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Sapporo 060-0810, Japan
E-mail: miyao@math.sci.hokudai.ac.jp

Abstract

We present a general framework of Griffiths inequalities for quantum systems.
Our approach is based on operator inequalities associated with self-dual cones
and provides a consistent viewpoint of the Griffiths inequality. As examples, we
discuss the quantum Ising model, quantum rotor model, Bose-Hubbard model,
and Hubbard model. We present a model-independent structure that governs the
correlation inequalities.

1 Introduction

Ever since its formulation by Lenz [29], the Ising model has been the most fundamental
model to illustrate the phenomenon of phase transitions. Let A be a finite subset of
7%. The system’s Hamiltonian is given by the function

Hp(o) == > Juyoaoy (1.1)

z,yEA

for each 0 = {0,}zen € {—1,+1}N Jzy is a non-negative coupling constant. The
expectation value of the function f: {—1, +1}* — R is

Ns= Y o) [z, (1.2)

oe{—1,4+1}A

where Zg is the normalization constant Zg = -, o1 4134 e PHA) Tn [23], Griffiths
discovered the following famous inequalities’:

e First Griffiths inequality:
(0a)3 >0 (1.3)
for each A C A, where 04 =[], 4 0z
e Second Griffiths inequality:
(0aoB)s > {0a)p(oB)s (1.4)
for each A, B C A.

!To be precise, this general formulation was established by Kelly and Sherman [32].




Since Griffiths’ discovery, a large number of rigorous studies on the Ising ferromagnets
has been successfully undertaken by applying his inequalities. The fact that Griffiths
inequalities are so useful indicates that they express the essence of correlations in the
Ising system. Therefore, it is natural to ask whether similar inequalities hold true for
other models. Studying this problem means trying to seek a model-independent or
universal property of the notion of correlations. Griffiths inequalities already hold true
for some classical models, e.g., the plane rotor model. This suggests that our problem is
certainly meaningful. Ginibre took the first important step toward providing a general
framework for Griffiths inequalities [20]. However, we know of only a few concrete
examples of quantum (i.e., noncommutative) models that satisfy Griffiths inequalities
[8, 10, 19, 36, 52]. Our goals here are as follows:

(a) To present a general method for constructing Griffiths inequalities for classical
and quantum systems.

(b) According to (a), to highlight a universal property of correlations.

To this end, we advance the technique of operator inequalities associated with self-dual
cones.

We already know that the quantum Ising and rotor models satisfy Griffiths in-
equalities. Thus, these two models can be regarded as role models for our purpose.
A standard approach to proving the Griffiths inequality for these systems is to reduce
the d-dimensional quantum systems to the corresponding d + 1-dimensional classical
systems using the Trotter—-Kato product formula [4, 9, 10, 36]. However, since known
proofs of the quantum Griffiths inequalities rely on the results of classical systems, it is
difficult to extend these proofs to quantum models that cannot be reduced to classical
ones. Considering this situation, we take the following steps:

(i) We prove the Griffiths inequality for the quantum Ising and rotor models using a
method of operator inequalities and understand common mathematical structures
underlying both models.

(ii) We seek similar structures in other models from our viewpoint of operator in-
equalities and construct the Griffiths inequality by analogy.

By carrying out these steps, we construct quantum Griffiths inequalities for the Bose—
Hubbard and Hubbard models. We note that the proposed method can be applied
to many other models, e.g., the Su—Schrieffer—Heeger (SSH) model, Holstein—Hubbard
model, and Frohlich model?. Although we present a few concrete applications of our
results here, we expect these inequalities to play important roles in statistical physics
just as the original Griffiths inequalities did for the Ising system. We also remark
that some of results in this paper can be proved by probabilisitc approaches, e.g.,
random walk representations. However, we believe that the proposed method can be
applicable to a wider class of quantum models and clarify new aspects of the quantum
Griffiths inequality. Finally, we emphasize the following: from the viewpoint of operator
inequalities, we can find a common mathematical structure from among the several
models mentioned above. This universal structure enables us to construct the Griffiths
inequality for each model. From this fact, we expect to obtain a model-independent

2The problem of the quantum Heisenberg model is still open.



or general expression of the notion of correlation from our viewpoint, see Section 8 for
details.

This paper is organized as follows. In Section 2, we introduce a useful operator
inequality induced by self-dual cones. Using this, we develop a general theory of the
Griffiths inequality for quantum systems. In the following sections, we will demonstrate
how our operator inequalities are effective for the study of correlation functions for
quantum models.

In Section 3, we reformulate reflection positivity from the viewpoint of our operator
inequalities. We then describe how we construct the Griffiths inequality using reflection
positivity. This construction and the one in Section 2 are complementary to each other.

In Sections 4 and 5, we discuss the quantum Ising and rotor models, respectively.
These sections provide not only something of a warm-up but also important clues for
finding a common structure underlying the Griffiths inequality. Readers can learn how
to use the operator inequalities through these sections as well.

Sections 6 and 7 are devoted to advanced applications of the abstract theory estab-
lished in Sections 2 and 3. We construct the Griffiths inequality for the Bose-Hubbard
model (Section 6), and Hubbard model (Section7). We emphasize that our construc-
tions are natural modifications and extensions of the methods discussed in Sections 4
and 5.

In Section 8, we present concluding remarks. In Appendix A, we collect useful
propositions concerning our operator inequalities. These propositions will be used
repeatedly in this study.

Acknowledgements: This work was supported by KAKENHI(20554421). T would
be grateful to the anonymous referee for useful comments.

2 General theory

2.1 First inequality

Let (%, (:|-)) be a complex Hilbert space and ‘P be a convex cone in $). The dual cone
Pt of P is defined as

P ={z e 9| (zly) > 0vy e B}. (2.1)
We say that B is self-dual if
P =P (2.2)

Henceforth, we always assume that 3 is self-dual. Each element x in 3 is called positive
w.r.t. B and written as x > 0 w.r.t. ‘L.

Definition 2.1 Let %($)) be the set of all bounded linear operators on §). Let A €
B(H). If Ax > 0 w.r.t. P for all z € B, then we say that A preserves the positivity
w.r.t. P and write3

A0 wrt. PB.

3This symbol was introduced by Miura [42]. Bratteli, Kishimoto and Robinson studied the commu-
tative cases in [7, 35].



Note that
A>0 wrt P = (z|Ay) >0 Vz,y €P. & (2.3)
The following proposition is often useful.
Proposition 2.2 [42] We have the following:
(i) If A>0,B>0 w.r.t. P and a> 0,8 >0, then «A+ B >0 w.r.t. P.
(ii) If A>0 and B> 0 w.r.t. B, then AB>0 w.r.t. B.
Our first setting is as follows.

(A) There exists a complete orthonormal system (CONS) {ep}nen of $ such that
en € B for all n € N.

The system’s Hamiltonian is denoted by H. H is self-adjoint and bounded from
below. To state the first quantum (i.e., noncommutative) Griffiths inequality, we need
the following conditions:

(H. 1) e PH >0 wr.t. P for all 3> 0.

For each A € A(9), the thermal expectation value of A is defined as
(A)g = Tr[A efﬁH]/Zﬁa Zg =Tr[e "], (2.4)

Remark 2.3 In this section, we always assume that e # is in the trace class for all

6>0. O

Theorem 2.4 is a prototype of the Griffiths inequality.

Theorem 2.4 Assume (A) and (H. 1). If A>0 w.rt. B, then (A)g > 0 for all
B =>0.

Proof. By our assumptions and Proposition 2.2, we have Ae ## >0 w.r.t. B for all
B > 0. Thus, applying Proposition A.1, we conclude Theorem 2.4. O

To discuss the case where 8 = 0o, we assume that
(A’) H has a unique ground state, i.e., dimker(H — E) = 1, where E = inf spec(H).
Under this condition, we can define the ground state expectation value as
(A)oo = (W|AY), A€ B(9), (2.5)
where 1) is the unique ground state of H such that [|¢|| = 1.
Theorem 2.5 Assume (A’) and (H. 1). If A>0 w.r.t. B, then (A)s > 0.

Proof. By Proposition A.6, we can choose ¢ as ¢ > 0 w.r.t. . Thus, this theorem
immediately follows from (2.3). O



Remark 2.6 If we assume that e ## improves the positivity w.r.t. % for all 8 > 0,
then the ground state of H is automatically unique, see 8.4 for details.

Theorem 2.7 is a generalization of Theorem 2.4.

Theorem 2.7 Assume (A) and (H. 1). Let A(s) = e *HAe. If A; >0 wort. P
forall j =1,...,n, we then have

< ﬁ Aj(8j>> >0 (2.6)
J=1 B

n

forall 0 < s1 <59 <0+ < s, <[, where H Oj = 0103 - - - Oy, the ordered product.
j=1

ﬁ Aj(sj)

Proof. Let § = e PH By our assumptions, we see that
j=1
S=e s A emems)l g o)l g ot 9P, (2.7)
N N— e N—
>0 >0 >0 >0 >0

Thus, by Proposition A.1, we obtain (2.6). O

Theorem 2.8 Assume (A’) and (H. 1). Then (2.6) holds true at f = oo.

2.2 Second inequality

We consider the extended Hilbert space Hext = H ® 9. Let Poxt be a self-dual cone in
H® H. Instead of (A), we assume the following:

(B) There exists a CONS {E), }nen of Hext such that F,, € Py for all n € N.

To state Theorem 2.9, the following condition is assumed:

(H. 2) Let Hexy = H ® 14+ 1® H. Then there exists a unitary operator % such that
U*e BHex gy > (0 w.rt. Pey for all §> 0.

There are several ways to state the second quantum Griffiths inequality. First, we
give the following formulation.

Theorem 2.9 Assume (B) and (H. 2). Let A,B,C, D € B(9) and A(s) = e s Aes!.
Assume the following:

(i) %*A®CU >0 wrt. Pox.
(i) #*(B®D—D® B)% >0 w.r.t. Pext.



Then we have
<A(s)B(t)>B<C(S)D(t)>5 — <A(s)D(t)>B<C(S)B(t)>B >0 (2.8)

for all0 < s <t < f. In addition, assume (A) and (H. 1). If A>0,B>0,C >0 and
D>0 w.rt P, we obtain

<A(5)B(t)>ﬁ >0, <C(5)D(t)>ﬁ >0, <A(5)D(t)>ﬁ >0, <C(s)B(t)>/8 >0 (29)
forall0 <s<t<p.
Proof. Let
(X )5 = Tr[X e BHex] / z2. (2.10)
Then we can derive (2.8) from the following:
<<A(s) ® C(s) (B(t) ® D(t) — D(t) © B(t)) >>B > 0. (2.11)
But this follows immediately from Proposition A.1 and the fact that
U*A(s) ® C(s) (B(t) ® D(t) — D(t) ® B(t)) o~ BHex g
=U*e e p@ Ce "o (B D — D@ B)e W~y > (2.12)

w.r.t. Pext for all 0 < s <t < .
By (H. 1), it follows that e 37 Ae=(t=9)H Be=(B-OH > 0 wrt. P for all 8 > 0.
Thus, by Proposition A.1, we obtain that (A(s)B(t))g > 0 for all 3 > 0. O

Theorem 2.10 If we replace (A) and (B) by (A’) in Theorem 2.9, then (2.8) and
(2.9) hold true at § = oc.

Proof. Since H has a unique ground state v, Heyx has a unique ground state ¢ ® ¢ as
well. By (H. 2) and Proposition A.6, it follows that ® = Z*¢Y ® ¢ > 0 w.r.t. Pext.
Thus, by (2.3),

<<e—sHextA ® Ce~(t=s)Hext (B®D—-D® B) ot Hext >>

[e o]

_ 2(t78)E * *(t*S)cht _
—e (o (@/ A® Ce (B&D-D®B)% _® >20, (2.13)
>0 >0 >0
where (X))oo = (¥ ® 9| X9 ® ). This completes the proof. O
We introduce the Duhamel two-point function,

1

(4,B)y = 75" / T[Ac B dn A BeB(5). (214
0



Corollary 2.11 Assume (B) and (H. 2). Let A, B € #($). Assume the following:
(i) AR 1% >0 w.r.t. Pext-
(ii)) #*(B1—-1® B)%Z >0 w.r.t. Pext-

Then we have

(A, B)g — (A)p(B)s > 0, (2.15)
(AB)g — (A)p(B)s > 0. (2.16)

In addition, assume (A) and (H. 1). If A>0 and B> 0 w.r.t. B, we obtain
(A,B)g >0, (AB)g>0, (A)g>0, (B)s=>0. (2.17)
Our second formulation of the second quantum Griffiths inequality is as follows.

Theorem 2.12 Assume (B) and (H. 2). Let A, B,C,D € %($) and A(s) = e *H AesHl.
Assume the following:

%*(A@C—C@A)% >0, %*(B@D—D@B)% >0 wrt Pex. (2.18)
Then we have
<A(S)B(t)>ﬂ<C(S)D(t)>ﬂ - <A(3)D(t)>ﬁ<0(s)B(t)>ﬁ >0 (2.19)

for all0 < s <t < (. In addition, assume (A) and (H.1). If A>0,B>0,C>0 and
D>0 w.r.t B, we obtain

<A(S)B(t)>ﬁ >0, <O(3)D(t)>ﬁ >0, <A(3)D(t)>ﬁ >0, <C’(s)B(t)>ﬁ >0 (2.20)
forall0 <s <t <p.

Proof. Note that we can conclude (2.19) from the following:

<< (A(s) ® C(s) — C(s) ® A(s)) (B(t) ® D(t) — D(t) © B(t)) >> >0.  (2.21)

B

To show this, we use Proposition A.1 and the fact that
u* <A(s) ® C(s) — C(s) @ A(s)) (B(t) © D(t) — D(t) ® B(t)) o~ OHext gy
=U*e M (Ag C ~ C@A)e” "9 (Bo D~ D@ B)e ey >0 (2.22)
w.r.t. Pext forall 0 < s <t < (. O

Theorem 2.13 If we replace (A) and (B) by (A’) in Theorem 2.12, then (2.19) and
(2.20) hold true at 3 = oc.



Corollary 2.14 Assume (B) and (H. 2). Let A, B € #($). Assume the following:
%*(A@ 1- 11®A)@/ >0, %*(B@ 1- ]1@3)@/ >0 wrt Pow.  (2.23)
Then we have
(A(s)B(t)) 5 — (A)4(B) 5 = 0 (2.24)
for all0 < s <t <. In particular, we have

(A, B)g — (A)p(B)s > 0, (2.25)

(AB)g — (A)s(B)g = 0. (2.26)
In addition, assume (A) and (H. 1). If A>0,B> 0 w.r.t. ‘B, then we obtain

(A,B)s >0, (AB)3 >0, (A),>0, (B),>0. (2.27)

2.3 Further generalization

Theorem 2.12 can be generalized as follows.

Theorem 2.15 Assume (B) and (H. 2). Let A;,B; € #(%), j = 1,...,n and
A(s) = e s Aesf . Assume the following:

02/*<A] & Bj + €ij & A]>% >0 wrt Pext, j=1,...,n, (2.28)
where €j =1 or —1. Then we have, for all 0 < s1 <59 < - <5, < 3,

. er{Tn)p(Tre)s >0, (2:29)
IC{1,2,...n}

where I¢ = {1,2,...,n}\I, e; = [[;c;&; and

Aj(Sj) jel

Bi(s) jel (230

ﬂ=ﬁ%@,ﬂ@b{
j=1

In addition, assume (A) and (H. 1). If A; >0, B; >0 w.r.t. P forallj=1,...,n,
we obtain
(T1), =0 (2.31)

forall0<s3 <sy<---<s,<fandl C{1,2,...,n}.

Remark 2.16 Let ((-))3 be defined by (2.10). Then we obtain (2.29) from the following:

<< ﬁ [Aj(sj) ® Bj(s;) +£;B;(s;) ® Aj(sj)} >> > 0. (2.32)
B

j=1

Thus (2.32) can be regarded as a generalization of the second quantum Griffiths in-
equality as well. This expression will be useful in the later sections. <



Theorem 2.17 If we replace (A) and (B) by (A’) in Theorem 2.15, then (2.29) and
(2.31) hold true at B = oo.

Example 1 When n = 2, by (2.29), we have

e162(A1A2)(B1B) + €1(A1B2)(B1A2) 4+ €2(B1A2) (A1 Bs) + (B1B2)(A142) > 0.
(2.33)

Here (A1 Ay - -+ A,) is an abbreviation of <A1(81)A2(52) e An(sn)>ﬁ. Thus, ife1 = &9 =
—1, we obtain Theorem 2.12.

Example 2 Consider the case where n = 3 and By = By = B3 = 1. In this case,
(2.29) is meaningful only if 16963 = 1:

<A1A2A3> + &1 <A1><A2A3> + €2<A2><A1A3> + €3<A3><A1A2> > 0. (234)
Moreover, suppose that assumption (2.28) is satisfied for
(51752753) = (17 _17 _1)7 (_17 17 _1)7 (_17 _17 1)7 (235)

then we obtain

(A142A3) — (A1)(A243) > 0, (2.36)
(A1A2A3) — (A2)(A143) > 0, (2.37)
(A1A2A3) — (A3)(A1A2) > 0, (2.38)
which implies that
3(A1AsAs) — (A1) (AsAs) — (Ao} (A1 Az) — (A3)(A1ds) > 0. & (2.39)

Example 3 Consider the case where n = 4, e1e9e3e4 = 1, and By = By = B3 = B, =
1. In this case, (2.29) implies that

(A1A2A3Ay) + e384(A1 A2) (A3 Ay) + e2e4(A1 A3) (A2 Ay) + 2e3(A1 As) (A2 A3)
e4(A1A2A3) (Ay) + e3(A1A2A4) (A3) + e2(A1 A3 A4) (A2) 4+ €1 (A2 A3 AL) (A1)
> 0. (2.40)

Let S = {(61,62,63,54) € {£1}* | e160e384 = 1}. If assumption (2.28) holds true for all
(€1,€92,€3,€4) € S, we obtain

3(A1 Az AsAg) — (A1 A} (A3Ay) — (A1 A5)(AsAg) — (A1 A (AsAs) > 0. & (241)

The following theorem offers us a connection between Corollary 2.14 and Theorem
2.15 (similar arguments can be found in [20]):

Theorem 2.18 Assume (B) and (H. 2). Let A; € B(9), j=1,...,n. Assume that

%*(Aj®n+n®,4j)@/go, %*(Ajm—n@Aj)%go wrt. Pey  (2.42)



forall j=1,...,n. For each I = {i1,...,ix} € {1,...,n}, we set

k
A =] A (2.43)
=1
Then we obtain
(A1Ak)s — (Anp(Ak)s > 0 (2.44)

forall I, K C{1,...,n}.

Proof. For each € € {£1}, define B](.E) = 1(A;®1+c1®A;). By (2.42), we have Bj(-a) >0

w.r.t. Pext forall j=1,...,n. Since 4;® 1 = BJ(.H + Bj(f) and 1® A; = B](-H — Bj(f),
we see that

k k
Arel-10 4 =] [Bgﬁ n Bi(;)} ~TI [Bi(,f) B B@,(;)}
=1 =1
= Z C., .. Esz'(fl) . Bi(:k)’ (2.45)
€1,..,exE{£1}

where C;, ., >0 for all e1,...,e, € {£1}. Thus, the RHS of (2.45)>0 w.r.t. Pext.
Similarly, Ax @ 1— 1® Ag >0 w.r.t. Pext. By applying Corollary 2.14, we obtain the
result. O

3 Reflection positivity

In Section 2, we give a general framework of the Griffiths inequality. In our proofs,
assumptions (A) and (B) are basic inputs. Unfortunately, these assumptions are not
satisfied in several models. To overcome this situation, we employ the concept of re-
flection positivity. As we indicated in [44], reflection positivity can be considered an
operator inequality associated with a special self-dual cone. This viewpoint makes it
possible to visualize a common mathematical structure among various quantum mod-
els. Reflection positivity originates from axiomatic quantum field theory [51]. Glimm,
Jaffe, and Spencer first applied reflection positivity to the rigorous study of the phase
transition [21]. This idea was successfully further developed by Dyson, Frohlich, Israel,
Lieb, Simon, [11, 17, 18] and many others. Lieb also discovered a crucial application
of reflection positivity to many-electron systems, called the spin reflection positivity
[38]. Recently, Jaffe and Pedrocchi studied the topological order by reflection positiv-
ity [30, 31].
For each p € N, we denote the trace ideal by .Z?($)), which is defined as

LP(H) = {¢ € B(H)| Tr[|¢F] < oo} (3.1)

Z1(9) is called the trace class, while £2($)) is called the Hilbert-Schmidt class. .£?($)
becomes a Hilbert space if we define the inner product as (n|€) 42 = Tr[n*¢] for all
n.§ € .L2(9).

10



Definition 3.1 (Bounded operators) Let A € Z(9).
(i) The left multiplication operator £(A) is defined as £(A)¢ = A€ for all € € £2(9).

(ii) The right multiplication operator R(A) is defined as R(A)¢ = €A for all £ €
ZL2(9). ©

Remark 3.2 (i) L(A),R(A) € B(ZL*($)), the set of all bounded operators on
22(9).

(il) £(A)L(B) = L(AB).
(ifi) R(A)R(B) = R(BA). &

Let ¢ be an antilinear involution on $. Let &y be an isometric isomorphism from
Z2(H) onto H ® H defined by

Qy(|z)(y|) =z @Iy Vr,y €N (3.2)
We have the relations
L(A) =0, A® 1Dy, RWA) =3, 1@ Ay (3.3)
for each A € A($). We simply write these facts as
HRH=2%9H), A1=L(A), 1o A=TR(WA™Y), (3.4)

if no confusion arises.
Definition 3.1 can be extended to unbounded operators by (3.3) as follows.

Definition 3.3 (Unbounded operators) Let A be a densely defined closed operator
on %.

(i) The left multiplication operator £(A) is defined as £(A4) = &' A ® 1d,.

(ii) The right multiplication operator R(A) is defined as R(A) = &5 1@ 9A*IDy.
Remark 3.4 (i) Both £(A) and R(A) are closed operators on .£2(§).

(i) If A is self-adjoint, so are L(A) and R(A).

(iii) We will also use the conventional identification (3.4). <
Definition 3.5 A canonical cone in .£2($)) is defined by

L9+ = {€ € L%(H) | € >0 as a linear operator in §}. (3.5)
Z2(9), is self-dual. {
The following proposition is often useful.

Proposition 3.6 For each A € B(9), we have L(A)R(A*) >0 w.r.t. L*(H)+.

Proof. For each ¢ € £2%($) 4, we can see that L(A)R(A*)¢ = AEA* > 0. O

11



Definition 3.7 We define

% = Coni{ L(AR(A") € (L)) | 4 € B(5)} v (3.6)

where Coni(X) is the conical hull of X and S~V represents the closure of S under a
weak topology in ZB(Z%(9)).
If A €2 then we write A = 0 w.r.t. Z2(9H);. &

Remark 3.8 (i) A=0= A>0*
(ii) A=0,B>=0,a,b>0= aA+bB 0.

(i) A= 0,B=0= AB = 0. &

The following proposition is a guiding principle of reflection positivity [11, 17, 44].
The point is that assumptions (A) and (B) are unnecessary.

Proposition 3.9 (Reflection positivity) Assume that A is a trace class operator
on L%(9), i.e., A€ LULAH)). If A= 0 wr.t. L%(9)4, then we have Tr 42[A] > 0.

Proof. It suffices to consider the case where A = Z;VZI L(a;)R(aj), N € N. In this
case, we can easily see that Trg2[A] = Ejvzl |Tre [aj]|2 >0. 0O

As before, the system’s Hamiltonian H is a self-adjoint operator acting in .£?($)
and bounded from below. In this section, we continue to assume that e is a trace
class operator for all 3 > 0. Corresponding to (H. 1), we need the following condition:

(H. 3) e P = 0 wrt. £2(H)4 for all B> 0.

Let (-)3 be the thermal average. Theorem 3.10 is another prototype of the Griffiths
inequality.

Theorem 3.10 Assume (H. 3). If A = 0 w.r.t. £?(9)4, then (A)z >0 for all 3 > 0.

Proof. From Remark 3.8 (iii), we have Ae PH = 0 w.rt. £2%(9), for all 3> 0. Thus
by Proposition 3.9, we conclude the theorem. O

Theorem 3.10 can be generalized as follows.

Theorem 3.11 Assume (H. 3). If Aj = 0 w.r.t. £%(9)4 for allj =1,...,n, then
we have

<ﬁAj<sj>> >0 (3.7)
B

forall0<s1<s0<---< s, <f.

“From this fact, we understand that reflection positivity is closely related to the notion of positivity
preservation discussed in Section 2.

12



Proof. Since

n

HAj(Sj) e PH — o=l g o(oms)H g o= (Bms)H (3.8)
1 —_—— e —— A N——
g=1 =0 >0 =0 =0 =0

w.r.t. Z%($)4, we obtain (3.7) by Proposition 3.9. O

Theorem 3.12 Assume (A’). Then Theorem 3.11 holds true at 3 = oco.

Proof. Considering Remark 3.8 (i), we know that Theorem 3.12 follows from Theorem
2.8. O

4 Quantum Ising model

4.1 Results

Let A be a finite subset of R?. The Hamiltonian of the quantum Ising model is given
by

Hy=— Y iyo®0® =3 oo = 3" Aol (4.1)

z,yeN xEA €A

oW, @ and 6@ are the Pauli matrices:

m_(01 @_ (0 —t @_(10
o —<1 0)’ o _<i 0 ), o _(0 RE (4.2)

H) acts in the Hilbert space A = ®2eAC?. (Jay), yeza is a family of coupling constants,
and pg, Ay € R are the magnetic fields. In this section, we always assume the following:

(J) Jccy > 07 ny = Jya:v Jzz = 0.

The thermal average is defined by

(Ays = Te[Ae™10] [ 75, 7y = Te[em?1). (4.3)
Let
Ty = %(11 + oM. (4.4)
Set
SE) = {;13) ii Z ; . (4.5)
We define

Tn

A= Coni{sgil) ... glen)

T1,. .. xn €A, 51,...,€n€{1,3},n€N}, (4.6)

where Coni(S) is the conical hull of S.

13



Theorem 4.1 (First Griffiths inequality) Assume (J). Assume that p, > 0 for all
r €A Forall Ay,..., A, €A\ €eRand0<s1 <+ < s, <G, we have

< ﬁ Aj(sj)> > 0. (4.7)
j=1 3

For each A C A, set

of) = H o, 4= H T (4.8)
€A €A
To state the second Griffiths inequality, we introduce the following notations:
(X) 5 = Trses | X o] /22, (4.9)
Hoyt = Hy @1+ 1® Hp. (4.10)

Theorem 4.2 (Second Griffiths inequality) Assume (J). Assume that p, > 0, Ay >
0 forallz e A. Forall A,B,C,D C A and 8 > 0, we have

<< (U§><3) ® 1(8) — T0(5) ® aﬁg”(s)) (a§> (t) © 7p(t) = 7o (t) © o)y (t>) >> 520
(4.11)

for all 0 < s <t <[, where US’) (t) = e_tHAaff)etHA and Tp(t) = e tHa 75 etHA,
Remark 4.3 (4.11) can be expressed as follows:

(D@5 0) (re@m®)  ~ (oW s)0) (rels)ol) (1), >0 ¢ (412)

From this theorem (or (4.12)), we can derive the well-known formula.

Corollary 4.4 Under the same assumptions as Theorem 4.2, we have

(o) = (o) (o) 20, (rara)y = radylrm)y = 0. (@13

The following theorem is an extension of Theorem 4.2.

Theorem 4.5 Assume (J). Assume that i, > 0, Ay > 0 forallz € A. Let Ay, ..., Ay, B, ...

A. Then, for all0 <t; <ty <--- <t, <f, we have

n

<< I1 (o)t 7, (4) 75, © 01 >> > 0. (4.14)
g

j=1

By Theorem 2.15, we obtain the following corollary.
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Corollary 4.6 Assume (J). Assume that pi; > 0, A\, > 0 forallz € A. Let Ay, ...,

A. For each I = {iy,... i} C{1,...,n} with iy <iy < --+ < iy, we define

k

T ifjel
Sr(t) = [ 8it), { L
=1 B, tj ifjel
Then we have, for all 0 <t; <ty < n <0,

3 (—1)|I‘<Sf(t)>ﬁ<51c(t)>ﬁ > 0.

IC{1,2,...n}

In addition, we have

Si(t)) >0
(s1(0),
forall0<t; <ty < - <tp, <P and I CA.
Example 4 We have the following:

(i) <J§’)> 3 is monotonically increasing in Jg, and .
(ii) (74)p is monotonically decreasing in Jg,, and p,.
(iii) <J§’)> 3 is monotonically decreasing in A,.

(iv) (7a)p is monotonically increasing in \,.

We will prove this example in Section 4.4.

(4.15)

(4.16)

(4.17)

Remark 4.7 (i) Our results can be extended to a more general Hamiltonian of the

form

— Z JAUS’) — ZKATA

ACA ACA

with J4 > 0 and K4 > 0.

(4.18)

(ii) Assume that g, > 0 or Ay > 0 for all z € A. Then since the ground state of Hy
is unique for all A®, our results are valid at 5 = oco. The results at 8 = oo are

used in the study of quantum phase transitions [9, 10]. {

®This fact can be proven by the Perron-Frobenius-Faris theorem [12].

15
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4.2 Proof of Theorem 4.1
Let Q = {—1, 41} be the set of possible values of a spin. Given A, Q" is the set of spin

|+1>=<é>, |—1>=((1)>. (4.19)

For each w = {w;}zcn € Q) we define

) = Q) |w).

TEA

configurations in A. Set

(4.20)

Then {|w)|w € O} is a CONS of H,.
Definition 4.8 A standard self-dual cone in ), is defined by

U= )" Culw), Cu zOVwEQA}. & (4.21)

weNh

DA+ = {‘I’ € HA

Remark 4.9 |w) € H, 4 for all w € QA O

Let U be a unitary operator® on £, given by

1 1 1
U:®u, u:< > (4.22)
TEA \/i -1
Since u*oc®y = oW and v*cMy = =63, we have
Ue®U = o), UeDU = —6B) (4.23)

xT

for all x € A. Thus,

Hy =U*H\U = — Z meag(cl)oél) - Z pzo ) + Z Ao
z,yeN €A €A

(4.24)

Proposition 4.10 We have the following:
(i) 05«1) >0 w.r.t. Ha4 forallx € A.
(i) 3(1— 03(63)) >0 w.r.t. Ha4 forall x € A.

(iii) e_ﬁﬁ/\ >0 w.r.t. Hr 4 for all B> 0.
Proof. (i), (ii) Let r be a map on € defined by r(—1) = +1 and r(+1) = —1. Clearly,

oD|w) = |r(w)) holds. Then o\"|w) = |ry(w)), Where (ry(w)), = r(wy) if y = =,
(rs(w))y = wy if y # 2. Thus, for all w € QA, it holds that a§1)|w> € HA,+. Thus, we

conclude (i). (ii) is obvious.

6This unitary operator is well-known [34, 43].
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(iii) Let

T = Z nyag)a?gl), V# =— Z peoV, V= Z Ao (4.25)
z,yeN €A z€A

Set V = Vu + V)\. Then we have Hy = -1 + V. By (i), we have T1>0 wr.t. DA 4-

On the other hand, since _Vu >0 w.r.t. f)AHj, we have e_ﬁvM >0 w.r.t. $Hr 4+ for all
6 > 0 by Proposition A.3. In addition, we have

e BV |w) = exp { -p Z /\mwz} |w) € DA+, (4.26)

TEA

>0

which implies e’m/A >0 w.r.t. H4,+. By Proposition A.4, we have e’m/ >0 w.r.t. Ha ¢
for all 8> 0. Now we can apply Proposition A.5 with A= -V, B=1T. O

Proof of Theorem 4.1

For each x € A, by Proposition 4.10 (i) and (ii), we have

¥ =UeBPU =000 2 =UTU-= 1(]1 — o) >0 (4.27)

xT xT

w.r.t. $Ha,4. Thus, U*Sg(fll) . ~Sg(ci")U >0 w.r.t. 94,4, implying that A=U*AU >0
w.r.t. 9 4 for all A € . By applying Theorem 2.7, we conclude Theorem 4.1. O

4.3 Proof of Theorems 4.2 and 4.5
4.3.1 Preliminaries

Let & = C? ® C? = C*. Then {|w,w')|w,w’ € Q} is a CONS of &, where |w,w’) =
lw) @ |w'). We label {|w,w’) |w,w" € O} as

ey =1+ 1,41), |e¥)=]-1,-1), |&)=[+1,-1), [e)=]|-1,+1). (4.28)

Thus, each |p) = Z?Zl cjlej) € & can be identified with (c1,c2,c3,c4)T € C* We
introduce linear operators on R as

= \}5(0@) 91+ 100®), (4.29)
6= \}5((,(3) 91— 1009), (4.30)
y = \2((,(1) 91+ 1000), (4.31)
- %(am 91— 1900). (4.32)

"We used the assumption p, > 0 here.
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In general, each operator X in R can be expressed as a 4 x 4 matrix: X = (Xyj)ij=1,2.34

with X;; = (e;|Xe;). In particular, we have

a® 0 00
I”Zﬂ(() 0)’ ¢:‘/§<0 a(3>>’

1 0
772\/§<Z :(1)>,€=\/§<73>,

b)) et L)

Let u be the unitary operator given by (4.22) and let
(30)
For each operator X on &, we write X = 9*X 9. By (4.33), we obtain
i=ve( 7" 0) e=va( o ).
ﬁz\@( 0 a ) g:ﬂ(g g)

where & = u*au = (I — ¢®)/v2 and 4 = —(1y + c®)) /2.

where

Definition 4.11 Let

Ry = {|<P>€ﬁ

j=1
Clearly, £ is a self-dual cone in R. {

Proposition 4.12 We have the following:

v

0 w.r.t. Ky for oll 5> 0.

Y

(vi) exp(6n) >0 w.r.t. K4 for all § > 0.

18
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Proof. Note that by Proposition A.2, a linear operator X on R satisfies X > 0 w.r.t.
R4 if and only if X;; = (e;|Xe;) > 0 for all 4, j = 1,2,3,4. Thus, (i), (ii), (iii), and (iv)
immediately follow from (4.36).
(v) By (i) and Proposition A.3, we can see that exp(8¢)>0 w.r.t. &, for all § > 0.
To show (vi), we write 77 = 7)q + 7o, where

_ —o® 0 5 0 @&
77d=\/§<0 _0(3)>» ﬁo=ﬂ<d 0)- (4.38)

Suppose that
(a) exp(Bng) >0 w.r.t. Ry for all 5 >0,
(b) exp(B7,) >0 w.r.t. & for all 5> 0.

Then we can immediately conclude (vi) by Proposition A.4. Hence, it suffices to prove
(a) and (b).
To show (a), observe that

- V285 g
exp(Bq) = 0 o—V285) | (4.39)

Since all matrix elements of exp(—v/2803)) are positive, we conclude that (a) is true
by Proposition A.2.

Since 7, > 0 w.r.t. R4, we find that exp(87,) > 0 w.r.t. K4 for all § > 0 by
Proposition A.3. Thus, we conclude (b). O

4.3.2 Completion of proof of Theorems 4.2 and 4.5

Let Heyx be given by (4.10). Heyx acts in the extended Hilbert space £y = H4 @ Ha.
For each x € A, let

1
be= 5 (P el+1x0?), (4.40)
L 3
= =P eo1-12sP), (4.41)
»= 5l
1
E(U 21+ 1e0l), (4.42)
1
Heyt can be expressed as
ext - Z me wxwy + (b;t(by \/52 ,Ux”% - \/iz )‘xn:v (444)
z,yeA zEA zEA
We employ the following identification® of fx:
fn=Q A, (4.45)

TzEA

¥Indeed, we have R = (®.TEA (C2> ® (®m€A (CQ) Q. A (CCH 2R, 4R
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where & = C*. Thus, 9y, ¢, and 7, can be expressed as

¢x = ®yeA(¢)6wa Qbm = ®y€A(¢)5wa Ne = ®y€A(77)5xy' (4'46)

Here (X)0v = 1if o # y, (X)% = X if ¢ = y. Let ¥ be given by (4.35). Set
O = ®zca¥. For each linear operator X on £y, set X = ©*X0O. Then we obtain

}N[ext = - Z Jzy(q;z)xqzy + &x&y) - \/iz N:chzw - \/iz Amﬁx, (4'47)

z,yeN €A €A
where g, ¢, iz, £ are defined through (4.36) and (4.46).
Definition 4.13 We define a self-dual cone in 8y by

Ry = {\xm €fy | [W)= > Culen), Cn>0Vne {1,2,3,4}A}, (4.48)

ne{1,2,3 434

where |en) = @zenlen,) for each n = {ng}.en € {1,2,3,4}. &
Remark 4.14 |ey,) € R ¢ for all n € {1,2,3,4}7. &
Proposition 4.15 We have the following:

(i) ¥z >0 w.r.t. RA+ forallx € A.

(i

) ¢p >0 w.r.t. R+ forall x € A.
(iif) —& >0 w.r.t. R4 for all x € A.
)

(iv) T+ %f]z >0 R+ forallx € A.

(v) exp(Bpz) >0 w.r.t. R 4 for all z € A and 5> 0.
(vi) exp(B7g) >0 w.r.t. R4 for allz € A and > 0.

Proof. By Proposition A.2, a linear operator X in K, satisfies X > 0 w.r.t. 8p 4 if
and only if (en|Xem) > 0 for all m,n € {1,2,3,4}*. Thus, the assertions immediately
follow from Proposition 4.12. O

Corollary 4.16 exp(—ﬂﬁext) >0 w.r.t. R4 for all B> 0.
Proof. Set Het = —T + V, where

T=" Juoy(thatly + dutby), V=V, +Vy (4.49)
z,yEN
with V,, = V23 e fizthy and Vy = —V23",cn Asflz. By Proposition 4.15 (i) and
(ii), it holds that T'>0 w.r.t. £4 ;. On the other hand, we can see that by Proposition
4.15 (v) and (vi),

e = [[ @/20=be 20, M = [ /2Pl 10 (4.50)
N—_—— N——
zeA >0 zEA DO

w.r.t. Ra 4 for all g > 0. Thus, by Proposition A.4, we obtain e BV >0 w.r.t. Ra 4+
for all 8 > 0. By applying Proposition A.5, we conclude the desired assertion. O

9Here we have used the assumptions p; > 0 and Az > 0.
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Corollary 4.17 For all A,B,C,D C A, we have the following:
(i) @*af) ®RTcO>0 wrt K.
(ii) ©* (ag) QTp—Tp ® ag’))@ >0 w.rt 8A+.

Proof. (i) Let £, = %(]l + %ﬁx) and m, = —ﬁ& By Proposition 4.15 (iii) and (iv),
it holds that Zx >0 and m,; >0 w.r.t. 5 4. Thus, we have

00 @ e =272 T (W + b2) [[ (e + 120) 20 (4.51)
€A zeC
w.r.t. 8 4+ by Proposition 4.15.
(ii) We have
@*(ag) RTp —Tp ® Ug’))@
o 8172 TT T (e + 82) By + 0y) — 271202 [T [ B = d)(ly — ) (452)

reByeD rzeByeD

= Z Z Kx, 710, 03 by iy, (4.53)
X1,X9CBY1,YaCD

with KX1X2Y1Y2 2 Oain - erXl 1;337 &XQ — H$€X2 &Ia‘gyl — eryl éma mYQ -
eryz mgz. Thus, @*(ag) QTp—Tp X 0?)@ >0 wrt. 8y 4. O

Proof of Theorems 4.2 and 4.5

By Corollaries 4.16, 4.17 and Theorem A.1, we have
(W@ o - 0 o) (75 O © ) - 0o M) )

= Zﬁ—2Tr

- gex * (3) (3) —(t— I:Iex
e’ t@(O'A RTCc—Tc®0, )@e( 8) Hext
>0 > >0

x ©F (Ug) ®Tp —Tp ® ag))@e(ﬁt)ge’“] > 0. (4.54)

~~ >0
>0

This concludes Theorem 4.2.
Similarly, we can show Theorem 4.5 by Corollary 4.17 and Theorem A.1. O
4.4 Proof of Example 4

We only prove (i) and (ii), since (iii) and (iv) can be proved in a similar manner.
Recall the Duhamel formula

3 | (~B(t) -+ (= Bltn)) ety (4.55)
0

n>0 <t1<to<--<tn, <3
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for any bounded self-adjoint operators A and B with B(t) = e *4Bet4. Using this, we
have

0
—-BH _
5 > Dy, (4.56)

n>1

Dy = 1) / Toltr] - Togltal e #H dty - dtn,  (4.57)
0<t; <<t <B

where Ty, = 05(53)053), H' = Hy+ nyag(f)ag(lg) and Tyy[t] = e*tH/TxyetH/. Note that in

a similar manner to Sections 4.2 and 4.3, we have the following;:
(a) e‘ﬁf{/ >0 w.r.t. a4 for all 5> 0, where H =U*H'U.

(b) e Bex > 0 w.r.t. R for all >0, where H, = H @1+ 1® H'.

Hence, by setting M, = Ty [t1] - - - Tyy[tn], we obtain

9 (6P

Dy A
=" () / MY o= () (M) o Yt -t

1@22:1 (Jay) 0<ti<osh {<GA >H B <UA >H ,5< >H ,3} 1
:ZW/ <<(a(3) l-12e) M, @1-1 Mn)>> dt, ---dt,,

S 2 0sti<ezp N A ",

>0, (4.58)
where (-) ;7 5 and ((-)) ;7 5 are the thermal averages associated with H "and H, . (Here

we used the facts that @*(Uf) ®1— ﬂ®0f))620 and ©* (M, @ 1-1&M,) e_BH;XtG)EO
w.r.t. Rp 4+, which follow from Corollary 4.17.) Thus, we have proved (i). Similarly,

by applying the fact that ©*(74 @ 1 — 1® 74)© 90 w.r.t. a4, which follows from
Corollary 4.17, we have

0
9T (TA)s

_ n(Jgy)" !
_nzz:l + /Oﬁtlg...gﬁ <<(TA ®1 - ]1®TA) (Mn RI1I-1® Mn)>>H’,5dt1 . dt,

<0. (4.59)

Thus, we have proved (ii). O

5 Quantum rotor model

5.1 Results

Let A be a finite subset of R%2. The quantum rotor model on A is defined by

x .0
H= ;\g(—za%)z - Z tay cOS(0y — 6y). (5.1)

z,yeEA
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The Hilbert space is $ = ®zeaL?(T) with T = [~7,7]. U, > 0 being the strength
of the on site repulsion and ¢, > 0 being the hopping strength. H is a self-adjoint
operator acting in the Hilbert space $.10 We refer readers who want to learn the
physical background to [6, 54].

Remark 5.1 In this study, we simply write My, the multiplication operator by the
function f, as f(0) if no confusion occurs.

Let T, = % For each A = {my}zen € Z", we set

T4 = T[(Tw)™. (5.2)

TzEA

Let
A= Coni{T4|Acz*} V. (5.3)
The thermal expectation value (-)3 is defined by
(A)g = Te[Ae™) [ 75, 75 = Te[e="] (5.4)
for all A € A(9).

Theorem 5.2 (First Griffiths inequality) Let Ay,..., A, € A. For all 0 < 51 <
9 < - < sy < (B, we have

j=1 3

To state second Griffiths inequality, some conditions are required. We introduce an
extended Hilbert space Hext by Hext = H @ H. For each X € B(Hext), We set

(X = Trg,, [X 0] /22, (5.6)
Hoo = Ho 1+ 1@ H. (5.7)

Let C, = cosf, and
Cp(s) = e e (5.8)

Theorem 5.3 (Second Griffiths inequality) For all x1,...,2, € A, 0 <51 <59 <
o <s, < B ande,...,en € {1}, we have

n

<< ﬁ [cxj(sj) R1+e1® czj(sj)} >> > 0. (5.9)
B

j=1

12}

10The precise definition of —igg is given by

dom(~i2) = {f € (D) | f(-m) = F(m)},
—i%f - —if Vfe dom( —i%).

Then fi% is essentially self-adjoint. We still denote its closure by the same symbol.
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From Theorem 5.3, we immediately obtain Corollary 5.4, which has a form similar
to (1.4). (This is why we call Theorem 5.3 the second Griffiths inequality, see Remark

2.16 and Theorem 2.18 for general arguments.)

Corollary 5.4 For each A = {mg}zen € N*, set

ct =T ().

€A
For all A, B € N*, we obtain
(CACP) 5 2 (CH)5(CP)
Let
.0

Ny = —Zaiex.

Set n.(s) = e~ n e, We have the following.

Theorem 5.5 For all z1,...,2, € A,0 <51 <59 < --- <5, < B and eq,...

{£1}, we have

n

<< ﬁ [nx]-(Sj) ®1+¢1® nx]-(sj)} [nxj(Sj) ®1+&1® nxj(sj)} >> > 0,
B

j=1

where €; = —¢;.

(5.10)

(5.11)

(5.12)

We can construct several extensions of Theorems 5.3 and 5.5. Theorem 5.6 illus-

trates this fact. Let

)

L
=
—
—
w
~—
I

a®(s) = Cps) @ 1 — 1@ Cy(s
B(s) = [m(s) R1+1® nx(s)] [nx(s) R1-1® nx(s)],

)
)

)

(5.14)
(5.15)

(5.16)

Theorem 5.6 For all x1,...,xp € A, p1,... pn € {1,2,3} and 0 < 51 < 59 < -+ <

sn < 3, we have

<< 11 ai‘ﬁj)<s]-)>> > 0.
Jj=1 B

Example 5 For all A C A and z,y,z € A, we have the following:
(i) (C4)s is monotonically increasing in t,,,.

(ii) (n?)g is monotonically increasing in ¢,

o O A
<0.
(i) 55 (s, _, =0
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We will provide a proof of this example in Section 5.4.

Remark 5.7 (i) Our results can be extended to a more general Hamiltonian of the
form

Uz .0 \2 A
H=3 (i) - 1
> 5 i3 e Y JacC (5.18)
€A AeNA
with J4 > 0, where the sum converges under a uniform topology.

(ii) Since the ground state of H is unique, our results are valid at § = co. The results
at 3 = oo are essential for the study of quantum phase transitions [36].

5.2 Proof of Theorem 5.2
Let F be the Fourier transformation ! on $ and let H = FHF'. We have

3 Us 1 ™ vk *
H=3% 73:”3: T3 Y () (TLTy + T7T). (5.20)
z€A z,yeA

H acts in the Hilbert space H§=FH = ®eeal?(Z). hy and T, are defined by 7, =
FngF~'and T, = FT,F 1.

For each n € Z, set ey,(m) = 6mn € £2(Z). {en|n € Z} is a CONS in ¢*(Z). For
each n = {ng},en € ZA, let en = ®gepnen,. Clearly, {en|n € ZA} is a CONS of § as
well. Remarkably, for each n = {n;},en € Z%,

Ngén = Nzén, Iyén = eénis,, (5.21)

where 0, = {0y }yen € ZA. In other words, N, is the number operator and Tx is the
creation operator at site x.

Definition 5.8 Let
9y = {F = > Fm)ea€$|F(n)>0 ¥ne ZA}. (5.22)
nezA
Note that 5%+ is a self-dual cone in fj Clearly, e, € §')+ for allm e ZA. &
Proposition 5.9 We have the following:
(i) Tp >0 w.rt. H4 forallz e A.

(ii) e BH >0 w.rt. $4 for all 8> 0.

1To be precise, F is a unitary operator given by

(FF)(n) = (2m)~ 14172 X f(0)e™®™de Vf e 5. (5.19)
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Proof. (i) Note that $, = Coni{en|n € Z7}~, where Coni(S5)~ is the closure of
Coni(S). Thus, it suffices to show that Tpen > 0 w.r.t. 94 for all n € ZA. This is

trivial according to (5.21).
(ii) Let

[\7\}—‘

Z Z % (5.23)
yeEA eA

By (i), we can see that —K >0 w.rt. H,. On the other hand, since

e #Ue, = exp { - p Z U;ni} en for allm = {n,} € Z*, (5.24)

zEA

>0
we have e 79U > 0 wr.t. $.. Thus, by Proposition A.5, we conclude (ii). O

5.2.1 Completion of proof of Theorem 5.2

By Proposition 5.9 (i), we have A >0 w.r.t. .6.!,_ for all /. Applying Theorem 2.7, we
prove Theorem 5.2. O

5.3 Proof of Theorems 5.3, 5.5, and 5.6 and Corollary 5.4
First, note the following identification:

Dext = L2 (TA x T, d046"). (5.25)
Under the identification (5.25), we see that

Hoy =H1+1® H
S ) )|

- Z txy{ cos(0; — 0y) + cos(6, — 0;)} (5.26)

z,yEA

Next, we introduce a new coordinate system {¢,, ¢, } with

1 ! ! 1 /
M 5(9z —0z), ¢,= 5(035 +6,). (5.27)
Then we easily see that
ext = L2 (T x T, dpdgp'). (5.28)
Using the identity
: 0+60 0 -0
cos + cosf = 2cos ; cos —5—, (5.29)
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we obtain

UI ’ / ’
Hopi = Z I(Vﬁ +v2) -2 Z tay cos(Pz — ¢y) cos(d, — &), (5.30)
zEA z,yEN
where
Vp = —z’azx, v, = —i(;;;. (5.31)
Let X = L?(T?, d¢). Then by (5.28), we obtain the following identification:
Next = L2(TA, dep) @ L*(T,d¢gp) = X @ X. (5.32)
Moreover, we obtain the following proposition.
Proposition 5.10 We have Hexy = T — V, where
T:Z%(y2®]l+]l®u2) (5.33)
4 x x)?
z€A
V=2 Z tay COS(¢z — Py) ® cOS(¢y — Py). (5.34)
T, yeEN

Let 9 be the antilinear isomorphism defined by

(0)(@) = f($) ae., feL* (T dg). (5.35)

By (3.4) and (5.32), we have the identification $ex, = -£2(X) by 9. Moreover, by (3.4),
we have the following proposition:

Proposition 5.11 We have Hext = T — V, where

T= 3 e me2)), (5.36)
e
V=2 Z tzyﬁ[cos(@g - %)]R[cos(qﬁr —oy)|- (5.37)
T,yEA

By Corollary A.9, we immediately obtain the following:

Corollary 5.12 We have exp(—BHext) = 0 w.r.t. L?(X), for all 3 > 0.

5.3.1 Completion of proof of Theorem 5.3 and Corollary 5.4
Proposition 5.13 We have the following:

(i) cosf, ® 1+ 1 ® cos B, = 2L(cos ¢z )R(cos ¢z) = 0 w.r.t. L?(X)4.
(i) cosf, ® 1 — 1 ® cosb, = 2L(sin ¢, )R(sin ¢,) = 0 w.r.t. L*(X),.
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Proof. (i), (ii) We apply Ginibre’s idea [20]:

(:08(14—(:081):2(:osb+acosb;a7 (5.38)
cosa — cosbh = 2sin - sin b ; ¢ o (5.39)

Put
W =C,01+e1®C,, ==+l (5.40)

Then by Proposition 5.13, we have V%) = 0 w.r.t. LX)y forallz € A and € € {£1}.
Since exp(—fHexs) = 0 w.r.t. Z2(X), for all B > 0 by Corollary 5.12, we can apply
Theorem 3.11. Thus, we conclude Theorem 5.3.

For each A C A, define [A] = {m,}zen € {0,1}* by m; = 1if v € A and m, = 0
otherwise. For simplicity, we will consider the case where A = [A] and B = [B]. To
prove Corollary 5.4, we note

Cool=vVF 4+ v 10, =vF) —vY, (5.41)
Observe that
2(CACP) 5 —20")5(C7)5
:<<<CA ©1— 11®C’A) (CB @1 ]1®CB>>>ﬁ

_ch;wzc:s [1 - (—1)|X|} [1 — (—1)\3}\] <<VJ§T§«)V;(«_1)VKE\+§)V§‘”>>ﬁ S0, (5.42)

20 >0 by T;lgorem 5.3
where Vf(‘il) =3 | V}E(il). Hence, we conclude Corollary 5.4. O

5.3.2 Completion of proof of Theorem 5.5
Proposition 5.14 For allx € A, >0 and € € {£1}, we have

e @T+1@nz)(ne @M —1®ng) =0 wrt. L*(X),. (5.43)
Proof. Note that since Vv = —v,, we have
Ny, @1+ 1@n, = 1@ v, = —R(v), (5.44)
and
Ny L —-1Rn; =1, @ 1= —L(vy). (5.45)

Thus, we have (n, @ 1+ 1®n;)(n, @ 1-1®n,) = L(vz)R(ve) = 0 wr.t. L2(X),. O
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By Proposition 5.14, we see that

n
—

H [nxj () @M1+ 1® nzj(sj)] [nxj (s5;5)®1-1® nxj(sj)} o BHext

J=1
— o sHext [nml l+1® nzl} [nml 1-—1® nzl} e~ (s2=s1)Hext o,
N—— ~———
=0 >0 =0

- X |:nxn @I1+1® nzn:| [n% RI-1® nzn} e Omsllex o 0wyt £2(X),.
=0
=0 h

(5.46)

Therefore, Theorem 5.5 follows from Proposition 3.9. O

5.3.3 Completion of proof of Theorem 5.6

n

By Propositions 5.13 and 5.14, we know [Haé‘jj)(sj)] e PHet (0 wort, LX),
j=1
Thus, Theorem 5.6 immediately follows from Proposition 3.9. O

5.4 Proof of Example 5

The proof of Example 5 is similar to that of Example 4, so we only provide a sketch.
By the Duhamel formula (4.55), we obtain

)
Oty

oy )" A .\ i
_Zé/oﬁtlﬁ“étngﬂ«(c @1-10C%) (K, ®1 ]1®Kn)>> o dty - dty,

n>1 ext’

(Chs

(5.47)

where K,, = ot H cos(b, — 6y) H L gtnH cos(b, — 6y) ol with H = H +
tyycos(0y — 0,) and Hyy = H @ 14+ 1@ H'. Since e #lext =0, CA@1 -1 C4 =0
and K, @ 1 - 1® K, = 0 w.r.t. £%(X),, we know that the RHS of (5.47) is positive.
Thus, we obtain (i). Similarly, we have

n(tw )nfl
- Z + /0<t1<-~<tn<ﬁ << (ng ®1-1® ni) (Kn @l-1® Kn) >> , dty---dt,

ext?

>0 by Pro;):)sition 5.14
>0. (5.48)

Hence, we arrive at (ii).
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(iii) Let H' =H- Tnz By Proposition 5.14, Corollary 5.12, and the Duhamel
formula (4.55), we obtain

where H = — H' @1+ 1® H". This completes the proof. O

6 Bose—Hubbard model

6.1 Results
Let A be a finite subset of R%. The Bose-Hubbard model on A is defined by

H= Z try)a ay—i—ZU ng(n x—]])—Z)\x(a;—i—az)—,uNb. (6.1)

T, yEN TEA TEA

H acts in the bosonic Fock space B = &%, @7 £2(A), where ®@2¢2(A) is the n-fold
symmetric tensor product of £2(A) with ®2/?(A) = C. a, is the bosonic annihilation
operator satisfying the canonical commutation relations (CCRs):

[ax,a;';] =0y, [az,ay] =0. (6.2)

ng = aya, is the number operator at site # € A and Ny, = )\ n, is the total number
operator.
We assume the following:

(A. 1) tyyy >0, Uy >0, A\ >0forall z,yeA.
(A. 2) tyy =ty forall z,y € A and t,, =0 for all z € A.
(A.3) peR.

Under these conditions, we see that e P is in the trace class for all § > 0. The thermal
expectation value is defined as

(X)s = To[X ™) /25, Z5 = Te[e™]. (6.3)

For each densely defined linear operator X, X# (# = + or — ) means

X# = {X if = (6.4)
X*if 4 =+
Set Ng = {0} UN. For each m = {m},en € N} and # = {#,}zen € {£}*, define
I(m;#) = ][ (af*)™ (6.:5)
TEA
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with (af”)o = 1. Now we define
A = Coni{[(m; #) ) meNA #¢ {i}A}. (6.6)
Note that for all A € 2, Ae P is in the trace class for all 8 > 0. Thus, (A)g is finite.

Theorem 6.1 (First Griffiths inequality) Let Ay,..., A, € A. For all 0 < 1 <
9 < v < sy < (B, we have

j=1 3

where A(s) = e AesH

To state the second quantum Griffiths inequality, we introduce the following nota-
tion:

(V)= Trmon |V e o] [ 28, How = H@ 1+ 18 H. (6.9)

Theorem 6.2 Let x1,...,Tn,Y1,---,Yn € A. For each 0 < 51 <t1 <9<t <--- <
Sp <tn < B, #1,...,#n €{L} and e1,...,e, € {£1}, we have

n

<<ﬁ[aiﬂ‘(w)@ﬂﬁﬂ@aiﬂ‘(@)} [aiﬂ‘(m)®ﬂ+sjﬂ®a2§j<tj>]>> >0, (69)

=1 s

where # = —# 12 and al (s) = e~sHoH esH

Example 6 Consider the case where n =1, ey = —1, and #; = +. Then we have
(az(s)ay(t))p — (az)play)s = 0 (6.10)

for all xz,y € A and 0 < s <t < . From this, we have
(a7, ay) — {az)slay)s > 0. (6.11)
In addition, by Theorem 6.1, it follows that
(az,ay)p 20, {az)p =20, (ay)p=>0. & (6.12)

We can generalize Theorem 6.2. To state our result, we need to introduce the
following;:

ap1g =0, QN+ 1® ay, (6.13)
a1, =—i(a, @1 -1 ay), (6.14)

where 7 = v/ —1.

276 be precise, + = — and — = +.
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Theorem 6.3 (Second Griffiths inequality) Letxq,...,x, € A. Forall#i,...,#n €
{£}, e1,...,en€{£l} and 0 < 51 < 59 < -+ < 55, < 3, we have

<< ﬁ afj{m].(sj)>> > 0, (6.15)
i1 8

where oz?fx(s) = e_SHe"ta#xeSHext.

Remark 6.4 If A\, > 0 for all x € A, then we can prove that the ground state of H is
unique'3. In this case, our results are valid at § = co. <

Example 7 Consider the case where n = 3, #1 = +,#92 = #3 = —, and e169e3 = 1.
We have

(a1aza3) — (a7){aza3) — (az)(aias) + (as)(ajaz) =0 (6.16)
for (e1,e9,e3) = (—1,—1,+1), and

(a1azas) — (a1)(azas) + (az)(ajas) — (a3){ajaz) = 0 (6.17)

for (e1,e2,e3) = (—1,+1,—1), where we use the abbreviation af& = afj(sj). On the
other hand, we have

(a1azas) + (a1)(azas) — (az)(ajas) — (a3){ajaz) <0 (6.18)
for (e1,e2,e3) = (+1,—1,—1). Combining (6.16) and (6.17), we get
(ajazaz) — (aj)(azaz) > 0. & (6.19)

If U, = 0, then we obtain a stronger result as follows.

Theorem 6.5 Assume that U, = 0 for all x € A. Assume that the matriz (—tg, —
102y )z y 18 positive-definite.** Letxy,...,x, € A. Forall#1,...,#n € {£}, €1,...,6n €
{£1} and 0 <51 < --- < s, < (3, we have

<< ﬁ [afjj(sj) @1+e1® aij(sj)] >> > 0. (6.20)

j=1 8
Corollary 6.6 Under the same assumptions as Theorem 6.5, we have

(A142)p — (A1)p(A2)3 > 0 (6.21)
for all Ay, Ay € 2.

Example 8 Let A € 2. Under the same assumptions as in Theorem 6.5, we have the
following;:

(i) (A)p is monotonically increasing in .
(ii) (A)p is monotonically increasing in A,.

The proofs of these properties are similar to those of Examples 4 and 5. <

13This fact follows from an application of the Perron-Frobenius-Faris theorem[12].
This assumption is needed in order to guarantee that e P ig a trace class operator.
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6.2 Proof of Theorem 6.1

In this section, we will often discuss unbounded operators. Thus, we have to extend
definitions of our operator inequalities as follows:

Definition 6.7 Let A be a densely defined linear operator in §). If Az > 0 w.r.t. B
for all x € P Ndom(A), then we also write A >0 w.r.t. B. Note that

(x|Ay) >0 forall z € P and y € PNdom(A). & (6.22)

For each N = {N,},en € N)}, we set

-1/2
IN) = (H Nx!> [ @), (6.23)

TEA zeEA

where (2 is the Fock vacuum. Then {|N)|N € N} } is a CONS of B.
Definition 6.8 A standard self-dual cone in 98 is defined by
%+={¢e%‘¢= > enINY, wNzOVNeNQ}. (6.24)
NeNA
B was introduced by Frohlich [16], see also [46].
Remark 6.9 |N) € B, for all N € Nj. ¢

The following lemma is useful in this section.

Lemma 6.10 Let A be a densely defined linear operator on B. Let Py be the orthogonal
projection onto ®f_, @2 L2(A). Assume the following:

(i) |N) € dom(A) for all N € N

(ii) APpp — Ap as £ — oo for all ¢ € dom(A).
Then the following are equivalent.

(a) A>0 w.r.t. By.

(b) (M|A|N) > 0 for all M,N € N}15.

Proof. (a) =(b): This is immediate.
(b) = (a): Let Ay = P;APy. Then, for all ¢ € B, and ¢ € dom(A) N*B, we see
that

(PlAch)y = Y om ¥n (MIAN) >0, (6.25)
IM|<EIN[<L >0 >0 >0

where |N| = > -\ N,. Taking £ — oo, we obtain (p|A) > 0, which implies Ay > 0
w.r.t. %_0_. O

Py]X|¢) = (X ¢).
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Proposition 6.11 We have a, >0, ai >0 w.r.t. By for all x € A.

Proof. 1t is not difficult to verify that a, and a}, satisfy the assumptions of Lemma 6.10.
Moreover, we see that (M]a,|N) > 0 and (M|aZ|N) > 0 for all M, N € NJ. Thus, we
obtain the desired assertion by Lemma 6.10. O

Corollary 6.12 For all A € A, it holds that A> 0 w.r.t. B,.
Proposition 6.13 We have e PH >0 w.r.t. B for all 3> 0.

Proof. Let P, be the orthogonal projection defined in Lemma 6.10. Let Hy = P, HP,.
Since Hy converges to H in the strong resolvent sense as £ — oo, it suffices to show
that

e PHi>0 wort. B, forall 3>0and ¢ €N. (6.26)

To this end, we set

T = Z tayQpay + Z Ag(ag +al) + puNy, U= Z Uzng(ng — 1). (6.27)
T, yEN zEA zEA

Let T, = P, TP, Uy = P.UP; . Then T; and U, are bounded for each ¢ € N. We
observe that (M|T;|N) > 0. Thus, by Proposition A.2, Ty > 0 w.r.t. B, holds for all
£ € N. On the other hand,

exp{ — B en Na(N, — 1)}5MN if [M] < ¢ and [N| < ¢
OMN if ’M| > { or |N’ >/
(6.28)

(Mo |N) = {

This means (M|e~?Y¢|N) > 0. Thus, applying Proposition A.2, we conclude e=#V¢ >0
w.r.t. B for all 5> 0 and ¢ € N. Hence, by Proposition A.5, we conclude e #H¢ >0
w.r.t. By forall 3>0and £ € N. O

Corollary 6.14 Let x1,...,x, € A. For all #1,...,#n € {£} and 0 < 51 < 59 <
s < sp < B, we have

e—slHai,élle—(s2—81)Hai7522€—(53—52)H - e_(Sn_snfl)Haﬁnne_(ﬁ_S”)H >0 (629)

w.r.t. B.

6.2.1 Completion of proof of Theorem 6.1
By Corollary 6.12 and Proposition 6.13, we have

[T A4is)|e "™
j=1
—e ol Ay (o)l oy om0 g B (6.30)
S N ~
>0 >0 >0 >0 >0

Thus, by Proposition A.1, we conclude Theorem 6.1. O
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6.3 Proof of Theorems 6.2 and 6.3
Let Bext = B ® B. We introduce a new representation of the CCRs as follows. Let

1 1
ﬁ(ax®]l+]l®ax), nw:—\ﬁ(a;ﬂ®]l—]l®am). (6.31)

&, and 1, act in By and are closable. We denote their closures by the same symbols.
Then {&;,n,} satisfies the following CCRs:

§x =

€& =0, ) =0, [&rim) =0, (6:32)
[5:1:7 5;] = 6xy7 [Um 77;;] 5:cy7 [§x7 77y] =0. (633)
Using &, and 7, we can rewrite H as
Hy =-T+1TU, (6.34)
where
T= Z tay (§2€y + 1my) + \52 Az(€z + &) (6.35)
x,yEA IEEA
and
U =0, + U,, (6.36)
ULE * * * * * *
TEN
- ( Uz + u) (&x&s + m3n2),
reA
Uy =3 O (e€inams + &ctanint)- (6.37)
9 xSx'lT’T xSz 'lx
TEA
Let Qext = Q@ Q € Beyt. For each M, N € N2, we define
—1/2
M, N) = (H Mx!Nx!> [T @M ()™ Qe (6.38)
zeA €A

Clearly, {|{M,N)) [M,N € N)} is a CONS of Bexs.

Definition 6.15 We define a self-dual cone in Beyy by

%ext,Jr = {\IJ € %ext

> UMNM,N), ¥mn >0VM,N e NQ}. o
M,NeN}
(6.39)

We can prove the following in a manner similar to that used for Proposition 6.11.

Proposition 6.16 We have fﬁ >0, 7735éﬁ >0 w.r.t. Bex,+ for allz € A and # € {£}.
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Proposition 6.17 Let

U = exp { — zg Z 77;%}- (6.40)

€A

Then we have % *e PHext Gy > () w.r.t. Bext,+ for all 8> 0.
Proof. Let He = W Hou% . Tt is important to note that
w*U,% = —U,. (6.41)

Thus, we have

A~

He = —K + Uy, (6.42)

where K = T + U,. Let P, be the orthogonal projection onto the closed subspace
spanned by {|[M,N))|M,N € N}, M|+ |N| < ¢}. Let Hex, = PeHextPe. Since
ﬁextvg converges to H,y in the strong resolvent sense as £ — o0, it suffices to show that

exp ( — B]flext ) >0 w.at. Beygr o forall 5>0and £ € N. 6.43
( , +

The proof of this is almost parallel to that of Proposition 6.13. For reader’s convenience,
we provide a sketch of it. Let K, = P/KPy and Uy, = P,UgP,. First, we show that
Ky > 0 w.r.t. Bexe,+ for all £ € N. Next we show that exp ( — ,BUd’g) >0 w.r.t. Bex +
for all 5> 0 and ¢ € N. Then by Proposition A.5, we conclude (6.43). O

Proposition 6.18 Set dffx = %*aﬁx%. Then we have dffa; >0 w.r.t. Bexs,+ for all
x €N ee{£l} and # € {—,+}.

Proof. By Proposition 6.16, we have

dfl.x =V2 >0 wrt. Bex s, (6.44)
ot =vVuFr0 wrt Begy. O (6.45)

6.3.1 Completion of proofs of Theorems 6.2 and 6.3

We only prove Theorem 6.3, since Theorem 6.2 is a corollary of it. Let Hey =
U*Ho 1% . Then we have

n

w* H afjfgcj(sj)%eﬂHext

Jj=1
=g e gt om(2mslew gtta gt o BmsHea 0wt Bey o (6.46)
>0 Ny >0 g g >0

>0 >0 >0

by Propositions 6.17 and 6.18. Thus, by Proposition A.1, we obtain Theorem 6.3. O
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6.4 Proof of Theorem 6.5 and Corollary 6.6

If Uy = 0, then we have H = —T, where T is given by (6.27). Thus, instead of
Proposition 6.17, we have the following:

Proposition 6.19 We have e BHext > () ..t Bext, 4+ for all 5> 0.

Note that the unitary operator % is unnecessary to prove Proposition 6.19. Hence,
instead of (6.46), we obtain

H{az] (s5) ®]l+5]]l®ax (s )} e~ PHext

— o S1Hex [aﬁl @1+61® aﬁl]e_(82—81)Hext .. afﬂn @1+6,1® aﬁﬂn] e—(ﬂ—Sn)Hext
IZO w.r.t. %ext,+- (647)

This completes the proof of Theorem 6.5. By applying Theorem 2.18, we prove Corol-
lary 6.6. O

7 Hubbard model

7.1 Results

7.1.1 The finite temperature case

Let G = (A, E) be a graph with vertex set A and edge collection E. An edge with
end-points x and y will be denoted by {z,y}. We assume that {z,z} ¢ E for all z € A,
i.e., any loops are excluded. In this section, we assume the following:

(G. 1) |A] is even.

(G. 2) G is bipartite, i.e., A admits a partition into two classes such that every edge has
its ends in different classes.

The Hubbard model on G is given by

H= 3" > (~tw)otyr +U D (N1 = )(nay — 3). (7.1)

{zy}eEoe{T,1} zeA

H acts in the Hilbert space ) = § ® §. § is the fermionic Fock space defined by
T = @0 A" 2(A), where A"2(A) is the n-fold antisymmetric tensor product of £2(A)
with A°2(A) = C. ¢, is the electron annihilation operator that satisfies the canonical
anticommutation relations (CARs):

{cxau Cl, o’ } - 6&::1:’500 s {C:taycx o’ } =0. (72)

Ngo = CpyCzo is the number operator at vertex x € A. t;, € R is the quantum
mechanical amplitude of an electron hopping from y to . We assume that

(T) tyy =tye # 0 for all {z,y} € E.
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U is the strength of the Coulomb repulsion'® such that
(U) U >0.

Since G is bipartite, A can be divided into two disjoint sets A, and A,. We set
wx) =0if x € A, pu(x) =1 if x € A,. For each x € A, define

be = (—1)"chea (7.3)
where v = (=N with N, = > A Nao- Let

x1 Yx2

% = Coni {1z b

TiyeeyTpn €N, F#1,0 H#n €{+, -}, nEN}. (7.4)

We use the thermal average associated with the grand canonical Gibbs state at
inverse temperature [3:

(X} = Te[X ] /25, 25 = Te[e?H]. (7.5)

For each B > 0, we can verify that (n;)s = 1, where n; = ngz; + ny|. This means that
the system at half-filling will be considered.

Theorem 7.1 (First Griffiths inequality) Let Ay,..., A, € A. For all 0 < s1 <
S0 < --- < s, < B, we have

<ﬁAj<sj>> = (7.6)
j=1 B8

where A(s) = e *H AesH

Example 9 For each z1,...,2, € A, #1,...,#n € {+,—}tand 0 < 51 < 59 < --+ <
sn < B, we have

(B (02 () b (1)) 2 0, (7.7)

where bf(s) = e_SHbfe‘SH.

To state the second quantum Griffiths inequality, we introduce the following nota-
tion:

(Y)p = Trags [Ye PHex] [22 Heyy=H®1+1® H. (7.8)

Theorem 7.2 (Second Griffiths inequality) Foreachx € Aje € {£1},# € {+},0 €
{1,1} and s > 0, we introduce

ol (s) = () @ I+ ey ® cf(s), (7.9)

16 All results in this section can be extended to a more general Coulomb interaction of the form
> e yen Usy(nar — )(nyy — %), where U, is real and positive semidefinite.
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where v = (—1)Ne with N, = N; + N| and cﬁ,(s) = e_SHCZ?i7 eSH. Letxy,...,xn € A.
For each 0 <81 <s9<--- <5, <0, #1,....,#n €{+,—} and &1,...,e, € {£1}, we
have

<< ﬁ [(—l)ﬂ(xj)aiﬂﬁsj (sj)'yT & %aiﬂ;sj (sj):| >> >0 (7.10)
j=1

B
and
T ) # #
<<H [(_l)u(xj)axjjﬁsj (SJ')FYT ®7Taxjjl;faj (8]'):| >> = 0. (711)
Jj=1 Ié;
Corollary 7.3 Let z1,...,2, € A. For each 0 < 51 < 89 < -+ < 5, < (G and

H#1,...,#n € {+,—}, we have

n

<< ﬁ [bﬁj (Sj) 7 —"M® bﬁjj (Sj):| >> > 0. (7.12)

J=1 B

Corollary 7.4 Let x1,...,x9, € A. For each 0 < 51 < 859 < -+ < 89,
#17"‘7#271 S {+,_}, we have

IN

G and

2n

<< ﬁ [bff(sg') @M -—mM® bfjj(sj)] >>

Jj=1 B

2n

Z<< ﬁ(_l)“(xj) [Ci]f(sj)Vl @Ml (55) — N (s) ® Cj}(%)%} >>

j=1 3

>0. (7.13)
Example 10 Consider the case where n = 2. We then have
(— 1)@ ) <<C:rlC$TCZTcyl>[3 - <CZLC$T>5<CZTcyl>5)

> (— 1)) ((epep o les ent) g + (ren)) p(chich)s)
>0. (7.14)

Since <c§lcﬂ>ﬂ =0= <CfvTCyi>g by the symmetries of the system, we arrive at
(=R eriegreg)s = (~DHOHO (eaely) (e )y 2 0. (7.15)

If x,y € Ac or x,y € A,, then (—1)“(9””“(9) = 1, so that we obtain a standard-type
correlation inequality. <
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Corollary 7.5 Let iyt = 1 —nyp. Let xq,...,x, € A. We have

n

(s eren ]
B

J=1

z<< H [nm ® Mg, | + Ny | ®n%¢] >>

Jj=1

3

B
0. (7.16)

4

Example 11 In the case where n = 2, we have

< 2Ty x| yl>b, Tz ] 3 yT'yl 3

- <ﬁrTﬁyT>B<”xlnyl>ﬁ - <ﬁxmy1>5<ﬁmnm>ﬂ >0. ¢ (7.17)
Remark 7.6 Our results can be extended to a general class of electron—phonon(or
photon) Hamiltonians, including the Holstein—-Hubbard model and the SSH model. {

7.1.2 The zero-temperature case

Our results can be extended to the case where 3 = oo. Unfortunately, the general
theorems in Section 3 cannot be directly applied to this model. To clarify the main
points of modification, we state results without proofs.

We assume an additional condition.

(G. 3) G is connected, i.e., any of its vertices are linked by a path in G.

We consider a half-filled system. Thus, our Hilbert space is restricted to
¢ = 9 Nker(Ne — |A]). (7.18)

Let S®) = %(NT — Nj). Since S() commutes with H, we have the following decompo-
sition:
|Al/2
¢= P ¢y Ey=eEnke(S® - M) (7.19)
M=—|A|/2

&, is called the M-subspace. For each M € spec(S®)), set Hy; = H | €. The
following theorem is important.

Theorem 7.7 [38, 44] For each M € {—|A|/2,—(|A| —2)/2,...,|A|/2}, Hy has a
unique ground state.

We denote the normalized ground state of Hps by 1as. We define the ground state
expectation value by

(X)oom = (| X ). (7.20)
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Theorem 7.8 Let Ay,..., A, €. For all 0 < s1 < 89 < --- < s, we have

< ﬁA]‘(S]’)> > 0.
Jj=1 oo, M

We introduce the following notation:

(Y Doonr = (¥nr & |V s @ s ).

Theorem 7.9 Let x1,...,2, € A. For each 0 < 51 < 59 < -+ < 8y, #1,...

{+,—} and e1,...,e, € {£1}, we have

(T [coreatiememadi, ] ) =0
j oo, M

J=1

and

n

7j=1 oo, M

7.2 Proof of Theorem 7.1
The hole—particle transformation I/ is a unitary operator such that
chTU* = (— ) (m) ;T’ chlu* = Cg|-

Let H = UHU*. Then we obtain the attractive Hubbard model:

H = Z Z acy Cmcya UZ an )(nl"l 1)'

{:L',y}EE GG{T l} TEA
Let ¢, be the annihilation operator on §. We note that
ot =N, ¢y = (—]l)N ® ez,
where N = >, cicy. Then we obtain
H=Tel+10T-U» (n.—3)®(n. —3),
TEA
where n; = cic, and
T= Z (—tay)Crcy.
{zy}ekE

Let 991 be an antilinear involution on § defined by

* * * *
vicy, o Cp d=cp ey, Q, w1, T, €A,

(7.21)

(7.22)

s #n €

(7.23)

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

where  is the Fock vacuum in §. By (3.4), we have the following identification:

H=2%3).
Moreover, by (3.4) and (7.28), we obtain the following:
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Proposition 7.10 We have
H=LM+RT)-UD L(n:— 3HR(nz — 3),
TEA
Proposition 7.11 We have the following:
(i) by := UbU* = 0 w.r.t. L2(F)4 for all z € A.
(ii) e PH = 0 w.rt. L2F) 4 forall B> 0.

Proof. (i) This immediately follows from the identification b, = £(cz)R(c?).
(ii) By Proposition 7.10 and Corollary A.9, we obtain (i) O

Corollary 7.12 For all A € 2, we have UAU* = 0 w.r.t. L*(F)+.

7.2.1 Completion of proof of Theorem 7.1
By Theorem 3.11 and Corollary 7.12, we obtain Theorem 7.1. O

7.3 Proof of Theorem 7.2

Let Hext = H X H. Let

1

Gzo = E(

C:ra®]l+'7®cxa)a VYo = Czo®ﬂ_7®cm¢7)-

1
7!

Gz and Yy, act in Hext as well. These operators satisfy the following CARs:

{¢:poa ¢;g’} = 5my600’7 {¢m07 ¢ycr’} =0,
{waraa ngg’} = 5J:y6cra’7 {wxav leya’} = 07
{Qszm ?l);g/} =0, {stm T;Z)ya’} =0.

Let {¢z, %, | x € A} be new annihilation operators on X = § ® § such that

{¢x7 ¢Z} = (5a:y7 {(bxa ¢y} = 07
{%ﬂb;} - 5acya {%7%} = 07
{¢w7w£;} = 07 {¢x7wy} = 07

(7.32)

(7.33)

(7.34)
(7.35)
(7.36)

(7.37)
(7.38)
(7.39)

and ¢,Qx = 0 = 1, Q%, where Qy is the Fock vacuum in X. Then we have the following

identifications:
601 = 0o @1, duy = (DY @ o, Va1 =9 @1, o= (DN @y,
where N' ="\ (dhde + ¥htbs). Let
U=URU.
Set

. 1
Hext = % Hexe %" + UA].
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Then Hey can be expressed as

~

Hopot =TRI1+1T -V,
where
k * U
T = Z (*ta:y)(ﬁbzﬁby + 1%1/13,/) + 5/\/,

{z,y}€eE

U

TzEA

No = 0300 + Vitha, Mo = d3000 + 130
Let ¥2 be an antilinear involution on X defined by
V2¢z02 = ¢z, Vothple = by, 20z = Qx.
By (3.4), we have the identification
Hext = L7(X).
In addition, we have the following expression:

Proposition 7.13 We have Heyy = L£(T) + R(T) — V, where
U

V=0 S {LWIRWG) + LMIRM) )

2
zEA

By Corollary A.9, we obtain the following:

Corollary 7.14 For all 8 > 0, we have exp(—ﬁﬁext) =0 w.rt LX),

(7.43)

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)

(7.49)

The below proposition immediately follows from the definitions (note that '~ ®

1%* = v ® 1 by (G. 1)).

Proposition 7.15 We have the following:
(i) % (~1)"O(cH @ 1+~ @ )™ = V2L(9F).
(i) % (~)@) (@ 1—y o dh)u = VaLwd).
(iii) %y ® wT(cj‘jj R1+v® cjfj)%* = V2R(¢¥).
(V) %y @ (@1 -y o d)u = VIRWE).
Corollary 7.16 Let

Qpgie = Cgo & 1+ ey ® cgo-
For alle € {£1}, # € {£} and x € A, we have

%(—1)”($)CM§76’YT & ’YTO‘x#L,a%* =0

w.rt. LX)y
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Proof. By Proposition 7.15, we have
%(—1)“(“’0)&‘%’71% ® ’yTafl77152/* =2L (1@%) R(Qbf) =0 wrt. LX)y, (7.52)
(1D, i ead w7 =2L(6F ) R(6F) =0 wat 22(2). . O
(7.53)

7.3.1 Completion of proof of Theorem 7.2
Proof of (7.10)

Let Do » = (—1)“(9”)041?76% ® W%ﬁs' Then we see that by Corollaries 7.14 and 7.16,

n
—

o H(—l)“(xj)a#j

zi15e;

#; _
(i) ®@ may .. (s5) |e PHexqy
7j=1

—e st gy D L wre I e gD, gy e (s e (7 .54)
— —_/ K b 5 5
>0 ~0 >0 ~0 >0

w.r.t. £?(X);. Thus, by Theorem 3.10, we obtain (7.10). O
Proof of (7.11)
Let 2 be a unitary operator defined by 2 = 1® (—1). Then we see that
9Ho 27! = Hoy, Qaﬂ’so@*l = Qg e, ,@axl,so@*l = Qg . (7.55)
Thus, (7.11) follows from (7.10). O

7.4 Proof of Corollary 7.3

Lemma 7.17 Let C,. = (—1)“(I)afT7€'yT ® VTO‘ﬁ,fs' Set W = U 2. Then we obtain
WCp WL =0 wrt. LX),

Proof. By Corollary 7.16 and (7.55), we see that
WCy W ' =UDe y1,% 1 =0 wrt. L2X)y. O (7.56)
Lemma 7.18 For all > 0, we have # e PHext /=1 = 0 w.r.t. L2(%) .

Proof. Since QHo 2 ' = Hyy, we see that #We PHexvy—1 — o~ BHoxt = 0 w.r.t.
LX)y O
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7.4.1 Completion of proof of Corollary 7.3

By Lemma 7.17, we obtain

WCo W L= WAN T+ eW B =0 wart. LX), (7.57)
where
A =27 (bs @M — 7 ® ba) 2, (7.58)
B, = —(—1)"™ 27 ¢}y, @ vpca) — Y16 @ i) 2. (7.59)
Thus, we have
WAW L = ;W@iwl % WCy WL =0 wrt. LX) (7.60)
>0 >0

Finally, observe that

n
—

v HAzﬁj.j(sj)] e PHexty =1
j=1
=We ey Loy pttvy =1 e ams)Heayy 1 gy (B-sn)llexyy =1 (7,61)
—_—
=0 0 =0 =0

w.r.t. £?(X);. By Theorem 3.10, we conclude Corollary 7.3. O

7.5 Proof of Corollary 7.4
7.5.1 First part of the proof

Note that # B, # ~! = %WCI7+V/_1 — %WCx,,W_l. Combining this with (7.60), we
have

2n on
V4 HAﬁi(sj)] e BHexiyy—1 _ oy H ijj(sj)] o~ BHexs 1
j=1 e
- Z X517""57L chlval (51) T CJJn,(S'n (Sn) eﬂHext W_lﬂ (762)
617---767LE{:|:} N

where each Xj, s, is a positive constant. Thus, the RHS of (7.62)= 0 w.r.t. £%(X).
By Theorem 3.10, we obtain the first inequality in (7.13).
7.5.2 Second part of the proof

We will show the second inequality in (7.13). Let © be an antilinear involution on $
such that

@Cwo’@ = Czo, @Qy) = Q5§7 (763)
where Qg = Q ® Q. Then by (3.4), we have Heyxy = £2($) and
Hew = L(H) +R(H). (7.64)

By Corollary A.9, we have the following:
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Proposition 7.19 For all f > 0, we have exp(—BHex) = 0 w.r.t. L2(H)4.

Let S be the unitary operator on §) given by
Scp1 S =cyy,  Scp ST = e (7.65)
Set Z = 1® S% . Remark that since SHS™! = H, we know that
R PlHex gp=l — ¢ BHext = () wrt. 22(9), (7.66)
by Proposition 7.19.
Proposition 7.20 We have the following:
(i) Z(=1)"Degyy @ 12~ = L(cGy7)-
(ii) Zeayy) @ DR~ = L{cay))-
)
)

( )u(az I®c T’)/T% R(’ylcml).

(iv) Z1® vycp #1 =R(v1¢5)-

(iii

Corollary 7.21 We have the following:
(i) %(—1)“("")C;T’yl QYice ZH = 0 wort. L3(9)+.
(i) —Z(=1)" Dy icp) @ i Z ™ = 0 wort. L2(9)
Proof. By Proposition 7.20, we see that

B (1O @ oo B =L(ear)R(1E) = 0 wort. L3H)4, (7.67)
—R(—1)" Dy ) @ BT =Lco7)R((c7))*) = 0 wort. L2(H)1. (7.68)

This completes the proof. O

Set
Ky = (=1)M® (CZT% ® Y1Ce| — V|Ca| ® CZWT)- (7.69)

By Corollary 7.21, we know that ZK, %' = 0 w.r.t. £%($),. Thus, by (7.66), we
obtain

#) #; —BHers s
H [ 1 (s5)m ®7T% ' (s5) —viey) (s5) ®Cl,j]T(Sj)’)/T:| ¢ FHext gp=1
= Pe~ lHext% %K;;%T%_l %e_(32—81)Hext%—1 . '%6_(’6_8")He>ct%_l =0 (7'70)
=0 =0 z0 0

w.r.t. £%($);. Hence, by Theorem 3.10, we obtain the second inequality in (7.13). O
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7.6 Proof of Corollary 7.5
Let

Ay =Npqne] @ T+ D@ Nping), Az— =Ngp @ Ng| + Ny @ Mgy (7.71)

Observe that

UAe s U™ = %{c(Nx)R(Nx) + E(Mx)R(Ma:)}v

YA, U = %{ﬁ(Nw)R(NI) ~ LMIR(M,) ) (7.72)

Clearly, L(NZ)R(N;) =0, L(Mz)R(M;) = 0 wrt. £?(X)y. Thus, we have

4 ( 4.+ -1 ij,_> U* =0 wrt. L2(X),. (7.73)
j=1 j=1

By applying Theorem 3.10, we obtain the first inequality in (7.16). Proof of the second
inequality in (7.16) is similar to that of Section 7.5.2. O

8 Concluding remarks

Let B be a self-dual cone in the Hilbert space $. Let Hy and V be self-adjoint operators
in ). For simplicity, we assume that Hy and V are bounded.!” Hj is the free Hamil-
tonian and V is the interaction. The system’s Hamiltonian is given by H = Hy — V.
Through our studies of the quantum Griffiths inequality, we recognize that the following
are model-independent properties:'®

(P i) e PHo >0 wor.t. P for all 3 > 0.
(B i) V>0 wrt. P

(*B ii) is equivalent to —V <0 w.r.t. B. Thus, if (P ii) is satisfied, we say that —V is
attractive w.r.t. P. As we have discussed in the previous sections, when we construct
the Griffiths inequality, it is most important to find a self-dual cone B such that —V
becomes attractive w.r.t. . In this step, we are faced with the following difficulty:
in general, there are infinitely many self-dual cones in a single Hilbert space. Let us
assume that (8 i) and (‘P ii) are satisfied by choosing some self-dual cone 3. Now let
us choose another self-dual cone P’. Even if ( i) and (B ii) are satisfied, we can never
conclude that (P’ i) and (P’ ii) are fulfilled. Therefore, to apply our theory, we have
to choose a proper self-dual cone P such that ( i) and (P ii) are satisfied. In other
words, a suitable choice of a self-dual cone makes the interaction —V attractive. In
this sense, our theory is a kind of representation theory of attraction.

We remark upon some additional conclusions from (3 i) and (% ii). First, we obtain
the positivity of a ground state.

'"This assumption can be relaxed [44].

8 Even when we show the second Griffiths inequality, the properties (% i) and (%0 ii) are essential for
our proof. Namely, (i) and (B ii) still hold true for the extended Hamiltonian acting in the doubled
Hilbert space 9 ® $), see Sections 2-7.
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Theorem 8.1 [44] Assume (P i) and (P ii). Assume that E = infspec(H) is an
eigenvalue of H. Then there exists a nonzero vector ¢ € ker(H — E) such that ¢ > 0
w.r.t. P. Namely, among all the ground states of H, there exists at least one ground
state that is positive w.r.t. P.

Theorem 8.2 claims that the attractive interaction makes the system more stable.
Theorem 8.2 [44] Assume (B i) and (P ii). Let Ey = inf spec(Hy). Then E < Ejy.
To describe further effects of (I i) and (B ii), we define the following:

Definition 8.3 (i) A vector y € $ is called strictly positive w.r.t. B, whenever
(x]y) > 0 for all x € P\{0}. We write this as y > 0 w.r.t. P.

(ii) We write A0 w.r.t. P, if Az > 0 w.r.t. P for all x € P\{0}. In this case, we
say that A improves the positivity w.r.t. . &

Theorem 8.4 [12, 43] Assume (B i) and (P ii). Assume that e P >0 w.r.t. P for all
B >0. If E =infspec(H) is an eigenvalue, then dimker(H — E) = 1 (equivalently, if
H has a ground state, then it is unique). Moreover, the unique ground state is strictly
positive w.r.t. L.

Remark 8.5 If we impose additional conditions on V', we can prove E < Ey [44]. <

As a corollary of Theorem 8.4, we obtain information about structure of the ground
state.

Corollary 8.6 Let G be a group and let m be an irreducible representation of G on 9.
Assume that mg>0 w.r.t. B for all g € G. Under the same assumptions as in Theorem
8.4, let ¢ be the ground state of H, i.e., ¢ € ker(H — E). Then we have mgp = ¢ for
all g € G.

In the theory of strongly correlated electron systems, we can investigate the mag-
netic properties of the ground state by Theorem 8.4 and Corollary 8.6 [14, 15, 37, 38, 39,
40, 43, 45, 46, 48, 49, 50, 55, 56, 57]. Furthermore, we can find the same structures ((J3
i) and (P ii)) in several areas, e.g., in the quantum field theory [16, 22, 26, 43, 46, 47, 51],
open quantum systems [41], topological orders [30, 31], and the theory of phase tran-
sitions [1, 2, 3, 11, 17, 18, 21, 27, 33]. These facts indicate that (P i) and (P ii) are
universal expressions of the notion of correlations. If this hypothesis is correct, then
several areas could be described by the same language and a new discovery in some
areas would automatically influence other areas. To reinforce this vision of unification,
we must continue to collect evidence.

A Fundamental properties of operator inequalities asso-
ciated with self-dual cones

A.1 Positivity preserving operators

In this appendix, we review useful operator inequalities studied in [43].
Let $ be a complex Hilbert space and B be a self-dual cone in §.
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Proposition A.1 Let {x,},en be a CONS of $. Assume that x, € P for all n € N.
Assume that A> 0 w.r.t. . Then we have Tr[A] > 0.

Proof. Since x,, € B, we see that (x,|Azx,) > 0 for all n € N. Thus, we arrive at
Tr[A] = > 07 [ (xn]|Axy) > 0. O

n=1

Proposition A.2 Let N = dim$ € NU {oo}. Let {x,}Y_; be a CONS of §. Assume
that x, € P for alln € {1,...,N}.19 Then the following (i) and (ii) are equivalent.

(i) A>0 w.r.t. P.
(il) Appn = (xm|Azy) >0 for allm,n e {1,...,N}.

Proof. (i) = (ii): Trivial.
(ii) = (i): Let w, z € B. Then we can write

N

w = chxn, cn = (w|xy,), (A.1)
n=1
N

2= dpttn, dp=(zlzn). (A.2)
n=1

Since w, z > 0 w.r.t. B, we see that ¢, > 0,d, > 0 for all n € N. Thus, we have

N
(wAz) = > cmdnAmn > 0. (A.3)

m,n=1

Since B is self-dual, we have Az > 0 w.r.t. 8. Thus, we conclude that A>0 w.r.t. L.
|

Proposition A.3 Assume that A>0 w.r.t. . Then €4 >0 w.r.t. P for all 3 > 0.

Proof. Since A> 0 w.r.t. B, it holds that A™ > 0 w.r.t. ‘P for all n € N. Thus ,

ef4 — Z % A" >0 wrt. Plorall 5>0. O (A4)
n>0N~" >0
>0

Proposition A.4 Assume that €4 >0 and €8 >0 w.r.t. P for all > 0. Then
ePA+E) >0 w.rt. P for all B> 0.

Proof. Note that ¢?4e%B >0 w.r.t. 9 for all 5> 0. Thus, (eﬁA/”eBB/”)" >0 w.r.t. P
for all 8 > 0 and n € N. By the Trotter—Kato product formula, we obtain the desired
assertion. O

The following proposition is repeatedly used in this study.

Proposition A.5 Assume the following:

9Tn the case where N = oo, the symbol {1,..., N} denotes N.
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(i) ePA >0 w.rt. P for all B> 0.
(i) B> 0 w.r.t. ‘B.
Then we have e*ATB) >0 w.r.t. P for all > 0.

Proof. By (ii) and Proposition A.3, it holds that ¢*B > 0 w.r.t. 9 for all 8 > 0. Thus,
applying Proposition A.4, we conclude the assertion. O

Proposition A.6 Let A be a positive self-adjoint operator. Assume that e P4 >0
w.r.t. P for all § > 0. Assume that E = inf spec(A) is an eigenvalue of A. Then there
exists a nonzero vector x € ker(A — E) such that x > 0 w.r.t. P.

Proof. STEP 1. Let J be an antilinear involution given by Proposition A.7 below.
Set ;7 ={x € H|Jxr = x}. We will show that ker(4 — E)N H; # {0}.

To see this, let € ker(A — E). Then we have the decomposition x = Rz + iSx
with Rz = L(1+ J)z and Sz = £(1— J)z. Clearly , Rz, 3z € H;. Since z # 0, it
holds that Rz # 0 or Sz # 0. Since e 4 >0 w.r.t. 9 for all 3 > 0, A commutes with
J. Thus, Rz, Sz € ker(A — E)N $H.

STEP 2. Take x € ker(A — E) N $H;. By Proposition A.7 (iii), we have a unique
decomposition x = x4 —z_, where x4 € P and (zy|r_) = 0. Let |z| = 24+ +x_. Then
we have

e PEllz|l = (ale™a) < (Jzlle™|z]) < e |||l (A.5)
~——

=|l=l
Thus, |z| € ker(A — E). Clearly, |z| > 0 w.r.t. B. O

Proposition A.7 A self-dual cone P has the following properties:
(i) BN (%) ={0}.
(ii) There exists a unique antilinear involution J in § such that Jx = x for all v € P.

(i) Fach element x € $ with Jx = x has a unique decomposition © = x4y — x_ where
T,z € P and (xy|x_) =0.

(iv) 9 is linearly spanned by B.

Proof. See, e.g., [5]. O

A.2 Reflection positive operators

To apply Theorem 3.11, it is crucial to show that e %7 > 0 w.r.t. Z2(9), for all
B > 0. The following proposition is often useful in proving this condition:

Proposition A.8 Let Hy be a self-adjoint operator on £%($) bounded from below.
Let V € B(L2(9)) be self-adjoint. Assume the following:

(i) e PHo = 0 w.rt. L%($), for all > 0.

(i) V =0 w.rt. L%9):.
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Let H=Hy— V. We have e PH = 0 w.r.t. L%($), for all § > 0.

Proof. Note that

n>0~" >0
>0

Thus, by the Trotter—Kato product formula, we obtain

n
e P = s—nli_{go<e_ﬁH°/" eﬂv/”> =0 wrt. L%($)y forall B3>0, (A.7)
=0 >0

where s- lim means the strong limit. O
n—oo

Corollary A.9 Let Hy = L(A) + R(A), where A is self-adjoint and bounded from
below. Let

[e.9]

V=Y L(B)R(By), (A.8)
j=1
where Bj € B(9) is self-adjoint and the right hand side of (A.8) is a weak convergent

sum. Define H = Ho — V. Then we obtain e P71 = 0 w.r.t. L2(9)4 for all 3> 0.

Proof. Observe that e %70 = £(e PR (e7P4) = 0 w.r.t. L2(9H), for all 3 > 0. Since
V =0 w.rt. Z%(9),, we obtain the desired assertion by Proposition A.8. O

The following lemma will be often useful:

Lemma A.10 Let Aj, j=1,...,N be a bounded operator acting in $). Let M = (M;;)
be a positive semidefinite N x N matriz. Then we have

N
> MyL(AD)R(A) = 0 wrt. ZL2($);. (A.9)
ij=1
Proof. There exists a unitary matrix U such that M = U*DU, where D = diag()\;) is
a diagonal matrix with A\; > 0. Set A, = Z;VZI UijA;. Then we see
N ~ ~
LHS of (A.9) =Y NL(A)R(A) = 0 wrt. L($H)4. (A.10)
j=1

This completes the proof. O
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