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LINEAR STABILITY ANALYSIS OF OPEN-CHANNEL SHEAR FLOW1

GENERATED BY VEGETATION2

Adriano C. de Lima1, Norihiro Izumi2
3

ABSTRACT4

A linear stability analysis of flow in an open-channel partially covered with vegetation was5

performed. The differential drag between vegetated zones and adjacent non-vegetated zones is6

known to induce a lateral gradient of the streamwise velocity. The velocity gradient may result in7

flow instability in the shear layer around the edge of the vegetated zone, causing the generation8

of discrete horizontal vortices. We assume that the base state flow field before the occurrence of9

instability is characterized by turbulence, with a smaller length scale than the flow depth, which is10

mainly generated by the bottom friction. By introducing perturbations to the flow depth as well as11

the streamwise and transverse velocities in the base state, the conditions required for perturbations12

grow in time were studied over a wide range of (1) Froude number, (2) normalized non-vegetated13

zone width, and three other dimensionless parameters which represent the relative effect of (3) bed14
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friction, (4) vegetation drag and (5) sub-depth eddy viscosity. All parameters were found to have15

positive and negative growth rates of perturbations within their respective evaluated ranges. The16

characteristic vortex shedding frequencies associated with the maximum growth rate was compared17

with those observed in experiments. Although the analysis which employs a base state set without18

the large scale lateral motions was shown to be capable of predicting the order of magnitude of19

the frequencies, there is a systematic discrepancy between the predicted and observed frequencies20

which may be due to the limitation of linear stability analysis.21

Keywords: Linear stability analysis, shear flow, flow instability, kinematic eddy viscosity, lateral22

vortices.23

INTRODUCTION24

The presence of vegetation is commonly observed in both natural and rectified watercourses.25

Vegetation in watercourses is desirable in some cases as it prevents bank erosion and provides26

habitat and food for numerous species. On the other hand, vegetation causes serious problems in27

other cases as it increases channel resistance and reduces channel capacity for the draining of flood28

water. Vegetation in a part of a channel produces transverse shear flow, which may lead to flow29

instability and the generation of large-scale horizontal vortices. These horizontal vortices have a30

strong influence on the velocity distribution and the amount of discharge conveyed by a channel31

without overflow, and enhance the lateral mixing of not only the flow itself, but also the substances32
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transported by the flow both inside and outside the vegetated area. Therefore, it is important to33

determine the conditions under which instability occurs, and the characteristics of the horizontal34

vortices from both an engineering and an environmental points of view. Though various studies on35

instability in channels with lateral velocity gradients have been performed, only theoretical studies36

on instability in vegetated or compound channels are reviewed herein.37

Tamai et al. (1986) observed the generation of large eddies on the water surface in a set of38

experiments with compound channels consisting of a main channel and a flood plain. They con-39

cluded that the shear layer in the lateral velocity profile around the interface between the main40

channel and the flood plain is the predominant cause for the generation of large eddies. They41

applied the stability analysis of Michalke (1964) with the use of the Rayleigh stability equation42

to their experimental results, and found that their observations were able to be explained by the43

analysis.44

Chu et al. (1991) performed a linear stability analysis of shear flows in channels with varying45

flow depths and varying bottom roughness. They employed the St. Venant shallow water equa-46

tions with the free water surface approximated by a rigid lid, which is a valid simplification when47

the Froude number is close to zero. The perturbation equations reduced to a modified Rayleigh48

equation, which can be relatively easily solved. Because it is not possible to reproduce the lat-49

eral gradient of the streamwise velocity without including the Reynolds stress in their formulation,50
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they adopted an assumption that the flow depth and the bottom roughness vary gradually across51

the channel in order to approximate it. They found that flow stabilizes when the bottom roughness52

is sufficiently large, and the lateral variation of flow is sufficiently small.53

Ikeda et al. (1994) performed a temporal linear stability analysis of a partially vegetated chan-54

nel. They obtained the base state flow with the use of the St. Venant shallow water equations55

including the Reynolds stress expressed by the lateral kinematic eddy viscosity empirically deter-56

mined in experiments. In the perturbed problem, however, they ignored the Reynolds stress and the57

variation of the water surface elevation, in effect reducing their perturbed equations to a modified58

Rayleigh equation again. They found that the dimensional angular frequency of maximum insta-59

bility is uniquely correlated with the ratio of two velocities a sufficient distance from the boundary60

between the non-vegetated and vegetated zones.61

Ghidaoui and Kolyshkin (1999) performed a temporal linear stability analysis of a channel flow62

with lateral velocity gradients without the rigid-lid assumption. The Reynolds stress was included63

in their formulation by means of the eddy viscosity term of Chen and Jirka (1997). Semi-empirical64

expressions were used to describe the base flow profile, containing regression parameters which65

were not correlated to a specific flow field (i.e., the source of flow retardation in part of the channel66

was not specified). Their computations showed that the influence of the Reynolds number, defined67

using the eddy viscosity, on the stability domain is small when it surpasses 1000.68
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Prooijen and Uijttewaal (2002) have also included the turbulent viscosity as in Chen and Jirka69

(1997) in their temporal and spatial linear stability analysis of a channel flow with a lateral velocity70

gradient generated by two separate water supplies with different velocities. The mean flow field,71

which varied along the streamwise direction, was assumed to be the base state and the rigid-lid72

assumption was employed, which is a reasonable simplification, given that the Froude number in73

their experimental runs did not exceed 0.5.74

White and Nepf (2007) performed a complete set of experiments and a spatial stability anal-75

ysis of a channel partially obstructed by an array of circular cylinders by the use of the modified76

Rayleigh equations following Chu et al. (1991), with the Reynolds stress scaled with the width77

of the shear layer around the edge of the array. They made use of the rigid-lid assumption, in78

accordance with the condition of small Froude numbers met in their experiments (always below79

0.25). They concluded that even though the drag differential due to the vegetation reinforces the80

shear instability, the overall drag damps it if the background friction in the channel is sufficiently81

large.82

In this study, we perform a temporal linear stability analysis of flow in an open channel partially83

covered with vegetation. By not employing the rigid-lid and the inviscid flow assumptions, we84

could study the effects of the Froude number and the kinematic eddy viscosity, respectively, on the85

growth rate of perturbations. We employ the St. Venant shallow water equations with the Reynolds86
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stress included to reproduce the velocity gradient due to the differential drag between the regions87

with and without vegetation. The temporal and spatial variations of the flow vanish except for the88

lateral variation of the streamwise velocity in the base state, which is used as a starting point of89

the stability analysis. This base state flow field is not, however, simply a temporal average of the90

flow affected by fully-developed horizontal vortices, but the flow undisturbed by the vortices. We91

thus employ a kinematic eddy viscosity representing turbulence with a length scale smaller than92

the flow depth. Differently from Chen and Jirka (1997), the eddy viscosity employed herein is93

estimated for the flow unaffected by the large-scale horizontal vortices. We impose perturbations94

on the base state flow velocities and flow depth, and study how various hydraulic parameters affect95

the time development of the perturbations.96

FORMULATION97

Suppose that water is flowing through a wide rectangular open-channel with lateral emergent98

rigid vegetation (trees) as shown in Fig. 1. The vegetation is modeled by an array of regularly99

spaced cylinders with a uniform diameter installed only on one side of the channel. The model of100

cylinders as vegetation employed herein has been widely used in previous studies (e.g., Ikeda et al.101

(1994), Tsujimoto and Kitamura (1992), White and Nepf (2007) and Xiaohui and Li (2002)). The102

region of the channel covered with vegetation is defined as the ‘vegetated zone’, the width of which103

is denoted by B̃v. The region of the channel without vegetation is defined as the ‘non-vegetated104
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zone’, the width of which is denoted by B̃.105

Governing equations106

In this study, we focus on horizontal vortices generated in shallow flow in a wide rectangular107

open channel. The horizontal length scale of the vortices is commonly large compared with the108

length scale of flow depth. The generation of such thin vortices can be described by the depth-109

averaged shallow water formulation. In particular, the momentum equations employed in this110

analysis need to include the Reynolds stress and the drag force due to vegetation in order to rep-111

resent the lateral velocity distribution due to the differential drag between the non-vegetated and112

vegetated zones. The momentum equations in the streamwise and transverse directions (x̃ and ỹ)113

and the continuity equation are114

∂Ũ

∂t̃
+ Ũ

∂Ũ

∂x̃
+ Ṽ

∂Ũ

∂ỹ
= gS − g∂H̃

∂x̃
− T̃bx + D̃x

ρH̃
+

1

ρ

(
∂T̃xx
∂x̃

+
∂T̃xy
∂ỹ

)
, (1a)115

∂Ṽ

∂t̃
+ Ũ

∂Ṽ

∂x̃
+ Ṽ

∂Ṽ

∂ỹ
= −g∂H̃

∂ỹ
− T̃by + D̃y

ρH̃
+

1

ρ

(
∂T̃yx
∂x̃

+
∂T̃yy
∂ỹ

)
, (1b)116

∂H̃

∂t̃
+
∂ŨH̃

∂x̃
+
∂ṼH̃

∂ỹ
= 0, (1c)117

where t̃ is time, x̃ is the streamwise coordinate, ỹ is the lateral coordinate the origin of which is118

taken at the interface between the vegetated and non-vegetated zones, Ũ and Ṽ are the x̃ and ỹ119

components of the flow velocity respectively, H̃ is the flow depth, T̃bx and T̃by are the x̃ and ỹ120
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components of the bed shear stress respectively, D̃x and D̃y are the x̃ and ỹ components of the121

drag force due to vegetation respectively, T̃ij (i, j = x, y) is the Reynolds stress tensor, ρ is the122

density of water, g is the gravity acceleration, and S is the bed slope of the channel. The tilde123

denotes dimensional variables, which is to be dropped after normalization.124

The drag force vector (D̃x, D̃y) is described by the expression125

(D̃x, D̃y) =


0 in the non-vegetated zone,

ρCDãH̃

2
(Ũ2 + Ṽ 2)1/2(Ũ , Ṽ ) in the vegetated zone,

(2)126

whereCD is the drag coefficient of vegetation, typically estimated to range from 1 to 2. In addition,127

ã is a parameter describing the density of vegetation, written by128

ã =
d̃

2l̃xl̃y
, (3)129

where d̃ is the diameter of cylinders and l̃x and l̃y are the distances between two adjacent cylinders130

in the x̃ and ỹ directions respectively, as shown in Fig. 2.131

The bed shear stress is related to the flow velocity by means of the bed friction coefficient Cf ,132

such that133

(T̃bx, T̃by) = ρCf (Ũ2 + Ṽ 2)1/2(Ũ , Ṽ ). (4)134
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Though the bed friction coefficientCf is a weak function of the flow depth relative to the roughness135

height, it is assumed to be constant and common in both vegetated and non-vegetated zones for136

simplicity.137

With the use of Boussinesq’s kinematic eddy viscosity, the Reynolds stresses are expressed by138

T̃xx = 2ρν̃T
∂Ũ

∂x̃
, (5a)139

T̃xy = T̃yx = ρν̃T

(
∂Ũ

∂ỹ
+
∂Ṽ

∂x̃

)
, (5b)140

T̃yy = 2ρν̃T
∂Ṽ

∂ỹ
, (5c)141

where ν̃T is the kinematic eddy viscosity. We assume that, in the base state before instability142

occurs, the flow is already affected by turbulence, the length scale of which is smaller than the143

flow depth (sub-depth scale turbulence). Where there is no influence of vegetation, the kinematic144

eddy viscosity ν̃T should correspond to the sub-depth scale turbulence generated by the bottom145

friction. We employ the logarithmic velocity distribution as a sub-depth scale turbulent velocity146

distribution due to the bottom friction. The kinematic eddy viscosity then takes a parabolic form,147

which is depth-averaged from the bottom to the water surface, yielding148

ν̃T =
1

6
κŨf∞H̃∞, (6)149
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where Ũf∞ and H̃∞ are the friction velocity and the flow depth in the region sufficiently far from150

the vegetated zone, respectively, and κ is the Kármán constant (= 0.4). We assume that the sub-151

depth scale turbulence is rather isotropic. Therefore, the above formulation is expected to describe152

the Reynolds stresses in the streamwise and lateral directions a sufficient distance from the vege-153

tated zone. Although the kinematic eddy viscosity in the horizontal direction is known to be larger154

than in (6), as in Chen and Jirka (1997) where ν̃T = 0.2Ũf∞H̃∞, we assumed that the increase in155

the kinematic eddy viscosity is caused by large-scale horizontal vortices generated by instability.156

In the shear layer formed around the boundary between the two zones, and inside the vegetated157

zone, the velocity and the shear velocity are reduced because of the Reynolds stress and the drag158

force due to vegetation. In addition, the length scale of sub-depth scale vortices may be affected by159

a typical length scale of vegetation such as the vegetation spacing. According to the experimental160

results of Ikeda et al. (1991), however, the depth-averaged kinematic eddy viscosity even in the161

shear layer and the vegetated zone can be represented by (6). This may be attributed to the fact162

that the sum of the resistant forces (the bed shear stress, the Reynolds stress and the vegetation163

drag force) remains constant regardless of the reduction in the bed shear stress in the shear layer164

and the vegetated zone. The kinematic eddy viscosity may be correlated to the total resistant force.165

Furthermore, since the flow depth and the spacing of vegetation in Ikeda et al.’s experiments are166

both in the same range, the kinematic eddy viscosity in the vegetated zone may not be strongly167
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affected by vegetation. These assumptions and (6) are employed in this study as well. Therefore,168

the Reynolds stresses in (1a-b) are expressed by the constant sub-depth kinematic eddy viscosity169

as in (6), for both the non-vegetated and vegetated zones.170

At the side walls, the velocity vanishes in the directions both tangential and normal to the side171

walls. The following conditions therefore hold:172

Ũ = 0 at ỹ = B̃,−B̃v, (7a)173

Ṽ = 0 at ỹ = B̃,−B̃v. (7b)174

In the shallow water formulation, however, it is not easy to make use of the conditions of vanishing175

streamwise velocity (7a) (non-slip conditions). In place of these conditions, the following slip176

conditions are often used:177

∂Ũ

∂ỹ
= 0 at ỹ = B̃,−B̃v. (8)178

At a sufficient distance from the boundary between the two zones, the streamwise velocity asymp-179

totically approaches constant velocities in both the non-vegetated and vegetated zones in the base180

state. If B̃ and B̃v are sufficiently large, and the slip condition (8) holds, the streamwise velocity181
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is constant at both side walls in the base state, i.e. for which182

Ũ = Ũ∞ at ỹ = B̃; Ũ = Ũ−∞ at ỹ = −B̃v, (9)183

where Ũ∞ and Ũ−∞ are the velocities at a sufficient distance from the boundary in the non-184

vegetated and vegetated zones, respectively. We assume that both side walls are located at a suffi-185

cient distance from the boundary, and employ (7b) and (8) as the boundary conditions at the side186

walls.187

Right at the boundary between the non-vegetated and vegetated zones, the velocities, flow188

depth and shear stresses are continuous, such that189

lim
ỹ→+0

(
Ũ , Ṽ , H̃, T̃xx, T̃xy, T̃yy

)
= lim

ỹ→−0

(
Ũ , Ṽ , H̃, T̃xx, T̃xy, T̃yy

)
. (10)190

Normalization191

At a sufficient distance from the boundary between the two zones in the base state normal flow192

equilibrium condition, Ũ and H̃ are constant, and Ṽ vanishes. Thus, (1) allows the solutions193

Ũ∞ =

(
gH̃∞S

Cf

)1/2

, Ũ−∞ =

(
2gH̃∞S

2Cf + CDãH̃∞

)1/2

. (11)194

12



The velocity and flow depth at a sufficient distance from the vegetated zone, Ũ∞ and H̃∞ are used195

for the normalization. The velocities and flow depth are then rendered dimensionless according to196

the following expressions:197

(Ũ , Ṽ ) = Ũ∞(U, V ), H̃ = H̃∞H. (12)198

The independent variables x̃, ỹ and t̃ are normalized with the use of the width of the non-vegetated199

zone B̃, such that200

(x̃, ỹ) = B̃(x, y), t̃ =
B̃

Ũ∞
t. (13)201

With the use of the above normalization, the governing equations (1) are rewritten in the form202

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
= −F−2∂H

∂x
+ β

(
1− Tbx +Dx

H

)
+ ε

(
∂2U

∂x2
+
∂2U

∂y2

)
, (14a)203

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
= −F−2∂H

∂y
− βTby +Dy

H
+ ε

(
∂2V

∂x2
+
∂2V

∂y2

)
, (14b)204

∂H

∂t
+
∂UH

∂x
+
∂VH

∂y
= 0, (14c)205

where (Tbx, Tby) and (Dx, Dy) are the normalized bed shear stress and vegetation drag vectors,206
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respectively, written in the form207

(Tbx, Tby) =
(
U2 + V 2

)1/2
(U, V ) , (15a)208

(Dx, Dy) =


α (U2 + V 2)

1/2
H (U, V ) if −Bv ≤ y ≤ 0,

0 if 0 ≤ y ≤ 1.

(15b)209

The above normalized governing equations include the four non-dimensional parameters β, ε,210

F and α. The parameter β, which expresses the relative importance of the bed shear effect, is211

dependent on the aspect ratio of the non-vegetated zone AR = B̃/H̃∞, and the bottom friction212

coefficient Cf , such that213

β =
Cf B̃

H̃∞
= CfAR. (16)214

The parameter ε is associated with the eddy viscosity ν̃T , expressed by (6), in the form215

ε =
ν̃T

Ũ∞B̃
=
C

1/2
f H̃∞

15B̃
=

C
1/2
f

15AR

. (17)216

The Froude number F̃ is given by217

F =
Ũ∞√
g̃H̃∞

=

(
S

Cf

)1/2

. (18)218

14



The parameter α is related to the vegetation drag and density, and is defined by219

α =
CDãH̃∞

2Cf

. (19)220

BASE STATE NORMAL FLOW221

The base state is set considering the fluid motion before the instabilities take place at the shear222

layer. Taking the average flow field as the base flow, or introducing a kinematic eddy viscosity223

including the effect of the vortices would result in a base state which is affected by the perturbations224

due to the transverse mixing.225

In the base state, (14a) reduces to226

β
(
1− U2

0

)
+ ε

d2U0

dy2
= 0 if 0 ≤ y ≤ 1, (20a)227

β
[
1− U2

0 (1 + α)
]

+ ε
d2U0

dy2
= 0 if −Bv ≤ y ≤ 0, (20b)228

where U0 is the streamwise velocity in the base state, which is a function only of the transverse229

coordinate y.230

The normalization of (Ũ∞, Ũ−∞) leads to (1, φ), where φ is the ratio between the undisturbed231

velocities in the vegetated and non-vegetated zones at a sufficient distance from their boundary,232
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which is related to the non-dimensional parameter α, such that233

φ =
Ũ−∞

Ũ∞
=

1

(1 + α)1/2
. (21)234

The domain of φ is 0 < φ ≤ 1; φ approaches to 0 when vegetation obstructs the flow completely235

in the vegetated zone (α→∞), and takes a value of unity when there is no vegetation (α = 0).236

In the base state, the matching conditions (10) reduce to237

lim
y→+0

U0 = lim
y→−0

U0 = ψ, lim
y→+0

dU0

dy
= lim

y→−0

dU0

dy
. (22)238

There is a discontinuity in d2U0/dy2 at y = 0. The velocity between the two zones ψ has a relation239

with φ as240

ψ =

(
2φ2

1 + φ

)1/3

. (23)241

The above expression was determined from the integration of (20a-b) with respect to y and the242

introduction of boundary conditions U0 = (φ, 1) at y = (−Bv, 1) and matching conditions (22).243

Solving (20a,b) under the above referred conditions, we obtain the explicit analytical solutions244
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for U0 in the form245

U0(y) =


3 tanh2

[(
β

2ε

)1/2

y + tanh−1
(
ψ + 2

3

)1/2
]
− 2 if 0 ≤ y ≤ 1,

3φ coth2

[
−
(
β

2εφ

)1/2

y + coth−1
(
ψ + 2φ

3φ

)1/2
]
− 2φ if −Bv ≤ y ≤ 0.

(24)246

The streamwise velocity in the base state U0 is found to be expressed by hyperbolic-tangent and247

hyperbolic-cotangent functions which are invariant in time and in the streamwise direction and248

include four non-dimensional parameters, β, ε, ψ and φ, where the later two can be expressed as249

functions of only α.250

Figs. 3(a), (b) and (c) depict the lateral distribution of U0 as in (24) as functions of the parame-251

ters β, ε and α, respectively. Note that the velocities at the far right and left correspond to Ũ∞ and252

Ũ−∞, and the value of U0 at the far left is φ. It is found from Fig. 3(a) that, as β increases, the width253

of the shear layer decreases. This is because an increase in β implies an increase in the relative254

significance of the bed friction over the vegetation drag. In Fig. 3(b), on the other side, the increase255

of ε results in the increase of the shear layer width following the increase of the relative importance256

of the sub-depth kinematic eddy viscosity. The relative increase of the viscous effects will result257

in a milder lateral gradient of the base state velocity. According to Fig. 3(c), φ decreases with258

increasing α, as it is natural that the velocity difference between the two zones increases with the259

vegetation drag parameter. In contrast to β and ε, the shear layer width does not strongly depend260
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on α.261

LINEAR STABILITY ANALYSIS262

A temporal linear stability analysis is performed herein. A disturbance undulating in the263

streamwise direction is introduced to the base state. The streamwise and lateral velocities U and264

V , and the flow depth H are then expanded in the form265

U(x, y, t) = U0 (y) + AU1(y)ei(kx−ωt), (25a)266

V (x, y, t) = AV1(y)ei(kx−ωt), (25b)267

H(x, y, t) = 1 + AH1(y)ei(kx−ωt), (25c)268

where A, k and ω are the amplitude, wavenumber and angular frequency of perturbation. In the269

scheme of temporal linear stability analysis, k is real while ω is complex such that ω = ωr + iΩ,270

where ωr is the real angular frequency and Ω is the growth rate of perturbation.271

Substituting (25) into the governing equations (14), we obtain the following perturbed equa-272
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tions in the non-vegetated zone:273

[
i (kU0 − ω) + k2ε+ 2βU0 − ε

d2

dy2

]
U1 +

dU0

dy
V1 +

(
ikF−2 − βU2

0

)
H1 = 0, (26a)274 [

i (kU0 − ω) + k2ε+ βU0 − ε
d2

dy2

]
V1 + F−2

dH1

dy
= 0, (26b)275

ikU1 +
dV1
dy
− i(ω − kU0)H1 = 0. (26c)276

In the vegetated zone, (14) reduces to277

[
i (kU0 − ω) + k2ε+ 2βU0 (1 + α)− ε d2

dy2

]
U1 +

dU0

dy
V1 +

(
ikF−2 − βU2

0

)
H1 = 0,(27a)278 [

i (kU0 − ω) + k2ε+ βU0 (1 + α)− ε d2

dy2

]
V1 + F−2

dH1

dy
= 0,(27b)279

ikU1 +
dV1
dy
− i (ω − kU0)H1 = 0.(27c)280

Since the amplitude of the perturbation A is assumed to be infinitesimally small, the terms con-281

taining A2 have been dropped in the linear stability analysis, so that the results of the analysis are282

valid only in the range of small amplitudes.283

The boundary conditions of vanishing lateral velocity (7b) and vanishing shear stress (8) at the284
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side walls take the following forms at O(A):285

∂U1

∂y
= 0 at y = −Bv, 1, (28a)286

V1 = 0 at y = −Bv, 1. (28b)287

At the interface between the vegetated and non-vegetated zones y = 0, the matching conditions288

reduce to289

lim
y→+0

(
U1, V1, H1,

∂U1

∂y
,
∂V1
∂y

)
= lim

y→−0

(
U1, V1, H1,

∂U1

∂y
,
∂V1
∂y

)
. (29)290

Although there are five matching conditions in (29), only four of them are independent since, if four291

of them are imposed, the other condition is automatically satisfied. Thus, one of these conditions292

can be dropped afterwards.293

A numerical scheme is necessary to solve (26) and (27) under the boundary and matching294

conditions (28) and (29), as the equations obviously do not admit analytical solutions. We employ295

a spectral collocation method with the Chebyshev polynomials. In the non-vegetated zone (0 ≤296

y ≤ 1), the variables U1, V1 and H1 are expanded in the form297

U1 =
N∑
j=0

ajTj (ξ) , V1 =
N∑
j=0

a(N+1)+jTj (ξ) , H1 =
N∑
j=0

a2(N+1)+jTj (ξ) , (30)298
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and, in the vegetated zone (−Bv ≤ y ≤ 0), they are expanded in the form299

U1 =
N∑
j=0

a3(N+1)+jTj (ζ) , V1 =
N∑
j=0

a4(N+1)+jTj (ζ) , H1 =
N∑
j=0

a5(N+1)+jTj (ζ) , (31)300

where aj (j = 0, 1, 2, ..., 6N + 5) are the coefficients of the Chebyshev polynomials, and Tj(ξ)301

and Tj(ζ) are the Chebyshev polynomials in ξ and ζ of degree j. The independent variables ξ and302

ζ both range from -1 to 1, and are related to y by the equations ξ = 2y − 1 (0 ≤ y ≤ 1) and303

ζ = 2y/Bv + 1 (−Bv ≤ y ≤ 0), respectively. The expansions (30) and (31) are substituted into304

the governing equations (26) and (27) respectively, and the resulting six equations are evaluated at305

the Gauss-Lobatto points, defined by306

ξm = cos
mπ

N
, ζm = cos

mπ

N
, (32)307

where m = 0, 1, ..., N . Therefore, the number of points where the governing equations are evalu-308

ated is N + 1. We obtain a system of 6(N + 1) algebraic equations with 6(N + 1) unknown coef-309

ficients a0, a1, a2, ..., a6N+5. Eight equations of the system are then replaced by the four boundary310

conditions (28) and four of the matching conditions (29). The resulting linear algebraic system can311

be written in the form312

M

[
a0 a1 . . . a6N+5

]T
= 0, (33)313
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whereM is a 6(N + 1)× 6(N + 1) matrix in which the elements consist of the coefficients of U1,314

V1 and H1 in the governing equations (26) and (27), and the boundary and matching conditions315

(28) and (29). The condition for (33) to have a non-trivial solution is thatM should be singular.316

Thus,317

|M| = 0. (34)318

The solution of the above equation takes the functional form319

ω = ω (k, β, ε, α,Bv, F ) . (35)320

RESULTS AND DISCUSSION321

As seen in (35), there are six important non-dimensional parameters k, β, ε, α, Bv, and F322

determining the growth rate Ω. The contours of the growth rate Ω on the plane of these parameters323

are shown in Figs. 4–8. When Ω is positive, the perturbations grow with time, whereas the pertur-324

bations decay until they vanish when Ω is negative. The thick solid lines in the figures indicate the325

neutral instability curve on which Ω = 0 and the perturbations neither grow nor decay, and divide326

the planes into stable (Ω < 0) and unstable regions (Ω > 0). In the figures, Ω typically becomes327

negative in the range of sufficiently small and large values of k, and takes a maximum value be-328

tween them. It follows that Ω as a function of k commonly possesses a characteristic wavenumber329
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km associated with the maximum growth rate Ωm, implying the selection of a preferential wave-330

length at the linear level.331

The parameters β, ε, α, Bv, and F were systematically varied from a base set of numerical332

values consisting of β = 0.05, ε = 6× 10−4, α = 10, Bv = 0.55 and F = 0.5. These values were333

defined based on typical values of the experiments of Ikeda et al. (1991). N = 30 was adopted in334

the Chebyshev polynomials, with results independent of the numerical resolution.335

In Fig. 4(a), the dependence of Ω on β is studied for the case ε = 6× 10−4, α = 10, Bv = 0.55336

and F = 0.5, following the base set of values for these parameters. The growth rate Ω is maximized337

when β is around 10−1. As β increases or decreases from this value, the flow becomes less stable,338

and in the range β ' 0.5, the region of positive Ω completely disappears and the flow becomes339

stable. In the range of large β, the effect of the bottom friction inhibits the effect of the lateral340

velocity gradient, as already shown by Chu et al. (1991) and White and Nepf (2007). On the other341

side, in the range of small β, the relative effect of the small scale turbulences generated by the342

bottom friction will be reduced, allowing the shear layer to expand further along the transverse343

direction and leading to a milder lateral gradient of the base state velocity, as in Fig. 3(a), leading344

to the reduction of the growth rate Ω. Although the present shallow water formulation may no345

longer be valid in the range of β / 5 × 10−3, the decrease in the growth rate Ω is expected to346

occur in this range. In the range of sufficiently small β, the shear layer may be affected by the zero347
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disturbance boundary condition of the walls, as pointed by Kolyshkin and Ghidaoui (2002). The348

range of k for positive Ω and the characteristic wavenumber km increase with β. This is because349

the wavenumber k is normalized by the width of the non-vegetated zone B̃.350

The effect of the parameter ε on Ω is studied in Fig. 5. The parameter ε measures the relative351

effect of the sub-depth kinematic eddy viscosity. Because the sub-depth kinematic eddy viscosity352

is derived taking into consideration the small scale turbulences generated by the bottom friction353

before instability takes place, ε does not contain the effect of the large-scale turbulences. It is354

found from Fig. 5 that the flow becomes stable when ε ' 4.0× 10−3. In this range, the dissipation355

of energy caused by the small scale turbulences will be sufficiently large to suppress the effect356

of the transverse mixing. On the other side, as ε decreases, Ω increases. In the range of very357

small ε, the flow approaches to the inviscid case. The characteristic wavenumber km increases358

with the decrease of ε because of the normalization of the wavenumber k. If we had employed the359

kinematic eddy viscosity as in Chen and Jirka (1997), the growth rate of perturbations would have360

been underestimated, following that a larger eddy viscosity would correspond to a smaller growth361

rate Ω.362

The dependence of Ω on the vegetation drag parameter α is studied in Fig. 6. It is found that, in363

the range of small α, Ω is negative and the flow is stable as already pointed out by Chu et al. (1991)364

and White and Nepf (2007). As α increases, Ω increases with a slight increase in km, which peaks365
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around the point (α, k) ≈ (102, 6). In the range of α ' 102, Ω decreases with a slight decrease in366

km, and Ω becomes negative and the flow becomes stable again when α ' 4× 103. In the present367

analysis, we assume that the kinematic eddy viscosity in the vegetated zone is represented by (6)368

since the typical length scale of vegetation is not significantly smaller than the flow depth. When369

the vegetation density reaches a certain density, this assumption may no longer be valid. However,370

it is natural that the flow becomes stable with increasing α since the vegetated zone becomes like371

a cavity region when α is sufficiently large, and the large-scale horizontal vortices are damped by372

strong retardation effects. Therefore, the contours of Ω in the range of large α in Fig. 6 are at least373

qualitatively correct.374

The effect of the width of the vegetated zone Bv on Ω is shown in Fig. 7. It is found from the375

figure that Ω is negative for any value of k when Bv / 0.1, and Ω is almost independent of Bv376

when Bv ' 0.5. In this analysis, we assume that Bv is large enough that U0 is almost constant at377

y = −Bv as described in (9). Therefore, Fig. 7 is not reliable in the range of small Bv. However,378

Fig. 7 is at least qualitatively correct because the lateral displacement of water is suppressed and379

the flow becomes stable when Bv is sufficiently small.380

The dependence of Ω on the Froude number F is studied in Fig. 8. Because the rigid-lid381

assumption was not employed in the present analysis, the growth rate of perturbations can also be382

studied for values of F which are not close to zero. It is found from the figure that the flow is383
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unstable in the range of small F . As F increases, the instability weakens and a stable region is384

observed in the range F ≈ 2.3−2.6. When F ' 2.6 under the conditions of this figure, the flow is385

again found to be unstable. It has been empirically known that rapid flow plays stabilizing effects386

for lateral velocity gradients, which is theoretically explained in this analysis. On the other side,387

as pointed by Kolyshkin and Ghidaoui (2002), the rapid flow becomes unstable to gravity waves388

if F is sufficiently large. Therefore, although the flow is found to be stable to the lateral velocity389

gradients when F ' 2.3 in Fig. 8, it is unstable to gravity when F ' 2.6. Fig. 9 depicts the neutral390

instability curves (Ω = 0) for the case β = 0.05, ε = 6 × 10−4, and Bv = 0.55 for varying α and391

multiple Froude numbers F . While the flow is stable when α / 0.5 for F = 0.5 and F = 1.5,392

it becomes unstable to gravity in this range when F = 2.5. As F increases from 0.5 to 2.5, the393

unstable region for α ' 0.5 diminishes because the gravity effects weaken the instability due to394

the transverse mixing. The combined effect of rapid flow and lateral mixing stabilizes the flow in395

the range of α ≈ 101 for F = 2.5.396

Once the characteristic frequency of the generation of vortices ωrm associated with the max-397

imum growth rate Ωm is determined, the corresponding time period T̃ can be calculated by the398

following relation:399

T̃ =
2πB̃

ωrmŨn

. (36)400

Assuming that the perturbation with the maximum growth rate Ωm is realized in experiments and401
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in the field, we compare T̃ predicted in the analysis with the results of the laboratory experiments402

obtained by Ikeda et al. (1994) and Tsujimoto (1991). In their experiments, vortices were generated403

by an array of regularly spaced cylinders installed on one side of channels, which is the same setup404

as assumed in the present analysis. The major hydraulic parameters of the experiments are listed405

in Table 1.406

Fig. 10 depicts a comparison between the predicted and measured values of the period of gen-407

eration of vortices T̃ . In the figure, the crosses correspond to the results obtained with the use of408

(6), and the closed circles correspond to the results obtained with the use of the eddy viscosity409

proposed by Chen and Jirka (1997). For the sub-depth eddy viscosity ν̃T from (6), the predic-410

tions are generally smaller than the observations by a factor of approximately two. Ikeda et al.411

(1994) made a comparison between the vortex shedding periods observed in their experiments412

and those predicted by their linear stability analysis, and showed good agreement between them.413

Their analysis employed the lateral kinematic eddy viscosity observed in their experiments which414

is approximately twice as large as in (6). Similarly, we performed a linear stability analysis of415

the experimental cases of Table 1 employing the eddy viscosity of Chen and Jirka (1997) and the416

agreement was better in comparison with the results corresponding to the eddy viscosity from (6),417

as depicted in Fig. 10.418

The vortex shedding periods observed in the experiments correspond to a fully developed stage,419
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while the results of the linear analysis can reliably reflect only an initial stage of the growth of420

infinitesimally small disturbances. Although the use of an increased eddy viscosity in the linear421

analysis led to a good estimation of the vortex shedding periods, this is because the nonlinear422

interactions may result in the increase of the mixing efficiency, which is apparently equivalent to423

the increase in the kinematic eddy viscosity.424

The vortex shedding period may be longer due to the nonlinear interaction among vortices with425

a variety of length scales and frequencies. Therefore, in order to gain a qualitative understanding of426

the effect of nonlinear interaction, a weakly nonlinear stability analysis will no doubt prove useful.427

CONCLUSIONS428

In this paper, we propose a new linear stability analysis of flow with a lateral velocity gradient429

due to the presence of vegetation on one side of an open channel. In the analysis, we employ the430

St. Venant shallow water equations, and include the Reynolds stresses represented by the kine-431

matic eddy viscosity, which characterizes the sub-depth scale turbulence generated by the bottom432

friction. In the base state, the velocity distributions inside and outside vegetation are expressed by433

hyperbolic cotangent and hyperbolic tangent functions squared respectively. These functions are434

determined analytically, by considering as the base state not the average flow, but the flow without435

the effects of the large-scale horizontal vortices.436

We performed a temporal linear stability analysis by imposing small perturbations on the base437
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state flow velocities and depth. We obtained a set of instability diagrams with respect to six non-438

dimensional parameters, including a kinematic eddy viscosity parameter, following that we did not439

employ a formulation for inviscid flow. Our results indicate that, while the base state flow field is440

unstable in the range of typical, moderate values of the hydraulic parameters, stability is retained441

in the range of sufficiently small and large vegetation densities, small widths of the vegetated zone,442

large bed shear effect, large sub-depth eddy viscosity effect, and moderate Froude numbers where443

the flow is stable to both the transverse mixing and the gravity. The growth rate of perturbations444

could be evaluated for Froude numbers far from zero because the rigid-lid assumption was not445

used. The use of a theoretical sub-depth kinematic eddy viscosity unaffected by the lateral mo-446

tions permitted a consistent estimation of the growth rate of perturbations, as these perturbations447

were imposed to a base flow which is independent of the large-scale lateral motions. Assuming that448

the characteristic wavenumber and frequency of perturbations associated with maximum perturba-449

tion growth rate correspond to those of vortices realized in experiments, we compare predicted450

and observed vortex shedding frequencies. There is a systematic discrepancy in the frequencies451

predicted from employing a sub-depth eddy viscosity undisturbed by the vortices, when compared452

to the observed frequencies. This discrepancy, typically in the range of a factor of approximately453

two, may be caused by the limitation of linear stability analysis.454
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NOTATION482

The following symbols are used in this paper:483

A = amplitude;484

AR = aspect-ratio of the non-vegetated zone;485

a = vegetation density parameter;486

B = non-vegetated zone width;487

Bv = vegetated zone width;488

Cd = vegetation drag coefficient;489

Cf = bed friction coefficient;490

Dx, Dy = streamwise and transverse vegetation drag components, respectively;491
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d = diameter of cylinders;492

F = Froude number;493

g = gravity acceleration;494

H = flow depth;495

k = wavenumber;496

lx, ly = distances between two adjacent cylinders in x and y directions;497

S = streamwise bed slope of the channel;498

Tbx, Tby = streamwise and transverse bed shear stress components, respectively;499

Ti,j (i, j = x, y) = Reynolds stress tensor;500

Tj(ξ), Tj(ζ) = Chebyshev polynomials in ξ and ζ of degree j;501

t = time;502

U, V = streamwise and transverse velocities, respectively;503

U0 = base state flow velocity;504

U1, V1, H1 = eigenfunctions;505

Uf = friction velocity;506

x, y = streamwise and transverse coordinates, respectively;507

α = vegetation drag parameter;508

β = bed friction parameter;509

32



ε = sub-depth eddy viscosity parameter;510

κ = Kármán constant;511

νT = kinematic eddy viscosity;512

ρ = water density;513

φ = ratio between the undisturbed velocities in the vegetated zone and the non-vegetated zone;514

ψ = base state flow velocity at the interface between the non-vegetated and vegetated zones;515

ω = ωr + iΩ = angular frequency.516

Subscripts:517

∞,−∞ = far field in the non-vegetated and vegetated zones, respectively;518

m = most unstable mode.519

33



List of Tables520

1 Hydraulic parameters in Ikeda et al.’s (1994), run 1–5, and Tsujimoto’s (1991), run521

IW1–IW3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35522

34



TABLE 1. Hydraulic parameters in Ikeda et al.’s (1994), run 1–5, and Tsujimoto’s
(1991), run IW1–IW3.

Run β ε (×10−4) α BV F Measured T̃ (s)

1 0.060 5.02 10.2 0.57 0.41 6.4

2 0.061 5.07 10.0 0.57 0.75 3.8

5 0.025 5.48 17.2 0.57 0.44 9.0

IW1 0.024 4.84 67.7 0.43 0.69 3.3

IW2 0.030 5.84 51.0 0.43 0.78 2.5

IW3 0.025 5.40 61.2 0.43 0.93 1.9
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functions of (a) β for the case ε = 6 × 10−4, α = 10, (b) ε for the case β = 0.05,
α = 10, and (c) α for the case β = 0.05, ε = 6 × 10−4.
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FIG. 3. The lateral distribution of the streamwise velocity in the base state U0 as
functions of (a) β for the case ε = 6 × 10−4, α = 10, (b) ε for the case β = 0.05,
α = 10, and (c) α for the case β = 0.05, ε = 6 × 10−4.
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FIG. 9. The contours of the neutral instability (Ω = 0) in the α-k plane for the case
β = 0.05, ε = 6 × 10−4, Bv = 0.55 and multiple Froude numbers F .
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FIG. 1. The contours of the neutral instability (Ω = 0) in the α-k plane for the case
β = 0.05, ε = 6 × 10−4, Bv = 0.55 and multiple Froude numbers F . The arrows
point the unstable region delimited by the curve which they cross.

2

FIG. 10. Comparison between the predicted and measured periods of generation
of vortices T̃ (×: eddy viscosity from (6); •: eddy viscosity from Chen and Jirka
(1997)).
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