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CONSTRUCTION OF A DOMAIN THAT FAILS THE GLOBAL BOUNDARY
HARNACK PRINCIPLE VIA THE HELMHOLTZ EQUATION

HIROAKI AIKAWA

ApstracT. We show the sharpness of the modulus of continuity of a functiéor which the
domain lying above the graph dfsatisfies the global boundary Harnack principle, with the aid

of precise estimates of the Poisson integrals with respect to the Helmholtz equation in the half
space.

1. INTRODUCTION

Ever since the pioneering works of Dahlbei@ah77, Ancona [Anc78 and Wu Wu7§
for Lipschitz domains, a large amount of work has been devoted to the study of the boundary
Harnack principle for nonsmooth domains such as Lipschitz domains, nontangentially acces-
sible domains, uniform domains, John domaing)dér domains, and domains satisfying the
qguasihyperbolic boundary condition; see Jerison-Kedi{8p] for nontangentially accessible
domains, Bauelos-Bass-BurdzyBBB91], [BB91], [BB94] for Holder domains, and the au-
thor [AikO1] and [Aik04] for uniform domains and inner uniform domains. The validity of the
boundary Harnack principle heavily depends on the geometry of the domain. This is a sharp
contrast with the fact that the boundary Harnack principle with respect to a non-local operator
such as the fractional Laplacian holds for arbitrary domains (see Bo&d&9}] and Song-Wu
[SW99). In this paper, we show the sharpness of the modulus of continuity of a funictian
which the domain lying above the graph bfatisfies the global boundary Harnack principle
with respect to classical harmonic functions.

First we recall that there are twoft#irent types of the boundary Harnack principle. Debe
a domain inR" with n > 2. Consider a pain, K) of a bounded open s¥t c R" and a compact
setK c R" such that

(1.1) KcV,KnD #0andK naD # 0.

Definition 1.1. We say thaD enjoys theglobal boundary Harnack principld for each pair
(V, K) with (1.1) the following property holds: It andv are positive superharmonic functions
on D such that
() uandv are bounded, positive and harmonicm D,
(i) uandv vanish onv N dD outside a polar set,
then
u()/ul) _
v(x)/v(y)
whereC depends only oD, V andK.

C forx,ye KnD,

There is another type of boundary Harnack principle, i.e., the scale invariant boundary Har-
nack principle. ByB(x, r) we denote the open ball with centenednd radius.

2010Mathematics Subject ClassificatioB1B25,35J67.
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2 HIROAKI AIKAWA

Definition 1.2. We say thatD enjoys the scale invariant boundary Harnack principle if there
exist constan€ > 1 andrg > 0 with the following property: 1 € D, 0<r < rgand

(i) uandv are bounded, positive harmonic function&, Cr) N D,
(i) uandv vanish onB(¢, Cr) N dD except for a polar set,

then
u(/uly) _
v(x)/v(y) ~

The scale invariant boundary Harnack principle is a property much stronger than the global
boundary Harnack principle. It is classical that the scale invariant boundary Harnack princi-
ple holds for a Lipschitz domainAnc78 and [Wu7§) and for an NTA-domain (JK82). In
[AikO1] the author showed the scale invariant boundary Harnack principle for a uniform do-
main; and in Aik04] the converse, i.e., the uniformity @ is characterized by the validity of
the scale invariant boundary Harnack principlelrunder a suitable additional assumption on
D. We note that the quantitative nature of the scale invariant boundary Harnack principle played
an important role.

The global boundary Harnack principle is a rather weak qualitative property, which holds
for very nasty domains such as a John domain and a domain satisfying the quasihyperbolic
boundary condition (Bass-BurdzBB91]; see alsofik14] and [Aik15]). More precise results
are known for a domain whose boundary is locally given by the graph of a continuous function
in R™1, Lety(t) be a nondecreasing continuous functiontfer0 with ¢(0) = 0. We say that a
function f in R"! is y-Holder continuous if

If(X) - f(Y) <Cy(X —-y|) forx,y eR™?

whereC > 0 is independent of,y € R™1. We say that a bounded domainif is ay-Holder
domain if its boundary is locally given by the graph af-aHdlder continuous function iR

IfO < @ < 1, then &*-Holder domain is simply called anHolder domain. A 1-Klder domain

is called a Lipschitz domain. In case= 2, conformal mappings are available, and hence the
global boundary Harnack principle holds for evgnHolder domain no matter how badis.

So we letn > 3 for the moment.

Bass-Burdzy BB91] proved probabilistically the global boundary Harnack principle for an
a-Holder domain in case/2 < a < 1, and then Bauelos-Bass-BurdzyBBB91] extended the
range ofa to 0 < @ < 1. In the opposite direction, Bass-Burdz$8g91, Proposition 5.3])
constructed a domain lying above the graph of a continuous function (but nalder-tontin-
uous) for which the global boundary Harnack principle fails. Unfortunately, their construction
was involved and no good control of modulus of continuity was obtained. So, sharp criterion of
modulus of continuity of the boundary function for the validity of the global boundary Harnack
principle had remained open.

In the previous paperdikl4] we proved arextended Harnack inequality with exceptional
sets which asserts that a Harnack inequality holds even if a small (but non-polar) exceptional
set lies in the Harnack chain. This is a generalizationB#92, Lemma 2.14], which played
a crucial role in BBB91] to extend the range of theditler exponent.. With the aid of this
new Harnack inequality, we showed that the global boundary Harnack principle holds for a
W-Holder domain with modulus of continuity weaker than Klder continuity. Forr > O let
Yo(t) = (= logt)™ for 0 < t < 1/e**! and extend it by constant for> 1/e**1. Sometimes, is
referred to as log-Blder continuity of orderr.

C forx,yeB(,r)nD.
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Theorem A ([Aik14, Theorem 1.3]) Letn > 3. If a nondecreasing continuous functign
satisfies the Dini condition:
f@dt < 0
o t

with an additional assumptiohm sup_,,¢(Mt)/¥(t) < M for someM > 1, then everyy-
Holder domain satisfies the global boundary Harnack principle. In particulay, # 1, then
everyy,-Holder domain satisfies the global boundary Harnack principle.

The main purpose of this paper is to show the sharpness of Theorem

Theorem 1.1.Letn > 3. If 0 < a < 1, then there exists &,-Holder domain which fails the
global boundary Harnack principle.

TheoremsA and1.1show that that the threshold for the global boundary Harnack principle
is log-Holder continuity of order 1, i.e., it lies in between(t) = (- logt)™ of > 1 and that
of @ < 1. We do not know what happens fgy(t) = (- logt)™t.

Let us remark some potential theoretical properties related to the boundary Harnack principle.
We can easily generalize the Laplace operator to uniformly elliptic operators of divergence form
(see CFMS81). However, there is a significantfterence between uniformly elliptic operators
of divergence form and those of non-divergence form. The threshold for the global boundary
Harnack principle with respect to a uniformly elliptic operator of non-divergence formzis 1
Holder continuity. In fact, Bass-Burdz¥B94] showed the following:

(i) f 1/2 < @ < 1, then everyr-HOlder domain satisfies the global boundary Harnack
principle with respect to a uniformly elliptic operator of non-divergence form.

(i) If0 < a < 1/2, then there exist am-Holder domain and a uniformly elliptic operator
of non-divergence form for which the global boundary Harnack principle with respect
to L fails.

The scale invariant boundary Harnack principle immediately implies that the Martin bound-
ary of the domain is homeomorphic to the Euclidean boundary. This is the case for a Lipschitz
domain. Actually, Bass-BurdzyBB93] showed that modulus of continuity slightly worse than
Lipschitz is sificient for the Martin boundary of a domain to be homeomorphic to the Euclidean
boundary, and that the critical modulus of continuity(§) = tlog log(1/t). The following table
summarizes potential theoretical properties of a domain locally given by the graph of a continu-
ous functionf and the critical moduli of continuity of. Here the BHP stands for the boundary
Harnack principle. This paper, together withif14], completes the last assertion of the table.

TasLe 1. Potential theoretical properties and critical moduli of continuity

Potential theoretical property \ Critical modulus of continuity
Scale-invariant BHP w(t) =t

Martin boundary= Euclidean boundary| y(t) = tloglog(1/t)

Global BHP for non-divergence operatag(t) = t*/?

Global BHP for divergence operator | y(t) = (log(1/t))*

Let us state our methodology for Theordm. Bass-Burdzy @B91, Proposition 5.3]) con-
structed their domain based on hitting probabilities, or harmonic measures in analytic terminol-
ogy. We follow basically the same approach asBB91], but with the aid of precise estimates
of harmonic measure with respect to the Helmholtz equatramch may be of independent
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interest. Roughly speaking we construct a domain by digging the bottom of a cube and make
countably manyharp ravines widening out rapidlfsee Figuré in Sectiond. Heuristically, if
the Brownian motion starts at a point near the bottom of a ravine, then the hitting probability of
the top is much smaller than that of the side, provided sharpness and widening satisfy a subtle
relation. However, the fact that the top of a ravine is always visible from the bottom (although it
is very narrow) gives rise to fliculty in the upper estimate of the hitting probability of the top.
The precise estimates of harmonic measures with respect to the Helmholtz equation enables us
to overcome this diiculty. We do not know whether probabilistic arguments yield such precise
estimates.

Now letn > 2 andA > 0. We study the Poisson representation for the Helmholtz equation
(=A + A%)u = 0 in the upper half spad®? = {X = (X,..., %,) : X, > 0}. It is well known that
the Green functio® ,(x) for —A + A2 in R" is given by

IX?

(1.2) G,(x) = f (4rt)™V2 exp( R b .

0 4t

Let P,(X) = —20G,(X)/0x,. Define thePoisson kernelvith respect to-A + A2 for R by
P.(xY) = Py(x—(y,0)) forxeR"and §,0)e dR".

For simplicity we identifydR" andR". We have the following Poisson representation for the
Helmholtz equation<A + 2?)u= 0 inR".

Jat.

Theorem 1.2. Let f be a bounded continuous function @R}. Then
(<A +2®)u=0inR",

u= f ondR",
has a unique bounded solution which is represented as

PAAIY = [ Piky) )y,

(1.3)

If f=1o0nR"?, then
(1.4) PA[1](X) = expEAxy).

This may be regarded as tharmonic measurith respect to-A + 12 of the whole boundary
JR". One may expect that a subset of the boundary has the harmonic measure decaying faster
than exp€Ax,). The following theorem gives a precise decay estimate.

Theorem 1.3.Leta> 0. If x = (X, X,) € R} andAx, > 1, then

| Pusy)y < emiing - [Conp( - T
Yy —xX'[|za

4
whereC > 0 depends only on the dimension

) + C(/lxn)(”‘l)/z exp( _ g_i:)}’

Observe that there is a close relationship between harmonic functi®isaind solutions to
the Helmholtz equation i"1. More precisely, if A’ + A2)u(x’) = 0in D’ ¢ R™* with A’
being the Laplacian iR"*, thenu(x’) cos(x,) is a harmonic function i’ x (-&, ) vanishing
onD’ x {—¢&,&} with ¢ = 7/(21). Hence Theorem$.2 and 1.3 can be applied to the study of
harmonic functions iD’ x (-&, &).

We use the following notation. By the symbGlwe denote an absolute positive constant
whose value is unimportant and may change from one occurrence to the ne(pRy...)
we mean tha€C depends omp, q,.... We often suppress the dependency on the dimension
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If necessary, we usgp, Cy, ..., to specify constants. We say thiaindg are comparable and
write f ~ g if two positive quantitiesf andg satisfiesC™! < f/g < C with some constant

C > 1. The constant is referred to as the constant of comparison. We have to pay attention
for the dependency of the constant of comparison.

Acknowledgments.The author thanks Krzysztof Burdzy for valuable comments.

2. ProoOF oF THEOREMS 1.2 AND 1.3

We frequently use the following maximum principle (or PhragmLindebf principle) for
the Helmholtz equation.

Lemma 2.1. Let D be an arbitrary domain (bounded or unbounded)Rifh If uis a bounded
solution to the Helmholtz equatiqrA + A?)u = 0 in D with vanishing boundary values, then
u=0inD.

Proof. If uis a bounded solution to the Helmholtz equatiem (+ A?)u = 0 in D with van-
ishing boundary values, thdr(x, x,.1) = U(X) cos@x,,1) is a bounded harmonic function in
D x (-r/(21), 7/(21)) with vanishing boundary values. Hence the Phragrhindebf principle
for harmonic functions gives the lemma. O

Let us rewrite the Poisson kernel for the Helmholtz equation by using the modified Bessel

kernel of the third kind
1,zv ™ Z2\ dt
K@ =5(3) fo exp(~t- )

which has another integral representation
e’ —ttv 12 1 + t

2.1 K Y2
(2.1) A2 = (22) T +1/2) Jo 22

if v > -1/2. In fact, €.1) has an analytic continuation to a suitable domain in the complex
plane. In this note, however2.() for z > 0 is suficient. See\Wat95 6.22 (15) and 7.30]. For
the reader’s convenience, a self-contained proof is provided in the appendix.

By a change of variable irl(2) we have

Gi(x) = —(Z’Z'X') Kiy2-1(A1).

The diferentiation under the integral sign ih.p) yields

)V_l/zdt,

Xq o, P dt A \n2
22 P= g f exp( — 4%t = Zr ) = 2l 5) Ko

We estimateP,(x) by making use ofZ.1).
Lemma 2.2. Letx € R? andy = (y, 0) € dR" withy € R™. Then

A \(-12expEAxX —yl) (-122_n+1
PxY) < i (57) W{(z) r(75-) + (- 1)

(n-1)/2
(n+1) 2/1|X yl) }

Proof. In view of (2.1) and @.2) we have

ANo-D2eXpEAX=Y) [ 12 t (-1/2__,
Poy) = man(5) oy ), ) e

F( n+1)
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Letting @ = A|x —y|, we decompose the last integral into

f f te-92(1 )(n et

The first integral is less than

(g)(“”z fo "2ty < (g)(nl)/2 fo -0zt - (g)(nl)/zr(n ; 1);

while the second integral is less than

® t oty 3 \-v2 [ 3 \(-1)2
[ ) et () [ oot - ni ()"
a a a (04 0 (04

Adding these two estimates, we obtain the required inequality. O

Proof of Theorenmi..2 The uniqueness of bounded solutions follows from Lenihia Let us
show thatP,[ f] is the bounded solution td.(3). We begin with the proof ofl(.4). By Fubini’s
theorem, translation and a change of variable we have

e [ enl 15 [ enl5 s

4t 4t
Xn © 1 2, X5y dt
= [ tYV2exp(-2%t-1) =
zvﬁfo Xp 4t) t
D (1 2x2, dt
[ t — _
237 Jo exp( i)
AXn

AXp\-1/2
:Zv_z( ) " Kaya(A%,) = explaxy),
sinceKy,2(2) = (7/22)Y? exp(-2) by (2.1) with v = 1/2.

Let f be a bounded continuous function BA. We havelP,[ f](X)| < ||l €XPEAX,) <
IIf]l by (1.4). SinceP,(X) is a constant multiple of a derivative of the Green functByiix) for
—A + 22, it follows thatP,[ f] satisfies the Helmholtz equationlit{. Finally, we claim

lim P,[f](X) = f(Xo) foreveryx, € 6R".
X—=Xo

Without loss of generality we may assume that 0. For everye > 0 we findé > O such that
[T(y) — f(0) < efor |y| < 26 by the continuity off. By (1.4) we have

PALF1(X) - exp(-ax) f (O)] < f P.(xY)If(Y) - f(O)ldy

_ f ; f PO Y)IE(Y) - FO)dy.
ly’|<26 ly'|>26

The first integral is less than

f ePy(xy)dy < ef P.(xy)dy = eexpEax,) < &;
ly'|<26 Rn-1
while, by Lemma2.2, the second integral is less than

mﬂuj' P.(xY)dY < 2 fll.C(6. A )% for x| < .
Iy’ =26
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Hence
lim sup|P,[ f](X) — f(0)| = limsup|P,[ f](X) — exp1x,) f(0) < .
X—0 x—0
Sincee > 0 is arbitrary, the claim follows. Thus = P,[f] satisfies {.3). The proof is
complete. O

In the sequel, we freely use the elementary inequality
(2.3) t* exp(pt) < C(a,B) fort>0,
provideda, 8 > 0.

Proof of Theoreni..3. In this proof all constant€ depend only on the dimension By trans-

lation we may assume that= (0,x,). Lety € R"™! andy = (y,0) € dR". Observe that
AIX =Yl > A%, > 1 by assumption. Ify’| > $X,, then|x —y| > 2|y’| + X, > maxzly’l, x.} by an

elementary calculation, so that

: (n-12___ %o _ Ayl
eXp(/an)P’l(X’ Y) <Ca " (|Y’|/2)(n+l)/2 exp( 2 )
by Lemma2.2 Hence
: (n-1)/2 —(n+1)/2 Aly'|
expxn) P.(x;y)dy <Ca Xn Y4 exp( - _) dy
Iy |24%/3 ' [24%/3 2
® Ar Ar
- C/l(n—l)/ZXn r-9722avn( — 2 Yexol — 2\ dr
A%n/3 p( 4 ) p( 4 )

Xy r
< CAM D32y exp( - =T f 52 exp( — =) dr
(=3 .., (-2)

< CAxq exp( - %(”) f; r(-5)/2 exp( - ;1) dr.

Since the last integral is convergent, it follows froeng) that

(2.4) exp(ix,) PxY)dy < Cexp(~ ).

Y 2 4%0/3
On the other hand, & < |y'| < $X,, then

2
oz O 7 = (1 ()2 e S0 = g

by the elementary inequality @ t)"/> > 1+ 2t for 0 < t < 3, so that

a2
. (n-1)/2,1-(n+1)/2 _
expXxn)P(x;y) < CAMHox " exp( v )

by Lemma2.2 Hence

expxn) P.(x; y)dy < C(Ax,)"1/2 exp( 3 ;)l_c;:(lnz)

a<|y'|<4xn/3

This, together withZ.4), yields the required inequality. O
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3. THE HELMHOLTZ EQUATION AND HARMONIC MEASURE

It is sufficient to construct a domain i&® which fails the global boundary Harnack principle.
Such a domain will be given by

{(xy,2:(xy)e(-1,1)x(-1,1), f(xy)<z<1}

with ay,-Holder continuous functiori on (-1, 1) x (-1, 1). The construction of is based on
precise estimates of harmonic measures in the produetg) x D with plane domain® in
yzspace. The correspondendg, y, z) = cosrx/(2¢))u(y, z) leads to the Helmholtz equation

0?0 2
(_a_yZ_ﬁJ”l )u(y,z) =0
with 2 = n/(2¢). For future references let us restate Theordm2sand 1.3 as well as some
results in Sectior2 in this context.

(3.1)

Theorem 3.1. We have the following assertions:

(i) LetD be an arbitrary domain in thgzplane,R2. Suppose andv are bounded solu-
tions to(3.1) in D. Ifu<vonadD, thenu<vin D.

(i) Let f be a bounded continuous function Rn Then the boundary value problgid.1)
in the upper half plan®? = {(y,2) : z> 0} andu(y,0) = f(y) for y € R has a unique
bounded solution

P.IIY.2) = f Py Z ) f ()i
with
ORI L

Z (o)
P.y.zn) = - fo exp( - - 4t 2

(i) P,[1](y,2) = exp(A2) for (y, 2) € R?; moreover,
f P.(y,z n)dn = %exp(—/lz) for anyy € R.
y

(iv) Leta> 0. If (y,2) € R2 andAz > 1, then
” : Az 12 PES
fy+a Py, z n)dn < Cexp(-A12) - {exp( - Z) + (12)Y?. exp( _ E)}

whereC is an absolute positive constant. In particularlit 1, then
2

foo P.(y, 1;7)dn < Cexp(2A) - {exp( _ ;_11) 2. exp( _ ﬂ%)}
y+a

Remark3.1 The second assertion of (iii) follows from symmetry. In (iv) the inteq)r;éial1 can

be replaced by " + Joee (Actually, this is more straightforward from Theorein) If a = 0,
then the right hand side of the first inequality in (iv) is

Cexp(A12) - {exp( - %Z) + (/12)1/2}.

This does not contradict (iii) since igf(expt/4) + t¥/2) > 0.
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To facilitate the succeeding arguments we Wi€E; D) for the bounded solutionto (3.1)
in D with u = yg on4D. This is theharmonic measure with respect ta\,, + 42, whereA,,
is the Laplacian in thgzplane. The value ab,(E; D) at (y, 2) is denoted bys"?(E; D). For
instance Theorer8.1 (iii) and (iv) read

(32)  WY?(ORZR?) = expt-12),  wl?((y, o) x {0} R?) = %exp(—ﬂz);

33)  Wt(y+ae) x 105 E2) < Coxp) - {exp( - &)+ 122 exp( - 2.

Let w be the usual harmonic measurexyizspace. Since co$)(<)a)§y’z)(E; D) is harmonic in
(—&,€) x D and vanishes oft-¢, €} x D with £ = /(21), it is easy to see that

(3.4) cos@X)w¥?(E; D) < w*¥?((~&,€) X E; (~&,8) x D) in (=&,&) x D.

In some cases, an opposite inequality (up to a multiplicative constant) holdg, #rapart

from E. To show such an inequality we start with a lower estimate of harmonic measure with
respect to-A + 1%2. We use the following notation. Far > 0 andY € R we letS(Y,e) =
(Y—-¢,Y + &) x (0, 2¢) be the open square of center ¥tg) with sides of length 2and parallel

to the coordinate axes. L8(Y, &) = (Y — &, Y + &) x {0} be the bottom side &(Y, ¢).

Lemma 3.1. Lete > 0andA = n/(2¢). Then

sinh(V2r/2)

Proof. By translation we may assume that 0. It is easy to see that

sinh(V21(2¢ - 2))
sinh(2V21s)

w((So(Y, ); S(Y, €)) >

V(Y 2) = cos(ty)

satisfies £Ay; + 4%)v = 0in S(0, ) and
cos(ly) <1 onSy(0,e),
V0.2 = {o “ on aé((o,g)) \ S4(0, &).
Hencew,(So(0, ); S(0, €)) > vin Sy(0, ). Evaluating at (Q¢), we obtain
sinh(V21e) _ sinh(v2r/2)
sinh(2V21e)  sinh(V2r)
as required. O

w®9(Sp(0, &); S(0, 6)) >

Let us record the following scale invariant boundary Harnack principle on the open cube
Q(Y, &) = (—&,¢) x S(Y, €) of center at (QY, £) with sides of length 2 parallel to the coordinate
axes. Although it is known that the scale invariant boundary Harnack principle holds for a
Lipschitz domain, we can directly prove the following lemma since the domain is explicit.

Lemma 3.2.Lete > OandY e R. If uandv are bounded positive harmonic functionggy, )
such thatu = v=00n{-¢, g} x S(Y, &), then
u v
u(Q,Y,e) ~ v(Q,Y,&)
where the constant of comparison is independent of Y, ande.

on(—¢,&) x{Y} x {&},

We have an inequality opposite t8.4) up to a multiplicative constant.
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Lemma 3.3. Lete > 0,1 = n/(2¢) andT = (—¢, &) X (—o0, ). Then
(3.5) WPA(T x {0}; T x (0, 0)) < Cocos@x)w??(IR2; R?)
for (x,y,2) € T x [&, ), whereCy is an absolute positive constant.

Proof. In view of the maximum principle, it gtices to showd.5 on T x {¢}. By the maximum
principle

wa(So(Y, £); S(Y. £)) < wa(IRZ;RF) in S(Y.¢)
for everyY € R. Let us apply Lemma&.2to u = w(T X {O}; T x (0,)) andv(x,y,2) =
cos@X)w¥?(So(Y, &); S(Y, £)). By Lemma3.1we haveu(0,Y,s) ~ v(0,Y, ), so thatu ~ v on
(—&, ) x{Y} x{e}. Hence, we have3(5) on (¢, &) x{Y} x{g}, and hence o x {&}, sinceY € R
is arbitrary. O

We have a similar estimate for the harmonic measure of the semifstef(—¢, €) X (0, o).
Lemma 3.4.Lete > 0,1 =n/(2¢), T = (—¢&,&) X (—00,00) and T, = (—¢&, &) X (0, 0). Then
(3.6) W®¥(T, x {0); T x (0, )) < C cos@x)w??((0, ) x {0}; R?)
for (x,y,2) € T X [¢g, ), whereC is an absolute positive constant.

z

A
2¢
SCe.e) [e.0) x (]
I >
-2e - 0 e y

Ficure 1. The projection ofl x (0, o) onto theyzplane.

Proof. See Figurd for the projection ofl x (0, «) onto theyzplane. LetY e R. If Y > ¢, then
(Y-¢,Y+¢) c (0, ), so that

wa((0, ) x {0}; R?) > w,(So(Y. £); S(Y,&)) inS(Y,e)
by the maximum principle. Hence

sinh(V2r/2)
wa((0,00) X {0}; R?) > ————— on[s, o) x {&}
1((0, ) ) Sinh(V2x) [, o)
by Lemma3.1 Applying the interior Harnack inequality, we obtain
(3.7) w,((0, o0) x {0}; Rf) >C on[-g o)X {&},

whereC is a positive absolute constant. In the same way as in the proof of Léh@wee obtain
(3.6) ONn (—¢, &) X [—&, ) X {&} by using Lemm&3.2

Let us show 8.6) on (-, &) x {—¢} X (0,&). Let Q(-¢,¢) = (—¢&, &) x (—2¢,0) x (0, 2¢) and
Qo(—¢,€) = (—&,¢€) X (-2¢,0) x {0}). Observe thati = w(T, x {0}; T x (0, o)) andv(x,y, 2) =
cos@x)wgy’z)((o, 00) X {0}; (=00, 00) X (0, 00)) are positive harmonic functions @(-«, €) such that
u=v=00nQu(-¢, &) U{-g &} x(-2¢0)x (0, 2¢). Sinceu(0, —¢, &) ~ v(0, —¢, &) by (3.7), it
follows from the scale invariant boundary Harnack principle thatv on (—¢, &) x {—&} x (0, £].
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Note thatu andv vanish on the larger portion of the boundary than in Len®2avith Y = —¢,
so that we have the comparison on the larger setd) x {—&} x (0,&]. Thus @.6) holds on
(—&,&) x{—¢€}x(0,¢]. Sinceu = v =00n (¢, &) X (-0, —g) x {0}, it follows from the maximum
principle that 8.6) holds in ¢, £)x(—c0, —£) X (0, 0)U(—¢, €) X[ —&, ) X[ &, ), SO in particular,
inT X [g, o). O

Combining @.3) and LemmaB.4 with translation, we obtain the following corollary.

Corollary 3.1. LetO< e < 1,1 =7/(2¢), T = (—&,&) X (—00,00) andT(C) = (—¢, &) X (C, )
force R. If [X] < eandy < c—awitha > ¢, then

WP D(T () % {0); T % (—00, ) < Cyexp(-4) - { exp( - %) + Y2 exp( - %)}

whereC; is an absolute positive constant.

We shall apply CorollarnB.1 with £ < a < 1/2 and with the roles oy andz interchanged.
Note expEa/4) < AY? exp(aa?/3) in this case. For future reference we state it as a lemma.

Lemma3.5.Let0< e < 1,1 =n/(2¢) ande < a< 1/2. LetR" = (-¢, &) X (0, 00) X (=00, 0)
andT(c) = (—&,&) x {0} x (C, ). If [X < eandz < c — a, then

i 2
w(x,l,z)(T(C); R) < 2Ciexp(A1) - AY2. eXp( B ﬂ%)

4. Proor oF THEOREM 1.1

4.1. Construction of a wedge domain.Following the idea of BB91] we construct a wedge
domain which looks like aharp ravine widening out rapidlyLet n > 3 be an integer and let
O<gg=eg1<e<---<gy<1/2 Let

n
To=int(| Jl-&je]x [ i+ 1), Wa=T,x(-5,0)
j=0
With a slight abuse of notation, we denote the top\afby T, as well. LetS,, = (-&n, &n) X {n+
1} x (-5, 0) be the right side oW,. See Figur€. We shall show that the ratio of the harmonic
measure of the top, in W, evaluated ap = (0, 1, —4) and that of the sid§, tends to 0, i.e.,

p .
wP(Sn; Wh)
provided{e;} is suitably chosen. Actually, we shall give a stronger estimate. £8ebelow.
With the aid of sharp estimates of the Poisson representation for the Helmholtz equation, we

can takes; explicitly. We specifyg; as
(4.1) en=n7? and e =eg(12nH)" fori=1,...,n-1.

Let A; = n/(2¢;) be the corresponding value for the Helmholtz equation. In viewAd) ve
have

n? n? an? 12n* A,
7S I WL L LN
T AN 2 T2 17
and
An_i .
(4.2) Ansigr + -+ Apog + 24, < fori=2,...,n-1.

12n?
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n n+1
n-1
2 3 /
: €n
0 1 & ‘ En-1 §
€0 &1 !
/I T, ‘Tn
1 N =
Pe ‘
0
2 3
n-1
n n+1

Ficure 2. A wedge domaiW, like a sharp ravine widening out rapidly.

Infact,if2<i <n-1, then

2 .
Adnist+ -+ Adpg + 22y = 7% . {(12n4)"1 +o+ (120 + 2}

n?

2
| | A
<Z- @ty tn< % ()t = Ao

-~ 1n?
The explicit choice of; is crucial to give sharp modulus continuity in Theorérm. This is a
sharp contrast withgB91].

Remark4.1 Actually, £; depends not only on but also onn, so it should be denoted by
something likes]. However, the integen is fixed in the succeeding subsections, so tHixsn
is suppressed for simplicity.

4.2. Upper estimate of the harmonic measure of the topWe estimate = w(T,;W,) in-
ductively from the right. LeW(j) = {(X,y,2 € W, : y < j} andS(j) = {(X,y,2 e W, : y = |}.
(In this proof the integen is fixed, so the subscript” is suppressed for simplicity.) Decom-
poseS(j) into S’(j) U S”(j) with

S() = {(xy.9es(i):-2- T <z<0} and s7(j) =S()\ ().

See Figures. _
We shall inductively estimatél; = sups,;, Q together with an auxiliary sequen¢i};

defined byM, = M, exp(21,) and

M; = M;exp@; +---+ A1+ 24, forj=1,...,n-1
Observe thatV, = W(n+ 1), S, = S(h+ 1), and
(4.3) W(j) < R(j) c R(j)

with R(j) = (—&j-1,&j-1) X (0, j) x (=5,0) andR(j) = (—&j-1,€j-1) X (=09, J) X (—00, c0) for
j=21....n+1. LetE(j) = (-&j-1. €j-1) X (O, ]) x {0} be the top of the rectangular cubd?dj).
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First, we estimatévl,. LetR? = {(y, 2) : z < 0}. It follows from (4.3) with j = n+ 1 and the
maximum principle that

Q < w(EMN + 1); RN+ 1)) < w((—&n, &) X ORZ: (—&n, &7) X RZ) in W,
Hence Lemma&.3and (3.2) upside down yield that
Q(X,Y,2) < Coexp(,z) for(x,y,2) € W, with z< —g,,.

In particular,M,, < Cyexp(24,), in other words,

(4.4) M, < Co.
Z\
0 1 2 n-2 n-1 n n+1 _y
S(n-1) |SM)
S"nN-2) f-—"---
1/n
S'(1) s ( (...
1/n
s”(n) Sh=S(h+1)
7777777777 S”(n-1)
1/n S”(n-2)
S”(2)
PesS”(1)
-5

Ficure 3. The projection oV, onto theyzplane.

Secondly, we show an inductive inequality
(4.5) M1 < (Co+2C)) +CoM; forj=2,...,n
Let 2 < j < n. Itfollows from (4.3) and the maximum principle that
Q < w(E()); R())) + w(S'(J); R(J)) + Mjw(S"(j); R(j))  in W()).
Let us estimate each term in the right hand side. By the same reasoning as above we have
w(E());R())) < Coexp(-21j-1) on{(x.y,2) e W(j) : z< -2}.

By translation and Lemma.5with a = 1/n we have

A
WIS () R() < (S (); R(1)) < 21 exp-Aia) - 45 - exp( ~ 25)
for (x,y,2) € S”(j — 1), whereS*(j) = (=¢j-1,&j-1) X {J} X (=2 = (n = j)/n, ). Combining
(3.2 and LemmaB.3 with y andz interchanged, we obtaia(S”(j); R(j)) < Coexp(-41j-1) on
S(j — 1). Hence, these three estimates altogether yield

Aj_
Mj 1 < exp(A;-1) {Coexp(-;-1) + 2C147'% - exp( - #

i ) + CoM;}.
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Multiplying the both sides by exp@ + X5~ ! ), we obtain
— n-1 Aj-
M < exp(2/ln + Z A Co expA;_1) + 201/11/2 exp( 37 )} + CoM;
i=]

< (Co + 2Cy) + CoM;,
as required, sincel(2) withi = n— j + 1 gives

A
exp 2/ln + Z -expE4j_q) < eXp(12n2 /l,-_l) <1
Aj_ A Aj_
1/2 -1 1/2 j-1 -1
exp(24, + Z/l. cexp( - 3n2) < A% exp(m - W) <1
Finally, rewriting @.5) as
— CO + 2C1 ~ CO + 2C]_
it gyog < GMir )
and using 4.4), we obtain
~ Co + 2C1 1/ Co + 2C1 1 CO + 2C1
M1+m SCS (Mn+m)§C8 (Co+m)ﬁcg
with C, = Cy + (Cp + 2C,)/(Cp — 1). This means
n
M; < Clexp(Ay) - exp( - Z /lj).
j=1
Sincep € S”(1), 4; = n/(2¢;) ande, = N2, it follows that
? N o e N7
(4.6) Q(p) < Chexp( - 7) cexp( - ,Z:;‘ 2—81) = exp(nlogC, - 7) -exp( - ,Z:;‘ Z})

4.3. Lower estimate of the harmonic measure of the sideThe lower estimate of the har-
monic measure of the side is easier. It is based on an explicit positive harmonic function on a
rectangular cuboid.

Lemmad4.l.Let|d| < 4e < 1, R= (-¢,&)%x(0,1+6)x(-5,0) and letX = (-¢, &)x{1+5}x(-5, 0)
be the right side oR. Let

sinh(1y) axXy . (—nZ .
m COS(ZS) S|n(%) with A = 218 \/1+ 4(8/5)2

Thenh s the positive harmonic function Rwith boundary values
Xy . (—nZ

cos(z) : sm(?) onzx,

0 OndR\ X.

h(x,y,2) =

h(x.y.2) =

Moreover,
(xy.2 (- 3_/ _ . _[X. in(Z"%
wY?(Z;R) > h(x,y,2) > C38 exp( ) cos(zg) sm( 5 ) for (x,y,2) € R

whereC; is an absolute positive constant.
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Proof. By an elementary calculation we see the first assertion. Hence the maximum principle
yields the first inequality of the second assertion. Let us show the second inequality. By the
definition of 2 and by the elementary inequality<l V1+t < 1+ %t fort > 0 we have

2
T oae Zaeo2))
so that
A(1+6) < 218{1 18] + 2(%)2(1 e 21.9 +3n,

sinceld| < 4e < 1. By the elementary inequality< sinht < %exp(t) fort > 0, we have

h(x,y, 2) > 21y - exp( - % - 37T) . cos(ﬂ() ) Sin(_—ﬂ)

2¢e 5
ny b X . (—TZ
> = - exp(-3n) exp( - 2—8) : cos(g) : sm(?),
which gives the required estimate withh = 7 exp(3n). |

Now we construct a set smaller thap Let

7 ’ T
4.7) &) =g —81-2 and A=

i

forj=0,...,n,

whereg; are as in4.1). Define

n-1
T, = int([—g;,g;] x[n+eg_,n+1]U U[—s],s]] X[j+&,i+1+ s]]),
j=0
W =T/ x (-5,0) andS}, = (—¢/,, &) X {n+ 1} x (-5, 0). We give a lower estimate af(S;,; W)
inductively from the right. Lek(j) = (—a]_l, 8]_1) x{j+ 26} 4} % (-5,0)forj=2,...,n. See
Figure4.

<Y

Ficure 4. The projection ofV, onto thexy-plane.



16 HIROAKI AIKAWA

Since esn,sn) x(n+eg ;,n+1)x(=50) c W, it follows from Lemma4.1with 1 = 4],
€ =g, 0 = —¢_,, and the maximum principle that
(XY (7 -\ &1 , , N V4
WIS W) = Cs - % - eXpEA7) - COSE) sm(?)
n
&1 nzZ
>Cs- - - exp(-A4;) - Cos(ly, 1X) - sin(—- = )

for (x,y,2) € (n). Since ¢¢_,, &, ) x(n=1+¢ ,,n+2¢ ,)x(=50)c W, it follows from
Lemmad.lwith A =21, ,,e=¢g ;,0 = 28, , — &_, and the maximum principle that

wYA(S W) > C2. 8:;2 expAay) - expEAa, ;) - Cos,_,X) - sm( gz)
n
for (x,y, 2) € £(n— 1). Repeating this procedure, we obtain
wYA(S W) > Ct i—i - COS{}X) - sin(%ﬂz) : exp( - Zn;‘/l])
=
for (x,y,2) € X(2). Finally, since {&/,&]) x (1 - ¢&},2 + 2¢]) x (-5,0) ¢ W, it follows from
Lemmad4.1with & = g7, 6 = 3¢}, and the maximum principle

’ n

W*A(S W) > CO.- ? . COSEX) - sin(%ﬂz) cexp(- > ).

n =1
Letting x = 0 andz = —4, we obtain

& . (4 iy
8—2 -sm(g) -exp( - ,Z:;‘ ),

(4.8) wP(S; W) > CI-

where we recalp = (0,1, -4). In view of (4.1) and @.7) we see that, = &; — &5 > £1/2, SO
that

goe _ 1 |
g, 2& 2-(12nH)1’
and that
ﬂ'.:L:’_T(l 1 )< 2 in
! 2(8j —812) 2 6‘]' 1—8j - 28j

since O< ¢; < 1/2. Hence, from4.8) we have

o 4r, ChexpEnm) :
wP(S); W) > sm( 5”) ZSTZTW‘Z . exp( - ; 2%) > exp(Cnlogn) - exp( - ; le,)

whereC is an absolute positive constant. This, together witb)( yields

(Tn! Wﬂ)

(S/ A — 0 asn— oo.

(4.9)
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4.4. Construction of a y,-Holder domain. Let 0 < o < 1. UsingW, andW, with transla-
tion and dilation, we construct,-Holder domain which fails the global boundary Harnack
principle. We writerE for the dilation of a seE by r > 0. Observe from4.1) that
n?2 n? 5
1 -——-0).
n+1’ n+1)x(0’ )X( n+1’0)

LetE, = {(X,y) € Rx (—0,1) : (X,¥) ¢ (n+1)"1T,} and lett, be the distance betwedi and
(n+1)71T/. Observe from4.7) that

(4.10) (n+1)"Wy c (n+1)"W, ¢ (-

{n—2(12n4)1—n}2 _ 1
n+1 - 1220-Dpgn-6(n + 1)
Since Ya > 1, if nis suficiently large, say > ng, then log(X¢,) < (n+ 1)¥*, so that

1 1\-a _
(n+1)" < (log f_n) = Yolln).
Define a functiorF,(x,y) onR? by
Fa(xy) == inf_ yo(l(xy) — (£ m))).
(€m)eEn

ThenF,(x,y) > (n+ 1) on (n+ 1)~1T/. By definitionF(x,y) > 0 onR? andF,(x,y) = 0 on
E.. Moreover,F,(x,y) is ¥,-Holder continuous. In fact, the concavity wf yieldsy,(s+ 1) <
Ya(S) + Y, (t) for st > 0, and hence

Yoll(X1, Y1) = (€, M) < Yall(X2, Y2) = (€M) + Ya(I(X0, Y1) — (X2, Y2)1).
Taking the infimum for £, n) € E,,, we obtain

Fn(X1, Y1) < Fn(X2, ¥2) + ¥a(l(X1, Y1) — (X2, Y2)I),
and changing the roles oky, y1) and (o, ¥»),

IFn(X1, Y1) = Fn(X2, Vo)l < ¥o(I(X1, Y1) — (X2, Y2)1),

lh=(M+1)ted =

as required.
Let fo(x,y) = max-5(n+ 1)1, =5F(x,y)} for (X,y) € R x (=0, 1). Then

(4.11) [fa(Xe, Y1) = fa(%2, Y2)l < S¥a(I(Xe, Y1) = (%2, ¥2)) - for (%o, Y1), (X2, V2) € R X (=00, 1).
Moreover,
Sn+1)t< fy(xy) <0  iNR X (—o0,1),
faxy) = -5(n+1)" on@n+1)T,
fa(x,y) =0 on E,.
LetD, ={(X.y,2 € R X (—00,1) xR : fy(X,y) <2< 0}. Then
(n+1)*'W, c Dy c (n+ 1)'W,,
(4.12) {(XY,2) €D, :z=0} c (n+ 1)'T,,
{(X.y,2 €D, :y=1}>(n+1)'S].
Hence, 4.9), the maximum principle and scale invariance of harmonicity yield
w”({(x,Y,2) € 0D, : z= 0}; Dy) < wP(Th; W)
wP({(X,y,2) € D, : y=1}; D) ~ wP(S, W)
wherep, = (0, (n+ 1)1, -4(n + 1)71).

(4.13) — 0 asn— oo,
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Now let

o0

f(x,y) = Z fi(x—nty) fory< 1l

n=nNg

We see from4.10 and @.12) that

1 n?2 1 n?
—_— _1 —_—— —_—
supplfa(x =N y)l € [ = - o S e

which implies thafsuppl[f.(x — n™1,y)] fnn, @re mutually disjoint. Hencet(1]) yields

£ (%0, Y1) = £, Vo)l < Sa(I(Xe, Y1) = (%2, ¥2)I) - for (xa, Y1), (Xo, ¥2) € R X (=0, 1).

Finally, letD = {(X,y,2) : IX| < 1, lyl < 1, f(X,y) < z< 1}. This is ay,-Holder domain, which
is the union of a cuboid and countably masharp ravines widening out rapidiysee Figuré.

| x10.11,

z

(0,0,1/4)

Ficure 5. A domain which fails the global boundary Harnack principle.

LetT ={(x,y,2) € 0D : z= 1} be the top oD and letS = {(X,y, 2) € D : y = 1} be the right
side ofD. Then, it is easy to see that

WOOVA(T: D) ~ w@OY4)(S: D) ~ 1,
while, withq, = (n7%, (n+ 1)1, -4(n + 1)),
w™(T; D) < w™({(XxY,2) € D, : z= 0}; Dy),
w™(S;D) > w™({(X.y,2) € 4Dy 1y = 1}; Dn)
by the maximum principle and translation. Hendel@ yields
w™(T; D) < w”({(x,Y,2) € 0D, : z= 0}; Dy)
w(S;D) ~ w({(xy,2) € 9D 1y = 1}; Dy)
This shows thaD fails the global boundary Harnack principle. In fact, \et= (-1,1) x
(—3.3) x (-3,3) andK = [-1,3] x [—%,%] X [—%, %]. Then bothw(T; D) and w(S; D) are
positive harmonic functions i@, vanishing orv N 9D and yet for pointsy, and (Q0, 1/4) in
KnD,

— 0 asn — .

w™(S; D)/w®0Y4)(S; D)
— 0
w®(T; D)/wO0Y4)(T; D)
Thus Theoreni.1lis proved.
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5. APPENDIX

For the reader’s convenience we give a proofafi)for z= x > 0. We begin with a lemma.

Lemmab5.1. If « > 0, then

(5.1) fom exp( —at - X—Z)E = \/g expE Vax) for x > 0.

Proof. By the change of variablet = swe may assume that = 1. Let F(x) be the left hand
side of 6.1) with « = 1. ThenF(0) = I'(1/2) = /. If x> 0, then the dferentiation under the

integral sign gives
* X X2\ dt
F'(x)=- —expl-t-—=)—
00=- | Zew(-t-3)%

Changing the variable = x?/(4t) and simplification yield

F'(x)=- fo X exp( - X—2 - s);( - %)ds: -F(x).

w 2X2/(49) 4s X2/ (49)

Solving this diferential equation, we obtaib.(l) fora = 1 O

Proof of (2.1). Letv > —1/2 andx > 0. First we note

1 00
02 - — — f e'ssY2ds fort >0,
F(V + 1/2) 0

which can be easily derived from the change of variabiets and the definition of the Gamma
function. Plugging this identity in the definition &f,(x) and using Fubini’s theorem, we obtain

lexy 1 (Taap foo _ _ X dt
KV(X)_Z(Z) F(v+1/2)f0 sY2ds i exp( - (1+ 9t 4t)\/f'

By (5.1) with @ = 1 + sand by the change of variabie- (1 + s)/2 we have
_lexy L (T o2 172

K,(X) = 2(2) F(v+1/2)f0 s (1+s) exp( - (1+9"?x)ds

X)V ﬁ

:(é I‘(v+—1/2)f1 (t? — 1)"Y2 exp(-tx) dt.

: . . 2
Again we make use the change of variable (t—1)x. Notingt = 1+s/xandt’-1 = ;(1+%)
we obtain

K,(X) = (g)vi fow {2—;’(1 + i)}v_l/z expx-—s) %S

I'(v+1/2) 2X
Xy Am 2p-12 e (- S \r-1/2
~B gt %, ¢ R) eeeas

which leads t02.1) after a simplification. O
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