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CONSTRUCTION OF A DOMAIN THAT FAILS THE GLOBAL BOUNDARY
HARNACK PRINCIPLE VIA THE HELMHOLTZ EQUATION

HIROAKI AIKAWA

Abstract. We show the sharpness of the modulus of continuity of a functionf for which the
domain lying above the graph off satisfies the global boundary Harnack principle, with the aid
of precise estimates of the Poisson integrals with respect to the Helmholtz equation in the half
space.

1. Introduction

Ever since the pioneering works of Dahlberg [Dah77], Ancona [Anc78] and Wu [Wu78]
for Lipschitz domains, a large amount of work has been devoted to the study of the boundary
Harnack principle for nonsmooth domains such as Lipschitz domains, nontangentially acces-
sible domains, uniform domains, John domains, Hölder domains, and domains satisfying the
quasihyperbolic boundary condition; see Jerison-Kenig [JK82] for nontangentially accessible
domains, Bãnuelos-Bass-Burdzy [BBB91], [BB91], [BB94] for Hölder domains, and the au-
thor [Aik01] and [Aik04] for uniform domains and inner uniform domains. The validity of the
boundary Harnack principle heavily depends on the geometry of the domain. This is a sharp
contrast with the fact that the boundary Harnack principle with respect to a non-local operator
such as the fractional Laplacian holds for arbitrary domains (see Bogdan [Bog97] and Song-Wu
[SW99]). In this paper, we show the sharpness of the modulus of continuity of a functionf for
which the domain lying above the graph off satisfies the global boundary Harnack principle
with respect to classical harmonic functions.

First we recall that there are two different types of the boundary Harnack principle. LetD be
a domain inRn with n ≥ 2. Consider a pair (V,K) of a bounded open setV ⊂ Rn and a compact
setK ⊂ Rn such that

(1.1) K ⊂ V, K ∩ D , ∅ andK ∩ ∂D , ∅.
Definition 1.1. We say thatD enjoys theglobal boundary Harnack principleif for each pair
(V,K) with (1.1) the following property holds: Ifu andv are positive superharmonic functions
on D such that

(i) u andv are bounded, positive and harmonic inV ∩ D,
(ii) u andv vanish onV ∩ ∂D outside a polar set,

then
u(x)/u(y)
v(x)/v(y)

≤ C for x, y ∈ K ∩ D,

whereC depends only onD, V andK.

There is another type of boundary Harnack principle, i.e., the scale invariant boundary Har-
nack principle. ByB(x, r) we denote the open ball with center atx and radiusr.
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Definition 1.2. We say thatD enjoys the scale invariant boundary Harnack principle if there
exist constantC > 1 andr0 > 0 with the following property: Ifξ ∈ ∂D, 0 < r ≤ r0 and

(i) u andv are bounded, positive harmonic functions inB(ξ,Cr) ∩ D,
(ii) u andv vanish onB(ξ,Cr) ∩ ∂D except for a polar set,

then
u(x)/u(y)
v(x)/v(y)

≤ C for x, y ∈ B(ξ, r) ∩ D.

The scale invariant boundary Harnack principle is a property much stronger than the global
boundary Harnack principle. It is classical that the scale invariant boundary Harnack princi-
ple holds for a Lipschitz domain ([Anc78] and [Wu78]) and for an NTA-domain ([JK82]). In
[Aik01] the author showed the scale invariant boundary Harnack principle for a uniform do-
main; and in [Aik04] the converse, i.e., the uniformity ofD is characterized by the validity of
the scale invariant boundary Harnack principle onD, under a suitable additional assumption on
D. We note that the quantitative nature of the scale invariant boundary Harnack principle played
an important role.

The global boundary Harnack principle is a rather weak qualitative property, which holds
for very nasty domains such as a John domain and a domain satisfying the quasihyperbolic
boundary condition (Bass-Burdzy [BB91]; see also [Aik14] and [Aik15]). More precise results
are known for a domain whose boundary is locally given by the graph of a continuous function
in Rn−1. Letψ(t) be a nondecreasing continuous function fort ≥ 0 with ψ(0) = 0. We say that a
function f in Rn−1 is ψ-Hölder continuous if

| f (x′) − f (y′)| ≤ Cψ(|x′ − y′|) for x′, y′ ∈ Rn−1

whereC > 0 is independent ofx′, y′ ∈ Rn−1. We say that a bounded domain inRn is aψ-Hölder
domain if its boundary is locally given by the graph of aψ-Hölder continuous function inRn−1.
If 0 < α ≤ 1, then atα-Hölder domain is simply called anα-Hölder domain. A 1-Ḧolder domain
is called a Lipschitz domain. In casen = 2, conformal mappings are available, and hence the
global boundary Harnack principle holds for everyψ-Hölder domain no matter how badψ is.
So we letn ≥ 3 for the moment.

Bass-Burdzy [BB91] proved probabilistically the global boundary Harnack principle for an
α-Hölder domain in case 1/2 < α ≤ 1, and then Bãnuelos-Bass-Burdzy [BBB91] extended the
range ofα to 0 < α ≤ 1. In the opposite direction, Bass-Burdzy ([BB91, Proposition 5.3])
constructed a domain lying above the graph of a continuous function (but not a Hölder contin-
uous) for which the global boundary Harnack principle fails. Unfortunately, their construction
was involved and no good control of modulus of continuity was obtained. So, sharp criterion of
modulus of continuity of the boundary function for the validity of the global boundary Harnack
principle had remained open.

In the previous paper [Aik14] we proved anextended Harnack inequality with exceptional
sets, which asserts that a Harnack inequality holds even if a small (but non-polar) exceptional
set lies in the Harnack chain. This is a generalization of [BB92, Lemma 2.14], which played
a crucial role in [BBB91] to extend the range of the Ḧolder exponentα. With the aid of this
new Harnack inequality, we showed that the global boundary Harnack principle holds for a
ψ-Hölder domain with modulus of continuityψ weaker than Ḧolder continuity. Forα > 0 let
ψα(t) = (− log t)−α for 0 < t < 1/eα+1 and extend it by constant fort ≥ 1/eα+1. Sometimesψα is
referred to as log-Ḧolder continuity of orderα.
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Theorem A ([Aik14, Theorem 1.3]). Let n ≥ 3. If a nondecreasing continuous functionψ
satisfies the Dini condition: ∫

0

ψ(t)
t

dt < ∞

with an additional assumptionlim supt→0ψ(Mt)/ψ(t) < M for someM > 1, then everyψ-
Hölder domain satisfies the global boundary Harnack principle. In particular, ifα > 1, then
everyψα-Hölder domain satisfies the global boundary Harnack principle.

The main purpose of this paper is to show the sharpness of TheoremA.

Theorem 1.1. Let n ≥ 3. If 0 < α < 1, then there exists aψα-Hölder domain which fails the
global boundary Harnack principle.

TheoremsA and1.1show that that the threshold for the global boundary Harnack principle
is log-Hölder continuity of order 1, i.e., it lies in betweenψα(t) = (− log t)−α of α > 1 and that
of α < 1. We do not know what happens forψ1(t) = (− log t)−1.

Let us remark some potential theoretical properties related to the boundary Harnack principle.
We can easily generalize the Laplace operator to uniformly elliptic operators of divergence form
(see [CFMS81]). However, there is a significant difference between uniformly elliptic operators
of divergence form and those of non-divergence form. The threshold for the global boundary
Harnack principle with respect to a uniformly elliptic operator of non-divergence form is 1/2-
Hölder continuity. In fact, Bass-Burdzy [BB94] showed the following:

(i) If 1/2 < α ≤ 1, then everyα-Hölder domain satisfies the global boundary Harnack
principle with respect to a uniformly elliptic operator of non-divergence form.

(ii) If 0 < α < 1/2, then there exist anα-Hölder domain and a uniformly elliptic operatorL
of non-divergence form for which the global boundary Harnack principle with respect
to L fails.

The scale invariant boundary Harnack principle immediately implies that the Martin bound-
ary of the domain is homeomorphic to the Euclidean boundary. This is the case for a Lipschitz
domain. Actually, Bass-Burdzy [BB93] showed that modulus of continuity slightly worse than
Lipschitz is sufficient for the Martin boundary of a domain to be homeomorphic to the Euclidean
boundary, and that the critical modulus of continuity isψ(t) = t log log(1/t). The following table
summarizes potential theoretical properties of a domain locally given by the graph of a continu-
ous functionf and the critical moduli of continuity off . Here the BHP stands for the boundary
Harnack principle. This paper, together with [Aik14], completes the last assertion of the table.

Table 1. Potential theoretical properties and critical moduli of continuity

Potential theoretical property Critical modulus of continuity
Scale-invariant BHP ψ(t) = t
Martin boundary= Euclidean boundary ψ(t) = t log log(1/t)
Global BHP for non-divergence operatorψ(t) = t1/2

Global BHP for divergence operator ψ(t) = (log(1/t))−1

Let us state our methodology for Theorem1.1. Bass-Burdzy ([BB91, Proposition 5.3]) con-
structed their domain based on hitting probabilities, or harmonic measures in analytic terminol-
ogy. We follow basically the same approach as in [BB91], but with the aid of precise estimates
of harmonic measure with respect to the Helmholtz equation, which may be of independent
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interest. Roughly speaking we construct a domain by digging the bottom of a cube and make
countably manysharp ravines widening out rapidly. See Figure5 in Section4. Heuristically, if
the Brownian motion starts at a point near the bottom of a ravine, then the hitting probability of
the top is much smaller than that of the side, provided sharpness and widening satisfy a subtle
relation. However, the fact that the top of a ravine is always visible from the bottom (although it
is very narrow) gives rise to difficulty in the upper estimate of the hitting probability of the top.
The precise estimates of harmonic measures with respect to the Helmholtz equation enables us
to overcome this difficulty. We do not know whether probabilistic arguments yield such precise
estimates.

Now let n ≥ 2 andλ > 0. We study the Poisson representation for the Helmholtz equation
(−∆ + λ2)u = 0 in the upper half spaceRn

+ = {x = (x1, . . . , xn) : xn > 0}. It is well known that
the Green functionGλ(x) for −∆ + λ2 in Rn is given by

(1.2) Gλ(x) =
∫ ∞

0
(4πt)−n/2 exp

(
− λ2t − |x|

2

4t

)
dt.

Let Pλ(x) = −2∂Gλ(x)/∂xn. Define thePoisson kernelwith respect to−∆ + λ2 for Rn
+ by

Pλ(x; y′) = Pλ(x− (y′,0)) for x ∈ Rn
+ and (y′,0) ∈ ∂Rn

+.

For simplicity we identify∂Rn
+ andRn−1. We have the following Poisson representation for the

Helmholtz equation (−∆ + λ2)u = 0 inRn
+.

Theorem 1.2.Let f be a bounded continuous function on∂Rn
+. Then

(−∆ + λ2)u = 0 in Rn
+,

u = f on∂Rn
+,

(1.3)

has a unique bounded solution which is represented as

Pλ[ f ](x) :=
∫
Rn−1

Pλ(x; y′) f (y′)dy′.

If f ≡ 1 onRn−1, then

(1.4) Pλ[1](x) = exp(−λxn).

This may be regarded as theharmonic measurewith respect to−∆ + λ2 of the whole boundary
∂Rn
+. One may expect that a subset of the boundary has the harmonic measure decaying faster

than exp(−λxn). The following theorem gives a precise decay estimate.

Theorem 1.3.Leta > 0. If x = (x′, xn) ∈ Rn
+ andλxn ≥ 1, then∫

|y′−x′ |≥a
Pλ(x; y′)dy′ ≤ exp(−λxn) ·

{
C exp

(
− λxn

4

)
+C(λxn)

(n−1)/2 exp
(
− λa2

3xn

)}
,

whereC > 0 depends only on the dimensionn.

Observe that there is a close relationship between harmonic functions inRn and solutions to
the Helmholtz equation inRn−1. More precisely, if (−∆′ + λ2)u(x′) = 0 in D′ ⊂ Rn−1 with ∆′

being the Laplacian inRn−1, thenu(x′) cos(λxn) is a harmonic function inD′ × (−ε, ε) vanishing
on D′ × {−ε, ε} with ε = π/(2λ). Hence Theorems1.2 and1.3 can be applied to the study of
harmonic functions inD′ × (−ε, ε).

We use the following notation. By the symbolC we denote an absolute positive constant
whose value is unimportant and may change from one occurrence to the next. ByC(p,q, . . . )
we mean thatC depends onp,q, . . . . We often suppress the dependency on the dimensionn.
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If necessary, we useC0,C1, . . . , to specify constants. We say thatf andg are comparable and
write f ≈ g if two positive quantitiesf andg satisfiesC−1 ≤ f /g ≤ C with some constant
C ≥ 1. The constantC is referred to as the constant of comparison. We have to pay attention
for the dependency of the constant of comparison.

Acknowledgments.The author thanks Krzysztof Burdzy for valuable comments.

2. Proof of Theorems 1.2and 1.3

We frequently use the following maximum principle (or Phragmén-Lindel̈of principle) for
the Helmholtz equation.

Lemma 2.1. Let D be an arbitrary domain (bounded or unbounded) inRn. If u is a bounded
solution to the Helmholtz equation(−∆ + λ2)u = 0 in D with vanishing boundary values, then
u ≡ 0 in D.

Proof. If u is a bounded solution to the Helmholtz equation (−∆ + λ2)u = 0 in D with van-
ishing boundary values, thenh(x, xn+1) = u(x) cos(λxn+1) is a bounded harmonic function in
D× (−π/(2λ), π/(2λ)) with vanishing boundary values. Hence the Phragmén-Lindel̈of principle
for harmonic functions gives the lemma. □

Let us rewrite the Poisson kernel for the Helmholtz equation by using the modified Bessel
kernel of the third kind

Kν(z) =
1
2

( z
2

)ν ∫ ∞

0
exp
(
− t − z2

4t

) dt
tν+1

,

which has another integral representation

(2.1) Kν(z) =
( π
2z

)1/2 e−z

Γ(ν + 1/2)

∫ ∞

0
e−ttν−1/2

(
1+

t
2z

)ν−1/2
dt,

if ν > −1/2. In fact, (2.1) has an analytic continuation to a suitable domain in the complex
plane. In this note, however, (2.1) for z > 0 is sufficient. See [Wat95, 6.22 (15) and 7.30]. For
the reader’s convenience, a self-contained proof is provided in the appendix.

By a change of variable in (1.2) we have

Gλ(x) =
1
2π

(2π|x|
λ

)1−n/2
Kn/2−1(λ|x|).

The differentiation under the integral sign in (1.2) yields

(2.2) Pλ(x) =
xn

(4π)n/2

∫ ∞

0
exp
(
− λ2t − |x|

2

4t

) dt
tn/2+1

= 2xn

( λ

2π|x|
)n/2

Kn/2(λ|x|).

We estimatePλ(x) by making use of (2.1).

Lemma 2.2. Let x ∈ Rn
+ andy = (y′,0) ∈ ∂Rn

+ with y′ ∈ Rn−1. Then

Pλ(x; y′) ≤ xn

Γ(n+1
2 )

( λ
2π

)(n−1)/2exp(−λ|x− y|)
|x− y|(n+1)/2

{(3
2

)(n−1)/2
Γ
(n+ 1

2

)
+ (n− 1)!

( 3
2λ|x− y|

)(n−1)/2}
.

Proof. In view of (2.1) and (2.2) we have

Pλ(x; y′) =
xn

Γ(n+1
2 )

( λ
2π

)(n−1)/2exp(−λ|x− y|)
|x− y|(n+1)/2

∫ ∞

0
t(n−1)/2

(
1+

t
2λ|x− y|

)(n−1)/2
e−tdt.
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Lettingα = λ|x− y|, we decompose the last integral into∫ α

0
+

∫ ∞

α

t(n−1)/2
(
1+

t
2α

)(n−1)/2
e−tdt.

The first integral is less than(3
2

)(n−1)/2
∫ α

0
t(n−1)/2e−tdt ≤

(3
2

)(n−1)/2
∫ ∞

0
t(n−1)/2e−tdt =

(3
2

)(n−1)/2
Γ
(n+ 1

2

)
;

while the second integral is less than∫ ∞

α

t(n−1)/2
( t
α
+

t
2α

)(n−1)/2
e−tdt ≤

( 3
2α

)(n−1)/2
∫ ∞

0
tn−1e−tdt = (n− 1)!

( 3
2α

)(n−1)/2
.

Adding these two estimates, we obtain the required inequality. □

Proof of Theorem1.2. The uniqueness of bounded solutions follows from Lemma2.1. Let us
show thatPλ[ f ] is the bounded solution to (1.3). We begin with the proof of (1.4). By Fubini’s
theorem, translation and a change of variable we have

Pλ[1](x) = xn

∫ ∞

0
(4πt)−n/2 exp

(
− λ2t − x2

n

4t

) dt
t

∫
Rn−1

exp
(−|x′ − y′|2

4t

)
dy′

=
xn

2
√
π

∫ ∞

0
t−1/2 exp

(
− λ2t − x2

n

4t

) dt
t

=
λxn

2
√
π

∫ ∞

0
t−1/2 exp

(
− t − λ

2x2
n

4t

) dt
t

=
λxn

2
√
π
· 2
(λxn

2

)−1/2
K1/2(λxn) = exp(−λxn),

sinceK1/2(z) = (π/2z)1/2 exp(−z) by (2.1) with ν = 1/2.
Let f be a bounded continuous function onRn−1. We have|Pλ[ f ](x)| ≤ ∥ f ∥∞ exp(−λxn) ≤

∥ f ∥∞ by (1.4). SincePλ(x) is a constant multiple of a derivative of the Green functionGλ(x) for
−∆ + λ2, it follows thatPλ[ f ] satisfies the Helmholtz equation inRn

+. Finally, we claim

lim
x→x0

Pλ[ f ](x) = f (x0) for everyx0 ∈ ∂Rn
+.

Without loss of generality we may assume thatx0 = 0. For everyε > 0 we findδ > 0 such that
| f (y′) − f (0)| < ε for |y′| < 2δ by the continuity off . By (1.4) we have

|Pλ[ f ](x) − exp(−λxn) f (0)| ≤
∫
Rn−1

Pλ(x; y′)| f (y′) − f (0)|dy′

=

∫
|y′ |<2δ

+

∫
|y′ |≥2δ

Pλ(x; y′)| f (y′) − f (0)|dy′.

The first integral is less than∫
|y′ |<2δ

εPλ(x; y′)dy′ ≤ ε
∫
Rn−1

Pλ(x; y′)dy′ = ε exp(−λxn) ≤ ε;

while, by Lemma2.2, the second integral is less than

2∥ f ∥∞
∫
|y′ |≥2δ

Pλ(x; y′)dy′ ≤ 2∥ f ∥∞C(δ, λ, n)xn for |x| < δ.
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Hence

lim sup
x→0

|Pλ[ f ](x) − f (0)| = lim sup
x→0

|Pλ[ f ](x) − exp(−λxn) f (0)| ≤ ε.

Sinceε > 0 is arbitrary, the claim follows. Thusu = Pλ[ f ] satisfies (1.3). The proof is
complete. □

In the sequel, we freely use the elementary inequality

(2.3) tα exp(−βt) ≤ C(α, β) for t > 0,

providedα, β > 0.

Proof of Theorem1.3. In this proof all constantsC depend only on the dimensionn. By trans-
lation we may assume thatx = (0, xn). Let y′ ∈ Rn−1 andy = (y′,0) ∈ ∂Rn

+. Observe that
λ|x− y| ≥ λxn ≥ 1 by assumption. If|y′| ≥ 4

3xn, then|x− y| ≥ 1
2 |y′| + xn ≥ max{12 |y′|, xn} by an

elementary calculation, so that

exp(λxn)Pλ(x; y′) ≤ Cλ(n−1)/2 xn

(|y′|/2)(n+1)/2
exp
(
− λ|y

′|
2

)
by Lemma2.2. Hence

exp(λxn)
∫
|y′ |≥4xn/3

Pλ(x; y′)dy′ ≤ Cλ(n−1)/2xn

∫
|y′ |≥4xn/3

|y′|−(n+1)/2 exp
(
− λ|y

′|
2

)
dy′

= Cλ(n−1)/2xn

∫ ∞

4xn/3
r (n−5)/2 exp

(
− λr

4

)
exp
(
− λr

4

)
dr

≤ Cλ(n−1)/2−(n−3)/2xn exp
(
− λxn

3

) ∫ ∞

4λxn/3
r (n−5)/2 exp

(
− r

4

)
dr

≤ Cλxn exp
(
− λxn

3

) ∫ ∞

4/3
r (n−5)/2 exp

(
− r

4

)
dr.

Since the last integral is convergent, it follows from (2.3) that

(2.4) exp(λxn)
∫
|y′ |≥4xn/3

Pλ(x; y′)dy′ ≤ C exp
(
− λxn

4

)
.

On the other hand, ifa ≤ |y′| ≤ 4
3xn, then

|x− y| ≥ (x2
n + a2)1/2 = xn

(
1+
( a
xn

)2)1/2
≥ xn +

xn

3

( a
xn

)2
= xn +

a2

3xn

by the elementary inequality (1+ t)1/2 ≥ 1+ 1
3t for 0 ≤ t ≤ 3, so that

exp(λxn)Pλ(x; y) ≤ Cλ(n−1)/2x1−(n+1)/2
n exp

(
− λa2

3xn

)
by Lemma2.2. Hence

exp(λxn)
∫

a≤|y′ |≤4xn/3
Pλ(x; y′)dy′ ≤ C(λxn)

(n−1)/2 exp
(
− λa2

3xn

)
.

This, together with (2.4), yields the required inequality. □
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3. The Helmholtz equation and harmonic measure

It is sufficient to construct a domain inR3 which fails the global boundary Harnack principle.
Such a domain will be given by

{(x, y, z) : (x, y) ∈ (−1,1)× (−1,1), f (x, y) < z< 1}

with aψα-Hölder continuous functionf on (−1,1)× (−1,1). The construction off is based on
precise estimates of harmonic measures in the products (−ε, ε) × D with plane domainsD in
yz-space. The correspondenceh(x, y, z) = cos(πx/(2ε))u(y, z) leads to the Helmholtz equation

(3.1)
(
− ∂2

∂y2
− ∂2

∂z2
+ λ2
)
u(y, z) = 0

with λ = π/(2ε). For future references let us restate Theorems1.2 and1.3 as well as some
results in Section2 in this context.

Theorem 3.1.We have the following assertions:

(i) Let D be an arbitrary domain in theyz-plane,R2. Supposeu andv are bounded solu-
tions to(3.1) in D. If u ≤ v on∂D, thenu ≤ v in D.

(ii) Let f be a bounded continuous function onR. Then the boundary value problem(3.1)
in the upper half planeR2

+ = {(y, z) : z > 0} andu(y,0) = f (y) for y ∈ R has a unique
bounded solution

Pλ[ f ](y, z) =
∫ ∞

−∞
Pλ(y, z; η) f (η)dη

with

Pλ(y, z; η) =
z

4π

∫ ∞

0
exp
(
− λ2t − (y− η)2 + z2

4t

)dt
t2
.

(iii) Pλ[1](y, z) = exp(−λz) for (y, z) ∈ R2
+; moreover,∫ ∞

y
Pλ(y, z; η)dη =

1
2

exp(−λz) for anyy ∈ R.

(iv) Leta > 0. If (y, z) ∈ R2
+ andλz≥ 1, then∫ ∞

y+a
Pλ(y, z; η)dη ≤ C exp(−λz) ·

{
exp
(
− λz

4

)
+ (λz)1/2 · exp

(
− λa2

3z

)}
,

whereC is an absolute positive constant. In particular, ifλ ≥ 1, then∫ ∞

y+a
Pλ(y, 1;η)dη ≤ C exp(−λ) ·

{
exp
(
− λ

4

)
+ λ1/2 · exp

(
− λa2

3

)}
.

Remark3.1. The second assertion of (iii) follows from symmetry. In (iv) the integral
∫ ∞

y+a
can

be replaced by
∫ y−a

−∞ +
∫ ∞

y+a
. (Actually, this is more straightforward from Theorem1.3.) If a = 0,

then the right hand side of the first inequality in (iv) is

C exp(−λz) ·
{
exp
(
− λz

4

)
+ (λz)1/2

}
.

This does not contradict (iii) since inft>0(exp(−t/4)+ t1/2) > 0.
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To facilitate the succeeding arguments we writeωλ(E; D) for the bounded solutionu to (3.1)
in D with u = χE on ∂D. This is theharmonic measure with respect to−∆yz + λ

2, where∆yz

is the Laplacian in theyz-plane. The value ofωλ(E; D) at (y, z) is denoted byω(y,z)
λ (E; D). For

instance Theorem3.1(iii) and (iv) read

ω
(y,z)
λ (∂R2

+;R
2
+) = exp(−λz), ω

(y,z)
λ ((y,∞) × {0};R2

+) =
1
2

exp(−λz);(3.2)

ω
(y,1)
λ ((y+ a,∞) × {0};R2

+) ≤ C exp(−λ) ·
{
exp
(
− λ

4

)
+ λ1/2 · exp

(
− λa2

3

)}
.(3.3)

Let ω be the usual harmonic measure inxyz-space. Since cos(λx)ω(y,z)
λ (E; D) is harmonic in

(−ε, ε) × D and vanishes on{−ε, ε} × D with ε = π/(2λ), it is easy to see that

(3.4) cos(λx)ω(y,z)
λ (E; D) ≤ ω(x,y,z)((−ε, ε) × E; (−ε, ε) × D) in (−ε, ε) × D.

In some cases, an opposite inequality (up to a multiplicative constant) holds for (y, z) apart
from E. To show such an inequality we start with a lower estimate of harmonic measure with
respect to−∆ + λ2. We use the following notation. Forε > 0 andY ∈ R we let S(Y, ε) =
(Y− ε,Y+ ε) × (0, 2ε) be the open square of center at (Y, ε) with sides of length 2ε and parallel
to the coordinate axes. LetS0(Y, ε) = (Y− ε,Y+ ε) × {0} be the bottom side ofS(Y, ε).

Lemma 3.1. Letε > 0 andλ = π/(2ε). Then

ω(Y,ε)
λ (S0(Y, ε); S(Y, ε)) ≥ sinh(

√
2π/2)

sinh(
√

2π)
.

Proof. By translation we may assume thatY = 0. It is easy to see that

v(y, z) = cos(λy)
sinh(

√
2λ(2ε − z))

sinh(2
√

2λε)

satisfies (−∆yz+ λ
2)v = 0 in S(0, ε) and

v(y, z) =

cos(λy) ≤ 1 onS0(0, ε),

0 on∂S(0, ε) \ S0(0, ε).

Henceωλ(S0(0, ε); S(0, ε)) ≥ v in S0(0, ε). Evaluating at (0, ε), we obtain

ω(0,ε)
λ (S0(0, ε); S(0, ε)) ≥ sinh(

√
2λε)

sinh(2
√

2λε)
=

sinh(
√

2π/2)

sinh(
√

2π)
,

as required. □

Let us record the following scale invariant boundary Harnack principle on the open cube
Q(Y, ε) = (−ε, ε) × S(Y, ε) of center at (0,Y, ε) with sides of length 2ε parallel to the coordinate
axes. Although it is known that the scale invariant boundary Harnack principle holds for a
Lipschitz domain, we can directly prove the following lemma since the domain is explicit.

Lemma 3.2.Letε > 0 andY ∈ R. If u andv are bounded positive harmonic functions inQ(Y, ε)
such thatu = v = 0 on {−ε, ε} × S(Y, ε), then

u
u(0,Y, ε)

≈ v
v(0,Y, ε)

on (−ε, ε) × {Y} × {ε},

where the constant of comparison is independent ofu, v, Y, andε.

We have an inequality opposite to (3.4) up to a multiplicative constant.
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Lemma 3.3. Letε > 0, λ = π/(2ε) andT = (−ε, ε) × (−∞,∞). Then

(3.5) ω(x,y,z)(T × {0}; T × (0,∞)) ≤ C0 cos(λx)ω(y,z)
λ (∂R2

+;R
2
+)

for (x, y, z) ∈ T × [ε,∞), whereC0 is an absolute positive constant.

Proof. In view of the maximum principle, it suffices to show (3.5) onT × {ε}. By the maximum
principle

ωλ(S0(Y, ε); S(Y, ε)) ≤ ωλ(∂R
2
+;R

2
+) in S(Y, ε)

for every Y ∈ R. Let us apply Lemma3.2 to u = ω(T × {0}; T × (0,∞)) and v(x, y, z) =
cos(λx)ω(y,z)

λ (S0(Y, ε); S(Y, ε)). By Lemma3.1 we haveu(0,Y, ε) ≈ v(0,Y, ε), so thatu ≈ v on
(−ε, ε)×{Y}× {ε}. Hence, we have (3.5) on (−ε, ε)×{Y}× {ε}, and hence onT×{ε}, sinceY ∈ R
is arbitrary. □

We have a similar estimate for the harmonic measure of the semi-stripT+ = (−ε, ε) × (0,∞).

Lemma 3.4. Letε > 0, λ = π/(2ε), T = (−ε, ε) × (−∞,∞) andT+ = (−ε, ε) × (0,∞). Then

(3.6) ω(x,y,z)(T+ × {0}; T × (0,∞)) ≤ C cos(λx)ω(y,z)
λ ((0,∞) × {0};R2

+)

for (x, y, z) ∈ T × [ε,∞), whereC is an absolute positive constant.

−2ε −ε 0 ε y

[ε,∞) × {ε}S(−ε, ε)
2ε

z

Figure 1. The projection ofT × (0,∞) onto theyz-plane.

Proof. See Figure1 for the projection ofT × (0,∞) onto theyz-plane. LetY ∈ R. If Y ≥ ε, then
(Y− ε,Y+ ε) ⊂ (0,∞), so that

ωλ((0,∞) × {0};R2
+) ≥ ωλ(S0(Y, ε); S(Y, ε)) in S(Y, ε)

by the maximum principle. Hence

ωλ((0,∞) × {0};R2
+) ≥

sinh(
√

2π/2)

sinh(
√

2π)
on [ε,∞) × {ε}

by Lemma3.1. Applying the interior Harnack inequality, we obtain

(3.7) ωλ((0,∞) × {0};R2
+) ≥ C on [−ε,∞) × {ε},

whereC is a positive absolute constant. In the same way as in the proof of Lemma3.3we obtain
(3.6) on (−ε, ε) × [−ε,∞) × {ε} by using Lemma3.2.

Let us show (3.6) on (−ε, ε) × {−ε} × (0, ε). Let Q(−ε, ε) = (−ε, ε) × (−2ε, 0) × (0,2ε) and
Q0(−ε, ε) = (−ε, ε) × (−2ε,0) × {0}. Observe thatu = ω(T+ × {0}; T × (0,∞)) andv(x, y, z) =
cos(λx)ω(y,z)

λ ((0,∞)×{0}; (−∞,∞)×(0,∞)) are positive harmonic functions inQ(−ε, ε) such that
u = v = 0 onQ0(−ε, ε) ∪ {−ε, ε} × (−2ε,0)× (0,2ε). Sinceu(0,−ε, ε) ≈ v(0,−ε, ε) by (3.7), it
follows from the scale invariant boundary Harnack principle thatu ≈ v on (−ε, ε)×{−ε}× (0, ε].
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Note thatu andv vanish on the larger portion of the boundary than in Lemma3.2with Y = −ε,
so that we have the comparison on the larger set (−ε, ε) × {−ε} × (0, ε]. Thus (3.6) holds on
(−ε, ε)×{−ε}× (0, ε]. Sinceu = v = 0 on (−ε, ε)× (−∞,−ε)×{0}, it follows from the maximum
principle that (3.6) holds in (−ε, ε)×(−∞,−ε)×(0,∞)∪(−ε, ε)×[−ε,∞)×[ε,∞), so in particular,
in T × [ε,∞). □

Combining (3.3) and Lemma3.4with translation, we obtain the following corollary.

Corollary 3.1. Let 0 < ε < 1, λ = π/(2ε), T = (−ε, ε) × (−∞,∞) andT(c) = (−ε, ε) × (c,∞)
for c ∈ R. If |x| < ε andy ≤ c− a with a ≥ ε, then

ω(x,y,1)(T(c) × {0}; T × (−∞,∞)) ≤ C1 exp(−λ) ·
{
exp
(
− λ

4

)
+ λ1/2 · exp

(
− λa2

3

)}
,

whereC1 is an absolute positive constant.

We shall apply Corollary3.1 with ε ≤ a ≤ 1/2 and with the roles ofy andz interchanged.
Note exp(−λ/4) ≤ λ1/2 exp(−λa2/3) in this case. For future reference we state it as a lemma.

Lemma 3.5. Let 0 < ε < 1, λ = π/(2ε) andε ≤ a ≤ 1/2. LetR∗ = (−ε, ε) × (0,∞) × (−∞,∞)
andT̃(c) = (−ε, ε) × {0} × (c,∞). If |x| < ε andz≤ c− a, then

ω(x,1,z)(T̃(c); R∗) ≤ 2C1 exp(−λ) · λ1/2 · exp
(
− λa2

3

)
.

4. Proof of Theorem 1.1

4.1. Construction of a wedge domain.Following the idea of [BB91] we construct a wedge
domain which looks like asharp ravine widening out rapidly. Let n ≥ 3 be an integer and let
0 < ε0 = ε1 < ε2 < · · · < εn < 1/2. Let

Tn = int
( n∪

j=0

[−ε j , ε j] × [ j, j + 1]
)
, Wn = Tn × (−5,0).

With a slight abuse of notation, we denote the top ofWn by Tn as well. LetSn = (−εn, εn)× {n+
1} × (−5,0) be the right side ofWn. See Figure2. We shall show that the ratio of the harmonic
measure of the topTn in Wn evaluated atp = (0,1,−4) and that of the sideSn tends to 0, i.e.,

ωp(Tn; Wn)
ωp(Sn; Wn)

→ 0 asn→ ∞,

provided{ε j} is suitably chosen. Actually, we shall give a stronger estimate. See (4.9) below.
With the aid of sharp estimates of the Poisson representation for the Helmholtz equation, we

can takeε j explicitly. We specifyε j as

(4.1) εn = n−2 and εn−i = εn(12n4)−i for i = 1, . . . , n− 1.

Let λ j = π/(2ε j) be the corresponding value for the Helmholtz equation. In view of (4.1) we
have

2λn =
πn2

2
· 2 < πn2

2
· n2 =

πn2

2
· 12n4

12n2
=
λn−1

12n2
;

and

(4.2) λn−i+1 + · · · + λn−1 + 2λn <
λn−i

12n2
for i = 2, . . . ,n− 1.
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Tn
Tn

Sn
p

ε0 ε1

ε2
εn−1

εn0 1

2 3
n− 1

n n+ 1

0

2 3
n− 1

n n+ 1

Figure 2. A wedge domainWn like a sharp ravine widening out rapidly.

In fact, if 2 ≤ i ≤ n− 1, then

λn−i+1 + · · · + λn−1 + 2λn =
πn2

2
·
{
(12n4)i−1 + · · · + (12n4) + 2

}
<
πn2

2
· (12n4)i−1 · n < πn2

2
· (12n4)i−1 · n2 =

λn−i

12n2
.

The explicit choice ofε j is crucial to give sharp modulus continuity in Theorem1.1. This is a
sharp contrast with [BB91].

Remark4.1. Actually, ε j depends not only onj but also onn, so it should be denoted by
something likeεn

j . However, the integern is fixed in the succeeding subsections, so the suffix n
is suppressed for simplicity.

4.2. Upper estimate of the harmonic measure of the top.We estimateΩ := ω(Tn; Wn) in-
ductively from the right. LetW( j) = {(x, y, z) ∈ Wn : y < j} andS( j) = {(x, y, z) ∈ Wn : y = j}.
(In this proof the integern is fixed, so the subscript “n” is suppressed for simplicity.) Decom-
poseS( j) into S′( j) ∪ S′′( j) with

S′( j) =
{
(x, y, z) ∈ S( j) : −2− n− j

n
< z< 0

}
and S′′( j) = S( j) \ S′( j).

See Figure3.
We shall inductively estimateM j = supS′′( j)Ω together with an auxiliary sequence{M̃ j} j

defined byM̃n = Mn exp(2λn) and

M̃ j = M j exp(λ j + · · · + λn−1 + 2λn) for j = 1, . . . ,n− 1.

Observe thatWn =W(n+ 1), Sn = S(n+ 1), and

(4.3) W( j) ⊂ R( j) ⊂ R∗( j)

with R( j) = (−ε j−1, ε j−1) × (0, j) × (−5,0) andR∗( j) = (−ε j−1, ε j−1) × (−∞, j) × (−∞,∞) for
j = 1, . . . , n+ 1. LetE( j) = (−ε j−1, ε j−1)× (0, j)× {0} be the top of the rectangular cuboidR( j).
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First, we estimateMn. LetR2
− = {(y, z) : z < 0}. It follows from (4.3) with j = n+ 1 and the

maximum principle that

Ω ≤ ω(E(n+ 1);R(n+ 1)) ≤ ω((−εn, εn) × ∂R2
−; (−εn, εn) × R2

−) in Wn.

Hence Lemma3.3and (3.2) upside down yield that

Ω(x, y, z) ≤ C0 exp(λnz) for (x, y, z) ∈Wn with z≤ −εn.

In particular,Mn ≤ C0 exp(−2λn), in other words,

(4.4) M̃n ≤ C0.

z

y

−5

n+ 1nn− 1n− 2210

1/n

1/n

1/n

Sn = S(n+ 1)

S′(n)S′(n− 1)
S′′(n− 2)

S′(2)S′(1)

S′′(n)

S′′(n− 1)

S′′(n− 2)
S′′(2)

S′′(1)p

Figure 3. The projection ofWn onto theyz-plane.

Secondly, we show an inductive inequality

(4.5) M̃ j−1 ≤ (C0 + 2C1) +C0M̃ j for j = 2, . . . ,n.

Let 2≤ j ≤ n. It follows from (4.3) and the maximum principle that

Ω ≤ ω(E( j); R( j)) + ω(S′( j); R( j)) + M jω(S′′( j); R( j)) in W( j).

Let us estimate each term in the right hand side. By the same reasoning as above we have

ω(E( j); R( j)) ≤ C0 exp(−2λ j−1) on {(x, y, z) ∈W( j) : z≤ −2}.

By translation and Lemma3.5with a = 1/n we have

ω(x,y,z)(S′( j); R( j)) ≤ ω(x,y,z)(S∗( j); R∗( j)) ≤ 2C1 exp(−λ j−1) · λ1/2
j−1 · exp

(
−
λ j−1

3n2

)
for (x, y, z) ∈ S′′( j − 1), whereS∗( j) = (−ε j−1, ε j−1) × { j} × (−2 − (n − j)/n,∞). Combining
(3.2) and Lemma3.3 with y andz interchanged, we obtainω(S′′( j); R( j)) ≤ C0 exp(−λ j−1) on
S( j − 1). Hence, these three estimates altogether yield

M j−1 ≤ exp(−λ j−1)
{
C0 exp(−λ j−1) + 2C1λ

1/2
j−1 · exp

(
−
λ j−1

3n2

)
+C0M j

}
.
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Multiplying the both sides by exp(2λn +
∑n−1

i= j−1 λi), we obtain

M̃ j−1 ≤ exp
(
2λn +

n−1∑
i= j

λi

) {
C0 exp(−λ j−1) + 2C1λ

1/2
j−1 · exp

(
−
λ j−1

3n2

)}
+C0M̃ j

≤ (C0 + 2C1) +C0M̃ j ,

as required, since (4.2) with i = n− j + 1 gives

exp
(
2λn +

n−1∑
i= j

λi

)
· exp(−λ j−1) ≤ exp

( λ j−1

12n2
− λ j−1

)
≤ 1,

exp
(
2λn +

n−1∑
i= j

λi

)
· λ1/2

j−1 · exp
(
−
λ j−1

3n2

)
≤ λ1/2

j−1 · exp
( λ j−1

12n2
−
λ j−1

3n2

)
≤ 1.

Finally, rewriting (4.5) as

M̃ j−1 +
C0 + 2C1

C0 − 1
≤ C0

(
M̃ j +

C0 + 2C1

C0 − 1

)
,

and using (4.4), we obtain

M̃1 +
C0 + 2C1

C0 − 1
≤ Cn−1

0

(
M̃n +

C0 + 2C1

C0 − 1

)
≤ Cn−1

0

(
C0 +

C0 + 2C1

C0 − 1

)
≤ Cn

2

with C2 = C0 + (C0 + 2C1)/(C0 − 1). This means

M1 ≤ Cn
2 exp(−λn) · exp

(
−

n∑
j=1

λ j

)
.

Sincep ∈ S′′(1), λ j = π/(2ε j) andεn = n−2, it follows that

(4.6) Ω(p) ≤ Cn
2 exp

(
− πn2

2

)
· exp

(
−

n∑
j=1

π

2ε j

)
= exp

(
n logC2 −

πn2

2

)
· exp

(
−

n∑
j=1

π

2ε j

)
.

4.3. Lower estimate of the harmonic measure of the side.The lower estimate of the har-
monic measure of the side is easier. It is based on an explicit positive harmonic function on a
rectangular cuboid.

Lemma 4.1.Let |δ| < 4ε < 1, R= (−ε, ε)×(0,1+δ)×(−5,0) and letΣ = (−ε, ε)×{1+δ}×(−5, 0)
be the right side ofR. Let

h(x, y, z) =
sinh(λy)

sinh(λ(1+ δ))
· cos
(πx
2ε

)
· sin
(−πz

5

)
with λ =

π

2ε

√
1+ 4(ε/5)2.

Thenh is the positive harmonic function inRwith boundary values

h(x, y, z) =


cos
(πx
2ε

)
· sin
(−πz

5

)
onΣ,

0 on∂R\ Σ.
Moreover,

ω(x,y,z)(Σ; R) ≥ h(x, y, z) ≥ C3
y
ε
· exp

(
− π

2ε

)
· cos
(πx
2ε

)
· sin
(−πz

5

)
for (x, y, z) ∈ R,

whereC3 is an absolute positive constant.
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Proof. By an elementary calculation we see the first assertion. Hence the maximum principle
yields the first inequality of the second assertion. Let us show the second inequality. By the
definition ofλ and by the elementary inequality 1≤

√
1+ t ≤ 1+ 1

2t for t ≥ 0 we have

π

2ε
≤ λ ≤ π

2ε

(
1+ 2

(ε
5

)2)
,

so that

λ(1+ δ) ≤ π

2ε

{
1+ |δ| + 2

(ε
5

)2(
1+ |δ|)

}
≤ π

2ε
+ 3π,

since|δ| < 4ε < 1. By the elementary inequalityt ≤ sinht ≤ 1
2 exp(t) for t ≥ 0, we have

h(x, y, z) ≥ 2λy · exp
(
− π

2ε
− 3π
)
· cos
(πx
2ε

)
· sin
(−πz

5

)
≥ πy

ε
· exp(−3π) · exp

(
− π

2ε

)
· cos
(πx
2ε

)
· sin
(−πz

5

)
,

which gives the required estimate withC3 = π exp(−3π). □

Now we construct a set smaller thanTn. Let

(4.7) ε′j = ε j − ε2
j and λ′j =

π

2ε′j
for j = 0, . . . , n,

whereε j are as in (4.1). Define

T′n = int
(
[−ε′n, ε′n] × [n+ ε′n−1,n+ 1] ∪

n−1∪
j=0

[−ε′j , ε′j] × [ j + ε′j−1, j + 1+ ε′j]
)
,

W′
n = T′n× (−5,0) andS′n = (−ε′n, ε′n)× {n+ 1} × (−5,0). We give a lower estimate ofω(S′n; W′

n)
inductively from the right. LetΣ( j) = (−ε′j−1, ε

′
j−1) × { j + 2ε′j−1} × (−5,0) for j = 2, . . . ,n. See

Figure4.

Tn

T′n
T′n

S′n

y

x

1 Σ(2) Σ(3) Σ(n− 1) Σ(n)

ε′1 ε′2

ε′n−2
ε′n−1

ε′n

Figure 4. The projection ofWn onto thexy-plane.
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Since (−ε′n, ε′n) × (n + ε′n−1,n + 1) × (−5, 0) ⊂ W′
n, it follows from Lemma4.1 with λ = λ′n,

ε = ε′n, δ = −ε′n−1, and the maximum principle that

ω(x,y,z)(S′n; W′
n) ≥ C3 ·

ε′n−1

ε′n
· exp(−λ′n) · cos(λ′nx) · sin

(−πz
5

)
≥ C3 ·

ε′n−1

ε′n
· exp(−λ′n) · cos(λ′n−1x) · sin

(−πz
5

)
for (x, y, z) ∈ Σ(n). Since (−ε′n−1, ε

′
n−1)× (n− 1+ ε′n−2,n+ 2ε′n−1)× (−5,0) ⊂W′

n, it follows from
Lemma4.1with λ = λ′n−1, ε = ε

′
n−1, δ = 2ε′n−1 − ε′n−2, and the maximum principle that

ω(x,y,z)(S′n; W′
n) ≥ C2

3 ·
ε′n−2

ε′n
· exp(−λ′n) · exp(−λ′n−1) · cos(λ′n−2x) · sin

(−πz
5

)
for (x, y, z) ∈ Σ(n− 1). Repeating this procedure, we obtain

ω(x,y,z)(S′n; W′
n) ≥ Cn−1

3 ·
ε′1
ε′n
· cos(λ′1x) · sin

(−πz
5

)
· exp

(
−

n∑
j=2

λ′j
)

for (x, y, z) ∈ Σ(2). Finally, since (−ε′1, ε′1) × (1 − ε′1,2 + 2ε′1) × (−5,0) ⊂ W′
n. it follows from

Lemma4.1with ε = ε′1, δ = 3ε′1, and the maximum principle

ω(x,1,z)(S′n; W′
n) ≥ Cn

3 ·
ε′1
ε′n
· cos(λ′1x) · sin

(−πz
5

)
· exp

(
−

n∑
j=1

λ′j
)
.

Letting x = 0 andz= −4, we obtain

(4.8) ωp(S′n; W′
n) ≥ Cn

3 ·
ε′1
ε′n
· sin
(4π

5

)
· exp

(
−

n∑
j=1

λ′j
)
,

where we recallp = (0,1,−4). In view of (4.1) and (4.7) we see thatε′1 = ε1 − ε2
1 > ε1/2, so

that
ε′1
ε′n
≥ ε1

2εn
=

1
2 · (12n4)n−1

;

and that

λ′j =
π

2(ε j − ε2
j )
=
π

2

( 1
ε j
+

1
1− ε j

)
≤ π

2ε j
+ π

since 0< ε j < 1/2. Hence, from (4.8) we have

ωp(S′n; W′
n) ≥ sin

(4π
5

)
·
Cn

3 exp(−nπ)

2 · (12n4)n−1
· exp

(
−

n∑
j=1

π

2ε j

)
≥ exp(−Cnlogn) · exp

(
−

n∑
j=1

π

2ε j

)
,

whereC is an absolute positive constant. This, together with (4.6), yields

(4.9)
ωp(Tn; Wn)
ωp(S′n; W′

n)
→ 0 asn→ ∞.
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4.4. Construction of a ψα-Hölder domain. Let 0 < α < 1. UsingWn andW′
n with transla-

tion and dilation, we construct aψα-Hölder domain which fails the global boundary Harnack
principle. We writerE for the dilation of a setE by r > 0. Observe from (4.1) that

(4.10) (n+ 1)−1W′
n ⊂ (n+ 1)−1Wn ⊂

(
− n−2

n+ 1
,

n−2

n+ 1

)
× (0,1)×

(
− 5

n+ 1
,0
)
.

Let En = {(x, y) ∈ R × (−∞, 1) : (x, y) < (n+ 1)−1Tn} and letℓn be the distance betweenEn and
(n+ 1)−1T′n. Observe from (4.7) that

ℓn = (n+ 1)−1ε2
1 =
{n−2(12n4)1−n}2

n+ 1
=

1
122(n−1)n8n−6(n+ 1)

.

Since 1/α > 1, if n is sufficiently large, sayn ≥ n0, then log(1/ℓn) ≤ (n+ 1)1/α, so that

(n+ 1)−1 ≤
(
log

1
ℓn

)−α
= ψα(ℓn).

Define a functionFn(x, y) onR2 by

Fn(x, y) := inf
(ξ,η)∈En

ψα(|(x, y) − (ξ, η)|).

ThenFn(x, y) ≥ (n+ 1)−1 on (n+ 1)−1T′n. By definitionFn(x, y) ≥ 0 onR2 andFn(x, y) = 0 on
En. Moreover,Fn(x, y) is ψα-Hölder continuous. In fact, the concavity ofψα yieldsψα(s+ t) ≤
ψα(s) + ψα(t) for s, t ≥ 0, and hence

ψα(|(x1, y1) − (ξ, η)|) ≤ ψα(|(x2, y2) − (ξ, η)|) + ψα(|(x1, y1) − (x2, y2)|).
Taking the infimum for (ξ, η) ∈ En, we obtain

Fn(x1, y1) ≤ Fn(x2, y2) + ψα(|(x1, y1) − (x2, y2)|),
and changing the roles of (x1, y1) and (x2, y2),

|Fn(x1, y1) − Fn(x2, y2)| ≤ ψα(|(x1, y1) − (x2, y2)|),
as required.

Let fn(x, y) = max{−5(n+ 1)−1,−5Fn(x, y)} for (x, y) ∈ R × (−∞,1). Then

(4.11) | fn(x1, y1) − fn(x2, y2)| ≤ 5ψα(|(x1, y1) − (x2, y2)|) for (x1, y1), (x2, y2) ∈ R × (−∞,1).

Moreover,

−5(n+ 1)−1 ≤ fn(x, y) ≤ 0 inR × (−∞,1),

fn(x, y) = −5(n+ 1)−1 on (n+ 1)−1T′n
fn(x, y) = 0 on En.

Let Dn = {(x, y, z) ∈ R × (−∞, 1)× R : fn(x, y) < z< 0}. Then

(n+ 1)−1W′
n ⊂ Dn ⊂ (n+ 1)−1Wn,

{(x, y, z) ∈ ∂Dn : z= 0} ⊂ (n+ 1)−1Tn,

{(x, y, z) ∈ ∂Dn : y = 1} ⊃ (n+ 1)−1S′n.

(4.12)

Hence, (4.9), the maximum principle and scale invariance of harmonicity yield

(4.13)
ωpn({(x, y, z) ∈ ∂Dn : z= 0}; Dn)
ωpn({(x, y, z) ∈ ∂Dn : y = 1}; Dn)

≤ ωp(Tn; Wn)
ωp(S′n; W′

n)
→ 0 asn→ ∞,

wherepn = (0, (n+ 1)−1,−4(n+ 1)−1).
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Now let

f (x, y) =
∞∑

n=n0

fn(x− n−1, y) for y < 1.

We see from (4.10) and (4.12) that

supp[fn(x− n−1, y)] ⊂
[1
n
− n−2

n+ 1
,

1
n
+

n−2

n+ 1

]
× [0, 1],

which implies that{supp[fn(x− n−1, y)]}∞n=n0
are mutually disjoint. Hence (4.11) yields

| f (x1, y1) − f (x2, y2)| ≤ 5ψα(|(x1, y1) − (x2, y2)|) for (x1, y1), (x2, y2) ∈ R × (−∞,1).

Finally, let D = {(x, y, z) : |x| < 1, |y| < 1, f (x, y) < z< 1}. This is aψα-Hölder domain, which
is the union of a cuboid and countably manysharp ravines widening out rapidly. See Figure5.

D

T
S

x

y1

z

qn0

(0, 0, 1/4)

Figure 5. A domain which fails the global boundary Harnack principle.

Let T = {(x, y, z) ∈ ∂D : z= 1} be the top ofD and letS = {(x, y, z) ∈ ∂D : y = 1} be the right
side ofD. Then, it is easy to see that

ω(0,0,1/4)(T; D) ≈ ω(0,0,1/4)(S; D) ≈ 1,

while, with qn = (n−1, (n+ 1)−1,−4(n+ 1)−1),

ωqn(T; D) ≤ ωpn({(x, y, z) ∈ ∂Dn : z= 0}; Dn),

ωqn(S; D) ≥ ωpn({(x, y, z) ∈ ∂Dn : y = 1}; Dn)

by the maximum principle and translation. Hence (4.13) yields

ωqn(T; D)
ωqn(S; D)

≤ ωpn({(x, y, z) ∈ ∂Dn : z= 0}; Dn)
ωpn({(x, y, z) ∈ ∂Dn : y = 1}; Dn)

→ 0 asn→ ∞.

This shows thatD fails the global boundary Harnack principle. In fact, letV = (−1,1) ×
(−1

2,
1
2) × (−1

2,
1
2) and K = [−1

2,
1
2] × [−1

3,
1
3] × [−1

3,
1
3]. Then bothω(T; D) andω(S; D) are

positive harmonic functions inD, vanishing onV ∩ ∂D and yet for pointsqn and (0,0,1/4) in
K ∩ D,

ωqn(S; D)/ω(0,0,1/4)(S; D)
ωqn(T; D)/ω(0,0,1/4)(T; D)

→ ∞.

Thus Theorem1.1 is proved.
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5. Appendix

For the reader’s convenience we give a proof of (2.1) for z= x > 0. We begin with a lemma.

Lemma 5.1. If α > 0, then

(5.1)
∫ ∞

0
exp
(
− αt − x2

4t

) dt
√

t
=

√
π

α
exp(−

√
αx) for x ≥ 0.

Proof. By the change of variableαt = s we may assume thatα = 1. Let F(x) be the left hand
side of (5.1) with α = 1. ThenF(0) = Γ(1/2) =

√
π. If x > 0, then the differentiation under the

integral sign gives

F′(x) = −
∫ ∞

0

x
2t

exp
(
− t − x2

4t

) dt
√

t

Changing the variables= x2/(4t) and simplification yield

F′(x) = −
∫ 0

∞

x
2x2/(4s)

exp
(
− x2

4s
− s
) 1√

x2/(4s)

(
− x2

4s2

)
ds= −F(x).

Solving this differential equation, we obtain (5.1) for α = 1 □

Proof of (2.1). Let ν > −1/2 andx > 0. First we note

t−(ν+1/2) =
1

Γ(ν + 1/2)

∫ ∞

0
e−tssν−1/2ds for t > 0,

which can be easily derived from the change of variableu = tsand the definition of the Gamma
function. Plugging this identity in the definition ofKν(x) and using Fubini’s theorem, we obtain

Kν(x) =
1
2

( x
2

)ν 1
Γ(ν + 1/2)

∫ ∞

0
sν−1/2ds

∫ ∞

0
exp
(
− (1+ s)t − x2

4t

) dt
√

t
.

By (5.1) with α = 1+ s and by the change of variablet = (1+ s)1/2 we have

Kν(x) =
1
2

( x
2

)ν 1
Γ(ν + 1/2)

∫ ∞

0
sν−1/2

( π

1+ s

)1/2
exp
(
− (1+ s)1/2x

)
ds

=
( x
2

)ν √
π

Γ(ν + 1/2)

∫ ∞

1
(t2 − 1)ν−1/2 exp(−tx) dt.

Again we make use the change of variables= (t−1)x. Notingt = 1+s/x andt2−1 =
2s
x

(
1+

s
2x

)
,

we obtain

Kν(x) =
( x
2

)ν √
π

Γ(ν + 1/2)

∫ ∞

0

{2s
x

(
1+

s
2x

)}ν−1/2
exp(−x− s)

ds
x

=
( x
2

)ν √
π

Γ(ν + 1/2)

(2
x

)ν−1/2 e−x

x

∫ ∞

0
sν−1/2

(
1+

s
2x

)ν−1/2
exp(−s) ds,

which leads to (2.1) after a simplification. □
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