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Abstract

Well-known immunization strategies, based on degree centrality, betweenness centrality, or closeness centrality,
either neglect the structural significance of a node or require global information about the network. We propose a
biologically inspired immunization strategy that circumvents both of these problems by considering the number
of links of a focal node and the way the neighbors are connected among themselves. The strategy thus measures
the dependence of the neighbors on the focal node, identifying the ability of this node to spread the disease.
Nodes with the highest ability in the network are the first to be immunized. To test the performance of our
method, we conduct numerical simulations on several computer-generated and empirical networks, using the
susceptible-infected-recovered (SIR) model. The results show that the proposed strategy largely outperforms
the existing well-known strategies.

Keywords: infectious agent, Physarum polycephalum, heterogeneous topology, degree centrality, betweenness
centrality, closeness centrality, SIR model

1. Introduction1

Infectious agents, in the broadest sense, can spread in a ‘population’ of humans, animals, and nowadays2

technological devices. In the case of an outbreak, the goal is to minimize the damage to the ‘population’3

without violating the constraints of a limited budget. Achieving this goal in ‘populations’ other than the4

primitive, well-mixed ones is the main reason why the problems of (i) epidemics spreading in complex networks5

[1, 2, 3, 4, 5] and (ii) the corresponding immunization strategies [6, 7, 8, 9] attracted considerable attention in the6

literature. Such a trend is further spurred by the outcomes of ineffectively controlled epidemics—exemplified by7

the severe acute respiratory syndrome (SARS) and the swine flu [8]—which rapidly spread all over the world due8

to globalization and better means of transport [10, 11]. An immediate concern, therefore, is the development9

of the effective countermeasures against epidemics, wherein immunization science plays an important, if not10

critical, role.11

Multiple immunization strategies have been considered for complex networks. Uniform or random immu-12

nization [12] selects any node in the network with equal probability at each time step, which results in a strategy13

suitable for homogeneous networks, but ignores the fact that in highly heterogeneous networks eradicating an14

infective agent cannot be guaranteed regardless of the fraction of immunized nodes. Targeted immunization15

[13, 14] seeks to overcome this problem by selecting the nodes with the highest ability to spread the disease.16

Such ability is often measured in terms of degree centrality, defined as the number of ties a node has, or be-17

tweenness centrality, which indicates how often a node is located along the shortest route between two other18

nodes. A strategy based on degree centrality is highly effective, yet it neglects the structural significance of a19

node because the most connected nodes are not necessarily the ones that facilitate disease propagation from one20

dense cluster to another [9]. Betweenness centrality can be used to overcome such a shortcoming, but suffers21

from a considerable computational cost [9]. In general, targeted immunization requires global knowledge of22

network properties, which is impractical. Motivated by such an impracticality, so-called acquaintance immu-23

nization [15, 16] was developed, whereby immunized nodes comprise only a small fraction of random neighbors24

of randomly selected nodes. Furthermore, a number of alternative and/or more specialized strategies have also25
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been discussed [17, 18, 19, 20, 21]. Owing to their immediate practical and economic implications, additional26

studies involving novel immunization strategies are still of considerable importance.27

Herein we propose an efficient biologically inspired immunization strategy for network epidemiology. The28

term biologically inspired is used in the sense that we draw inspiration from a single-celled, amoeba-like organ-29

ism Physarum polycephalum, capable of transporting signals and nutrients through a dendritic (i.e. tree-like)30

network of tubular structures called pseudopodia [22]. Physarum is particularly interesting because of the abil-31

ity to perform cellular computations of a sort, which lead to the solution of, for example, the shortest path32

problem. This and similar observations served as a basis for constructing a mathematical model of an adaptive33

transport network driven by Poiseuille flow that exibits computational abilities much like Physarum itself [23].34

Subsequently, a Physarum-type algorithm has been used for solving the Steiner Minimum Tree problem [24, 25],35

for optimizing network design [26, 27, 28, 29], and for a variety of other applications [30, 31, 32, 33, 34].36

The paper is organized as follows. In Section 2 we describe how to construct a Physarum model and modify37

it into a strategy for immunizing complex networks. Model properties and performance are examined in Section38

3. In particular, we emphasize (i) the difference in functioning between the proposed strategy and other, well-39

known counterparts, (ii) the gain in performance by accounting for the structural importance of nodes, and40

(iii) the ability to capture the key attributes of a whole network based solely on the successive use of local41

information. Finally, in Section 4 we summarize the take-home message and discuss the potential drawbacks,42

as well as the future developments.43

2. Methods44

The proposed, biologically inspired strategy (denoted simply AS, where A stands for amoeba) is constructed45

in three steps. First, we describe the Physarum model for the shortest path selection. We then modify the46

model by adding a noise factor to select the paths alternative to the shortest one along which the disease can47

still spread, albeit with a lower probability. Second, the original Physarum (single-source, single-sink) model is48

further modified to become a single-source, multi-sink model to consider the spread of the disease to multiple49

targets simultaneously. With these modifications, the model measures the dependence of each node in the50

network on the focal node. The third and final step in the construction of AS is motivated by the fact that51

applying the modified Physarum model to a large network is impractical due to a possible lack of information52

on the network structure or the high computational expense. Accordingly, for each focal node, a subnetwork53

consisting of the focal node itself and its R-step neighbors is separated from whole network, whereupon the54

model is applied to this R-local subnetwork. To test the performance of AS, we conduct numerical simulations55

on several computer-generated and empirical networks.56

2.1. A Physarum model for the shortest paths selection57

The shortest path selection by Physarum polycephalum is based on the transformations of tubular structures58

(pseudopodia) [23, 35] and a positive feedback from flow rates [36, 37]. Namely, high rates of the protoplasmic59

flow stimulate the diameter of pseudopodia to increase, whereas at low flow rates the diameter tends to decrease.60

The pseudopodia thickness thus adapts to the flow rate. More formally, we observe a set of nodes N , containing61

two end-nodes, i1 and i2 (for biological reasons also called food-source nodes), and any number of in-between62

nodes, i ∈ N . The edge connecting nodes i, j ∈ N is denoted as i-j and serves as a symbolic representation of63

a pseudopodium. Denoting by Qij the flux through edge i-j (i.e. from i to j) and assuming the flow through64

pseudopodia to be approximately Poiseuille flow, we obtain:65

Qij =
πr4

ij

8ξLij
(pi − pj) =

Dij

Lij
(pi − pj), (1)

where ξ is the viscosity coefficient of the sol, Dij = πr4
ij/8ξ is a measure of the conductivity of pseudopodia66

(with rij being the radius), and pi is the pressure at node i. Lij is the length of edge i-j. One interpretation67

for these lengths follows from the fact that L−1
ij determines the importance of edge i-j, which means that in an68

unweighted network Lij = 1 for all possible is and js.69

Pressures, pi in Eq. (1) are unknown. To obtain them, we further assume that in-between nodes are of zero70

capacity and that the sol conservation law is upheld, yielding at each node j,
∑

i∈Γ(j)Qij = 0, j 6= 1, 2, where71

i runs across the set of the nearest neighbors of j, Γ(j). For the source node, 1, and the sink node, 2, we have72 ∑
i∈Γ(1)Qi1 = −I0 and

∑
i∈Γ(2)Qi2 = I0, respectively, where I0 is the influx from the source node (or into the73

sink node). It follows:74 ∑
i∈Γ(j)

Dij

Lij
(pi − pj) =


.
−1 for j = 1,
+1 for j = 2,
0 otherwise,

(2)
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where without any loss of generality I0 = 1. By further setting p2 = 0 as the basic pressure level, all pi’s can be75

determined from the above system of equations. Finally, using Eq. (2) all flows, Qij = Dij(pi − pj)/Lij , can76

also be obtained.77

Experiments show that pseudopodia with higher flux rates are reinforced, while those with lower flux rates78

degenerate [23, 35]. To accommodate this adaptive behavior of pseudopodia, the conductivities, Dij , are79

assumed to change according to the following equation:80

d

dt
Dij = f(|Qij |)− aDij , (3)

where a is the decay rate. The functional form f(|Qij |) is, for simplicity, set to f(|Qij |) = b|Qij |, where b is a81

constant [23]. We further simplify the notation by choosing the units in which b/a = 1, implying that flow and82

conductivity have the same dimensions, that pressure has the dimension of length, and that the time, t′ = at, is83

dimensionless (in the following, we will suppress the prime because no confusion can occur). To solve Eq. (3),84

a semi-implicit scheme is used as follows:85

Dn+1
ij −Dn

ij

δt
= |Qn

ij | −Dn+1
ij , (4)

where δt is a time step and the upper index, n, indicates the current moment in time. In this way, the time-86

varying conductivity, Dij , degenerates to zero for every path between the end-nodes, except the shortest one.87

2.2. A noise factor for irrational path selection88

The described Physarum model solves the shortest path problem, but that is not where our interest lies. To89

formulate an immunization strategy, it is necessary to consider the paths other than the shortest one. However,90

in the original Physarum model, the flow Qij from node i to node j tends to unity if the edge i-j is lying on91

the shortest path or tends to zero otherwise [38]. To account for other pathways as well, we rewrite Eq. (4) as92

follows:93

Dn+1
ij −Dn

ij

δt
=

|Qn
ij |

1− γ + γ|Qn
ij |
−Dn+1

ij , (0 < γ ≤ 1) (5)

where γ is a noise factor. Similar to the noise in game theory [39, 40], γ is introduced to disturb the mass flow94

distribution through the network’s edges. Using the terminology from evolutionary biology, γ permits irrational95

selection. The modified model approaches the original as γ → 0.96

2.3. Multi-foraging97

For the purpose of devising an immunization strategy, in addition to modifying the model by a noise term,98

we wish to simultaneously consider the potential for the spread of the disease from a source node to multiple99

other nodes in the network. To achieve such a feat, we rewrite Eq. (2) as100

∑
i∈Γ(j)

Dij

Lij
(pi − pj) =


.
−1 for j = 1,

1
n−1 for j = {2, 3, · · · , n},
0 otherwise,

(6)

where n is the number of nodes in the network. We call this model a multi-forage model because multiple101

sink-nodes can “forage” on a single source-node. By applying the multi-forage model, we are in a position to102

derive a proxy for the ability of the focal node to spread the disease.103

2.4. A biologically inspired immunization strategy (AS)104

The extended Physarum model has all the desired properties for formulating an immunization strategy, yet105

the information on the structure of the whole network may not exist. Even if such information is available,106

the model may not be applicable to a very large network for computational reasons [41]. We therefore pursue107

an R-local approach that considers only a subnetwork of the focal node comprised of the focal node’s R-level108

neighbors and all the accompanying edges. Specifically, a proxy for the focal node’s ability to spread the disease109

is obtained through the following steps:110

1. Take ΓR(k), the set of all R-level neighbors of the focal node k.111

2. For each l ∈ ΓR(k), one iteration of the model is run in which node l is the source and all other j ∈112

ΓR(k)∪ {k} are the sinks. Each iteration thus generates inflows (i.e. positive flows) Q
(k,l)
ij along all edges113

i-j in the selected R-local subnetwork of focal node k.114
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3. The summation across all iterations, Q
(k)
ij =

∑
l∈ΓR(k)Q

(k,l)
ij , gives the so-called flow matrix.115

4. Finally, the ability of focal node k to spread the disease is quantified by a score:116

AS(k) =
∑
i-j

Q
(k)
ij , (7)

where i-j symbolizes the summation over all the edges in the R-local subnetwork of focal node k.117

5. The focal node with the highest AS-score is the first to be immunized.118

The first three steps of the described strategy may be somewhat difficult to understand using just a math-119

ematical notation. Accordingly, these steps are illustrated in Fig. 1. To distinguish focal node 1 from its120

first-level neighbors, we mark it with a wax-yellow color. The results of a single model iteration, in which node121

3 is chosen as the source node, are shown in Fig. 1a. This iteration is immediately followed by another one122

(Fig. 1b), such that node 2 is the source node. The results are summed to produce the flow matrix in Fig. 1c.123

The AS-score for focal node 1 is obtained by repeating the process for all of 1’s first-level neighbors and then124

summing the elements of the flow matrix across all edges.125

3. Results and discussion126

Next, we examine several interesting properties of AS and test its performance against strategies based on127

degree centrality (DCS), betweenness centrality (BCS), and closeness centrality (CCS). Both stylized, computer-128

generated networks and real-world, empirical networks are used in the performance tests. Additionally, the129

success of immunization is tested in conjunction with a susceptible-infectious-recovered (SIR) model.130

3.1. Properties of AS131

The role of the noise factor and irrational path selection. The proposed immunization strategy is designed132

to quantify the ability of a focal node to spread the disease through the network. Put alternatively, we want to133

know (i) the extent to which the neighbors depend on the focal node and (ii) the relative importance of disease134

spreading pathways on which the focal node lies. Nodes 2, 3, and 4 in the inset of Fig. 2, for example, are135

just partially dependent on node 1 because they are, among others, connected by pathways excluding the latter136

node. Node 5, by contrast, is fully dependent on node 1. Furthermore, if we consider the spread of the disease137

from node 5 to node 3, path 5-1-3 is the most direct, but the disease can spread through alternative paths138

5-1-2-3 and 5-1-4-3. Such alternatives need to be taken into account to properly determine the ability of the139

focal node to spread the disease. The original Physarum model cannot yield the desired result. If we imagine140

for a moment that the link between nodes 1 and 3 is removed and assume that path 5-1-2-3 is just a tiny bit141

shorter than alternative path 5-1-4-3, all flow would be assigned to the former path. Node 4 would consequently142

be disregarded as irrelevant for the spread of the disease, while nodes 1 and 2 would (wrongly) be considered of143

equal relevance. However, the possibility of having an epidemic spread via both paths (i.e. 5-1-2-3 and 5-1-4-3)144

would suggest that nodes 2 and 4 should be seen almost as equivalents, whereas node 1 is of more immediate145

concern. The role of the noise factor, γ, is to resolve the described problem. Indeed, the three paths from node146

5 to node 3 are properly distinguished in Fig. 2 based on the flows, if the value of the noise factor is set to some147

γ > 0.5.148

The advantage of AS over the other comparable strategies. To exemplify why AS should perform well at149

immunizing a networked population, Fig. 3 shows three networks in which the wax-yellow circle represents the150

focal node, whereas the other circles are its 1-step neighbors. The degree centrality strategy (DCS) fails to151

distinguish nodes 1 and i in Figs. 3a and b because it neglects how neighbors are connected among themselves.152

The betweenness centrality strategy (BCS) solves this problem, but by considering only the shortest paths,153

the strategy fails to distinguish nodes i and a in Figs. 3b and c. Using AS, however, we obtain AS(1) = 5.4,154

AS(i) = 8.0, and AS(a) = 9.2, respectively, which highlights the capacity of the proposed strategy to classify155

nodes for immunization where the other comparable strategies leave us in the dark.156

To further emphasize how different AS is from the other well-known strategies, we compare the results157

obtained using a simple, yet non-trivial network taken from Ref. [42]. Fig. 4 shows the first five nodes marked158

for immunization by each of the strategies. DCS and CCS, in fact, end up marking the same five nodes for159

immunization shown in Fig. 4a, albeit in a different order. Note, however, that DCS is ambiguous as to what160

the order should be because nodes 3 to 6 have the same degree. Without an additional criteria, there is no161

reason to prefer one node over the other (we actually followed the numbering of nodes). Although all strategies162

singled out nodes 1 and 16, this is where the similarities end. BCS and AS (Figs. 4b and c) go beyond the node163
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degree to mark nodes 23 and 24, both with only two links, for immunization. Nonetheless, the best performer164

is AS because after the first five nodes are immunized, the biggest cluster that can get infected is of size three165

(containing nodes 2, 3, and 4), whereas the other strategies leave clusters of size four (DCS and CCS) and even166

size five (BCS) exposed.167

3.2. Performance testing in stylized, computer-generated networks168

To test the performance of AS, we plot the fraction of a network that can be infected, F , against the fraction169

of immunized nodes, q. The tests are first performed in four stylized, computer-generated networks, the two of170

which are of Erdős-Rényi (i.e. random) type, whereas the remaining two are of Albert-Barabási (i.e. scale-free)171

type [43, 44]. The results are shown in Fig. 5. Although AS performs very well, its performance is matched172

by DCS, which may seem surprising at first. However, random networks are not supposed to have structurally173

important nodes in the sense of Ref. [9] (i.e. nodes that connect dense clusters, but do not necessarily have a174

high degree themselves). In scale-free networks, by contrast, structurally important nodes are most likely the175

ones with a high degree. These results suggest that random and scale-free networks may be overly stylized for176

thorough performance testing of the considered immunization strategies.177

3.3. Performance testing in real-world, empirical networks178

For the purpose of additional performance testing, we rely on four empirical networks as follows:179

• Email, a complex email network of an organization with over 1000 employees [45];180

• GR-QC, a collaborative scientific network between more than 5000 authors who submitted their articles181

to General Relativity and Quantum Cosmology category of arXiv e-print archive [46].182

• Power grid, a representation of connections between almost 5000 power stations in the western US [47];183

• Yeast, a protein-protein interaction network of yeast containing over 2000 proteins [48].184

Aside from the fact that all these networks are well-documented and readily obtainable, the first two were185

selected for their relevance to the spread of computer viruses and the possibility of sharing some properties with186

the networks of human physical contacts. Power grid network is interesting in the context of the protection187

from cascading failures, whereby ‘immunized’ nodes should have redundant capacity to handle the extra load188

when another network element fails. ‘Immunizing’ Yeast network is admittedly an academic exercise, yet a189

useful one because the properties of empirical networks are not readily observed and analyzed in their stylized,190

computer-generated substitutes [44]. The descriptive statistics of the four selected networks is summarized in191

Table 1.192

The results of performance testing in real-world, empirical networks are shown in Fig. 6. AS is seen out-193

performing all three well-known strategies to which it was compared. Moreover, in Figs. 6b-d the performance194

of AS diverges from that of DCS, thus confirming our previous comment that random and scale-free networks195

are overly stylized to reveal the key properties of the considered immunization strategies necessary for a thor-196

ough evaluation. Another important point is that AS was designed to combine the qualities of DCS and BCS,197

meaning that AS should perform well when DCS is better than BCS (which is precisely the case in Fig. 5, for198

example), but also when it is the other way around (as exemplified in Figs. 6b and d). The ability of AS to199

perform as expected gives us some confidence that our design was successful and that AS should outperform200

the other strategies in an even more dramatic fashion if simulations incorporated the realistic elements of an201

epidemic.202

3.4. Performance testing in conjunction with the susceptible-infectious-recovered model203

To incorporate the realistic elements of an epidemic into performance testing, we resort to a susceptible-204

infectious-recovered (SIR) epidemiological model [49, 50, 51, 52] defined as follows:205

• Each node of the network can be in one of the three possible states: susceptible, infected, or recovered;206

• Initially, nodes to be immunized are determined and removed from the network, including the incident207

links;208

• A node from which the rest of the network can be infected is randomly selected, whereas all the other209

nodes start in the susceptible state;210

• At each time step, infected nodes transmit the disease to their susceptible neighbors with probability λ;211
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• Infected nodes recover with probability η, whereupon they get removed from the network.212

The last two steps of the process outlined above are repeated until no infected nodes remain.213

The results of performance testing in conjunction with the SIR model, where λ = 0.2 and η = 0.05, are shown214

in Fig. 7. The performance is measured in terms of the infected fraction, Pi, and the recovered fraction, Pr,215

of nodes as the functions of time. The former measure is instantaneous in nature, whereas the latter quantifies216

the cumulative effect of an epidemic. In a scale-free network, consistent with the results in Fig. 5, DCS is an217

effective immunization strategy, yet AS performs considerably better (Fig. 7a). In GR-QC network, based on218

Fig. 6b, one might expect that BCS rather than DCS performs well. Although this is precisely the case, AS219

achieves an even higher effectiveness (Fig. 7b). In the power network, judging from Fig. 6c, DCS is surprisingly220

weak, but such a lackluster performance may have been caused by a low fraction of immunized nodes (5%) in221

the presented example (Fig. 7c). More importantly, AS once again emerges as a clear victor. The same is even222

more pronounced in the Yeast network (Fig. 7d). In summary, the maximum infected fraction and the final223

recovered fraction are considerably (2 to 20 times) lower if AS is used instead of DCS, BCS, or CCS with the224

same fraction of immunized nodes.225

4. Conclusions and outlook226

Achievements. We designed and tested a new, efficient network immunization strategy by drawing inspiration227

from an amoeba-like organism, Physarum polycephalum. By looking at the dependence between any two nodes,228

we modified the original Physarum model with a noise factor for similar path finding. We then extended229

the model to include multi-foraging in order to obtain the dependence of other nodes on the focal one. This230

dependence is expressed in the form of a flow matrix, which indicates the ability of the focal node to spread231

the disease. Perhaps the most important properties of such a design are the ability to (i) distinguish situations232

that other comparable methods cannot and (ii) recognize structurally critical nodes that may not have a high233

degree themselves, yet they connect dense clusters of nodes.234

Applicability. In the proposed strategy, immunized nodes are those with a higher ability to spread the disease235

as indicated by the AS-score. However, calculating such a score in reality may be difficult. The information on236

human physical contacts is hard to come by and even if the necessary information is available, a strong time-237

dependence is likely to cause erroneous assessments. The proposed method partly overcomes these difficulties238

by being local in the sense of Ref. [9]. The information on a few R-local subnetworks can be used to start an239

immunization program, which can later be expanded in scope as the new information comes in. The results240

are encouraging in this context because, even if AS is applied locally, the attributes of the whole network are241

successfully revealed.242

In view of the difficulties in applying the proposed (and any other) immunization strategy, it is important to243

admit that more success may be achieved in technological networks for which the relevant, structural information244

is more readily available. Another context in which the proposed strategy may be more applicable is the spread245

of a disease in a network of villages or towns, whereby an efficient immunization strategy may identify hotspots246

for implementing preventive measures with the most impact.247

Outlook. Because the effectiveness of immunization programs may be hampered by a lack of information, per-248

haps the most immediate concern is to design the strategies that (i) perform well under information restrictions249

and (ii) can combine information from multiple sources. As for the restricted information, AS already functions250

locally, but achieves efficiency globally. To address the problem of combining several information sources, we251

may need to resort to the framework of multilayer networks [53], such that each network layer represents one252

type of information. Upon obtaining the AS-score in each layer separately, the results could be combined in253

a certain fashion to produce one overall score for the decision-making. In fact, optimizing the way in which254

the results are combined could be an interesting task for the field of intelligent computation [54]. Finally, the255

incentives for the different behavioral responses to an epidemic could be systematically incorporated into our256

framework by means of evolutionary game theory [55, 56].257

Appendix A: Additional analyses258

There are fundamental obstacles to analytically comparing the performance of various immunization strate-259

gies. Namely, a network’s (mean–field) statistics translate into the statistics of nodes selected for immunization260

by each of the methods, which in turn determines the value of a common performance indicator (e.g. the261

largest fraction of nodes that can get infected after immunization, F ). This sequence of dependencies is most262

easily seen by considering the workings of the degree centrality strategy, and is reflected in the fact that the263

simulated performance of each strategy varies greatly with the network structure. A more important conse-264

quence is that any analytical proof that one method is better than the others would have to start by assuming265
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a mean–field statistic, and therefore would remain specific to such a statistic, largely diminishing the usefulness266

of this approach. Furthermore, mean–field statistics are generally known only for synthetic networks arising267

from the well-known (e.g. Erdős–Rényi and scale–free) algorithms, yet these networks fail to fully reveal how268

advantageous the proposed strategy (AS) is (Fig. 5). AS truly shines when applied to highly heterogeneous,269

real-world networks (Figs. 6 and 7; also see below).270

To strengthen the case for AS, we performed a number of analyses beside those found in the main text.271

First we compare how AS fares against a fairly recent immunization strategy called k-core (hereafter KCS)272

[42, 57]. A conceptual advantage of AS in comparison with KCS is that the latter strategy needs global273

knowledge to decompose a network and then identify the most influential nodes. AS, by contrast, relies only274

on local identification, meaning that the influence of each node is assessed from the information on the node’s275

immediate neighborhood. Despite the information “handicap” of being local, AS manages to outperform KCS276

in all four real-world networks considered in the main text (Fig. A1). In addition, we provide the simulation277

results for the leader rank strategy (LRS) [18] which also appeared in the literature fairly recently. LRS in some278

instances (Figs. A2a and c) achieves almost the same efficiency as AS, yet we have not identified any examples279

in which the former strategy would outperform the latter.280

To further solidify the leading position of AS, we acquired the information on three additional real-world281

networks and tested the performance of AS against the rival strategies. Networks used in these tests are:282

• PGP, a network of mutual trust with more than 10500 involved parties for signing of digital documents283

using the Pretty Good Privacy algorithm [58, 59, 60];284

• Ca-HepPH, a collaborative scientific network between 12000 authors who submitted their articles to High285

Energy Physics category of arXiv e-print archive [46].286

• Twitter, a maximum component of the Twitter social network consisting of more than 65000 users [47].287

The descriptive statistics of the three additional networks are summarized in Table A1.288

The results of numerical simulations using the networks listed in Table A1 are shown in Figs. A2–A4. After289

immunization, we examine the largest fraction of the network that can get infected (F ) and the recovered290

fraction of nodes in an SIR epidemic (Pr). In all instances, the results are displayed as the functions of the291

fraction of immunized nodes (q). AS turns out to be a clear winner of these tests, outperforming its well-known292

competitors with a considerable margin. Overall, numerical tests strongly support the conclusion that AS offers293

new and improved power to identify nodes critical for the spread of infectious agents in network epidemiology.294
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[58] M. Boguñá, R. Pastor-Satorras, A. Dı́az-Guilera, A. Arenas, Models of social networks based on social
distance attachment, Phys. Rev. E 70 (2004) 056122.

[59] J. Duch, A. Arenas, Community detection in complex networks using extremal optimization, Phys. Rev. E
72 (2005) 027104.
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Figures

Figure 1: Internal functioning of AS. Node 1 marked with wax-yellow color is the focal node, whereas the other nodes are its
first-level neighbors. Panels a and b show the results of two model iterations in which nodes 3 and 2 are selected as the source
nodes, respectively. These results are summed to produce the so-called flow matrix in panel c. Upon running all possible iterations
(see the accompanying text), the AS-score for the focal node is obtained by summing the elements of the flow matrix across all
edges.

Figure 2: The role of the noise factor and irrational path selection. The distribution of flows, Qs, along the different paths from
node 5 to node 3 (in the inset) is shown as a function of the noise factor, γ. If γ > 0.5, in addition to shortest path 5-1-3, some
flow is equally distributed between the two remaining paths, 5-1-2-3 and 5-1-4-3, meaning that the relative importance of disease
spreading pathways is correctly distinguished.

Figure 3: The advantage of AS over the other comparable strategies. Schematic network representations in which the node marked
with wax-yellow color is the focal node, whereas the other nodes are its first-level neighbors. DCS fails to distinguish between the
focal nodes in panels a and b. BCS fails to do the same for the focal nodes in panels b and c. AS, by contrast, does not suffer from
the same problems as illustrated by displayed AS-scores.
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Figure 4: The performance of the considered immunization strategies in a simple, yet non-trivial network taken from Ref. [42].
Nodes marked for immunization by DCS and CCS (panel a), BCS (panel b), and AS (panel c). The best performer is AS in panel
c because the biggest cluster left exposed after immunization is of size three (nodes 2, 3, and 4), whereas DCS and CCS in panel a
leave the cluster of size four exposed (e.g. nodes 23 to 26) and BCS in panel b leaves the cluster of size 5 (nodes 2, 4, 5, 11, and
12) exposed to a disease.

Figure 5: Performance testing in stylized, computer-generated networks. The fraction of the network that can be infected, F , is
shown as a function of the fraction of immunized nodes, q, for DCS, BCS, CCS, and AS using ER network with 〈k〉 = 4.13 (panel
a), ER network with 〈k〉 = 4.03 (panel b), SF network with α = 2.576 and 〈k〉 = 6 (panel c), and SF network with α = 2.468
and 〈k〉 = 6 (panel d). The error bars are derived from multiple realizations of the same simulation. The effectiveness of AS
approximately matches that of DCS and outperforms that of BCS and CCS in random and scale-free networks likewise.
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Figure 6: Performance testing in real-world, empirical networks. Fraction of the network that can be infected, F , is shown as
a function of the fraction of immunized nodes, q, for DCS, BCS, CCS, and AS using the Email network (panel a), the GR-QC
network (panel b), the Power network (panel c), and the Yeast network (panel d).

Figure 7: Performance testing in conjunction with SIR modeling. The infected fraction, Pi, and the recovered fraction, Pr, of nodes
as the functions of time in SIR simulations. Shown are the comparisons between DCS, BCS, CCS, and AS (color coding as in Figs.
5 and 6) after having immunized fraction q = 0.15 of nodes in an SF network with 〈k〉 = 6 (panel a), q = 0.08 of nodes in the
GR-QC network (panel b), q = 0.05 of nodes in the Power network (panel c), and q = 0.15 of nodes in the Yeast network (panel d).
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Figure A1: Comparison of AS with two recent immunization strategies. Fraction of the network that can be infected, F , is shown
as a function of the fraction of immunized nodes, q, for KCS (k-core strategy), LRS (leader rank strategy), and AS using the Email
network (panel a), the GR-QC network (panel b), the Power network (panel c), and the Yeast network (panel d).

Figure A2: Performance testing in additional empirical networks: the case of the PGP network. Fraction of the network that can
be infected, F (panels a–c), and the recovered fraction, Pr, of nodes in SIR simulations (panel d) are shown as the functions of the
fraction of immunized nodes, q, for DCS, BCS, CCS, and AS.
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Figure A3: Performance testing in additional empirical networks: the case of the CA-HepPH network. Fraction of the network that
can be infected, F (panels a–c), and the recovered fraction, Pr, of nodes in SIR simulations (panel d) are shown as the functions
of the fraction of immunized nodes, q, for DCS, BCS, CCS, and AS.

Figure A4: Performance testing in additional empirical networks: the case of the Twitter network. Fraction of the network that
can be infected, F (panels a–c), and the recovered fraction, Pr, of nodes in SIR simulations (panel d) are shown as the functions
of the fraction of immunized nodes, q, for DCS, BCS, CCS, and AS.

15



Tables

Table 1: Descriptive statistics of the four empirical networks used in performance testing.

Network n m kmax H 〈C〉
Email 1133 5451 71 1.9421 0.2202
GR-QC 5242 14490 81 3.0512 0.5296
Power 4941 6594 19 1.4504 0.0801
Yeast 2375 11693 118 3.4756 0.3057

Quantities: network size (n), number of edges (m), maximum degree (kmax),

degree heterogeneity (H = 〈k2〉/〈k〉2), and clustering coefficient (〈C〉).

Table A1: Descriptive statistics of the three additional empirical networks used in performance testing.

Network n m kmax H 〈C〉
PGP 10680 24316 205 4.1465 0.2659
CA-HepPH 12008 118505 491 6.5830 0.6115
Twitter 65911 185737 233 2.5829 0.1823
Quantities: network size (n), number of edges (m), maximum degree (kmax),

degree heterogeneity (H = 〈k2〉/〈k〉2), and clustering coefficient (〈C〉).
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