are given as an example, where
the space dimension d is taken to be arbitrary (not necessarily d = 3). In Section 3, we
describe the Fock representation of CCR over a real subspace V in H. We prove a key fact
in considering inequivalence of representations of CCR (Proposition 3.3). In Section 4,
we introduce a family W of irreducible Weyl representation of CCR over a real subspace
V in H. This family is parameterized by a set SV(H) consisting of injective self-adjoint
operators with some additional properties. We prove a theorem on inequivalence of a
representation in W to the Fock representation (Theorem 4.6). In Section 5, we state
and prove the main theorems in the present paper (Theorems 5.1 and 5.6), which are
concerned with equivalence or inequivalence of two representations in W . A basic idea
for proof of Theorem 5.1 is to reduce the problem to that of Bogoliubov transformations
on the creation and annihilation operators on Fb(H). As for Theorem 5.6, we apply
Proposition 3.3 mentioned above. In the last section, we first show that Theorem 1.1
can be obtained by an application of Theorem 5.1. Moreover, as mentioned above, we
define a generalized version of the representations {φm(f), πm(f)|f ∈ SR(R3)} and prove
a theorem on inequivalence of them (Theorem 6.10). Finally, for comparison, we discuss
a scalar quantum field with mass m in a bounded region M ⊂ Rd. We show that, in the
case d = 1, 2, 3, representations for different masses are equivalent, opposite to the case
where the space under consideration is Rd.

2 Preliminaries

2.1 The abstract boson Fock space and basic facts

Let H be a complex Hilbert space with inner product 〈·, ·〉 (linear in the second variable)
and norm ‖ · ‖, and, for each non-negative integer n = 0, 1, 2, . . ., ⊗n

s H be the n-fold
symmetric tensor product Hilbert space of H with convention ⊗0

sH := C (the complex
number field). Then the boson Fock space over H is defined by

Fb(H) := ⊕∞
n=0 ⊗n

s H. (2.1)

For a linear operator A on a Hilbert space, we denote its domain by D(A).
We denote by A(f) the annihilation operator with test vector f ∈ H on Fb(H), which

is the unique densely defined closed operator on Fb(H) such that its adjoint A(f)∗ takes
the following form: For all Ψ ∈ D(A(f)∗), (A(f)∗Ψ)(0) = 0 and

(A(f)∗Ψ)(n) =
√

nSn(f ⊗ Ψ(n−1)), n ≥ 1,

where Sn is the symmetrization operator on the n-fold tensor product ⊗nH of H (see,
e.g., [5, §II.4] and [6, §X.7]). It is well known that the subspace of finite particle vectors

F0(H) := {Ψ = {Ψ(n)}∞n=0 | Ψ(n) ∈ ⊗n
s H, n ≥ 0 and there exists an n0 ∈ N such that

for all n ≥ n0, Ψ(n) = 0} (2.2)

is dense in Fb(H).
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For all f ∈ H, F0(H) ⊂ D(A(f)) ∩ D(A(f)∗) and A(f) and A(f)∗ leave F0(H)
invariant. Moreover, {A(f), A(f)∗|f ∈ H} satisfies the following commutation relations:

[A(f), A(g)∗] = 〈f, g〉 , [A(f), A(g)] = 0, [A(f)∗, A(g)∗] = 0 (f, g ∈ H) (2.3)

on F0(H).
We denote by A(f)# either A(f) or A(f)∗.
Let

ΩF = {1, 0, 0, . . .} ∈ Fb(H) (2.4)

be the Fock vacuum. Then
A(f)ΩF = 0, f ∈ H. (2.5)

Let Nb be the number operator on Fb(H):

Nb = ⊕∞
n=0nIn, (2.6)

where In is the identity on ⊗n
s H.

It is well known (e.g., [1, Proposition 4.25], [2, Theorem 3.51]) that, for all f ∈ H,

D(N
1/2
b ) ⊂ D(A(f)) ∩ D(A(f)∗) and

‖A(f)Ψ‖ ≤ ‖f‖ ‖N1/2
b Ψ‖, ‖A(f)∗Ψ‖ ≤ ‖f‖ ‖(Nb + 1)1/2Ψ‖, Ψ ∈ D(N

1/2
b ).

Hence we have the following fact:

Lemma 2.1 (strong continuity of A(·)# on D(N
1/2
b )) Let Ψ ∈ D(N

1/2
b ) and fn, f ∈ H

(n ∈ N) satisfying limn→∞ fn = f . Then limn→∞ A(fn)#Ψ = A(f)#Ψ.

For each f ∈ H, (A(f)∗ + A(f))/
√

2 is essentially self-adjoint on F0(H) [6, Theorem
X.41]. Hence its closure

Φ(f) :=
1√
2
(A(f)∗ + A(f)) (f ∈ H) (2.7)

is self-adjoint, where, for a closable operator T , T denotes the closure of T . The operator
Φ(f) is called the Segal field operator.

It follows from (2.3) that, for all f, g ∈ H,

[Φ(f), Φ(g)] = i= 〈f, g〉 (2.8)

on F0(H). Moreover, {Φ(f)|f ∈ H} obeys the following relations:

eiΦ(f)eiΦ(g) = e−i=〈f,g〉eiΦ(g)eiΦ(f), f, g ∈ H. (2.9)

For each f ∈ H, the operator

Π(f) := Φ(if) (2.10)

is called the conjugate momentum of Φ(f). We have from (2.8)

[Φ(f), Π(g)] = i<〈f, g〉 , [Π(f), Π(g)] = i=〈f, g〉 , f, g ∈ H. (2.11)
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Lemma 2.2 Let D be a dense subspace in H and Ψ ∈ Fb(H) such that, for all f ∈ D,
Ψ ∈ D(A(f)) and

A(f)Ψ = 0, f ∈ D. (2.12)

Then Ψ = Ψ(0)ΩF, where ΩF is the Fock vacuum.

Proof. Equation (2.12) implies that (A(f)Ψ)(n) = 0, n ≥ 0. Hence, for all Φn ∈ ⊗n
s H,

〈Φn, A(f)Ψ〉 = 0 (we identify Φn with {0, . . . , Φn, 0, . . .} ∈ F0(H)). Since Φn ∈ D(A(f)∗),
it follows that 〈A(f)∗Φn, Ψ〉 = 0. Since {A(f)∗Φn|f ∈ D, Φn ∈ ⊗n

s H} is dense in ⊗n+1
s H,

we have Ψ(n+1) = 0 for all n ≥ 0. Hence Ψ = {Ψ(0), 0, . . .} = Ψ(0)ΩF.

Lemma 2.3 Assume that H is separable and {en}∞n=1 be a complete orthonormal system

(CONS) of H. Then, for all Ψ ∈ D(N
1/2
b ),

∑∞
n=1 ‖A(en)Ψ‖2 converges and

∞∑
n=1

‖A(en)Ψ‖2 = ‖N1/2
b Ψ‖2 (2.13)

Proof. This fact may be well known, but, for completeness, we give a proof for it.
Since H is separable, there exists a unitary operator U from H to L2(R). Then Γ(U) :=
1 ⊕ (⊕∞

n=1 ⊗n U) is a unitary operator from Fb(H) to Fb(L
2(R)) such that

Γ(U)A(f)Γ(U)−1 = a(Uf), f ∈ H,

Γ(U)NbΓ(U)−1 = nb,

where a(·) (resp. nb) denotes the annihilation (resp. number) operator on Fb(L
2(R)).

Hence (2.13) is equivalent to
∞∑

n=1

‖a(fn)ψ‖2 = ‖n1/2
b ψ‖2, ψ ∈ D(n

1/2
b ), (2.14)

where fn = Uen, n ∈ N. We prove this formula. It is well known or easy to see (e.g., [6,
p.209, Example 1]) that, for all ψ ∈ D(a(f)) with f ∈ L2(R) and ` ≥ 0

(a(f)ψ)(`)(x1, . . . , x`) =
√

` + 1

∫
R

f(x)∗ψ(`+1)(x, x1, . . . , x`)dx

for a.e.(x1, . . . , x`) ∈ R`, where, for z ∈ C, z∗ denotes the complex conjugate of z. Hence,

for all ψ ∈ D(n
1/2
b ),

‖a(fn)ψ‖2 =
∞∑

`=0

(` + 1)

∫
R`

∣∣∣∣∫
R

fn(x)∗ψ(`+1)(x, x1, . . . , x`)dx

∣∣∣∣2 dx1 · · · dx`.

By the completeness of {fn}n, we have
∞∑

n=1

∣∣∣∣∫
R

fn(x)∗ψ(`+1)(x, x1, . . . , x`)dx

∣∣∣∣2 =

∫
R

∣∣ψ(`+1)(x, x1, . . . , x`)
∣∣2 dx.

Hence, by Fubini’s theorem,
∞∑

n=1

‖a(fn)ψ‖2 =
∞∑

`=0

(` + 1)‖ψ(`+1)‖2 = ‖n1/2
b ψ‖2.

Thus (2.14) holds.
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2.2 Representations of CCR over a real inner product space

We recall concepts of representation of the CCR over a real inner product space.

Definition 2.4 Let F be a complex Hilbert space, F0 be a dense subspace in F and V
be a real inner product space. Suppose that, for each f ∈ V , closed symmetric operators
q(f) and p(f) on F are given.

(i) The triple (F ,F0, {q(f), p(f)|f ∈ V}) is called a Heisenberg representation of the
CCR over V if, for all f ∈ V, F0 ⊂ D(q(f)) ∩ D(p(f)) and q(f) and p(f) leave F0

invariant, satisfying the CCR

[q(f), p(g)] = i 〈f, g〉 , [q(f), q(g)] = 0, [p(f), p(g)] = 0, f, g ∈ V , (2.15)

on F0.

(ii) Assume that, for each f ∈ V , q(f) and p(f) are self-adjoint. Then (F , {eiq(f),
eip(f)|f ∈ V}) is called a Weyl representation of the CCR over V if the Weyl relations

eiq(f)eip(g) = e−i〈f,g〉eip(g)eiq(f), (2.16)

eiq(f)eiq(g) = eiq(g)eiq(f), eip(f)eip(g) = eip(g)eip(f), f, g ∈ V , (2.17)

hold.

(iii) Let ρ := (F ,F0, {q(f), p(f)|f ∈ V}) and ρ′ = (F ′,F ′
0, {q(f)′, p(f)′|f ∈ V}) be

Heisenberg representations of the CCR over V . Then ρ and ρ′ are equivalent if there
exists a unitary operator U : F → F ′ such that Uq(f)U−1 = q(f)′, Up(f)U−1 =
p(f)′ for all f ∈ V .

(iv) Let ρ := (F , {eiq(f), eip(f)|f ∈ V}) and ρ′ = (F ′, {eiq(f)′ , eip(f)′|f ∈ V}) be Weyl
representations of the CCR over V . Then ρ and ρ′ are equivalent if there exists a
unitary operator U : F → F ′ such that Uq(f)U−1 = q(f)′, Up(f)U−1 = p(f)′ for
all f ∈ V .

Remark 2.5 (i) In our definition, the operators forming a Heisenberg representation are
not necessarily self-adjoint.

(ii) A Weyl representation (F , {eiq(f), eip(f)|f ∈ V}) is a Heisenberg representation
(F ,F0, {q(f), p(f)|f ∈ V}) for a suitable F0. But the converse is not true. This situation
already occurs in the case where V is finite dimensional (cf., e.g., [4]).

(iii) In the case where V is finite dimensional, all irreducible Weyl representations of
the CCR over V are mutually equivalent (von Neumann’s uniqueness theorem [4]). But,
as for Heisenberg representations, von Neumann’s uniqueness theorem does not hold in
general.

Example 2.6 For each d ∈ N, there exists a d-dimensional version of the time-zero field
φm(f) and conjugate momentum πm(f) mentioned in Introduction. Here we describe it
briefly. Let ∆ be the generalized Laplacian acting in L2(Rd). Then, for a constant m ≥ 0,

hm := (−∆ + m2)1/2

6



is a non-negative self-adjoint operator on L2(Rd), denoting physically the Hamiltonian of
a free relativistic particle with mass m in the coordinate representation, where we use the
physical unit system such that ~ (the Planck constant divided by 2π) and c (the speed of
light) are 1.

We denote by Rd∗ := {k = (k1, . . . , kd)|kj ∈ R, j = 1, . . . , d} the dual space of Rd

and by kx :=
∑d

j=1 kjxj (k ∈ Rd∗, x = (x1, . . . , xd) ∈ Rd) the natural bilinear form:

Rd∗ × Rd → R.
The function ωm on Rd∗ given by

ωm(k) :=
√

|k|2 + m2, k ∈ Rd∗,

represents the energy function of a free relativistic particle with mass m.
Let Fd : L2(Rd) → L2(Rd∗) be the Fourier transform:

(Fdf)(k) = f̂(k) :=
1

(2π)d/2

∫
Rd

f(x)e−ikxdx, (k ∈ Rd∗)

in the L2-sense. Then

D(hm) = {f ∈ L2(Rd)|ωmf̂ ∈ L2(Rd∗)}

and
ĥmf(k) = ωm(k)f̂(k), f ∈ D(hm), a.e.k ∈ Rd∗.

We denote by S(Rd) (resp. SR(Rd)) the Schwartz space of (resp. real-valued) rapidly
decreasing C∞-functions on Rd and by L2

R(Rd) the real Hilbert space of real-valued L2-
functions on Rd. We introduce a dense subspace in Vd,m of LR(Rd):

Vd,m :=

{
SR(Rd) for m > 0,

{f ∈ SR(Rd)|supp f̂ ⊂ Rd∗ \ {0}} for m = 0,
,

where supp f̂ denotes the support of f̂ . It follows that, for all α ∈ R, Vd,m ⊂ D(hα
m).

We now consider the Fock space Fb(L
2(Rd)) over L2(Rd). For each f ∈ Vd,m, we define

φm(f) := Φ(h−1/2
m f), πm(f) := Π(h1/2

m f),

where Φ(·) and Π(·) are respectively the Segal field operator and its conjugate momentum
on Fb(L

2(Rd)). It is shown that (Fb(L
2(Rd)), {eiφm(f), eiπm(f)|f ∈ Vd,m}) is an irreducible

Weyl representation of the CCR over Vd,m (see [6, Appendix to X.7]). This representation
with d = 3 is the representation mentioned in Introduction.

3 Fock representation of CCR and Basic Facts

Let H be a complex Hilbert space and C be a conjugation on H (i.e., C is an anti-linear,
norm-preserving map: H → H satisfying C2 = I (identity)). Then the subset

HC := {f ∈ H |Cf = f}

7



is a real Hilbert space with the inner product of H. We call HC the real Hilbert space
associated with C.

For each f ∈ H, the vectors

<f :=
f + Cf

2
, =f :=

f − Cf

2i

are elements in HC satisfying
f = <f + i=f. (3.1)

We call <f (resp. =f) the real (imaginary) part of f . We have

H = HC + iHC := {f + ig|f, g ∈ HC}. (3.2)

We define
φ(f) := Φ(f), π(f) := Π(f), f ∈ HC . (3.3)

Let V be a dense subspace in HC . Then (Fb(H), {eiφ(f), eiπ(f)|f ∈ V}) is an irreducible
Weyl representation of the CCR over V (cf. [6, p.232, Lemma 1]). This representation is
called the Fock representation of the CCR over V .

Equation (2.5) gives

(φ(f) + iπ(f))ΩF = 0, f ∈ HC . (3.4)

By an analogy with this fact, for a Heisenberg representation ρH := (F ,F0, {q(f), p(f)
|f ∈ V}) (resp. a Weyl representation ρW := (F , {eiq(f), eip(f)|f ∈ V})), a non-zero vector
Ω ∈ F is called a vacuum of ρH (resp. ρW) if Ω ∈ D(q(f)) ∩ D(p(f)) for all f ∈ V and

(q(f) + ip(f))Ω = 0, f ∈ V . (3.5)

Lemma 3.1 Let (F ,F0, {q(f), p(f)|f ∈ V}) be a Heisenberg representation of the CCR
over V. Suppose that (F ,F0, {q(f), p(f)|f ∈ V}) is equivalent to the Fock representation
(Fb(H), F0(H), {φ(f), π(f)|f ∈ V}). Then the representation (F ,F0, {q(f), p(f)|f ∈ V})
has a vacuum.

Proof. By the present assumption, there exists a unitary operator U : F → Fb(H)
such that

Uq(f)U−1 = φ(f), Up(f)U−1 = π(f), f ∈ V .

Hence
U(q(f) + ip(f))U−1 = φ(f) + iπ(f).

Hence it follows from (3.4) that Ω := U−1ΩF ∈ D(q(f)) ∩ D(p(f)) and (3.5) holds. Thus
this Ω is a vacuum of (F ,F0, {q(f), p(f)|f ∈ V}).

Remark 3.2 The converse of the statement of (3.1) is true under some additional con-
ditions (see, e.g., [1, Proposition 4.61]).
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We denote by B(H) the Banach space of everywhere defined bounded linear operators
on H.

The following proposition is a key fact in considering inequivalence of representations
of CCR.

Proposition 3.3 Assume that H is separable. Let L ∈ B(H) and D be a dense subspace
in H. Suppose that there exists a non-zero vector Ω ∈ Fb(H) such that, for all Ψ ∈ F0(H)
and f ∈ D,

〈A(f)∗Ψ, Ω〉 = 〈A(CLf)Ψ, Ω〉 . (3.6)

Then L is Hilbert-Schmidt.

Proof. For each n ≥ 0, we define a vector Ωn in the n-particle space ⊗n
s H by Ω

(n)
n :=

Ω(n) and Ω
(m)
n := 0, m 6= n. Let Ψ ∈ ⊗n

s H. Then, for all f ∈ D, A(f)∗Ψ ∈ ⊗n+1
s H

and A(CLf)Ψ ∈ ⊗n−1
s H (⊗−1

s H := {0}). Hence we have from (3.6) 〈A(f)∗Ψ, Ωn+1〉 =
〈A(CLf)Ψ, Ωn−1〉. Therefore 〈Ψ, A(f)Ωn+1〉 = 〈Ψ, A(CLf)∗Ωn−1〉. Thus

A(f)Ωn+1 = A(CLf)∗Ωn−1, n ≥ 0, f ∈ D, (3.7)

where Ω−1 := 0. In particular, A(f)Ω1 = 0. Hence, by Lemma 2.2, Ω1 = 〈ΩF, Ω1〉ΩF = 0.
Then, by (3.7), A(f)Ω3 = 0 for all f ∈ D. Hence, by Lemma 2.2 again, Ω3 = 0. By
repeating this process with (3.7), we can show by induction in n that Ω2n−1 = 0 for all
n ≥ 1.

By (3.7), we have A(f)Ω2 = cA(CLf)∗ΩF, where c := Ω(0) ∈ C. If c = 0, then
A(f)Ω2 = 0 for all f ∈ D. Hence, by Lemma 2.2 again, Ω2 = 0. Then, in the same way as
above, we obtain Ω2n = 0 for all n ≥ 0. Thus Ω = 0. But this is a contradiction. Hence
c 6= 0. Therefore ‖A(CLf)∗ΩF‖2 = ‖A(f)Ω2‖2/|c|2. Hence ‖Lf‖2 = ‖A(f)Ω2‖2/|c|2. Let
{en}∞n=1 be a CONS of H. Then, by Lemma 2.3,

∞∑
n=1

‖Len‖2 =
1

|c|2
∞∑

n=1

‖A(en)Ω2‖2 =
1

|c|2
‖N1/2

b Ω2‖2 < ∞,

Hence L is Hilbert-Schmidt.

4 A Family of Irreducible Weyl Representations of

CCR

Let T be a self-adjoint operator on H (not necessarily bounded) such that

CT ⊂ TC. (4.1)

Then T is reduced by HC in the sense that, for all f ∈ D(T ), <f in HC ∩ D(T ) and
<(Tf) = T<f . In particular, D(T ) ∩HC is dense in HC and T (D(T ) ∩HC) ⊂ HC .

Suppose that T is injective. Then it follows from functional calculus that T−1 is
reduced by HC . We introduce self-adjoint operators

φT (f) := Φ(T−1f), f ∈ D(T−1) ∩HC , (4.2)

πT (f) := Π(Tf), f ∈ D(T ) ∩HC , (4.3)
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acting in Fb(H).
Let V be a dense subspace in HC and SV(H) be the set of injective self-adjoint operators

T on H satisfying the following conditions:

(T.1) (4.1) holds.

(T.2) V ⊂ D(T ) ∩ D(T−1) and T±1V are dense in HC .

Remark 4.1 The set SV(H) includes the following sets:

SV,c(H) := {T |T is injective, self-adjoint, CT ⊂ TC and V is a core for T±1},
GLs.a.(HC) := {T ∈ B(H)|T is self-adjoint, biijective and TC = CT}.

In what follows, we assume that T ∈ SV(H).

Lemma 4.2 The triple (Fb(H),F0(H), {φT (f), πT (f)|f ∈ V}) is a Heisenberg represen-
tation of the CCR over V.

Proof. For all f, g ∈ V , the CCR for φT (f) and πT (g) on F0(H) follow from (2.11)
and the elementary fact that 〈T−1f, Tg〉 = 〈f, g〉.

Lemma 4.3 Assume that H is separable. Then (Fb(H), {eiφT (f), eiπT (f)|f ∈ V}) is an
irreducible Weyl representation of the CCR over V.

Proof. The Weyl relations for eiφT (·) and eiπT (·) follow from (2.9) and the fact that
〈T−1f, Tg〉 = 〈f, g〉 , f, g ∈ V . One can show that {eiΦ(f), eiΠ(f)|f ∈ HC} is irreducible
(cf. [6, p.232, Lemma 1]). Let B ∈ B(Fb(H)) such that, for all f ∈ V , BeiφT (f) =
eiφT (f)B · · · (∗) and BeiπT (f) = eiπT (f)B. Since T−1V is dense in HC , for each f ∈ HC , there
exists a sequence {gn}n in V such that T−1gn → f (n → ∞). By the strong continuity
of the mapping: f 7→ eiΦ(f) [6, Theorem X.41-(d)], we have s- limn→∞ eiφT (gn) = eiΦ(f),
where s- lim means strong limit. By (∗), BeiφT (gn) = eiφT (gn)B. Taking the strong limit
s- limn→∞ of the both sides, we obtain BeiΦ(f)) = eiΦ(f)B for all f ∈ HC . Similarly, using
the density of TV in HC , we can show that, for all f ∈ HC , BeiΠ(f)) = eiΠ(f)B. Hence,
by the irreducibiliy of {eiΦ(f), eiΠ(f)|f ∈ HC}, B = cI (I is identity) with some constant
c ∈ C. Thus {eiφT (f), eiπT (f)|f ∈ V} is irreducible.

It is natural to ask when the Weyl representation (Fb(H), {eiφT (f), eiπT (f)|f ∈ V}) is
equivalent or inequivalent to the Fock representation (Fb(H), {eiφ(f), eiπ(f)|f ∈ V}). As
for this problem, we begin with a remark.

We have for all f ∈ D(T ) ∩ D(T−1)

φT (<f) + πT (=f) = Φ(RT f),

with RT f := T−1<f + iT=f . By direct computation, we have

=〈RT f,RT g〉 = =〈f, g〉 , f, g ∈ D(T ) ∩ D(T−1).
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Hence RT is a symplectic transformation on the symplectic space (H,= 〈·, ·〉) with do-
main D(T ) ∩ D(T−1) (H is considered as a real inner product space with inner product
<〈f, g〉 , f, g ∈ H.

Suppose that H is separable, T ∈ B(H) and T is bijective. Let Rt
T denote the adjoint

of RT as an operator on the real inner product space (H,< 〈·, ·〉). Then one can apply
Shale’s theorem [10] to conclude that (Fb(H), {eiφT (f), eiπT (f)|f ∈ V}) is equivalent to
(Fb(H), {eiφ(f), eiπ(f) |f ∈ V}) if and only if (Rt

T RT )1/2 − 1 is Hilbert-Schmidt. It is easy
to see that (Rt

T RT )1/2 − 1 is Hilbert-Schmidt if and only if T 2 − 1 is Hilbert-Schmidt.
Thus (Fb(H), {eiφT (f), eiπT (f)|f ∈ V}) is equivalent to (Fb(H), {eiφ(f), eiπ(f) |f ∈ V}) if
and only if T 2 − 1 is Hilbert-Schmidt.

In the case where T or T−1 is unbounded, however, the situation essentially changes,
because RT also is unbounded and hence one cannot directly apply Shale’s theorem.
Thus, in this case, we need to take another route to discuss equivalence or inequivalence
of {φT (f), πT (f)|f ∈ V} to the Fock representation {φ(f), π(f)|f ∈ V}. Blow are the
details of a theory for the general case where T or T−1 is not necessarily bounded.

It is easy to see that T (T 2 + 1)−1 and (T 2 − 1)(T 2 + 1)−1 are in B(H).

Lemma 4.4 The operator T + T−1 is bijective and (T + T−1)−1 ∈ B(H) with

(T + T−1)−1 = T (T 2 + 1)−1. (4.4)

Proof. Let f ∈ ker(T + T−1). Then Tf = −T−1f . Hence Tf ∈ D(T ) and T 2f = −f ,
i.e., (T 2 + 1)f = 0. Since T 2 + 1 ≥ 1, it follows that f = 0. Hence T + T−1 is injective.

For each g ∈ H, let f = T (T 2 +1)−1g. Then f ∈ D(T )∩D(T−1) and (T +T−1)f = g.
Hence T + T−1 is surjective. Thus T + T−1 is bijective and (4.4) holds.

We introduce a subspace:

VT := {(T + T−1)f |f ∈ V}. (4.5)

Lemma 4.5 Assume that VT is dense and that (Fb(H), {eiφT (f), eiπT (f)|f ∈ V}) has a
vacuum. Then (T 2 − 1)(T 2 + 1)−1 is Hilbert-Schmidt.

Proof. By the assumption, there exists a non-zero vector Ω ∈ Fb(H) such that Ω ∈
D(φT (f))∩D(πT (f)) for all f ∈ V and (φT (f)+ iπT (f))Ω = 0. Hence, for all Ψ ∈ F0(H),

0 = 〈(φT (f) − iπT (f))Ψ, Ω〉 =
1√
2

〈
(A((T + T−1)f)∗ − A((T − T−1)f))Ψ, Ω

〉
.

Therefore, for all g ∈ VT , 〈A(g)∗Ψ, Ω〉 = 〈A((T 2 − 1)(T 2 + 1)−1g)Ψ, Ω〉. This implies
that, for all f ∈ VT + iVT ,

〈A(f)∗Ψ, Ω〉 =
〈
A(C(T 2 − 1)(T 2 + 1)−1f)Ψ, Ω

〉
.

Hence, by Proposition 3.3, (T 2 − 1)(T 2 + 1)−1 is Hilbert-Schmidt.

Theorem 4.6 Assume that H is separable. Suppose that (T 2−1)(T 2+1)−1 is not Hilbert-
Schmidt and VT is dense in HC. Then (Fb(H), {eiφT (f), eiπT (f)|f ∈ V}) is inequivalent to
the Fock representation (Fb(H), {eiφ(f), eiπ(f)|f ∈ V}).
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Proof. Suppose that (Fb(H), {eiφT (f), eiπT (f)|f ∈ V}) is equivalent to the Fock repre-
sentation (Fb(H), {eiφ(f), eiπ(f)|f ∈ V}). Then, by Lemma 3.1, (Fb(H), {eiφT (f), eiπT (f)|f ∈
V}) has a vacuum. Hence, by Lemma 4.5, (T 2 − 1)(T 2 + 1)−1 is Hilbert-Schmidt. Thus
the desired result follows.

Remark 4.7 Suppose that T ∈ B(H). Then, if (T 2−1)(T 2+1)−1 is not Hilbert-Schmidt,
then T 2−1 is not Hilbert-Schmidt and hence the conclusion in Theorem 4.6 holds (see the
aforementioned application of Shale’s theorem in the case where T is bounded and bijec-
tive). Hence, as for a sufficient condition for inequivalence of (Fb(H), {φT (f), πT (f)|f ∈
V}) to the Fock representation (Fb(H), {φ(f), π(f)|f ∈ V}), Theorem 4.6 is certainly an
extension of the case where T is bounded and bijective.

For a linear operator A on a Hilbert space, we denote by σ(A) and σp(A)) the spectrum
and the point spectrum of A respectively.

A sufficient condition for that (T 2 − 1)(T 2 + 1)−1 is not Hilbert-Schmidt is given by
the following lemma (apply it to S = T 2):

Lemma 4.8 Assume that H is separable with dimH = ∞. Let S be an injective and
non-negative self-adjoint operator on H satisfying (i) σp(S) = ∅ or (ii) 1 6∈ σ(S). Then
(S − 1)(S + 1)−1 is not Hilbert-Schmidt.

Proof. Let K := (S − 1)(S + 1)−1. Then K is a bounded self-adjoint operator on H
and 1 − K = 2(S + 1)−1. Hence 1 − K is injective and S = 2(1 − K)−1 − 1.

Now suppose that K were Hilbert-Schmidt. Then, by the Hilbert-Schmidt theorem,
there exists a sequence {λn}∞n=1 of real numbers such that (i) {λn|n ≥ 1} = σ(K); (ii) for
all λn 6= 0, λn ∈ σp(K) with finite multiplicity; (iii)

∑∞
n=1 λ2

n < ∞. Hence, in particular,
limn→∞ λn = 0. Note that K 6= 0. Hence σp(K) \ {0} 6= ∅. By the spectral mapping
theorem, for λn 6= 0, the number sn := 2(1 − λn)−1 − 1 · · · (∗) is an eigenvalue of S

Assume (i). Then the statement just mentioned yields a contradiction. Therefore, in
this case, K is not Hilbert-Schmidt.

Next assume (ii). If σp(K) \ {0} is a finite set, then 0 ∈ σp(K) by dimH = ∞. Hence
1 ∈ σp(S). But this is a contradiction.

If σp(K) \ {0} is an infinite set, then there exists a subsequence {λnk
}k of {λn}n such

that, for all k ≥ 1, λnk
6= 0 and limk→∞ λnk

= 0. Taking k → ∞ in (∗) with n replaced
by nk, we obtain limk→∞ snk

= 1. Hence 1 ∈ σ(S). But this also is a contradiction. Thus
K is not Hilbert-Schmidt.

Combining Theorem 4.6 with Lemma 4.8, we obtain the following result:

Corollary 4.9 Assume that H is separable with dimH = ∞ and VT is dense in HC. Sup-
pose that σp(T

2) = ∅ or 1 6∈ σ(T 2). Then (Fb(H), {eiφT (f), eiπT (f)|f ∈ V}) is inequivalent
to the Fock representation (Fb(H), {eiφ(f), eiπ(f)|f ∈ V}).

Proof. By Lemma 4.8 with S = T 2, (T 2 − 1)(T 2 + 1)−1 is not Hilbert-Schmidt. Hence
the desired result follows from Theorem 4.6.
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5 Main Theorems

We now state main theorems in the present paper.

Theorem 5.1 Assume that H is separable. Let T1, T2 ∈ SV such that the following (a)
and (b) hold:

(a) D(T−1
1 T 2

2 T−1
1 ) ∩ D(T1T

−2
2 T1) and D(T−1

2 T 2
1 T−1

2 ) ∩ D(T2T
−2
1 T2) are dense in H.

(b) T−1
2 T1 and T2T

−1
1 are bounded with V ⊂ D(T−1

2 T1) ∩ D(T2T
−1
1 ) ∩ D(T−1

1 T2) ∩
D(T1T

−1
2 ).

Then (Fb(H), {eiφT1
(f), eiπT1

(f)|f ∈ V}) is equivalent to (Fb(H), {eiφT2
(f), eiπT2

(f)|f ∈ V})
if and only if T−1

2 T1 − T2T
−1
1 is Hilbert-Schmidt.

Remark 5.2 We want to emphasize that, in Theorem 5.1, T1 and T2 are not necessarily
commuting.

Remark 5.3 The contraposition of Theorem 5.1 yields a necessary and sufficient con-
dition for (Fb(H), {eiφT1

(f), eiπT1
(f)|f ∈ V}) and (Fb(H), {eiφT2

(f), eiπT2
(f)|f ∈ V}) to be

inequivalent.

Remark 5.4 The conditions for T1 and T2 in Theorem 5.1 are related to an equivalence
relation in a subset of SV . Let

S×
V := {T ∈ SV |T is surjective}.

Then, for all T ∈ S×
V , T−1 ∈ B(H). For T1, T2 ∈ S×

V , we write T1 ∼ T2 if the following con-

ditions (i) and (ii) are satisfied: (i) T2T
−1
1 , T1T

−1
2 ∈ B(H); (ii) T−1

2 T1 − T2T
−1
1 is Hilbert-

Schmidt. It is easy to see that the relation ∼ is an equivalent relation in S×
V . Hence Theo-

rem 5.1 implies the following: Let T1, T2 ∈ S×
V . Then ρT1 := (Fb(H), {eiφT1

(f), eiπT1
(f)|f ∈

V}) is equivalent to ρT2 := (Fb(H), {eiφT2
(f), eiπT2

(f)|f ∈ V}) if and only if T1 ∼ T2 and
condition (a) holds. Hence, for a subset SV,0 of S×

V such that (a) holds for all T1, T2 ∈ SV,0,
ρT1 is equivalent to ρT2 if and only if T1 ∼ T2. This is an interesting phenomenon to note.

In the case where at least one of T−1
2 T1 and T2T

−1
1 is unbounded, the proof of Theorem

5.1 given below is not valid any more. In this case, we need a separate consideration. To
state a theorem in such a case, we need a lemma.

Lemma 5.5 For all T1, T2 ∈ SV ,

T+ := T−1
2 T1 + T2T

−1
1 (5.1)

is injective.

Proof. Let f ∈ ker T+. Then f ∈ D(T−1
2 T1) ∩ D(T2T

−1
1 ) and T−1

2 T1f = −T2T
−1
1 f .

Hence T1f = −T 2
2 T−1

1 f . Therefore f = −T−1
1 T 2

2 T−1
1 f . Taking the inner product of both

sides with f , we have ‖f‖2 = −
〈
T−1

1 f, T 2
2 T−1

1 f
〉
≤ 0. Hence ‖f‖2 = 0, implying that

f = 0. Thus T+ is injective.

Let
T− := T−1

2 T1 − T2T
−1
1 . (5.2)
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Theorem 5.6 Assume that H is separable. Let T1, T2 ∈ SV such that the following (a)
–(c) hold:

(a) (T1V) ∩ (T−1
1 V) is dense in HC.

(b) {T+f |f ∈ (T1V) ∩ (T−1
1 V)} is dense in HC.

(c) T−T−1
+ is bounded and its closure T−T−1

+ is not Hilbert-Schmidt.

Then (Fb(H), {eiφT1
(f), eiπT1

(f)|f ∈ V}) is inequivalent to (Fb(H), {eiφT2
(f), eiπT2

(f)|f ∈
V}).

Remark 5.7 In Theorem 5.6, T−1
2 T1 and T2T

−1
1 are not necessarily bounded.

5.1 Proof of Theorem 5.1

We prove Theorem 5.1 by a series of lemmas.

Lemma 5.8 Let T1, T2 ∈ SV(H) such that D(T−1
2 T1) ∩ D(T2T

−1
1 ) is dense in H. Let

S± :=
1

2
T± =

1

2
(T−1

2 T1 ± T2T
−1
1 ). (5.3)

Then

(i)

S∗
+S+ − S∗

−S− = I, (5.4)

S∗
−S+ = S∗

+S− (5.5)

on D(T−1
1 T 2

2 T−1
1 ) ∩ D(T1T

−2
2 T1).

(ii)

S+S∗
+ − S−S∗

− = I, (5.6)

S−S∗
+ = S+S∗

− (5.7)

on D(T−1
2 T 2

1 T−1
2 ) ∩ D(T2T

−2
1 T2).

Proof. (i) By the present assumption, S± are densely defined. It follows that

S∗
± ⊃ 1

2
(T1T

−1
2 ± T−1

1 T2).

Let Ψ ∈ D(T−1
1 T 2

2 T−1
1 ) ∩ D(T1T

−2
2 T1). Then Ψ ∈ D(S∗

+S+) ∩ D(S∗
−S−) and

S∗
+S+Ψ =

1

4
(T1T

−2
2 T1 + 2 + T−1

1 T 2
2 T−1

1 )Ψ,

S∗
−S−Ψ =

1

4
(T1T

−2
2 T1 − 2 + T−1

1 T 2
2 T−1

1 )Ψ.
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Hence S∗
+S+Ψ−S∗

−S−Ψ = Ψ. Thus (5.4) holds on D(T−1
1 T 2

2 T−1
1 )∩D(T1T

−2
2 T1). Similarly

one can prove (5.5).
(ii) This also can be proved by direct computations as in (i).

Relations (5.4)–(5.7) remind us the theory of Bogoliubov transformations (e.g., [7,
Theorem XI.108]). Thus we are led to proceed as follows.

Suppose that the assumption of Theorem 5.1 is satisfied. By conditions (a) and (b) in
Theorem 5.1, S± are densely defined and bounded. We denote their closure by S±. Then
(5.4)–(5.7) can be extended to the case S± replaced by S±.

For each f ∈ H, we introduce a new operator B(f) by

B(f) := A(CS−f)∗ + A(S+f), f ∈ H.

Hence
B(f)∗ ⊃ A(S+f)∗ + A(CS−f), f ∈ H.

Note that {B(f), B(f)∗|f ∈ H} satisfy

[B(f), B(g)∗] = 〈f, g〉 ,

[B(f), B(g)] = 0, [B(f)∗, B(g)∗] = 0, f, g ∈ H,

on F0(H). Hence the correspondence (A(·), A(·)∗) 7→ (B(·), B(·)∗) is a Bogoliubov trans-
formation.

Lemma 5.9 Under the same assumption as in Theorem 5.1, there exists a unitary oper-
ator U on Fb(H) such that

B(f) = UA(f)U−1, f ∈ H (5.8)

if and only if S− is Hilbert-Schmidt.

Proof. This follows from an application of [7, Theorem XI.108].

We are now ready to show the sufficiency of the condition that T−1
2 T1 − T2T

−1
1 is

Hilbert-Schmidt in Theorem 5.1:

Lemma 5.10 Under the same assumption as in Theorem 5.1, suppose that T−1
2 T1 − T2T

−1
1

is Hilbert-Schmidt. Then there exists a unitary operator U on Fb(H) such that operator
equations

UφT1(f)U−1 = φT2(f), (5.9)

UπT1(f)U−1 = πT2(f), f ∈ V, (5.10)

hold. Namely, (Fb(H), {eiφT1
(f), eiπT1

(f)}) is equivalent to (Fb(H), {eiφT2
(f), eiπT2

(f)}).

Proof. By the present assumption S− is Hilbert-Schmidt. Hence, by Lemma 5.9, there
exists a unitary operator U on Fb(H) satisfying (5.8). This implies also

B(f)∗ = UA(f)∗U−1, f ∈ H, (5.11)
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where we have used the fact that, for any closable operator T , T ∗ = (T )∗. Hence, for all
f ∈ H, we have

B(f)∗ ± B(f)√
2

= U
1√
2
(A(f)∗ ± A(f))U−1

On the other hand, it is easy to see that, for all Ψ ∈ F0(H) and f ∈ D(T−1
2 T1) ∩

D(T2T
−1
1 ) ∩HC ,

1√
2
(B(f)∗ + B(f))Ψ = φT2(T1f)Ψ,

i√
2
(B(f)∗ − B(f)) = πT2(T

−1
1 f)Ψ.

Hence, for all f ∈ D(T−1
2 T1) ∩ D(T2T

−1
1 ) ∩HC ,

φT2(T1f)Ψ = Uφ(f)U−1Ψ, πT2(T
−1
1 f)Ψ = Uπ(f)U−1Ψ, Ψ ∈ F0(H), (5.12)

which, by condition (b), imply the following equations:

φT2(f)Ψ = UφT1(f)U−1Ψ,

πT2(f)Ψ = UπT1(f)U−1Ψ, f ∈ V, Ψ ∈ F0(H).

Hence

φT2(f) ¹ F0(H) ⊂ UφT1(f)U−1, πT2(f) ¹ F0(H) ⊂ UπT1(f)U−1, f ∈ V .

Recall that F0(H) is a core for φT2(f) and πT2(f). Moreover, UφT1(f)U−1 and UπT1(f)U−1

are self-adjoint. Hence operator equations (5.9) and (5.10) follow.

We next show the necessity of the condition that T−1
2 T1 − T2T

−1
1 is Hilbert-Schmidt

in Theorem 5.1.
Using (3.1), one can easily prove the following lemma.

Lemma 5.11 Let V be a dense subspace in HC. Then {g ∈ H| 〈f, g〉 = 0, f ∈ V} = {0}.

Lemma 5.12 Under the same assumption as in Theorem 5.1, suppose that there exists a

unitary operator U on Fb(H) satisfying (5.9) and (5.10). Then T−1
2 T1 − T2T

−1
1 is Hilbert-

Schmidt.

Proof. It is easy to see that, for all Ψ ∈ F0(H) and f ∈ V ,

A(f)Ψ =
1√
2
(φT1(T1f) + iπT1(T

−1
1 f))Ψ.

Hence

A(f)Ψ =
1√
2
(U−1φT2(T1f)UΨ + iU−1πT2(T

−1
1 f)UΨ),

which implies that

UA(f)Ψ =
1√
2
(φT2(T1f)UΨ + iπT2(T

−1
1 f)UΨ).
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Hence, for all Φ ∈ F0(H),〈
U−1Φ, A(f)Ψ

〉
=

〈
U−1(A(S+f)∗Φ + A(S−f)Φ), Ψ

〉
.

Since F0(H) is a core for A(f), it follows that U−1Φ ∈ D(A(f)∗) and A(f)∗U−1Φ =
U−1(A(S+f)∗ + A(S−f))Φ. By the density of V in HC and Lemma 2.1, this equation can
be extended to all f ∈ HC with S± replaced by S±:

A(f)∗U−1Φ = U−1(A(S+f)∗ + A(S−f))Φ, f ∈ HC . (5.13)

By (2.5), we have 〈A(f)∗U−1Φ, ΩF〉 = 0. Hence, putting Ω := UΩF, we obtain from
(5.13) 〈

A(S+f)∗Φ, Ω
〉

= −
〈
A(S−f)Φ, Ω

〉
, f ∈ HC . (5.14)

It follows from (5.4) that
S
∗
+S+ = 1 + S

∗
−S−.

This implies that S
∗
+S+ is bijective on HC (note that S± are reduced by HC). In partic-

ular, S+ is injective on HC . On the other hand, (5.6) gives

S+S
∗
+ = 1 + S−S

∗
−.

This implies that S+S
∗
+ is bijective on HC . In particular, S+ is surjective on HC . Hence

S+ is bijective on HC . Hence, putting K := S−S
−1

+ , we have for all f ∈ HC , 〈A(f)∗Φ, Ω〉 =
−〈A(Kf)Φ, Ω〉. By using (3.1), this equation can be extended to

〈A(f)∗Φ, Ω〉 = −〈A(CKf)Φ, Ω〉 , f ∈ H.

Hence, by Proposition 3.3, K is Hilbert-Schmidt. Thus S− = KS+ is Hilbert-Schmidt.

This completes a proof of Theorem 5.1.

5.2 Proof of Theorem 5.6

Suppose that (Fb(H), {eiφT1
(f), eiπT1

(f) |f ∈ V}) were equivalent to (Fb(H), {eiφT2
(f),

eiπT2
(f) |f ∈ V}). Then there exists a unitary operator U on Fb(H) such that (5.9)

and (5.10) hold. Let R := (T1V) ∩ (T−1
1 V). Hence, for all g ∈ R,

U−1φT2(T1g)U = φ(g), U−1πT2(T
−1
1 g)U = π(g).

Using these equations, in the same manner as in the proof of Theorem 4.6, one can show
that, for all g ∈∈ R and Φ ∈ F0(H),

〈A(T+g)∗Φ, Ψ0〉 = −〈A(T−g)Φ, Ψ0〉 ,

where Ψ0 := UΩF. By Lemma 5.5, for all f ∈ T+R, 〈A(f)∗Φ, Ψ0〉 = −
〈
A(T−T−1

+ f)Φ, Ψ0

〉
.

Hence 〈A(f)∗Φ, Ψ0〉 = −
〈
A(CT−T−1

+ f)Φ, Ψ0

〉
for all f ∈ T+R+ iT+R. By condition (b)

in Theorem 5.6, T+R+ iT+R is dense in H. Hence, by Proposition 3.3, T−T−1
+ is Hilbert-

Schmidt. But this contradicts the present assumption. Thus (Fb(H), {eiφT1
(f), eiπT1

(f)

|f ∈ V}) is inequivalent to (Fb(H), {eiφT2
(f), eiπT2

(f) |f ∈ V}).
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6 Applications

6.1 Inequivalence of time-zero field and conjugate momentum
for different masses

We now show that Theorem 1.1 is a consequence of an application of Theorem 5.1.
Let

ρm := (Fb(L
2(Rd)), {eiφm(f), eiπm(f)|f ∈ Vd,m}) (6.1)

be the Weyl representation of CCR in Example 2.6 with m > 0 and Cd be the complex
conjugation on L2(Rd):

(Cdf)(x) = f(x)∗, f ∈ L2(Rd), a.e.x ∈ Rd.

The Fourier transform of Cd

Ĉd := FdCdF−1
d

is a conjugation on L2(Rd∗) with

(Ĉdg)(k) = g(−k)∗, g ∈ L2(Rd∗), a.e.k ∈ (Rd)∗.

The real Hilbert space associated with Ĉd is given by

L2(Rd∗)Ĉd
= {g ∈ L2(Rd∗)|Ĉdg = g}.

We have

FdSR(Rd) = S(Rd∗)Ĉd
:= {g ∈ S(Rd∗)|Ĉdg = g},

FdL
2
R(Rd) = L2(Rd∗)Ĉd

.

Lemma 6.1 Let m ≥ 0. Then:

(i) Cdhm ⊂ hmCd.

(ii) Vd,m ⊂ D(hm) ∩ D(h−1
m ).

(iii) hmVd,m and h−1
m Vd,m are dense in L2

R(Rd).

(iv) {(hm + h−1
m )f |f ∈ Vd,m} is dense in L2

R(Rd).

Proof. (i) Let f ∈ D(hm). Then Ĉdf(k) = f̂(−k)∗. Hence
∫

Rd∗ |ωm(k)Ĉdf(k)|2dk =∫
Rd∗ |ωm(k)f̂(k)|2dk < ∞. Hence Cdf ∈ D(hm). Moreover,

(Fd(hmCdf))(k) = ωm(k)f̂(−k)∗ = (ωm(−k)f̂(−k))∗ = (Fd(Cdhmf))(k), a.e.k ∈ Rd∗.

Hence hmCdf = Cdhmf . Thus Cdhm ⊂ hmCd.
(ii) This is obvious from the definition of Vd,m.

(iii) It is easy to see that {ω±1
m f̂ |f ∈ Vd,m} are dense in L2(Rd∗)Ĉd

. Hence h±1
m Vd,m are

dense in L2
R(Rd).
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(iv) This follows from the fact that {(ωm + ω−1
m )f̂ |f ∈ Vd,m} is dense in L2(Rd∗)Ĉd

.

By using Lemma 6.1, one can see that ρm is a special case of the Weyl representation
(Fb(H), {eiφT (f), eiπT (f)|f ∈ V}) in Lemma 4.3 with the following choice of (H, C, T,V):

H = L2(Rd), C = Cd, T = h1/2
m , V = Vd,m.

We first note the following fact:

Theorem 6.2 For all m ≥ 0, ρm has no vacuum.

Proof. It is easy to see that σp(hm) = σp(ωm) = ∅. Hence, by Corollary 4.9, ρm has
no vacuum.

Lemma 6.3 Let m1,m2 > 0. The following operators are all bounded:

h−1/2
m1

hm2h
−1/2
m1

, h1/2
m1

h−1
m2

h1/2
m1

, h−1/2
m2

h1/2
m1

, h1/2
m2

h−1/2
m1

.

Proof. This can be proved by the functional calculus for the self-adjoint operator ∆
or using the Fourier transform.

By Lemma 6.3, conditions (a) and (b) in Theorem 5.1 are satisfied with T1 = h
1/2
m1 and

T2 = h
1/2
m2 . It is easy to see that

h
−1/2
m2 h

1/2
m1 − h

1/2
m2 h

−1/2
m1 = (m2

1 − m2
2)(hm1 + hm2)

−1h−1/2
m1

h−1/2
m2

.

We have
Fd(hm1 + hm2)

−1h−1/2
m1

h−1/2
m2

F−1
d = (ωm1 + ωm2)

−1ω−1/2
m1

ω−1/2
m2

.

This operator is a non-zero multiplication operator and hence it is not Hilbert-Schmidt.

Hence h
−1/2
m2 h

1/2
m1 − h

1/2
m2 h

−1/2
m1 is Hilbert-Schmidt if and only if m1 = m2. Thus, by Theorem

5.1, we obtain the following result:

Theorem 6.4 Let m1,m2 > 0. Then ρm1 and ρm2 are inequivalent if and only if m1 6=
m2.

We next consider the case where one of m1 and m2 is zero, say, m2 = 0. In this case,
hm1h

−1
0 is unbounded. Hence we can not immediately apply Theorem 5.1. But the idea

of the proof of Theorem 5.1 is used. We have the following result:

Theorem 6.5 Let m > 0. Then ρm is inequivalent to ρ0.

Proof. Suppose that ρm were equivalent to ρ0. Then there exists a unitary operator
U on Fb(L

2(Rd)) such that

Uφm(f)U−1 = φ0(f), Uπm(f)U−1 = π0(f), f ∈ Vd,0.

Hence

UφT (g)U−1 = φ(g), UπT (g)U−1 = π(g), g ∈ D0,
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where T = h
1/2
m h

−1/2
0 and

D0 := (h
−1/2
0 Vd,0) ∩ (h

1/2
0 Vd,0)

It is easy to see that σp(T
2) = ∅. Hence, by Lemma 4.8, (T 2−1)(T 2 +1)−1 is not Hilbert-

Schmidt. This contradicts Theorem 4.6. Thus ρm is inequivalent to ρ0.

Remark 6.6 An alternative proof of Theorem 6.5 is given by an application of Theorem
5.6.

6.2 A more general family of inequivalent representations of
CCR on Fb(L

2(Rd))

The representation ρm can be regarded as a special case of a more general representation
of CCR on Fb(L

2(Rd)). Let v be a real-valued Borel measurable function on Rd∗ such
that

v(k) = v(−k), 0 < |v(k)| < ∞, a.e.k ∈ Rd∗.

For each j = 1, . . . , d, we denote by Dj the generalized partial differential operator in the
variable xj acting in L2(Rd) and set ∇ := (−iD1, . . . ,−iDd). Let

v(−i∇) := F−1
d vFd,

where v on the right hand side denotes the multiplication operator by the function v
acting in L2(Rd∗). By a well known fact on multiplication operators and the unitarity of
Fd, v(−i∇) is self-adjoint and injective. Moreover,

Cdv(−i∇) ⊂ v(−i∇)Cd.

Hence v(−i∇) is reduced by L2
R(Rd).

Let Dd be a dense subspace in L2
R(Rd) satisfying the following conditions:

(i) Dd ⊂ D(v(−i∇)) ∩ D(v(−i∇)−1).

(ii) v(−i∇)Dd and v(−i∇)−1Dd are dense in L2
R(Rd).

We introduce operators φv(f) and πv(f) (f ∈ Dd) as follows:

φv(f) := Φ(v(−iD)−1f), πv(f) := Π(v(−iD)f), f ∈ Dd. (6.2)

By applying Lemma 4.3 with H = L2(Rd) and T = v(−i∇), we obtain the following
lemma:

Lemma 6.7 (Fb(L
2(Rd)), {eiφv(f), eiπv(f)|f ∈ Dd}) is an irreducible Weyl representation

of the CCR over Dd.

Theorem 6.8 Suppose that, for all λ ≥ 0, the set {k ∈ Rd∗|v(k)2 = λ} is a null set with
respect to the d-dimensional Lebesgue measure. Then (Fb(L

2(Rd)), {eiφv(f), eiπv(f)|f ∈
Dd}) has no vacuum.
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Proof. By the assumption, σp(v(−i∇)2) = σp(v
2) = ∅. Hence, by Corollary 4.9, the

desired result follows.

Two Borel measurable functions v1 and v2 on Rd∗ are said to be equal and written
v1 = v2 if v1(k) = v2(k) for a.e.k ∈ Rd∗.

Lemma 6.9 Let v1 and v2 be functions on Rd∗ having the same properties as those of v
described above. Suppose that v1/v2 and v2/v1 are essentially bounded. Then

W := (v2(−i∇)−1v1(−i∇) − v2(−i∇)v1(−i∇)−1).

is bounded. Moreover, W is Hilbert-Schmidt if and only if v1 = v2.

Proof. Let Ŵ := FdWF−1
d . Then Ŵ = (v2

1 − v2
2)/v1v2, which is bounded. Hence W is

bounded.
Suppose that W is Hilbert-Schmidt. Then so is Ŵ . If v1 6= v2, then Ŵ 6= 0. But a

non-zero multiplication operator on L2(Rd∗) can not be Hilbert-Schmidt. Hence v1 = v2.
Conversely suppose that v1 = v2. Then Ŵ = 0. Hence W = 0. Therefore W is

Hilbert-Schmidt.

Theorem 6.10 Let v1 and v2 be functions having the same properties as those of v de-
scribed above. Suppose that v1/v2 and v2/v1 are essentially bounded. Then (Fb(L

2(Rd)),
{eiφv1 (f), eiπv1 (f)|f ∈ Dd}) and (Fb(L

2(Rd)), {eiφv2 (f), eiπv2 (f)|f ∈ Dd}) are inequivalent if
and only if v1 6= v2.

Proof. By the essential boundedness of v1/v2 and v2/v1, one can see that conditions
(a) and (b) in Theorem 5.1 are satisfied with T1 = v1(−i∇) and T2 = v2(−i∇). Then,
combining Theorem 5.1 and Lemma 6.9, we obtain the desired result.

In the case where v1/v2 and v2/v1 are not necessarily essentially bounded, we have the
following theorem.

Theorem 6.11 Let v1 and v2 be functions having the same properties as those of v de-
scribed above and v1 6= v2. Let

Dd,v1 := (v1(−i∇)Dd) ∩ (v1(−i∇)−1Dd)

and
Td,± := v2(−i∇)−1v1(−i∇) ± v2(−i∇)v1(−i∇)−1.

Suppose that the following (a) and (b) hold:

(a) Dd,v1 is dense in L2
R(Rd).

(b) Td,+Dd,v1 is dense in L2
R(Rd).

Then (Fb(L
2(Rd)), {eiφv1 (f), eiπv1 (f)|f ∈ Dd}) is inequivalent to (Fb(L

2(Rd)), {eiφv2 (f),
eiπv2 (f)|f ∈ Dd})
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Proof. We apply Theorem 5.6 with the following realization:

H = L2(Rd), T1 = v1(−i∇), T2 = v2(−i∇), D = Dd.

We need only to prove that
L := Td,−T−1

d,+

is bounded and L is not Hilbert-Schmidt. It is easy to see that L is bounded and

FdLF−1
d =

1 − (v2/v1)
2

1 + (v2/v1)2
.

where the right hand side is the multiplication operator by the same function. Since
v1 6= v2, it follows that the operator on the right hand side is not Hilbert-Schmidt. Hence
L is not Hilbert-Schmidt.

6.3 Quantum fields in a bounded region

It may be interesting to compare quantum fields on Rd with those on a bounded region
in view of representation of CCR. Let M be a bounded connected open set in Rd and
consider a scalar quantum field on M . A Hilbert space for such a quantum field can be
taken to be the boson Fock space Fb(L

2(M)) over L2(M). As is well known, the Laplacian
∆0 :=

∑d
j=1 ∂2/∂x2

j with domain C∞
0 (M) (the set of C∞-functions on M with support in

M) is not essentially self-adjoint. Hence, to determine the one-particle dynamics in M ,
we have to fix a self-adjoint extension of ∆0.

Let ∆M be any self-adjoint extension of ∆0 such that

(i) ∆M ≤ 0;

(ii) CM∆M ⊂ ∆MCM , where CM is the complex conjugation on L2(M);

(iii) The spectrum of −∆M is purely discrete. The eigenvalues of −∆M are labeled as
{λn}n∈Γ with Γ = Nd or ({0}∪N)d, counting multiplicities, and, for some constants
c1, c2 > 0 with c1 < c2,

c1|n|2 ≤ λn ≤ c2|n|2, n ∈ Γ. (6.3)

Examples of ∆M are the Dirichlet Laplacian ∆M
D and the Neumann Laplacian ∆M

N

with a suitable additional condition on the boundary of M (see, e.g., [3], [8, p.263] and
[9, §10.6]). In the case where M is a rectangle (−L1/2, L1/2) × · · · × (−Ld/2, Ld/2) with
Lj > 0, j = 1, . . . , d, one can also take ∆M to be the Laplacian ∆M

P with the periodic
boundary condition.

The one-particle Hamiltonian with mass m > 0 in the present context is given by

hM
m := (−∆M + m2)1/2

acting in L2(M). It follows that hM
m is a strictly positive self-adjoint operator with hM

m ≥
m > 0 and, for all α > 0, (hM

m )−α ∈ B(L2(M)).
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By properties (ii) and (iii), there exists a CONS {fn}n∈Γ of L2(M) such that

−∆Mfn = λnfn, n ∈ Γ,

and each fn is a real-valued function. Hence the subspace

VM := spanR{fn|n ∈ Γ}

algebraically spanned by {fn|n ∈ Γ} with real coefficients is dense in the real Hilbert
space L2

R(M). It follows that, for all α > 0,

VM ⊂ D((hM
m )α), (hM

m )±αVM = VM .

Hence conditions (T.1) and (T.2) with T = (hM
m )1/2 in Section 4 are satisfied.

Let ΦM(·) be the Segal field operator on Fb(L
2(M)) and

φM
m (f) := ΦM((hM

m )−1/2f), πM
m (f) := ΦM(i(hM

m )1/2f), f ∈ VM .

Then, by Lemma 4.3,

ρM
m := (Fb(L

2(M)), {eiφM
m (f), eiπM

m (f)|f ∈ VM}) (6.4)

is an irreducible Weyl representation of the CCR over VM . As for this representation, the
following theorem holds:

Theorem 6.12 Let m1,m2 > 0 and m1 6= m2. Then ρM
m1

and ρM
m2

are equivalent if and
only if d ≤ 3.

Proof. We set hj := hM
mj

, j = 1, 2. It is easy to check that conditions (a) and (b) in

Theorem 5.1 with Tj (j = 1, 2) replaced by hj and V = VM are satisfied. The spectrum

of h
−1/2
2 h

1/2
1 − h

1/2
2 h

−1/2
1 is purely discrete and the eigenvalues are given by

µn :=
m2

1 − m2
2

(λn + m2
1)

1/4(λn + m2
2)

1/4[(λn + m2
1)

1/2 + (λn + m2
2)

1/2]
, n ∈ Γ.

By (6.3), we have

|m2
1 − m2

2|
2c

1

|n|2 + 1
≤ |µn| ≤

|m2
1 − m2

2|
2c1

1

|n|2
, n ∈ Γ \ {0},

where c := max{c2,m
2
1,m

2
2}.

∑
n∈Γ µ2

n converges if and only if d ≤ 3. Hence h−1
2 h1 − h2h

−1
1

is Hilbert-Schmidt if and only if d ≤ 3. Thus an application of Theorem 5.1 yields the
desired result.

Remark 6.13 Theorem 6.12 suggests that, in the case d = 1, 2, 3, the inequivalence of
ρm’s for different masses as in Theorem 6.4 comes from “infinity in space”.

Finally we consider the case where m1 > 0 and m2 = 0. In this case, if 0 6∈ σ(∆M)
(e.g. the case ∆M = ∆M

D ), then the proof of Theorem 6.12 works without essential change.
Hence we have the following result:

Theorem 6.14 Let m > 0 and 0 6∈ σ(∆M). Then ρM
m is equivalent to ρM

0 if and only if
d ≤ 3.
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