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Abstract 24 

 25 

Reproductive synchrony is a widespread phenomenon found in many taxa, including 26 

plants and corals. However, compared to synchrony caused by environmental cues, 27 

knowledge of socially induced reproductive synchrony is limited, partly due to the 28 

difficulty of experimentally manipulating and/or making detailed behavioral 29 

observations of populations in the wild. In this study, we developed a novel modeling 30 

framework combining an individual-based model, a hierarchical Bayesian model, and 31 

an approximate Bayesian computation (ABC) to elucidate socially induced reproductive 32 

synchrony. This method was applied to time-series redd (i.e., spawning nests) count data 33 

in 30 wild populations of stream-dwelling Dolly Varden charr. The model with 34 

reproductive synchrony explained all the redd count data, whereas the null model, 35 

which did not include the synchrony, failed to reproduce the observed data in several 36 

populations. In addition, our models suggest that Dolly Varden should be able to adjust 37 

spawning by up to a week following other females to produce synchrony. No significant 38 

correlation was observed between reproductive timing and environmental factors, 39 

suggesting that the major cue for the synchrony was social rather than environmental. 40 

The presence of reproductive synchrony within but not among local populations 41 

suggests that predator satiation is not the main driver of the synchrony; rather, other 42 

mechanisms must exist in the Dolly Varden, such as induced monogamy or polygamy, 43 

or avoidance of nest superimposition. This study has demonstrated the effectiveness of 44 

using individual-based and hierarchical modeling together with an ABC parameter 45 

estimation method in behavioral ecological studies. 46 

 47 
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Introduction 51 

 52 

Most organisms in temperate or arctic regions exhibit reproductive seasonality so that 53 

offspring are born when food resources are most abundant (Munro et al. 1990). 54 

Reproduction, however, is often more aggregated in time than would be expected from 55 

seasonality alone, a phenomenon called reproductive synchrony (Ims 1990a). Prominent 56 

examples include mass spawning of corals, mast seeding of plants, and outbreaks of 57 

cicadas (Hoppensteadt and Keller 1976; Harrison et al. 1984; Kelly and Sork 2002). The 58 

adaptive significance of such large-scale synchrony is generally considered to be 59 

predation satiation, which occurs so predators cannot consume all prey because vast 60 

amounts of prey have emerged at the same time (Darling 1938; Janzen 1971). Proximate 61 

cues include environmental factors, such as temperature, precipitation, and lunar cycles 62 

(Hoppensteadt and Keller 1976; Harrison et al. 1984; Kelly and Sork 2002). At smaller 63 

scales, reproductive synchrony caused by social interactions is also of particular interest 64 

because internal factors, such as social or pheromonal cues, may influence the 65 

reproduction of conspecific individuals (French and Stribley 1987; Jovani and Grimm 66 

2008). Reproductive synchrony could have significant ecological and evolutionary 67 

consequences, for example, by mediating population dynamics or mating behavior (Ims 68 

1990a; Mendoza-Cuenca and Macías-Ordóñez 2010; Plot et al. 2012). However, many 69 

important aspects of reproductive synchrony are not fully understood, such as the 70 

relative importance of internal and external factors and the adaptive significance and its 71 

consequences. Furthermore, most knowledge of reproductive synchrony comes from a 72 

relatively small number of animal and plant species, such as tropical reef species (e.g., 73 

corals, fishes, crabs), masting plants, and some primates (Kelly and Sork 2002; Craydon 74 



2004; Baird et al. 2009; Clark et al. 2012). 75 

 76 

Compared to environmentally induced synchrony, socially induced reproductive 77 

synchrony has been demonstrated much less in wild populations. Because experimental 78 

manipulation and determination of social cues are generally difficult, inductive analyses 79 

from observed patterns have often been used (Ims 1990a). For example, when 80 

individuals who are in close proximity reproduce more synchronously than those who 81 

are further apart, socially induced synchrony will be inferred (Sillero-Zubiri et al. 1998; 82 

Evans et al. 2009). However, this can be applied only to sedentary species or species 83 

with breeding nests, such as birds and some mammals. In addition, spatial analysis 84 

cannot separate social cues from local environmental cues (spatial autocorrelation). 85 

Another inductive method is to show the lack of correlation between candidate 86 

environmental factors and reproductive timing (Ims 1990a), but this rather passive 87 

approach has the potential to be misleading because it overlooks unmeasured 88 

environments. Inductive analyses are also generally challenging because socially 89 

induced synchrony has a tendency to result in weak patterns. Unlike mast seeding or 90 

coral spawning, patterns of socially mediated reproduction are often ambiguous because 91 

the effects of social stimuli narrowly focus around a focal individual rather than an 92 

entire population. Such weak temporal clusters of reproduction could also result from 93 

stochasticity alone, especially when the population size is small (e.g., Henson et al. 94 

2010; see also a simulation result below).  95 

 96 

As an alternative to inductive analyses, individual-based models can be used to 97 

investigate underlying mechanisms for observed patterns (Grimm and Railsback 2005). 98 



In fact, this approach has been used successfully to model individual-based synchronous 99 

behaviors, such as flocks of birds, schools of fishes, and swarm of solider crabs (Wood 100 

and Acland 2007; Gunji et al. 2012; Attanasi et al. 2014; Murakami et al. 2014; Calovi 101 

et al. 2015), as well as reproduction (Jovani and Grimm 2008). In these studies, 102 

individuals are given a kind of autonomy, where they are assumed to choose each 103 

behavior depending on social interactions with other individuals (e.g., follow the leader 104 

or neighbor(s)) with stochastic variability. Even in such simple models, however, global 105 

patterns formed by the models are often not directly compared with observational data, 106 

or statistical techniques have not been fully utilized. For example, optimization of 107 

unknown parameters is frequently overlooked, and the degree of fit of the proposed 108 

models is not quantitatively evaluated. This is primarily because the data on individual 109 

behavior are not independent due to synchronicity, meaning that statistical models 110 

requiring independence of observations (e.g., generalized linear models) are not directly 111 

applicable. In addition, including social interactions makes the derivation of the 112 

likelihood function, one of the most essential parts in statistical modeling, exceedingly 113 

difficult. 114 

 115 

The approximate Bayesian computation (ABC) is a promising tool for linking statistical 116 

models to real data in such situations (Beaumont et al. 2002; Beaumont 2010; Sunnåker 117 

et al. 2013). Instead of calculating the exact likelihood, the ABC method approximates 118 

it by numerical simulations and comparisons with the observed data. Thus, ABC has the 119 

potential to be applied to a broad range of complex models (Sunnåker et al. 2013). 120 

However, until recently, ABC has been used primarily in population genetics studies 121 

(Beaumont et al. 2002; Beaumont 2010). In recent years, its use has been expanded to 122 



other disciplines, such as ecology (e.g., Jabot and Chave 2009), but not yet to behavioral 123 

ecology. Despite the considerable potential and solid mathematical foundations of ABC, 124 

there still remain some challenges, such as choosing appropriate models and summary 125 

statistics (Sunnåker et al. 2013). Further applications and improvements of the 126 

technique are therefore needed. 127 

 128 

The aims of the present study are (1) to investigate whether socially induced 129 

reproductive synchrony exists in a stream fish; (2) to estimate ecologically relevant 130 

parameters such as the strength of social interactions; (3) to discuss ultimate factors 131 

causing the reproductive synchrony, if any; and (4) to evaluate our new modeling 132 

framework, which combines an individual-based model (Grimm and Railsback 2005), a 133 

hierarchical Bayesian model (Royle and Drazio 2008), and the approximate Bayesian 134 

computation (Beaumont 2010), for behavioral studies. To this end, we first conducted 135 

intensive field studies and obtained detailed reproductive datasets for a stream-dwelling 136 

salmonid in northern Japan. We then developed individual-based reproductive models 137 

with social interactions (i.e., the synchrony model) and without them (i.e., the null 138 

model), which also incorporated stochasticity, non-uniform reproductive schedules, and 139 

observation processes. Simulated patterns from the alternative models were compared 140 

with the observational data and the parameters were estimated by the modified version 141 

of the ABC method proposed by Nakagome et al. (2013).  142 

 143 

 144 

Materials and methods 145 

 146 



Study system 147 

We investigated reproductive synchrony in the metapopulation of Dolly Varden charr 148 

Salvelinus malma in the upper Sorachi River system, central Hokkaido, Japan (Koizumi 149 

2011). The upper Sorachi River (470 km
2
 watershed area above the Kanayama 150 

Reservoir) consists of more than a hundred small tributaries (< 500 m in length, 0.5-3.0 151 

m in width, 0.01-0.5 m
3
s

-1
 in water discharge) that directly flow into the larger 152 

mainstem (5-30 m in width, 1.0-10 m
3
s

-1
 in discharge), generating significant habitat 153 

heterogeneity between tributaries and the mainstem (Koizumi and Maekawa 2004). 154 

Dolly Varden spawn only in small tributaries and the uppermost reaches of large 155 

tributaries or the mainstem (Koizumi et al. 2006a). They form a metapopulation 156 

structure with each tributary used as a local habitat. Genetic composition and 157 

demography are partially independent in each tributary (Koizumi and Maekawa 2004; 158 

Koizumi et al. 2006b, 2008). Therefore, local tributary populations are considered as 159 

good spatial replicates. There are several fish species inhabiting the Sorachi River, such 160 

as white-spotted charr Salvelinus leucomaenis and freshwater sculpin Cottus nozawae 161 

(Koizumi et al. 2012). However, Dolly Varden dominate small tributaries (Koizumi et al. 162 

2006a, 2012) and, thus, spawning nests (called “redds” in salmonid literature) in 163 

tributaries are unambiguously determined as Dolly Varden redds.  164 

 165 

Redd counts survey 166 

Of the more than a hundred small tributaries, we chose 30 (Supplementary Fig. S1 and 167 

Table S1) for the breeding survey based on the following criteria: relatively easy to 168 

access, whole tributary survey possible (i.e., from the headwater to the junction with the 169 

mainstem), and easy to observe spawning redds due to shallow depth, low velocity, and 170 



low cover habitat. Only one tributary (T54) had a small erosion control dam, which was 171 

106 m upstream from the junction, and we surveyed this reach. In three long tributaries 172 

(IK, T51, T59.5) and in one branch of a tributary (T13b), we surveyed only core 173 

spawning sites in the uppermost reaches. 174 

 175 

To evaluate reproductive timing we conducted a standard redd count procedure in 176 

salmonids (Gallagher et al. 2007) from late August to the end of December 2007, 177 

covering the entire spawning season. Surveys were conducted every 3-5 days for most 178 

of the breeding period in each tributary until two weeks after the final redd was 179 

observed. Occasional visits in a reference tributary confirmed that no spawning 180 

occurred after January. Since identifying spawning redds can sometimes be difficult 181 

(Gallagher et al. 2007), we carefully evaluated the procedure in advance 182 

(Supplementary Appendix A). When we observed spawning behavior (i.e., construction 183 

of redds, often accompanied with multiple males), we recorded them as redds on the 184 

same day. 185 

 186 

 187 

Modeling procedures 188 

Our modeling combined individual-based modeling (Grimm and Railsback 2005), 189 

hierarchical Bayesian modeling (Royle and Drazio 2008), and approximate Bayesian 190 

computation (Sunnåker et al. 2013) approaches. Hierarchical Bayesian modeling 191 

integrates different levels of models into a single statistical framework by constructing a 192 

system model and observation model: the former represents a biological process we are 193 

interested in, whereas the latter represents a sampling process. These models are 194 



integrated into a hierarchy under the Bayesian framework to jointly estimate each of the 195 

parameters (Royle and Drazio 2008). We used an individual-based model for the system 196 

model and an ABC technique for parameter estimation. 197 

 198 

We developed two alternative system models: reproduction models with synchrony (i.e., 199 

with social interaction) and without synchrony (i.e., null models). We examined the 200 

evidence of socially induced reproductive synchrony by testing which model better 201 

explained the observed patterns in 30 local populations of Dolly Varden. Both models 202 

have the following breeding parameters, i.e., the number of spawning females (N), the 203 

mean spawning date (μ), and its variance (σ) in each population, whereas the synchrony 204 

model has another main parameter, a synchrony coefficient (α) that determines the 205 

strength of social interactions. We also constructed observation models for redd counts 206 

to deal with stochasticity and incomplete field data (i.e., variations in the number of 207 

redds a female produces and unequal intervals of field surveys).  208 

 209 

Reproduction schedule and null model 210 

Suppose that in population k (k = 1, …, K = 30) there are Nk females and that the best 211 

spawning date of female i, di, (i = 1, …, Nk) is a random sample from the normal 212 

distribution of mean μk and variance σk
2
;  213 

di ~ N(μk, σk
2
).   (1) 214 

The assumption of a normal distribution reflects both physiological and environmental 215 

effects on reproductive schedules. This was supported by the redd counts summed over 216 

all the tributaries, which fit the normal distribution well. The best spawning date is the 217 

most appropriate timing of oviposition in terms of egg ripeness. Intensive hatchery 218 



programs for salmonids (i.e., artificial breeding) revealed that fertilization success 219 

quickly drops 1-2 weeks after ovulation (Craik and Harvey 1984; Brooks et al. 1997). 220 

This also indicates that females can flexibly change the spawning date for a week or two, 221 

which we modeled as a result of social interactions in the synchrony model described 222 

below. 223 

 224 

Female i is assumed to construct bi redds according to the categorical distribution, 225 

bi ~ Categorical(B1, B2, B3,),   (2) 226 

in which Bh (h = 1, 2, 3) refers to the probability that a female produces h redds. Based 227 

on a detailed observational study of stream Dolly Varden (Kitano 1995), we set B1 = 0.1, 228 

B2 = 0.6, and B3 = 0.3. Thus, one female produced 1× 0.1 + 2 × 0.6 + 3 × 0.3 = 1.8 redds 229 

on average. This system model was used as a null model. 230 

 231 

Reproduction model with synchrony 232 

In order to add socially induced synchrony in spawning behaviors, we assumed that in 233 

day d, all females in population k with di = d spawn (if they have not spawned yet); after 234 

that, female j with later dj (di < dj) may spawn synchronously with probability  235 

)2/)(exp( 22

kji add  .   (3) 236 

In other words, if the best spawning dates are close, female j tends to go to spawn with 237 

other females. Therefore, the adjustment of spawning timing can be considered to be 238 

socially induced synchrony. In this paper, we called ak the “synchrony coefficient.” This 239 

system model contains four parameters (Nk, μk, σk, ak) for each population. 240 

 241 

Figure 1 illustrates examples of redd count data simulated by the synchrony model and 242 



the null model with different population sizes (i.e., 300 females vs. 20 females). In the 243 

null model, redd counts nearly follow the normal distribution when the population size 244 

is large (Fig. 1a). This smooth fitting is deformed to a heavily fluctuating pattern when 245 

synchrony is included (Fig. 1b). Similar patterns are often observed in natural 246 

populations (Petersen and Hess 1991; Plot et al. 2012). However, even in the null model, 247 

random sampling from the normal distribution, together with the variation caused by the 248 

number of redds produced by each female, often exhibits fluctuation when the 249 

population size is small (Fig. 1c). Thus, although the synchrony amplifies fluctuations 250 

(Fig. 1d), such patterns can be produced without synchrony. 251 

 252 

Observation model for redd counts 253 

Suppose that in population k redd counts were conducted on day 𝐷1
𝑘, … , 𝐷𝑇𝑘

𝑘 . On day 254 

Dt
k
 (t = 1, …, Tk) we expect to observe redds produced between Dt-1

k
 and Dt

k
. Let di’ be 255 

the actual spawning date of female i (di’ ≤ di because of synchrony). The observed 256 

number of redds, Ot
k
, can be written as 257 

,   (4) 258 

in which 1( ) is the indicator function; = 1 if the inside parenthesis is true or = 0 if false. 259 

Since we did not know the actual start dates of spawning, we set D0
k
 = D1

k
 – 5. 260 

Although arbitrary, few individuals spawn in mid-August (I. Koizumi, personal 261 

observation), few redds were found on the initial dates, and this setting affected the 262 

results little.  263 

 264 

Parameter estimation for null model 265 
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For simplicity, because the expected redd counts is given by 1.8Nk, we estimated the 266 

number of females (Nk) by 267 

{the observed redd counts in population k}/1.8 268 

and rounded to an integer. For the other parameters (μk, σk), denoting as 269 

 (t = 1, …, Tk),   (5) 270 

and assuming that {Ot
k
} are random samples from the multinomial distribution 271 

(𝑁𝑘, 𝑃1
𝑘, … , 𝑃𝑇𝑘

𝑘 ), we conducted the maximum likelihood method. This simplified 272 

estimation did not reflect the stochasticity caused by equation (2), but practically, this 273 

estimation provided almost equal results to those when the ABC method described 274 

below was applied to the null model. Hence, we show only the results using the 275 

likelihood estimation. 276 

 277 

Approximate Bayesian computation (ABC) and approximate kernel Bayesian (AKB) 278 

algorithm 279 

Because the derivation of a likelihood equation is difficult for the synchrony model, we 280 

applied the ABC method for estimating parameters (i.e., Nk, μk, σk, ak). In general, the 281 

algorithm of the ABC method is summarized as follows (Sunnåker et al. 2013): 282 

(1) Calculate summary statistic(s) from observational (real) data. 283 

(2) Given a certain model (synchrony model in the present case), perform simulations 284 

many times, each with a set of parameter(s) drawn from the prior distribution(s) 285 

arbitrary assumed (e.g. uniform distribution).  286 

(3) Calculate summary statistic(s) for each simulation. 287 

(4) Decide for each simulation whether its summary statistic(s) is sufficiently close to 288 
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that of the observed data. 289 

(5) Approximate the posterior distribution(s) of parameter(s) associate with accepted 290 

simulations. 291 

 292 

Summary statistics are generally used for comparing simulated and observational data 293 

because simulated data consists of time-series vectors and are rarely “sufficiently close” 294 

to the observed data. Thus, the choice of summary statistics is the first problem with the 295 

ABC method (Sunnåker et al. 2013). The second problem is that, in general, even when 296 

summarized, most of the simulated data are far from the real data, and most of the 297 

parameter values are discarded. Therefore, we need a huge number of simulations (e.g., 298 

100,000 or greater), which constrains calculations. The third problem is that there is no 299 

established criterion for determining what is “sufficiently close.” 300 

 301 

To overcome these problems, Fukumizu et al. (2013) introduced a new method, and 302 

Nakagome et al. (2013) applied this to a population genetics study. The method is called 303 

the kernel-ABC algorithm, or the approximate kernel Bayesian algorithm; hereafter, we 304 

call it the AKB algorithm. In this method, weights are given to sampled parameters 305 

depending on the closeness between the real and simulated data, with adjustment by the 306 

ridge regression. Fukumizu et al. (2013) proved that the weighted sum over all the 307 

sampled parameters converges to the posterior mean when the number of simulations 308 

increases. Unlike most of the ABC methods, the AKB algorithm uses all the sampled 309 

parameters from the prior distribution and, therefore, does not necessarily require so 310 

many simulations. In summary, the AKB algorithm solves the second and the third 311 

problems of the ABC method. 312 



 313 

Summary statistics 314 

We used the following four summary statistics: 315 

S1: Number of redds . (6) 316 

This is primarily used to estimate the number of females (Nk).  317 

S2: The sample mean over spawning dates .   (7) 318 

This is primarily used to estimate the mean spawning dates (μk). Because redds were 319 

produced between Dt-1
k
 and Dt

k
, this statistic is expected to be later than the true mean. 320 

If synchrony actually occurred, S2
k
 becomes earlier. 321 

S3: The standard deviation (SD) of spawning dates .   (8) 322 

This is primarily used to estimate the SD of spawning dates (σk).  323 

S4: Auto-covariance of time-lag =1. )2/(})((
1
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  324 

(9) 325 

This statistic quantifies the degree of fluctuations and is used for estimating the 326 

synchrony coefficient (ak). Because our model is not stationary, and Ot
k
s are expected to 327 

take large values around μk, the auto-covariance formula for stationary time-series 328 

(subtract m instead of 𝑂𝑡
𝑘̅̅ ̅̅  where m refers to the overall mean) is not applicable. Instead, 329 

equation (9) subtracts the moving average from t ‒ 1 to t + 2 for pair (t, t + 1). F
k
 and E

k
 330 

is the first and the last day when non-zero redd count was obtained, respectively. These 331 
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were for excluding zeros before and after the spawning period, which otherwise 332 

decreased the value of S4 and weakened the power for quantifying the fluctuations 333 

produced by the synchrony.  334 

 335 

The quantification of fluctuations by summary statistic S4 can be seen in the simulated 336 

patterns in Figure 1; S4 decreased from -6.3 (a) to -116.7 (b) if synchronicity operated. 337 

On the other hand, if the population size was small, S4 only slightly decreased from 338 

-0.71 (c) to -0.83 (d). 339 

 340 

Prior distribution and AKB-algorithm 341 

Prior distributions and the details about the AKB-algorithms are summarized in 342 

Supplementary Appendix B. Hereafter, the estimate of a parameter derived by the AKB 343 

algorithm is called as the AKB estimate. We also performed a conventional 344 

ABC-method for comparative purposes, and the method and its results are briefly 345 

summarized in Supplementary Appendix C. 346 

 347 

Goodness-of-fit 348 

In order to check if the model using AKB estimates actually explains the data, we used 349 

another summary statistic that was not used in the AKB algorithm. Let  350 

 (t = 1, …, Tk ‒ 1)   (10) 351 

be the difference in the number of redds between two consecutive surveys. We sorted 352 

them from largest to the smallest (let the sorted Ht
k
s be (𝐻(1)

𝑘 , … , 𝐻(𝑇𝑘−1)
𝑘 ) and 353 

accumulated them;  354 

|| 1

k
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k

t

k
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.   (11) 355 

We also calculated these statistics for simulated data using AKB estimates and 356 

computed their 2.5 and 97.5 percentiles for each u. If Gs
k
s for the real data were all 357 

inside the percentiles, the model was evaluated as adequately explaining real data. The 358 

same goodness-of-fit was conducted for the null model. Note that 𝐺𝑇𝑘−1
𝑘  is equal to the 359 

descriptive statistics used in Henson et al. (2010) for quantifying synchrony. 360 

 361 

Accuracy of AKB estimates 362 

In order to check if AKB estimates were close to the true parameter values, we 363 

simulated redd counts using given parameter values 100 times and then applied the 364 

AKB algorithm and checked if the AKB estimates obtained were close to the true 365 

values. 366 

 367 

We also simulated redd count data by the null model (without synchrony) and applied 368 

the AKB algorithm. Then, the AKB estimates of a should be close to 0. Thus, this 369 

simulation provides the range of synchrony coefficient that can be explained by the null 370 

model. 371 

 372 

Environmental factors and synchrony among populations 373 

Synchronous spawning might also have been triggered by environmental cues. In 374 

salmonids, which are stream-dwelling poikilothermic species, the main environmental 375 

factors affecting spawning activities are changes in photoperiod, water temperature, and 376 

water discharge (Jonsson 1991). Photoperiod changes gradually throughout the breeding 377 
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season and can affect reproductive seasonality, but this cannot be a proximal factor for 378 

reproductive synchrony. Therefore, we examined the effects of temperature and 379 

discharge on the daily spawning activities of Dolly Varden in each of 30 local 380 

populations.  381 

 382 

We used the data on ambient temperature and precipitation recorded in one of the 383 

meteorological stations within the study area as surrogates of water temperature and 384 

discharge, respectively. Since the study area is not spatially widespread (< 10-20 km; 385 

Supplementary Fig. S1), local differences should be small (e.g., correlation coefficients 386 

of daily precipitation among three meteorological stations within the study area were > 387 

0.92 (P < 0.0001)).  388 

 389 

We first applied the Poisson regression to the number of redds observed (dependent 390 

variable) and the accumulated precipitation (mm) and changes in temperature 391 

(maximum minus minimum temperature) during the consecutive surveys (independent 392 

variables). In addition, since there were many zero data especially in the beginning and 393 

end of breeding season, we used the zero-inflated Poisson (ZIP) regression (Zeileis et al. 394 

2008) with the same dependent and independent variables. These regression analyses 395 

were performed using statistical R software version 2.15.2 (R Development Core Team 396 

2012). 397 

 398 

This exploratory analysis did not reflect the normally distributed redd counts with 399 

different means and SDs. If an environmental factor influenced the breeding activity, 400 

differences between the observed redd counts and the expectations from the null model 401 



(residuals) should be correlated with the environmental data. We thus calculated the 402 

correlation coefficients between residuals and the precipitation or temperature data 403 

described above. 404 

 405 

If some environmental factors affected the breeding activity, synchrony among local 406 

populations would be expected. We therefore calculated pairwise cross-correlation 407 

coefficients for redd counts over the 30 local populations: the mean value and the 95% 408 

confidence interval were calculated with 1000 bootstrap resampling (Bjørnstad et al. 409 

1999). Because observation dates differed, we adjusted redd count data to every 5-day 410 

interval from September 1 to December 24 and computed correlation coefficients.  411 

 412 

In addition, since only reproductive seasonality should produce a certain level of 413 

synchrony, we have checked whether the observed cross-correlations could be produced 414 

without taking environmental data into account. For this purpose, we simulated redd 415 

count data by the synchrony model using the AKB estimates 1000 times, calculated 416 

cross-correlations and compared them with the observed values. If the observed value 417 

exceeds the upper 95% over the simulated data, effects of some environmental cues are 418 

suggested. We used population pairs for T7-T7.5-T8-T9, T16-T17, and T50-T50.5 419 

because these pairs were spatially close and had exactly the same observation dates. 420 

 421 

Results 422 

 423 

General description of spawning activity 424 



The spawning season of Dolly Varden lasted 3 to 4 months and peaked in mid-October 425 

(Fig. 2a; Supplementary Fig. S2). A total of 1206 spawning redds (934 completed redds 426 

and 272 direct spawning behavior) were observed from the 30 tributaries. On average, 427 

40 redds were observed in each tributary (range: 9-108), which is equivalent to 22 (= 428 

40/1.8) females (range: 5-60 females). Spawning periods overlapped widely and 429 

continued for long periods (> 3 months) for most of the tributaries (Supplementary Fig. 430 

S2). Multiple spawning aggregations were often observed in some tributaries (the left 431 

column in Fig. 3; Supplementary Fig. S2), similar with the patterns produced by the 432 

synchrony model (Fig. 1b, d). In addition, gathering of mature adults (10-20 433 

individuals) were often observed in some pools of the tributaries before such spawning 434 

aggregations. 435 

 436 

Synchrony model vs. null model 437 

Table 1 summarizes values of the four summary statistics, the estimates of parameters in 438 

the null model and the synchrony model for the 12 populations that had relatively large 439 

numbers of redds (≥ 40) (those for all the 30 populations are shown in Supplementary 440 

Table S2). For mean spawning dates (μk), the null model exhibited earlier mean 441 

spawning dates than the observed means, and when the synchrony was included, the 442 

estimates tended to become later, as mentioned in the Summary Statistics section. The 443 

AKB estimates for the number of females were almost the same as S1/1.8. 444 

 445 

The goodness-of-fit test revealed that the synchrony model explained all the patterns 446 

observed, but the null model failed for four (33%) populations (Table 1, at the 90% 447 

level), meaning significantly more aggregation and fluctuations in the reproductive 448 



timing. As demonstrated in Fig. 1, the null models often produced fluctuating redd 449 

counts that were visually indistinguishable from those simulated by the synchrony 450 

models. However, the summary statistic S4 successfully differentiated the two patterns 451 

and G-values in equation (11) showed sufficient fit for the synchrony model but 452 

insufficiency for the null model (the top and the middle rows in Fig. 3). In contrast, for 453 

the populations where the null models were not rejected, although the observed redd 454 

counts looked fluctuated, the values of S4 were not so low and the null models produced 455 

similar patterns (e.g., the bottom row in Fig. 3).  456 

 457 

Accuracy of AKB estimates 458 

When we simulated redd count data using the AKB estimates in Table 1 and applied the 459 

AKB algorithm to the simulated data 100 times for the above four populations where 460 

the null models were rejected, we obtained values around the true value (Supplementary 461 

Fig. S3), and the the SDs of these estimates were small, ranging from 1.15 to 1.28.  462 

 463 

When the AKB algorithm was applied to count data simulated by the null model, most 464 

of AKB estimates were 1-3 and less than 5% exceeded the AKB estimates for the 465 

observed data (Supplementary Fig. S3), except for T20 that had relatively small 466 

synchrony coefficient (2.74). 467 

 468 

Degree of spawning synchrony 469 

Figure 4 illustrates how the synchrony operated on the breeding activity. The mean over 470 

the above four populations (i.e., null models were rejected) was 4.00, and under this 471 

degree of synchrony, 50% probability that a female synchronizes spawning was 4-5 472 



days before her best spawning date (Fig. 4a), and almost all females went to spawn 3 473 

days before the best spawning date (on the assumption that some other females spawned 474 

every day). The average over the 30 populations was 2.77 (Supplementary Table S2), 475 

and this synchrony coefficient also involves spawning of almost all females before the 476 

best spawning date (Fig. 4). If a < 1.0, few females go to span before the best spawning 477 

date (Fig. 4), although we found only one such population (Supplementary Table S2). 478 

 479 

Environmental factors and synchrony among populations 480 

Neither the Poisson nor ZIP regressions showed clear effects of precipitation or 481 

temperature on the spawning activity of the 30 local populations of Dolly Varden 482 

(Supplementary Table S3). Poisson regression coefficients for precipitation were 483 

significantly positive in 2 populations (2/30 = 6.7%), significantly negative in 6 484 

populations (20%), and non-significant in 22 populations (73.3%). However, none were 485 

significant after Bonferroni correction (i.e., P = 0.05/30 = 0.0017). The regression 486 

coefficients for temperature were significantly positive in 6 populations (20%), 487 

significantly negative in 2 populations (6.7%), and non-significant in 22 populations 488 

(73.3%). In this case, only 2 were significant after Bonferroni correction. ZIP regression 489 

analysis showed similar results, although the populations showing significance and the 490 

directions of the regression coefficients were often different (Supplementary Table S3).  491 

 492 

We further investigated the effects of precipitation and temperature by residual analysis. 493 

However, no significant effects were detected in any of the 30 populations, in which 494 

some populations showed positive values whereas others showed negative ones (Fig. 5). 495 

 496 



The overall level of synchrony in breeding activity was positive among the 30 497 

populations, but relatively low (mean r = 0.276, 95% bootstrap CI = 0.200-0. 357, 498 

Supplementary Fig. S4). We further analyzed the data with the synchrony models taking 499 

the seasonality into account. For the three groups of spatially adjacent populations with 500 

the same observation dates (T7-T7.5-T8-T9, T16-T17, and T50-T50.5), the observed 501 

cross-correlations were not high (mean r = 0.258) and were all within confidence 502 

intervals obtained by 1000 times simulations (Fig. 6).  503 

 504 

These results collectively showed low or non-consistent environmental effects on 505 

breeding activity and also low breeding synchrony between and among the populations 506 

inhabiting the 30 tributaries studied. 507 

 508 

 509 

Discussion 510 

 511 

Our models suggested the existence of socially induced reproductive synchrony in some 512 

local populations of Dolly Varden. Lack of environmental effects and/or synchrony 513 

among local populations further supported the notion that synchronous spawning was 514 

triggered by social interactions. As far as we know, this is the first study that applies 515 

ABC to animal behavior and also that suggests socially induced reproductive synchrony 516 

in stream fish. So far, reproductive synchrony by social stimuli has been indicated 517 

mostly in mammals and birds from which we can obtain direct evidence of complex 518 

social interactions (French and Stribley 1987; Sillero-Zubiri et al. 1998; Jovani and 519 

Grimm 2008; Henson et al. 2010, but see Plot et al. 2012). Our approach, using 520 



individual-based modeling and statistical techniques that link models with field data, 521 

explored a methodological framework that can be applied to a broad range of species, 522 

especially when direct observations of social interactions and mating behavior are 523 

difficult.  524 

 525 

ABC framework in behavioral ecology 526 

We combined three modelling frameworks (i.e., an individual-based model, a 527 

hierarchical Bayesian model, and ABC) that are well established in their own fields 528 

(Grimm and Railsback 2005; Royle and Drazio 2008; Beaumont 2010). Since socially 529 

induced synchrony is triggered by surrounding individuals, individual-based modeling 530 

was an appropriate method to use. Hierarchical modelling was also necessary because 531 

field data usually contain stochastic processes, which were incorporated in the 532 

observation model. The advantage of ABC, then, was to be able to jointly estimate the 533 

parameters even though the derivation of the likelihood is practically impossible. These 534 

modelling frameworks were highly compatible since many essential ideas are shared 535 

with one another, such as simulation techniques and Bayes theorem. Since animal 536 

behavior is an individual-level phenomenon, our approach could be effective for a wide 537 

range of behavioral studies, especially when a global pattern can be generated by 538 

individual behaviors (e.g., Wood and Acland 2007; Jovani and Grimm 2008; Attanasi et 539 

al. 2014; Murakami et al. 2014; Calovi et al. 2015). 540 

 541 

We demonstrated the importance of setting an appropriate null model for investigating 542 

relatively weak patterns of socially induced reproductive synchrony (see also, Henson et 543 

al. 2010). Intermittent breeding patterns are often used as an indication of socially 544 



induced synchrony (Petersen and Hess 1991; Plot et al. 2012), but such patterns can be 545 

generated by stochasticity alone. Appropriate summary statistics helped us to judge 546 

which data required the synchrony and which did not. In addition, a synchrony index is 547 

often tested against the null hypothesis that individuals breed randomly in time 548 

(Marsden and Evans 2004). Reproductive timing, however, is often normally-distributed 549 

(Munro et al. 1990) and, therefore, calculation of deviations from a normal distribution 550 

is required. 551 

 552 

Our study showed that the synchrony model was not always necessary to explain the 553 

field data and that the degree of synchrony differed over local populations. The 554 

sufficient fit of the null model for some populations may be because the presence of 555 

breeding synchrony is conditional or environmentally dependent. Obviously, it is 556 

difficult to time breeding with other individuals when population density is low (e.g., 557 

less than 10 females spawned in some populations, Supplementary Table S2). Also, 558 

breeding synchrony may be beneficial only in certain situations, such as when breeding 559 

areas are limited or when the operational sex ratio is high (see below). It is also possible 560 

that there simply was not enough statistical power due to the small numbers of redd 561 

counts in some tributaries. Note that non-rejection of the null model does not 562 

necessarily mean the absence of reproductive synchrony; all the data were also 563 

explained by the synchrony model. A more intensive survey, such as everyday census, 564 

would increase detection power. However, there is a trade-off between collecting data 565 

intensively in fewer populations or collecting that data extensively in multiple 566 

populations but with lower quality. Nonetheless, we were able to detect significant 567 

synchrony in multiple populations. In addition, the strengths of social interaction could 568 



be evaluated by the synchrony coefficients a even when the synchrony models were 569 

statistically differentiated from the null models. Importantly, the synchrony coefficients 570 

indicate that breeding timing can be adjusted for up to 7 days by the synchrony, which is 571 

consistent with known degree of plasticity in reproductive timing in salmonids (Craik 572 

and Harvey 1984; Brooks et al. 1997). 573 

 574 

Reproductive synchrony in fishes 575 

Synchronous mass spawning is well known in some marine fishes, such as coral reef 576 

fishes and intertidal spawners (Yamahira 1996; Craydon 2004; Byrne and Avise 2009). 577 

These are mostly associated with lunar or tidal cycles, and the adaptive significance 578 

may be predation satiation (several hypotheses in Craydon 2004). Socially induced 579 

synchrony is also suggested in a damsel fish based on intermittent spawning patterns 580 

similar with Fig. 1 (Petersen and Hess 1991). In this case, the adaptive mechanism is 581 

proposed as avoiding filial cannibalism, which we also discuss later.  582 

 583 

Spawning aggregations or group spawning are also reported in many freshwater fishes, 584 

such as cyprinids, lampreys, and salmonids (Sakai 1995; Blanchfield and Ridgway 585 

1997; Jang and Lucas 2005). However, surprisingly few studies have focused 586 

specifically on reproductive synchrony, including the predation satiation hypothesis, 587 

which seems particularly possible in sea-run salmonids by bear predation (Quinn et al. 588 

2014). In freshwater (not sea-run) salmonids, two studies indicate reproductive 589 

synchrony where 60-90% of spawning occurred within a few days or weeks 590 

(Blanchfield and Ridgway 1997; Sato and Harada 2008). They do not discuss the 591 

possible effects of social interactions; rather an environmental factor (e.g., precipitation, 592 



temperature) was proposed as the proximate driver (Blanchfield and Ridgway 1997). 593 

Interestingly, however, the gathering of mature individuals in some pools or near 594 

spawning sites was also observed before the synchronous spawning (Blanchfield and 595 

Ridgway 1997; T. Sato, personal communication; see also White 1930), indicating 596 

some social interactions. Overall, it would be fruitful to reexamine the breeding ecology 597 

of fishes in terms of reproductive synchrony for better understanding of its evolutionary 598 

significance and ecological consequences (Ims 1990a). 599 

 600 

The major adaptive significance of breeding synchrony is generally believed to be 601 

predation satiation (Darling 1938; Janzen 1971). However, this is unlikely in the 602 

populations of Dolly Varden. Ims (1990b) has demonstrated theoretically that predation 603 

satiation would not be achieved when breeding occurs synchronously within but 604 

asynchronously among local populations. In such cases, mobile predators efficiently 605 

consume local prey appearing at different times in different areas. This may be exactly 606 

the case for Dolly Varden in the Sorachi River. Blakiston’s fish owls Bubo blakistoni 607 

were observed at different times and in different tributaries preying on spawning Dolly 608 

Varden (I. Koizumi, personal observation).  609 

 610 

Blanchfield and Ridgway (1997) hypothesized that breeding synchrony in salmonids 611 

occurs to avoid sexual harassment or egg cannibalism by satellite males. Some males 612 

actively urge females to spawn, sometimes by displaying aggressive behavior (Garner et 613 

al. 2010). Similarly, some satellite sneaker males eat eggs right after oviposition 614 

especially when the density of sneakers is high (Maekawa and Hino 1990). Synchrony 615 

generally reduces the operational sex ratio (OSR) so that each spawning female is 616 



surrounded by fewer males (Ims 1988). Thus, synchronous breeding may be a female 617 

strategy to reduce harassment and/or filial cannibalism by inducing more monogamous 618 

mating. Another potential benefit of synchronous breeding in salmonids is to reduce 619 

redd superimposition (Blanchfield and Ridgway 1997). When spawning areas are 620 

limited within streams, females dig nests where other females have spawned, which can 621 

cause egg death in old nests (van den Berghe and Gross 1989). Therefore, by spawning 622 

simultaneously with other females, they can avoid redd superimposition.  623 

 624 

We also propose that the breeding synchrony in Dolly Varden may relate to female 625 

choice. Synchronous breeding generally decreases OSR but could also result in male 626 

monopolization when dominant males access multiple females (Ims 1988). In fact, 627 

breeding groups were often formed within limited stream reaches (e.g., less than 50 m, I. 628 

Koizumi, personal observation) and also perfect synchronous egg depositions among 629 

females seems difficult. On days when we observed synchronous breeding events, many 630 

males were active within limited breeding reaches, which could result in strong sexual 631 

selection. Among the large number of competing males, females can directly (via 632 

female choice) or indirectly (via male-male competition) mate with the best males. This 633 

can be referred to as induced polygamy by females, the opposite strategy discussed in 634 

the previous paragraph (i.e., induced monogamy). These alternative hypotheses could be 635 

separated by genetic parentage analysis to see if dominant males monopolize 636 

reproductive success or if subdominants fertilize eggs due to reduced operational sex 637 

ratios.  638 

 639 

Conclusion 640 



 641 

This study demonstrated the efficiency of combining intensive field data, modeling and 642 

parameter estimation for the study of animal behavior. Elementary statistical techniques 643 

such as correlations and generalized linear models do not always work because they 644 

require the independence of data while synchrony inevitably produces non-independent 645 

time-series data. Our results have shown the importance of intensive field studies 646 

covering large numbers of populations and frequent surveys: otherwise, we would have 647 

missed variations among the populations in rejection/acceptance of the null model, 648 

environmental effects, and values of the synchrony coefficients. In addition, our study 649 

has demonstrated the importance of adequate setting of a null model; it is not difficult to 650 

make a complex model that can explain given data even when a simpler model can 651 

explain the data. Feedbacks between field studies and modeling together with finding a 652 

suitable null model will advance the studies of behavioral ecology. 653 
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Figure legends 819 

 820 

Fig. 1 821 

Examples of redd count data simulated by the synchrony model (b, d) and the null 822 

model without synchrony (a, c) when a population size is large (300 females, a, b) and 823 

small (20 females, c, d). Date was calculated taking 1 September as day 1. Observations 824 

are made every 3 days. The thin lines indicate a normal distribution of the best 825 

spawning dates for this population (mean = 60, SD = 15). The values of summary 826 

statistic S4 (auto-covariance of time-lag = 1, measuring the degree of synchrony) are 827 

indicated for each data. 828 

 829 

Fig. 2 830 

(a) Daily number of redds (spawning nests) observed during the spawning season of 831 

stream-dwelling Dolly Varden in 30 tributaries of the Sorachi River, Hokkaido, Japan, 832 

(b) mean (solid line), highest and lowest (dashed lines) daily ambient temperature, and  833 

(c) daily precipitation in the study area. 834 

 835 

Fig. 3 836 

The observed redd counts (first column), an example of redd counts simulated by the 837 

synchrony model (second column) and the null model (third column), and the 838 

goodness-of-fit by equation (19) for the synchrony model (fourth column) and the null 839 

model (fifth column) for population T7 (the top row), T9 (the middle row) and T10a 840 

(the bottom row). 841 

 842 



Fig. 4 843 

The synchrony curve (a) and the cumulative probability that the females do not 844 

synchronize (b) when a = 4.00 (the mean over the four populations where the null 845 

model was rejected), a = 2.77 (the mean over all the 30 populations) and a = 1.00 (an 846 

example of very weak synchrony). 847 

 848 

Fig. 5 849 

Correlation coefficients of residual redd counts and environmental factors (i.e., 850 

precipitation and temperature). 851 

 852 

Fig. 6 853 

Tests of the synchrony for the three groups of eight spatially adjacent populations. Black 854 

circles indicate the observed cross-correlation coefficients, and minus symbols indicate 855 

the 2.5, 50 and 97.5 percentiles (from the bottom to the top) over 1000 simulations. 856 

 857 

 858 

  859 



Table 1. Summary statistics, parameter estimates by null model and synchrony model for 12 local populations. 860 

 861 

Populations T7 T7.5 T8 T9 T10a T10 T11 T20 TS T25 T28 IK 

Summary statistics 
            

Number of redds S1 63 58 40 49 108 72 67 46 47 76 101 63 

Mean spawning date S2 10/15 10/13 10/22 10/12 10/5 10/8 10/17 10/11 10/20 10/26 10/24 10/13 

SD over spawning date S3 14.98  15.63  11.28  13.47  21.75  13.63  19.28  19.95  16.55  18.40  18.45  21.12  

Auto-covariance S4 -7.08  -1.58  -2.48  -5.66  -1.47  -0.92  -0.91  -1.41  -1.77  -1.67  -9.58  -0.85  

             Null model 
            

S1/1.8 35  32  22  27  60  40  37  26 26 42 56 35 

Mean spawning date μk 10/13 10/11 10/20 10/10 10/4 10/6 10/17 10/14 10/18 10/23 10/21 10/10 

SD σk 14.34  15.02  11.09  13.25  25.42  13.58  22.66  27.57  16.03  18.20  17.88  21.79  

             Synchrony model (AKB-estimate) 
           

Number of females Nk 34  32  22  27  60  40  37  26 26 42 56 35 

Mean spawning date μk 10/15 10/12 10/22 10/12 10/3 10/6 10/15 10/9 10/19 10/24 10/24 10/10 

SD σk 14.78  15.68  11.30  13.41  22.26  13.84  19.06  20.1 16.42  18.23  18.43  21.40  

Synchonicity coefficient ak 4.51  2.26  2.69  4.57  1.97  1.59  0.91  2.74  2.36  1.76  4.19  1.42  

Rejection of null model 
a)
 ** 

  
** 

   
* 

  
** 

 

             
a) **: 5%, *: 10% 
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